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Recent studies show that an intermediate mass black hole (IMBH) may develop a dark matter (DM)
minihalo according to some BH formation scenarios. We consider a binary system composed of an IMBH
surrounded by aDMminispike and a stellarmass object orbiting around the IMBH. The binary evolves due to
gravitational pull and dynamical friction from the DM minispike and backreaction from its gravitational
wave (GW) radiationwhich can be detected by future space-borneGWexperiments such as eLISA/NGO.We
consider a single power-lawmodel for the DMminispikewhich is assumed to consist of nonannihilating DM
particles and deriveGWwaveforms including theDMeffects analytically.We demonstrate that a detection of
GWs from such a binary with eLISA/NGO is affected by the DM effects and enables us to measure the DM
minispike parameters accurately. For instance, in our reference case originally advocated by Zhao and Silk
[Phys. Rev. Lett. 95, 011301 (2005)] and Bertone et al. [Phys. Rev. D 72, 103517 (2005)], we could
determine the power-law index α of the DM minispike radial profile with a 1σ relative error of �5 × 10−6

for a GW signal with signal-to-noise ratio 10 and assuming a five-year observation with eLISA. We also
investigate how accurately the DM parameters can be determined for various values of the slope of the DM
minispike and the masses of the IMBH–stellar mass object binary surrounded by the DM minispike. We
find that the power-law index α is measurable at 10% level even for a slightly flatter radial distribution of
α ∼ 1.7. We clarify that the larger masses of the IMBH and the stellar object lead to the worse measurement
accuracies of the DM parameters because the number of GW cycles becomes smaller.

DOI: 10.1103/PhysRevD.91.044045 PACS numbers: 04.30.-w, 95.35.+d, 95.85.Sz, 97.60.Lf

I. INTRODUCTION

There is much reliable evidence for the existence of
dark matter (DM) which is mainly associated with the
missing mass problem. Astronomers and particle phys-
icists seek to probe DM properties by direct laboratory
experiments or indirect observations [1]. Indirect tech-
niques include efforts to detect gamma rays from DM
annihilation using telescopes such as the Fermi Large
Area Telescope (Fermi-LAT, [2]), the Major Atmospheric
Gamma-ray Imaging Cherenkov (MAGIC) telescope [3],
the High Energy Stereoscopic System (H.E.S.S., [4]) and
the Very Energetic Radiation Imaging Telescope Array
System (VERITAS, [5]) (see, e.g., [6] for a review).
It was first suggested by Gondolo and Silk [7] that

adiabatic growth of a BH at the center of a DM halo whose
density had a singular power-law cusp ρðrÞ ∝ r−αini with
0 ≤ αini ≤ 2 led to a high-density DM region around the

central BH, ρspikeðrÞ ∝ r−α with 2.25 ≤ α ≤ 2.5. This
region is called a DM spike. Inside the spike, DM
annihilations are enhanced and produce the strong
gamma-ray photon flux which could be detectable to the
telescopes mentioned above.
However, subsequent studies pointed out that this spike

could be weakened by dynamical processes such as
mergers of host galaxies, subhalo accretion and passing
of molecular clouds [8–12]. These processes transfer
energy to the DM particles and destroy the structure of
the DM spike. Then the annihilation rate in the spike is
smaller than predicted in [7] because it depends on the line-
of-sight integral of the squared density of the spike. If
supermassive black holes (SMBHs) have experienced
mergers, they are unlikely to have surviving spike structure.
Even this, however, is controversial because of the uncer-
tainty in whether the final parsec problem for SMBH
mergers has been resolved phenomenologically [13] or
even theoretically [14]. On the other hand, formation
scenarios of intermediate-mass black holes (IMBH) which*eda@resceu.s.u‑tokyo.ac.jp
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allow DM minispikes have been proposed [15,16]. If the
IMBH have never experienced mergers in the past, the DM
minispike around the central IMBH is likely to survive.
IMBHs may exist in our Universe [17–19], and even

several hundreds would reside in the halo of the present-day
Milky Way galaxy [20,21]. Those IMBHs in globular
clusters are recognized as promising sources for the evolved
Laser Interferometer Space Antenna (eLISA) [22]/the New
Gravitational Wave Observatory (NGO) [23] and DECi-
hertz Interferometer Gravitational Wave Observatory
(DECIGO)[24].
In our previous work [25], we demonstrated that a very

tiny effect such as the gravitational pull of a DM minispike
around an IMBH indeed affects detectability of GW by
eLISA, and thereby we could infer presence or absence of a
DM minispike around an IMBH using GW. Specifically,
when a stellar mass object inspirals into the central IMBH, it
is affected by the gravitational force of not only the central
IMBH but also the minispike. Therefore, the inspiral GW is
modified by the minispike around the central IMBH. We
found that the very tiny effect from gravitational pull of a
DM minispike could have a large impact on detectability of
the GW, thanks to the huge number of orbital cycles which
the binary experienced in the eLISA detection frequency
band. We also found that GW detectability strongly depends
on the density profile of the DM minispike.
In this paper, we extend our previous work in the

following way. We again consider GWs emitted from a
binary system consisting of a stellar mass object and an
IMBH harbored in a DM minispike, and calculate the GW
waveform including the effect of both the gravitational
potential and the dynamical friction on the falling stellar
mass object in the DM minispike. Furthermore, we inves-
tigate how accurately the DM parameters are determined by
the GW observations. We find that the DM information
contained in the waveform can be extracted with very good
accuracy by GW observations if the central IMBH has a
steep density minispike. We also investigate how the
detection accuracy of the DM parameters changes depend-
ing on the masses of the binary components and the density
profile of the DM minispike such as the power index and
overall normalization.
Recently Macedo et al. made clear the importance of the

dynamical friction on the GWwaveform in a quite different
context from ours, namely, a stellar mass object falling in a
compact configuration of DM clouds [26]. Also, Barausse
et al. has given a wide survey on astrophysical environ-
mental effects on GW signals using order of magnitude
estimates, concluding that astrophysical environmental
effects such as accretion disks, magnetic fields, and DM
halos do not obscure gravitational wave astrophysics, e.g.,
precision measurements of binary masses and tests of
general relativity [27] (see also [28]). To indicate one
exception, our paper shall clearly show that, in the recently
advocated DM minispike scenario, environmental effects

do affect GW detectability [25] and we can measure DM
properties quite accurately from eLISA GW detection,
which will be shown through a detailed study using a
matched filtering technique and Fisher matrix analysis.
The rest of the paper is organized as follows. Section II

presents the DM minispike model and candidates for the
stellar mass object. In Sec. III we derive the GW waveform
from the system which we consider, and the observational
errors of the waveform parameters are calculated in Sec. IV.
Finally, our conclusions are given in Sec. V.

II. MINIHALO MODEL

In this section, we provide a model of DM minihalo to
evaluate the effect of the DM minihalo on GW observa-
tions. The DM halo profiles have been investigated via
cosmological N-body simulations. Navarro, Frenk and
White (NFW) have pointed out the existence of a universal
density profile for DM halos and proposed the NFW profile
[29]. Later work shows that the inner slope may be different
from the NFW one and may not even be universal [30].
More recent simulations have suggested that alternative
models such as the Einasto model could be better-fitted
than the NFW one [31]. However, the DM profile in the
vicinity of the central BH has yet to be investigated due to
the lack of the resolution in N-body simulations. To handle
the DM minihalo profile around the BH, we put the
following two assumptions on the DM profile. The first
is a single power-law model of a DM minispike. The
second is that normalization factors of the DM minispike
are set through the NFW profile for simplicity. Therefore,
we consider various values of the slope of the minispike
with the fixed normalization factors computed based on the
NFW profile. The result we will present later in this paper
can be easily extended to other DM profiles just by changing
the normalization factors as long as the inner DM profiles
can be approximately described by a single power law.

