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ABSTRACT
We study analytically the collapse of an initially smooth, cold, self-gravitating collisionless
system in one dimension. The system is described as a central ‘S’ shape in phase-space
surrounded by a nearly stationary halo acting locally like a harmonic background on the S.
To resolve the dynamics of the S under its self-gravity and under the influence of the halo, we
introduce a novel approach using post-collapse Lagrangian perturbation theory. This approach
allows us to follow the evolution of the system between successive crossing times and to
describe in an iterative way the interplay between the central S and the halo. Our theoretical
predictions are checked against measurements in entropy conserving numerical simulations
based on the waterbag method. While our post-collapse Lagrangian approach does not allow
us to compute rigorously the long-term behaviour of the system, i.e. after many crossing times,
it explains the close to power-law behaviour of the projected density observed in numerical
simulations. Pushing the model at late time suggests that the system could build at some point
a very small flat core, but this is very speculative. This analysis shows that understanding the
dynamics of initially cold systems requires a fine-grained approach for a correct description
of their very central part. The analyses performed here can certainly be extended to spherical
symmetry.

Key words: gravitation – methods: analytical – methods: numerical.

1 IN T RO D U C T I O N

It is currently widely admitted that the matter content of the Universe
is dominated by a dark component. Dark matter can be assimilated
to a collisionless, self-gravitating fluid, so its dynamics follows
Vlasov–Poisson equations. In the one-dimensional case that we
examine in this work, these equations are given, in the proper units,
by

∂f

∂t
+ v

∂f

∂v
− ∂φ

∂x

∂f

∂v
= 0, (1)

∂2φ

∂x2
= 2ρ(x, t), (2)

ρ(x, t) ≡
∫

f (x, v′, t)dv′, (3)

where x is the position, v the velocity, t the time, f(x, v, t) the