A. Initial DM minihalo profile

We assume that the initial DM minihalo profile which
leads to the DM minispike after the adiabatic growth of the
IMBH is approximately described by the NFW profile [29]

ρNFWðrÞ ¼
ρs

ðr=rsÞð1þ r=rsÞ2
; ð1Þ

where r is the radius, ρ is the mass density and the sub-
script “s” stands for the scaling. The NFW parameters ρs
and rs are related to the cluster mass and concentration
parameters by

Mvir ¼
4π

3
ΔvirΩmðzfÞρcriðzfÞr3vir; ð2aÞ

ρs ≡ 1

3fðcvirÞ
ΔvirΩmðzfÞρcriðzfÞc3vir; ð2bÞ
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where cvir ≡ rvir=rs and rvir is the virial radius and Mvir
is the virial mass of the cluster, zf is the formation redshift
of the cluster, Ωm is the matter density parameter, ρcri is
the critical matter density of the Universe and the function
fðxÞ is the volume integral of the NFW profile fðxÞ≡
ln ð1þ xÞ − x=ð1þ xÞ (see, e.g., [32]). We used the fitting
formula given by [33] for the parameter Δvir: Δvir ≡
18π2ð1þ 0.4093ω0.9052

vir Þ where ωvir≡1=ΩmðzfÞ−1 [33].
The mass-concentration relation is taken from [34] which
fits the profiles of the clusters of galaxies obtained in their
N-body simulations. This result for clusters of galaxies may
or may not apply for the minihalo. In any case, concen-
tration parameters betweenOð1–1000Þ lead to qualitatively
similar results and are given by the following relation.

c200 ¼ A200ðM200=MpivotÞB200ð1þ zfÞC200 ; ð3Þ

where we assume ðA200; B200; C200;MpivotÞ ¼ ð5.71;
−0.084;−0.47; 1.0 × 1014h−1M⊙Þ from the result of
[34]. The parameters A200 and so on may be appropriately
used when the overdensity Δvir equals 200. However, we
here assumed A200 ≃ Avir and so on for simplicity.
As will be shown later, the GW waveform depends on

the DM minispike slope α and some combination of the
radius at which the minispike is established, rsp, and the
DM density there, ρsp. Under the assumption of adiabatic
growth, while the final power-law index of the DM
minispike, α, depends on the power-law index of the initial
inner DM profile, the latter two depend on ρs, rs and α. For
concreteness, we adoptMvir ¼ MDM ¼ 106M⊙, zf ¼ 20 in
Eqs. (2a), (2b), and (3) [15,16] and find cvir ¼ 6.6,
rs ¼ 23.1 pc, and ρs ¼ 3.8 × 10−22 g=cm3.

B. DM minispike profile

We proceed to discuss the DM profile of the minispike. If
the DM minihalo initially has a cuspy profile ρðrÞ ∝ r−αini
with 0 ≤ αini ≤ 2, then the adiabatic growth of the central
IMBH produces the DM minispike. Hence, the dark matter
profile becomes [7,35]

ρDMðrÞ ¼
�
ρspikeðrÞ; ðrmin ≤ r ≤ rspÞ;
ρNFWðrÞ; ðrsp < rÞ; ð4Þ

with

ρspikeðrÞ ¼ ρsp

�
rsp
r

�
α

; ð5aÞ

α ¼ 9 − 2αini
4 − αini

; ð5bÞ

where ρsp is the normalization constant and rsp is empiri-
cally defined by rsp ∼ 0.2rh. The radius rh is the distance
of the gravitational influence of the central IMBH with
the mass MBH and is approximately obtained by

Mð< rhÞ ¼ 4π
R rh
0 ρDMðrÞr2dr ¼ 2MBH [36]. The slope

of the DM minispike takes the value 2.25 ≤ α ≤ 2.5 for
0 ≤ αini ≤ 2. In the case of an initial NFW profile, αini ¼ 1,
this gives rise to α ¼ 7=3. If the initial profile of the
minihalo is a uniform distribution, then the final profile
after the adiabatic growth of the IMBH would become a
more gentle ρspikeðrÞ ∝ ðr=rhÞ−3=2 [9,37,38].
It is important to note that the final profile of the DM

minihalo depends on the formation history of the central
IMBH. If the IMBH has experienced disruptive processes
such as mergers in the past, the minispike would be
weakened or disappear. For this reason, we do not specify
the value of the power-law index α of the DM minispike
and treat it as a free parameter within the range 0 ≤ α ≤ 3.
In the following, even if α < 2.25, we will still call the
DM distribution close to the central IMBH described by
Eq. (5a) “a DM minispike” for the sake of simplicity.
Indeed we will see that the “DM minispike” leaves its
signature in the GW waveform when α≳ 1.7, but certainly
does not when α ¼ 0. We will also assume different values
of ρsp to study how the ambiguities in ρs and rs mentioned
above affect our results. Finally, we take rmin to be the
innermost stable circular orbit (ISCO) of the central IMBH,
rmin ¼ rISCO ≡ 6GMBH=c2. It may be more precise to use
4GMBH=c2 [39], but such a change of rmin does not alter at
all the measurement accuracy of the DM parameters shown
below. The parameters of the DM density profile are
summarized in Table I below.

C. Candidate for a stellar mass object

Before moving onto the calculation of the GW wave-
form, we discuss what can be a candidate for a stellar mass
object. Let us consider a stellar mass object with mass μ
denoted by A, orbiting around an intermediate mass black
hole B with mass MBH. We consider the inspiral up to the
innermost stable circular orbit rISCO:

rISCO ¼ 6GMBH

c2
≃ 9 × 103 km

�
MBH

103M⊙

�
: ð6Þ

TABLE I. Our reference model parameters of the IMBH, the
DM minihalo and the DM minispike.MDM: The total mass of the
minihalo, MBH: the mass of the central intermediate mass black
hole, zf: the formation redshift of the minihalo, chalo: the con-
centration of the minihalo, rvir: the virial radius of the minihalo,
rs: the NFW rs parameter of the minihalo, ρs: the NFW ρs
parameter of the minihalo, rh: the radius at which MDMðrhÞ ¼
2MBH, rsp: the radius where the spike forms (estimated by
rsp ¼ 0.2rh), and ρsp: the minihalo mass density at rsp.

MDM MBH zf chalo rvir
106M⊙ 103M⊙ 20 6.6 152.6 pc

rs ρs rh rsp ρsp
23.1 pc 3.8 × 10−22 g=cm3 1.65 pc 0.54 pc 226M⊙=pc3
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Hence, the object A should have a radius smaller than at
most 9 × 103 km. At the same time, the tidal radius of A
orbiting B at the orbital radius of rISCO is

lA tidal ≃ rISCO

�
μ

MBH

�
1=3

≃ 9 × 102 km

�
μ

1M⊙

�
1=3

�
MBH

103M⊙

�
−1=3

�
MBH

103M⊙

�
:

ð7Þ

Hence, this object must be either a black hole or a neutron
star. Alternatively, if we assume A to be a white dwarf of
radius lA ¼ 10000 km or a sunlike object of radius
lA ¼ 106 km, the innermost orbital radius should be
replaced by the radius below which the object A is tidally
destroyed:

rtidal ≃
�
MBH

μ

�
1=3

lA

≃ 3 × 10−7 pc

�
MBH

103M⊙

�
1=3

�
μ

1M⊙

�
−1=3

�
lA

106 km

�
:

ð8Þ

As will be stated, we will consider the orbital radius of
order 10−8 pc or less, so we cannot assume our stellar mass
object to be a normal star with radius ∼106 km. A white
dwarf may be an interesting candidate since an electro-
magnetic counterpart may be expected when it is tidally
disrupted (e.g., [40–42]). Yet, here in this paper we assume
a neutron star or a black hole when we refer to a stellar mass
object.

III. GW WAVEFORM

A. Equation of motion for the stellar mass object

Let us consider a binary system which involves a small
compact object with a mass of μ ¼ 1M⊙ and an IMBH
with a mass of MBH ¼ 103M⊙. The mass of the stellar
mass object μ is much smaller than the mass of IBMH
MBH. So the reduced mass is approximately equal to μ and
the barycenter position is approximately equal to the
position of the IMBH. By adopting a reference frame
attached to the barycenter, the equation of motion of the
radial relative separation between the stellar mass object
and the IMBH describes the motion of the former and is
given by

d2r
dt2

¼ −
GMeff

r2
−

F
rα−1

þ h2

r3
; ð9Þ

where h is the angular momentum of the stellar mass
object per its mass, and Meff and F are defined by

Meff ¼
�
MBH −MDMð< rminÞ ðrmin ≤ r ≤ rspÞ;
MBH ðr < rminÞ;

ð10aÞ

F ¼
�
rα−3minMDMð< rminÞ ðrmin ≤ r ≤ rspÞ;
0 ðr < rminÞ:

ð10bÞ

The mass MDMð< rminÞ denotes the DM mass contained
within the ISCO and is defined as MDMð< rminÞ≡
4πrαspρspr3−αmin =ð3 − αÞ. The first term on the right-hand
side of Eq. (9) describes the gravitational potential of
the effective mass of the central IMBH which is
modified by the DM due to the absence of the DM
within the ISCO, the second term accounts for the DM
effect, and the third term represents a centrifugal force.
Here the dynamical friction force and the GW back-
reaction force are neglected because these effects are
much smaller than the gravitational potential of the
IMBH. We will introduce these effects to include an
adiabatic evolution of the orbital radius in the next
subsection.
We assume that the stellar mass object orbits in a

circular manner for simplicity. The orbital radius R is
obtained by solving d2r=dt2 ¼ 0 in Eq. (9). The orbital
frequency ωs is related to the angular momentum h by
Rωs, so we get

ωs ¼
�
GMeff

R3
þ F
Rα

�
1=2

: ð11Þ

When a DM minispike is not present around the IMBH,
F → 0 and Meff → MBH, so Eq. (11) leads to the
Kepler’s law ω2

s ¼ GMBH=R3.

B. Energy balance equation

In this subsection, we introduce the GW backreaction
and the dynamical friction into the stellar mass object’s
orbit by taking the energy balance equation into account.
When the stellar mass object orbits around the IMBH, a
part of its energy Eorbit is converted into GW emission
loss EGW and dynamical friction loss EDF. Thus, the
following energy balance equation is satisfied:

−
dEorbit

dt
¼ dEGW

dt
þ dEDF

dt
: ð12Þ

As we will see in this subsection, this energy balance
equation gives the time evolution of the orbital radius.
The resulting orbit can be regarded as a quasicircular
orbit because of the smallness of these dissipative
effects.
The orbital energy Eorbit is the sum of the kinetic energy

and the gravitational potential of the stellar mass object, so
we can calculate Eorbit using Eq. (11),
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Eorbit ¼
1

2
μv2 −

GμMeff

R
þ 1

2 − α

μF
Rα−2

¼ −
GμMeff

2R
þ 4 − α

2ð2 − αÞ
μF
Rα−2 ; ð13Þ

where v is the orbital velocity. When we consider the
evolution of the radius R, dR=dt does not vanish. So the
time derivative of Eq. (13) gives the following equation:

dEorbit

dt
¼

�
GMeff

2R2
þ 4 − α

2

F
Rα−1

�
μ
dR
dt

: ð14Þ

To the lowest order in the post-Newtonian expansion, the
gravitational radiation energy is given by the quadrupole
formula. We apply the formula to the circular Newtonian
binary and obtain

dEGW

dt
¼ 32

5

Gμ2

c5
R4ω6

s : ð15Þ

When the stellarmass objectmoves through the cloud ofDM,
it gravitationally interacts with DM particles. This effect is
called dynamical friction, sometimes referred to as gravita-
tional drag which was first discussed by Chandrasekhar [43].
Because of dynamical friction, the stellar mass object running
through the DM halo is decelerated in the direction of its
motion and loses its kinetic energy as well as its angular
momentum. The dynamical friction force is given by fDF ¼
4πG2μ2ρDMðrÞ lnΛ=v2 where v is the velocity of the stellar
mass object [44]. The Coulomb logarithm Λ is defined by
λ ≅ bmaxv2typ=ðGμÞ where bmax is the maximum impact
parameter and vtyp is the typical velocity of the stellar mass
object. We take lnΛ ≅ 3. From the expression of the
dynamical friction force, we obtain the friction loss,

dEDF

dt
¼ vfDF ¼ 4πG2

μ2ρDMðrÞ
v

lnΛ: ð16Þ

To find the numerical solution of the energy balance
equation (12) easily, we introduce a dimensionless radius
parameter x defined by

x≡ ε1=ð3−αÞR; ð17Þ
with

ε≡ F
GMeff

: ð18Þ

Using the above definition of x, the energy balance
equation (12) can be rewritten in the form of the differential
equation of x with respect to time t as

dx
dt

¼ −cGW
ð1þ x3−αÞ3

4x3½1þ ð4 − αÞx3−α�
− cDF

1

ð1þ x3−αÞ1=2½1þ ð4 − αÞx3−α�x−5=2þα
; ð19Þ

where the coefficients are defined by

cGW ≡ 256

5

�
Gμ
c3

��
GMeff

c

�
2

ε4=ð3−αÞ; ð20aÞ

cDF ≡ ð8πG2μρsprαsp lnΛÞðGMeffÞ−3=2εð2α−3Þ=½2ð3−αÞ�:
ð20bÞ

The coefficient cGW is related to the gravitational radiation
energy and the coefficient cDF is related to the dynamical
friction. In the case of the initial NFW profile, α ¼ 7=3, the
coefficients cGW and cDF are cGW ¼ 2.0 × 10−33½1=year�,
cDF ¼ 2.1 × 10−8½1=year�. Note that the dynamical friction
coefficient cDF is much larger than the gravitational
radiation coefficient cGW.

C. GW waveform

The GW waveform from the binary composed of two
compact objects with masses μ and MBH is given by

hþðtÞ ¼
1

D
4Gμω2

sR2

c4
1þ cos2ι

2
cos ðωGWtÞ; ð21aÞ

h×ðtÞ ¼
1

D
4Gμω2

sR2

c4
cos ι sin ðωGWtÞ; ð21bÞ

where D is the distance to the source (luminosity distance
for a cosmological source), R is the orbital radius, ι is the
inclination angle, which is the angle between the line-of-
sight and the rotational axis of the orbits, and ωGW is the
GW frequency which is given by ωGW ≡ 2ωs [45].
The waveforms Eqs. (21a) and (21b) are derived on the

assumption that the motion of the source is described by a
circular Newtonian orbit. But in fact, the radius R and the
frequency ωs are not constant because the orbital energy
Eorbit decreases gradually due to both the dynamical friction
and the GW backreaction. Including these effects, the orbit
shrinks adiabatically and becomes a quasicircular orbit. So
the radius R and the frequency ωs should be replaced by
R → RðtÞ, ωs → ωsðtÞ, and the phase ωGWt should also be
replaced by ωGWt → ΦðtÞ as defined by Eq. (22c) below.
Thus, the GW waveform is expressed by

hþðtÞ ¼
1

D
4GμωsðtÞ2RðtÞ2

c4
1þ cos2ι

2
cos ½ΦðtÞ�; ð22aÞ

h×ðtÞ ¼
1

D
4GμωsðtÞ2RðtÞ2

c4
cos ι sin ½ΦðtÞ�; ð22bÞ

ΦðtÞ≡
Z

t
ωGWðt0Þdt0: ð22cÞ

In order to discuss detectability and parameter accuracy in
GWobservations, it is convenient to work in the frequency
domain. The Fourier transformation of the GW waveform
is given by
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~hþ;×ðfÞ ¼
Z

∞

−∞
hþ;×ðtÞe2πiftdt; ð23Þ

where f is the GW frequency. For simplicity, we consider a
GW coming in the detector from the optimal direction forþ
mode. In such a situation, detector pattern functions are
Fþ ¼ 1 and F× ¼ 0. So the response of the detector to the
GW is hðtÞ ¼ hþðtÞ. Using Eq. (22a), we rewrite the GW
waveform as

hðtÞ ¼ AðtretÞ cosΦðtretÞ; ð24aÞ

AðtÞ≡ 1

D
4Gμω2

sðtÞR2ðtÞ
c4

1þ cos2ι
2

; ð24bÞ

where AðtÞ is the time-dependent amplitude, and ΦðtÞ is
the time-dependent GW phase. In the above equations,
we have introduced the retarded time tret ≡ t −D=c. At
the frequency of interest, the time-dependent amplitude
AðtÞ varies slowly, while the time-dependent phase ΦðtÞ
varies rapidly. So, the Fourier transformation of the GW
waveform can be calculated approximately using the
stationary phase method. In this method, the rapidly
oscillating term is neglected and only the slowly oscil-
lating term survives. Then the GW waveform in the
Fourier domain becomes

~hðfÞ ¼ 1

2
eiΨðtÞAðtÞ

�
2π

Φ̈ðtÞ
�
1=2

; ð25aÞ

ΨðtÞ ¼ 2πf
D
c
þ ~ΦðtÞ − π

4
; ð25bÞ

~ΦðtÞ≡ 2πft − ΦðtÞ; ð25cÞ

where the time t is related to frequency by 2πf ¼
ωgwðtÞ [46].
As we will discuss in Appendix A, the GW waveform

Eqs. (25a), (25b) and (25c) can be rewritten explicitly in the
frequency domain as follows:

~hðfÞ ¼ Af−7=6eiΨðfÞχ19=4½KðxÞð1þ ~cJðxÞÞ�−1=2; ð26aÞ

A ¼
�
5

24

�
1=2 1

π2=3
c
D

�
GMc

c3

�
5=6 1þ cos2ι

2
; ð26bÞ

ΨðfÞ ¼ 2πf~tc − Φc −
π

4
− ~ΦðfÞ; ð26cÞ

~ΦðfÞ ¼ 10

3

�
8πGMc

c3

�
−5=3

�
−f

Z
f

∞
df0

χ11=2

f011=3Kð1þ ~cJÞ

þ
Z

f

∞
df0

χ11=2

f08=3Kð1þ ~cJÞ
�
; ð26dÞ

JðxÞ ¼ 4x11=2−α

ð1þ x3−αÞ7=2 ; ð26eÞ

KðxÞ ¼ ð1þ x3−αÞ5=2ð1þ αx3−α=3Þ
1þ ð4 − αÞx3−α ; ð26fÞ

χ ¼ ðδεÞ1=ðα−3Þx; ð26gÞ

δ ¼
�
GMeff

π2f2

�ð3−αÞ=3
; ð26hÞ

where A is the overall amplitude, Mc is the chirp mass
defined by Mc ≡ μ3=5M5=2

eff , ~tc is the sum of the binary
coalescence time tc and D=c, Φc is the phase at coales-
cence, α is the power-law index of the DM minispike, ~c is
defined by ~c≡ cDF=cGW, δ is a new frequency variable, x is
defined in Eq. (17), and ε is defined by Eq. (18). The DM
information is encoded in the waveform Eq. (26a) through
KðxÞ, JðxÞ, χ, ~c and Meff . So if we take KðxÞ → 1, χ → 1,
~c → 0,Meff → MBH, then Eq. (26a) becomes the waveform
without the DM shown in Eqs. (A15a)–(A15d).

D. δε expansion

As wewill discuss in the next section, we consider a five-
year observation by eLISA which corresponds to
f ≳ 10−3 Hz. In this setup, δε ≪ 1 is satisfied. For exam-
ple, we get δε ¼ 3.5 × 10−6 for α ¼ 7=3, f ¼ 0.01 Hz, μ ¼
1M⊙ and the parameters ρsp, rsp, andMBH listed in Table I.
So the product δε can be treated as a small dimensionless
expansion parameter. Note that ε is of the order of 1 but δ is
much smaller than 1 at the frequency of interest. The
product δε represents deviations from the case without
the DM minispike. Since the measurement errors of the
physical parameters contained in the GW are much more
sensitive to the GW phase rather than its amplitude, we
expand the GW waveform ~hðfÞ up to the first order in δε in
the phase and up to the zeroth order in the amplitude. Using
an expansion of χ in δϵ,

χ ¼ 1þ 1

3
δεþ 2 − α

9
δ2ε2 þ � � � ; ð27Þ

the GW waveform given by Eqs. (26a)–(26h) becomes

~hðfÞ ¼ Af−7=6eiΨðfÞ; ð28aÞ

~ΦðfÞ ¼ 10

3

�
8πGMc

c3

�
−5=3

�
−f

Z
f

fISCO

df0f0−11=3L−1ðf0Þ

þ
Z

f

fISCO

df0f0−8=3L−1ðf0Þ
�
; ð28bÞ

LðfÞ ¼ 1þ 4cε ~δ
ð11−2αÞ=½2ð3−αÞ�; ð28cÞ
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~δ ¼
�

G
π2f2

�ð3−αÞ=3
; ð28dÞ

cε ¼ Mð11−2αÞ=6
eff ~cεð11−2αÞ=½2ð3−αÞ�

¼ 5πc5G−5=2M−ðαþ5Þ=3
eff ρsprαsp lnΛ; ð28eÞ

where the overall amplitude A is defined by Eq. (26b) and
ΨðfÞ is defined by Eq. (26c). The upper bound of the
integration in Eq. (28b), fISCO > f in the eLISA fre-
quency band, is the GW frequency when the stellar mass
object enters the innermost stable circular orbit. Hence,
~ΦðfÞ=ð2πÞ is in essence the GW cycles from the frequency
f to the coalescence. In the above equations, the post-
Newtonian (PN) effects which are neglected must be taken
into account in real data analysis. However, the frequency
dependence of the PN effect in the GW phase ~ΦðfÞ differs
from that of the DM effect which depends on the power-law
index α. So, the measurement accuracies of the DM
parameters as we will discuss later would not be affected
seriously by higher-order terms in the PN expansion.
Until the previous sections, we have included both the

dynamical friction and the gravitational pull of the DM
minispike. It is easily shown that the dynamical effect has
much more impact on the measurement accuracy of the
DM parameters than the DM minispike does [28], and the
above expression indeed includes the dynamical friction
but not the gravitational pull of the DM minispike. Within
the approximation in this subsection and the following,
the gravitational potential of the DM minispike shows its
signature mainly in the IMBH mass redefinition (MBH →
Meff in Mc in the above equations). We, however, note that
even such a tiny effect as the gravitational pull of the DM
minispike does affect the detectability of GW thanks to the
large number of the GW cycles in the eLISA detection
band [25].
It should be noted that all the effects of the DM are

characterized by the function LðfÞ and that it consists of
two DM parameters, α and cε. We make use of the above
equations to calculate measurement errors of the waveform
parameters in the next section. We also define the phase
difference Δ ~ΦðfÞ by

Δ ~ΦðfÞ≡ ~ΦðfÞ − ~Φ0ðfÞ; ð29Þ

where ~ΦðfÞ defined by Eq. (28b) is the phase including
the DM effect, and ~Φ0ðfÞ defined by Eq. (A15d) is the
phase without the DM effect. Δ ~ΦðfÞ is shown in Fig. 1
which indicates that the phase difference becomes sig-
nificant for large α and for the large GW frequency f. This
is because in this case, the DM density near the central BH
increases and the effect of the DM on the motion of the
stellar mass object is significant. Figure. 1 can be directly
compared with Fig. 1 in our previous paper [25]. For

example, in the case of [25] in which the dynamical
friction is not taken into account, the phase difference ΔΨ
is of the order of 0.1 at 0.1 Hz for α ¼ 7=3, while in the
present of the dynamical friction, shown here in Fig. 1,
ΔΨ is of the order of 104. This comparison implies that the
effect of the dynamical friction overwhelms that of the
gravitational pull. As discussed in [25], the phase differ-
ence causes the mismatch between the waveform includ-
ing the DM effect and the waveform without the DM
effect. The phase difference Δ ~ΦðfÞ typically above 1
indicates the necessity to use the waveform including the
DM effect as a template. As can be seen in Fig. 1, if the
template without the DM effect is applied to the GW
signal affected by the DM with α > 1.5, the resulting
signal-to-noise ratio (S=N) would be degraded signifi-
cantly due to the phase difference Δ ~ΦðfÞ.

IV. PARAMETER RESOLUTION FOR ELISA

A. Brief review of the Fisher analysis

In this subsection, we give a brief review of parameter
estimation (see [46,47] for more details). Let us consider
detecting GWs with a single detector. The detector output
sðtÞ can be written by the sum of the GW signal hðtÞ and
detector noise nðtÞ:

sðtÞ ¼ hðtÞ þ nðtÞ: ð30Þ

Assuming that the detector noise is stationary, the corre-
lation between different Fourier components of the noise is
expressed as
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FIG. 1. The accumulated phase difference Δ ~Φ against the
power-law index α, defined by Eq. (29). In essence, this is the
difference between the accumulated phase from GW frequency f
and the binary coalescence with and without the DM minispike.
Three different curves show Δ ~Φ for three different values of α.
For instance, if detecting a binary GW from f ¼ 0.01 Hz to its
coalescence, we would observe by a factor of 107 more GW
cycles in the case with a α ¼ 7=3DMminispike than without any.
For this plot, we take μ ¼ 1M⊙ and ρsp, rsp, andMBH are as listed
in Table I.
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h ~nðfÞ ~n�ðf0Þi ¼ 1

2
δðf − f0ÞSnðfÞ; ð31Þ

where the angled brackets hi denote an ensemble average,
the asterisk is complex conjugation and SnðfÞ is a one-
sided power spectral density of the detector noise. In this
paper, we consider the GWobservation using eLISAwhich
has the best sensitivity at around f ¼ 0.01 ½Hz�. The noise
spectral density of eLISA is given by

SnðfÞ ¼
20

3

4SaccðfÞ=ð2πfÞ4 þ SsnðfÞ þ SomnðfÞ
l2

×

�
1þ

�
f

0.41c=2l

��
2

; ð32aÞ

where SaccðfÞ ¼ 2.13 × 10−29ð1þ 10−4=fÞ ½m2=s4Hz� is
the acceleration noise spectral density, SsnðfÞ ¼ 6.28 ×
10−23 ½m2=Hz� is the shot noise spectral density, SomnðfÞ ¼
5.25 × 10−23 ½m2=Hz� is the other measurement noise
spectral density and l ¼ 109 ½m� is the separation between
the spacecraft which is the length of its arms of the laser
interferometer (see [23,48] for details).
It is convenient to introduce a noise-weighted inner

product between two signals h1ðtÞ and h2ðtÞ by

ðh1jh2Þ≡ 4Re
Z

fISCO

fini

~h1ðfÞ ~h�2ðfÞ
SnðfÞ

df; ð33Þ

where Re denotes the real part and fini is the initial
frequency. Assuming that the detector noise is Gaussian
and stationary, the probability density of the detector noise
is described by pðnÞ ∝ e−ðnjnÞ=2. We can rewrite this
expression in the form of detector signal sðtÞ and GWs
signal hðtÞ using Eq. (30) as pðnÞ ∝ e−ðs−hjs−hÞ=2.
In the above case, hðtÞ is known, while in actual GW

experiments, hðtÞ should be replaced with a template
hðt; θÞ, where θ ¼ fθ1; � � � ; θNg is a collection of unknown
parameters. To determine the waveform parameters θ, it is
necessary to search for the parameters which minimize the
logarithm of the maximum likelihood ratio, ðs − hjs − hÞ−
ðsjsÞ. As a result of this process, we can infer the values of
θ. However, the expected values have statistical errors
because the detector noise is a random process. These
measurement errors Δθi of the waveform parameters are
approximately described by the Gaussian probability dis-
tribution for large S=N,

pðΔθiÞ ¼ N exp

�
−
1

2
ΓijΔθiΔθj

�
; ð34Þ

where N is the normalization factor and Γij is called the
Fisher information matrix defined by

Γij ≡
�∂h
∂θi

���� ∂h∂θj
�
: ð35Þ

The inverse of the Fisher matrix gives the root-mean-square
(rms) errors of the waveform parameters θi,

Δθi ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔθiÞ2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1Þii

q
; ð36Þ

where ðΓ−1Þii denotes the diagonal elements of the inverse
Fisher matrix.

B. Preparation for parameter estimation

The inspiral GW waveform from the IMBH surrounded
by the DM minispike is described by six parameters which
appear in Eqs. (28a)–(28e): the overall amplitude, A;
the time constant, ~tc ≡ tc þD=c, which is the sum of
the traveling time D=c and the coalescence time tc; the
coalescence phase,Φc; the chirp mass,Mc; and the two DM
parameters, α and cε. Note that the beam pattern function of
eLISA is neglected here because we are concerned with
how the DM parameters are determined by GW observa-
tions but not with the angular resolution of eLISA (see [49]
for discussion of angular resolution).
The inner product between the derivatives of the wave-

form with respect to the parameters θ yields the values of
the Fisher matrix elements. The derivatives with respect to
A, ~tc, Φc and lnMc are calculated straightforwardly as
follows:

∂ ~h
∂ lnA ¼ ~h; ð37aÞ

∂ ~h
∂~tc ¼ 2πif ~h; ð37bÞ

∂ ~h
∂Φc

¼ −i ~h; ð37cÞ

∂ ~h
∂ lnMc

¼ 5

3
i ~h ~Φ : ð37dÞ

The derivatives with respect to the DM parameters α, cε are
obtained by applying the chain rule to the following
equations:

∂ ~h
∂ ln α ¼ α ~h

�
i
∂Ψ
∂α −

1

2

1

L
∂L
∂α

�
; ð38aÞ

∂ ~h
∂ ln cε ¼ cε ~h

�
i
∂Ψ
∂cε −

1

2

1

L
∂L
∂cε

�
; ð38bÞ

where L is defined in Eq. (28c). However, since the explicit
expressions are complicated, we take the derivatives
numerically.
Next, we derive the initial frequency at which the GW

observation starts. In the presence of the DMminispike, the
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stellar mass object orbiting the central IMBH loses its
angular momentum gradually due to both the dynamical
friction and GW radiation reaction. So the coalescence
arises earlier than the case without the DM. Time evolution
of the frequency is described by Eq. (A12),

df
dτ

¼ −
3

5
π

�
f
f0

�
5=3

f2χ−11=2½Kð1þ ~cJÞ�; ð39Þ

where f0 ≡ c3=8πGMc and τ is the time to the coalescence.
(Note that dτ ¼ −dt.) The lower bound finiðαÞ of the
integral in Eq. (33) is required for calculating the inner
product in the Fisher matrix. Given that the GW is observed
by eLISA for five years prior to the coalescence, this bound
is obtained by

finiðαÞ≡ fðα; τ ¼ 5 ½yr�Þ: ð40Þ

By numerically solving Eq. (39), we show the dependence
of α on fini in Fig. 2. This figure indicates that the DM
minispike affects more strongly the motion of the stellar
mass object for larger α. The initial frequency for a five-
year observation is almost constant for small α due to the
smallness of the effect of the DM. Conversely, the initial
frequency drops sharply for large α due to the dynamical
friction from the DM.

C. Measurement accuracy: The case for initial
NFW profile

In this subsection, we take an example of an initial NFW
profile to demonstrate measurement accuracies of the
waveform parameters. In this case, the slope of the DM
minispike α ¼ 7=3. Derivatives of the waveform with
respect to the parameters given by Eqs. (37a)–(38b) are
calculated numerically. Substitution of these results into

Eqs. (35) and (36) gives rise to the rms errors Δ lnA, Δ~tc,
ΔΦc, Δ lnMc, Δ ln α and Δ ln cε as follows:

ΔA
A

¼ 0.1
�

10

S=N

�
; ð41aÞ

Δ~tc ¼ 1.0½s�
�

10

S=N

�
; ð41bÞ

ΔΦc ¼ 1.3½rad�
�

10

S=N

�
; ð41cÞ

ΔMc

Mc
¼ 3.1 × 10−7

�
10

S=N

�
; ð41dÞ

Δα
α

¼ 1.2 × 10−6
�

10

S=N

�
; ð41eÞ

Δcε
cε

¼ 5.9 × 10−5
�

10

S=N

�
: ð41fÞ

Here we take ρsp, rsp, andMBH from Table I and μ ¼ 1M⊙.
These measurement errors are inversely proportional to
S=N. So the waveform parameters are measurable with a
better accuracy for larger GW signals. A notable feature of
the above results is that the chirp massMc and the two DM
parameters α and cε are determined much more accurately
than the overall amplitude A, the coalescence time ~tc and
the coalescence phase Φc. This fact reflects that Mc, α and
cε appear in the phase of the waveform ~ΦðfÞ. From
Eqs. (B1), (22c) and (25c), the GW phase is proportional
to the number of GW cycles which amplify the sensitivity
to the parameters which appear in the phase ~ΦðfÞ by a
factor Ncycles. Thus, the fractional error of the chirp mass
which is proportional to the phase is order of 1=Ncycle and
the two DM parameters are also determined very accu-
rately. In fact, Fig. 8 indicates the value of 1=Ncycle is about
10−7, which is consistent with the value of ΔMc=Mc
in Eq. (41d).
We also investigate the correlation between the param-

eters which appear in the phase, Mc, α and cε. Figure 3
illustrates the Fisher ellipses forMc, α and cε in S=N ¼ 10.
From the figures, we observe thatMc, α and cε are strongly
correlated with each other because all of them are contained
in the phase. However, they are not completely degenerate
and are determined independently. This fact can be traced
to the difference of the frequency dependence betweenMc,
α and cε.
In the above discussion, the mass of the central

IMBH MBH and that of the stellar mass object μ are
fixed. Next we analyze the measurement errors for
various values of μ and MBH. The results are shown
in Fig. 4. The figure indicates the errors of the
parameters in the phase ~ΦðfÞ increase linearly with
the stellar mass object mass μ. This behavior comes
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Power-law index α

FIG. 2. Initial frequency against the power-law index α. We
assume that the GW is detected by an eLISA five-year obser-
vation. For small α, fini is almost constant. On the other hand, for
large α, fini drops sharply due mainly to the dynamical friction.
For this plot, we take μ ¼ 1M⊙ and ρsp, rsp, andMBH are as listed
in Table I.
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from the fact that the number of cycles Ncycle decreases
in proportion to the stellar mass object mass μ.
Similarly, the larger the mass of the IMBH, the smaller
the number of the orbital cycles the stellar mass object
experienced in the five years prior to the coalescence
within the eLISA band. For this reason, the measure-
ment errors in Mc, α, and cϵ increase for a larger IMBH
mass as can be seen in Fig. 4.

D. Measurement accuracy: General case for
initial DM profile

We now extend the analysis in the previous section where
we considered the case of the initial NFW profile. We next
consider the general case without specifying the value of α
with MBH, ρsp, and rsp fixed to the values quoted in Table I.
The rms errors depend on the DM power-law index α. We
show Δ lnMc, Δ ln α and lnΔcε in Fig. 5.
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FIG. 3. Confidence level contours of 68.3%, 95.4% and 99.7% for S=N ¼ 10 in the case where the initial DM halo has an NFW profile
and the final profile has the radial power-law index of α ¼ 7=3 through an adiabatic growth. We assume ρsp, rsp, andMBH from Table I
and μ ¼ 1M⊙.
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FIG. 4. The relative errors of the parameters in the phase ~ΦðfÞ versus (a) the central BH massMBH and (b) the stellar mass object mass
μ for S=N ¼ 10 and α ¼ 7=3. For this plot, ρsp and rsp are taken from Table I. The other parameter is fixed to be μ ¼ 1M⊙ in the left and
MBH ¼ 103M⊙ in the right, respectively. Note that both axes are in the logarithmic scales. The solid line, the dashed line and the dashed-
dotted line correspond to Δα=α, Δcε=cε, ΔMc=Mc respectively.
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As shown in Fig. 5, the accuracy of the DM parameters
Δ ln α and Δ ln cε are better for the larger α. This is because
steeper density distributions contain more DM mass within
the orbital radius (see Fig. 2 in [25]). In other words, the
steeper density distribution has more impact on the motion
of the stellar mass object and the GWwaveform is modified
more strongly by the DM minispike. So the DM informa-
tion can be extracted from the GW waveform if the DM
minihalo near the BH has a steep profile.
On the other hand, the measurement accuracy of the

parameters which appear in the phase ~ΦðfÞ become worse
in α > 2.5. This feature can be explained by the number of
GW cycles Ncycle which will be discussed in Appendix B.
There we show that Ncycle falls sharply at α ∼ 2.5 (see
Fig. 8). The sensitivity to the parameters which appear in
the phase ~ΦðfÞ is amplified by the number of circles Ncycle
in the frequency bandwidth of eLISA. For this reason, the
measurement errors of Mc, α and cε increase suddenly at
α ∼ 2.5, as is shown in Fig. 5. We also note that this figure

shows that we can measure the power-law index α at 10%
level even for a moderately flat radial distribution with
α ∼ 1.7. In fact, when considering the gravitational pull due
to the DM potential only, it affects detectability of GW
signals only for α ≳ 2. It is the dynamical friction that
enables us to explore a flatter DM distribution than “a DM
minispike” referred to in the literature that has α ≥ 2.25.
Figure 6 shows the relative errors of the DM parameters,

α and cε for various values of ρsprαsp as a function of α. As
can be seen in Fig. 6, the relative errors for the fixed α
become smaller approximately linearly as the DM density
increases. This behavior can be traced to the amount of the
DM within the orbital radius of the stellar mass object. It
should be noted that the values of ρsp and rsp we adopt in
this paper are derived under the assumption that the initial
DM minihalo profile is the NFW profile as discussed in the
Sec. II. Even if the DM density is an order of magnitude
more sparse than that indicated by the NFW profile, the
power-law index α is measurable with an accuracy of
Δα=α < 10% for α > 1.9.

V. CONCLUSION

In this paper, we have investigated measurement accu-
racy of DM parameters by GWobservations. We consider a
binary system composed of an IMBH surrounded by a DM
minispike and a stellar mass compact object. The compact
object falling into the central IMBH is affected by by the
gravitational interaction of both the IMBH and the DM
minispike, namely the gravitational potential of both the
IMBH and the DM minispike, gravitational wave back-
reaction and dynamical friction. Then the resulting inspiral
GW is modified by the DM minispike in comparison with
the case in the absence of the DM minispike. Such a GW
will be detected by future space-borne detectors such as
eLISA/NGO. We derived the GW waveform modified by
the minispike analytically and obtained Eqs. (28a)–(28e).
We found that thanks to the DM parameters contained in
the GW phase, the measurement errors of the DM param-
eters are very small for large power-law index of the
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FIG. 5. The relative errors of the parameters in the phase ~ΦðfÞ
versus the power-law index of the DM profile for S=N ¼ 10 in
the case where the DM minispike harboring the IMBH has a
radial power-law profile. The solid line, the dashed line, and the
dashed-dotted line corresponds to Δα=α, Δcε=cε, ΔMc=Mc
respectively. For this plot, μ ¼ 1M⊙ and the values of the
parameters MBH, ρsp, and rsp are assumed as in Table I.
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FIG. 6. The relative errors of (a) α and (b) cε versus the power-law index of the DM profile for S=N ¼ 10 in the case where the DM
minispike harboring the IMBH has a radially power-law profile. The solid line, the dashed line and the dashed-dotted line corresponds to
ρsprαsp, 0.1ρsprαsp, and 10ρsprαsp, respectively. The values of rsp and ρsp are taken from Table I.
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minispike profile. To put it another way, we can extract the
DM parameters very accurately from the GW waveform
using matched filtering if the DM minispike has a steep
profile. Indeed, in our reference case as originally advo-
cated by [15,16], we could determine the power-law index
of the DMminispike radial profile with the 1σ relative error
of �5 × 10−6 for a GW signal with signal-to-noise ratio 10
and assuming five years of observation with eLISA, as
shown in Fig. 3. We also investigated how accurately the
DM parameters can be determined for various values of the
slope of the DM minispike and the masses of the IMBH-
stellar mass object binary. We have found that smaller the
mass of the stellar mass object, that of the IMBH, or the
larger the power-law index of the DM minispike, we can
measure DM parameters to better accuracy as shown in
Figs. 4 and 5. Even a moderately flatter minispike with the
radial distribution proportional to r−1.7 would still allow us
to determine the power-law index to 10% accuracy.
Indirect dark matter searches in the gamma-ray band and

through GWobservation proposed in our previous [25] and
current papers are complementary to each other. The GW
observations we propose should be applicable to both very
weakly annihilating and nonannihilating DM particles.
Even if the DM particles do not weakly interact with each
other, in which case where we expect no gamma rays due to
the DM annihilation, DM minispike affects the motion of
the stellar mass object gravitationally and the resulting GW
is modified by them. GW is insensitive to absorption and
scattering in the interstellar medium during the propagation
unlike electromagnetic waves. Therefore, GWobservations
offer information on the DM minispike directly. On the
other hand, if the DM particles self-annihilate, an annihi-
lation plateau may develop within a Hubble time [12] and
the power-law index α of the DM radial profile becomes
effectively zero within a radius rlim. For the case of the
values of the parameters listed in Table I, the DM mass
200 GeV, and its cross section σv ¼ 10−27 cm3 s−1 [12], we
find rlim ∼ 2 × 10−4 pc which is much larger than the initial
orbital radius at which the GW frequency from the binary
enters the eLISA detection frequency band. In this case, the
inspiral GW is unlikely to be modified by the DM
minispike as indicated by Fig. 6 because the DM density
within the orbital radius becomes sparse due to the DM
annihilation. Hence, gamma-ray searches are a better way
to explore a DM minihalo surrounding the IMBH. In
summary, the GW observations probe the structure of
the DM minispike, while the gamma-ray flux is given
by the combination of the density, cross section, and mass
of the DM particles. Therefore, the combination of gamma-
ray observations with future GW observations may even
offer hints that may clarify the nature of DM particles.
Moreover, because the DM profile strongly depends on the
formation history of the central IMBH, both types of
observation may shed light on how the IMBH evolved
with cosmic history.
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APPENDIX A: REWRITING THE GW
WAVEFORM

Our goal in this appendix is to rewrite the waveform
Eq. (25a) in the form of an explicit function of GW
frequency f. According to Eqs. (25a), (25b) and (25c),
the GW waveform from the binary system composed of the
stellar mass object and the IMBH surrounded by DM
minihalo is expressed by

~hðfÞ ¼ 1

2
eiΨðtÞAðtÞ

�
2π

Φ̈ðtÞ
�
1=2

; ðA1aÞ

ΨðtÞ ¼ 2πf
D
c
þ ~ΦðtÞ − π

4
; ðA1bÞ

~ΦðtÞ≡ 2πft − ΦðtÞ; ðA1cÞ

where AðtÞ is the time-dependent amplitude defined by
Eq. (24b), ΦðtÞ is the time-dependent phase defined by
Eq. (22c), andD is the distance to the source. We proceed as
follows. We start with the amplitude A=2

ffiffiffiffiffiffiffiffiffiffiffi
2π=Φ̈

p
. The

frequency f can be expressed in terms of the orbital radius
R which is related to the time t by Eq. (19). So the amplitude
can be expressed as a function of the frequency f through the
relation between t and f. Next, we tackle the phase Ψ.
Finally, combining these results, we find the explicit
expression of the GW waveform in the Fourier domain.

1. Rewriting the amplitude

The GW frequency f ≡ ωGW=2π which is defined by
Eq. (11) is expanded in a Taylor series in a power of R:

f ¼ ωGW

2π

¼ 1

π

�
GMeff

R3
þ F
Rα

�
1=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
GMeff

p
π

R−3=2
�
1þ 1

2
R3−αε −

1

8
R2ð3−αÞε2 þ � � �

�
:

ðA2Þ

Inverting this equation, we obtain R as a function of GW
frequency and expanded in ε,
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R ¼ δ1=ð3−αÞ
�
1þ 1

3
δεþ 2 − α

9
δ2ε2 þ � � �

�
; ðA3aÞ

δ≡
�
GMeff

π2f2

�ð3−αÞ=3
; ðA3bÞ

where we introduce a new frequency variable δ defined by
Eq. (A3b) for convenience. Using the definition of x given
by Eq. (17), the dimensionless radius parameter x can be
expanded in a power of ε,

x ¼ ðδεÞ1=ð3−αÞχ; ðA4aÞ

χ ≡ 1þ 1

3
δεþ 2 − α

9
δ2ε2 þ � � � ; ðA4bÞ

where we introduce χ for convenience. Note that the
function χ is equal to 1 when a DM minispike is not
present around an IMBH.
For later convenience, we rewrite dx=dtwhich is defined

by Eq. (19) as follows:

dx
dt

¼ −cGW
ð1þ x3−αÞ3

4x3½1þ ð4 − αÞx3−α�
− cDF

1

ð1þ x3−αÞ1=2½1þ ð4 − αÞx3−α�x−5=2þα

¼ −cGWfGWðxÞ − cDFfDFðxÞ

¼ −cGWfGWðxÞ
�
1þ cDF

cGW

fDFðxÞ
fGWðxÞ

�
¼ −cGWfGWðxÞ½1þ ~cJðxÞ�; ðA5Þ

where functions fGWðxÞ, fDFðxÞ and JðxÞ and a coefficient
~c are defined by

fGWðxÞ≡ ð1þ x3−αÞ3
4x3½1þ ð4 − αÞx3−α� ; ðA6aÞ

fDFðxÞ≡ 1

ð1þ x3−αÞ1=2½1þ ð4 − αÞx3−α�x−5=2þα
; ðA6bÞ

JðxÞ≡ fDFðxÞ
fGWðxÞ

¼ 4x11=2−α

ð1þ x3−αÞ7=2 ; ðA6cÞ

~c≡ cDF
cGW

: ðA6dÞ

The coefficient ~c is the ratio of the dynamical friction
coefficient to the gravitational radiation coefficient. So ~c
includes the DM information.
Next, we rewrite the second time derivative of Φ, Φ̈, as a

function of x. From Eq. (22c), Φ̈ is expressed by

Φ̈ðtÞ ¼ _ωGW

¼ −ðGMeffÞ1=2ε3=½2ð3−αÞ�
3þ αx3−α

x5=2ð1þ x3−αÞ1=2
dxðtÞ
dt

:

ðA7Þ
Tomove from the first line to the second,wehavemadeuseof
Eqs. (11) and (17). The time derivative of x displayed in the
right-hand side of Eq. (A7) can be rewritten as a function of x
by Eq. (A5). So we can express Φ̈ as a function of x:

Φ̈ðtÞ ¼ ðGMeffÞ1=2ε3=½2ð3−αÞ�cGW½1þ ~cJðxÞ�

× fGWðxÞ
3þ αx3−α

x5=2ð1þ x3−αÞ1=2
¼ ðGMeffÞ1=2ε3=½2ð3−αÞ�cGW½1þ ~cJðxÞ�

×
3

4
x−11=2

ð1þ x3−αÞ5=2ð1þ αx3−α=3Þ
1þ ð4 − αÞx3−α

¼ ðGMeffÞ1=2ε3=½2ð3−αÞ�cGW½1þ ~cJðxÞ� × 3

4
x−11=2KðxÞ;

ðA8Þ
where the function KðxÞ is defined by

KðxÞ≡ ð1þ x3−αÞ5=2ð1þ αx3−α=3Þ
1þ ð4 − αÞx3−α : ðA9Þ

Note that KðxÞ is equal to one when a DM minispike is not
present around an IMBH.
Substitution of Eqs. (11) and (17) into Eq. (24b) gives

A ¼ 4Gμ
Dc4

ðπfÞ2ε−2=ð3−αÞx2; ðA10Þ

after some algebra and simplification. Combining
Eqs. (A10) and (A8), we finally arrive at the final
expression for the amplitude,

A
2

ffiffiffiffiffiffi
2π

Φ̈

r
¼ 1

2
×
4Gμ
Dc4

ðπfÞ2ε2=ð3−αÞx2 ×
ffiffiffiffiffiffi
8π

3

r
ðGMeffÞ−1=4ε−3=½4ð3−αÞ�c−1=2GW ½1þ ~cJðxÞ�−1=2x11=4KðxÞ−1=2

¼
ffiffiffiffiffiffiffiffiffiffi
32π5

3

s
Gμ
Dc4

ðGMeffÞ−1=4c−1=2GW ε5=½4ð3−αÞ�f2x19=4½KðxÞð1þ ~cJðxÞÞ�−1=2

¼
ffiffiffiffiffi
5

24

r
1

π2=3
c
D

�
GMc

c3

�
5=6

f−7=6χ19=4½KðxÞð1þ ~cJðxÞÞ�−1=2; ðA11Þ
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where Mc is defined by Mc ≡ μ3=5M5=2
eff and is called the

chirp mass. From the second line to the third line, we have
used Eqs. (18), (20a) and (A4a).

2. Rewriting the phase

Our next task is to express the phase Ψ given by
Eq. (A1b) as a function of x ¼ xðfÞ. From Eq. (A8), the
time derivative of frequency df=dt is expressed by

df
dt

¼ Φ̈
2π

¼ 3

8π
ðGMeffÞ1=2ε3=½2ð3−αÞ�cGWx−11=2½Kð1þ ~cJÞ�

¼ 3

5
π

�
8πGMc

c3

�
5=3

f11=3χ−11=2½Kð1þ ~cJÞ�: ðA12Þ

We used Eqs. (20a) and (A4a) to go from the second line to
the third line. Using Eq. (A12), we get

ΦðfÞ ¼ 10

3

�
8πGMc

c3

�
−5=3 Z

df0
χ11=2

f08=3Kð1þ ~cJÞ ;

ðA13aÞ

2πft ¼ −
10

3

�
8πGMc

c3

�
−5=3

f
Z

df0
χ11=2

f011=3Kð1þ ~cJÞ ;

ðA13bÞ

where the constant of integration is determined by the
initial condition of the GW phase.

3. Final form

Collecting the above results, Eqs. (A11), (A13a) and
(A13b), we finally obtain the GW waveform in the
frequency domain:

~hðfÞ ¼ Af−7=6eiΨðfÞχ19=4½KðxÞð1þ ~cJðxÞÞ�−1=2; ðA14aÞ

A ¼
�
5

24

�
1=2 1

π2=3
c
D

�
GMc

c3

�
5=6 1þ cos2ι

2
; ðA14bÞ

ΨðfÞ ¼ 2πf

�
tc þ

D
c

�
− Φc −

π

4
− ~ΦðfÞ; ðA14cÞ

~ΦðfÞ ¼ 10

3

�
8πGMc

c3

�
−5=3

�
−f

Z
f

∞
df0

χ11=2

f011=3Kð1þ ~cJÞ

þ
Z

f

∞
df0

χ11=2

f08=3Kð1þ ~cJÞ
�
; ðA14dÞ

whereA is the overall amplitude, tc is the coalescence time
and Φc is the coalescence phase. Note that when a DM
minispike is not present around an IMBH, χ → 1, K → 1,
Mc → Mc0 ≡ μ3=5M2=5

BH , so the waveform becomes

~hðfÞ ¼ Af−7=6eiΨðfÞ; ðA15aÞ

A ¼
�
5

24

�
1=2 1

π2=3
c
D

�
GMc0

c3

�
5=6

; ðA15bÞ

ΨðfÞ ¼ 2πf

�
tc þ

D
c

�
− Φc −

π

4
− ~ΦðfÞ; ðA15cÞ

~ΦðfÞ ¼ −
3

4

�
GMc0

c3
8πf

�
−5=3

: ðA15dÞ

This is consistent with the waveform from the binary
composed of two pointlike compact objects with mass μ
and MBH [46].

APPENDIX B: THE NUMBER OF GW CYCLES

The detector sensitivity to the inspiral GWs is closely
related to the number of GW cycles. That is because Ncycle
which is defined by Eq. (B1) is proportional to the GW
phase which is defined by Eq. (22c). Therefore, SNR
strongly depends on the number of cycles Ncycle. The
number of GW cycles in the frequency range f ∈
½fmin; fmax� is defined by

Ncycle ¼
Z

tmax

tmin

dtfðtÞ ¼
Z

fmax

fmin

df
f
_f
; ðB1Þ

where an overdot denotes the time derivative and df=dt can
be calculated by Eq. (39) (Note that dτ ¼ −dt.).
We define the frequency bandwidth of eLISA as the

frequency range f ∈ ½f−; fþ� within which the square root
of the noise spectral density is below half its minimum
value,

ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SnðfbestÞ

p
; ðf ∈ ½f−; fþ�Þ; ðB2Þ

where fbest is the frequency at which the eLISA is most
sensitive to the GWs. Because we assume five years of
observation, depending on the binary configuration, f−
may be smaller or larger than the initial frequency fini from
which the inspiral GW frequency sweeps to the frequency
at the innermost stable circular orbit, fISCO. Taking the
initial frequency fini into account, the frequency bandwidth
½fmin; fmax� in which the inspiral GW sweeps is expressed
by

fmin ¼ max ffini; f−g; ðB3aÞ

fmax ¼ min ffISCO; fþg; ðB3bÞ

and we obtain Fig. 7 from Eq. (B1). For α < 2.5, the initial
frequency fini at which the GW start to be observed is
within the full width at half minimum of

ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
. So the

minimum frequency fmin which the inspiral GW spends in
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the detector bandwidth is equal to the initial frequency fini.
On the other hand, for α > 2.5, the initial frequency fini is
out of the full width at half minimum. So fmin is equal to
the lower bound of the detector bandwidth of eLISA f−.
Since fþ is smaller than fISCO for all values of α and in the
cases we studied, fmax ¼ fþ
Using Eqs. (39), (B1), (B3a) and (B3b), the number

of cycles Ncycle is obtained in Fig. 8. The figure shows
that Ncycle is almost constant for small α but drops
sharply for large α. This behavior of Ncycle is explained

by the fact that the DM has more influence on the
motion of the stellar mass object for larger α. For large
α, df=dt increases sharply as t → tc due to the DM
effect and the GW frequency of the stellar mass object
goes up rapidly through the frequency bandwidth of
eLISA. It follows from this that larger α leads to wider
frequency band but to the less number of GW cycles
near the best sensitivity of the detector. The sensitivity
to the GWs is determined by the competition between
these two effects.
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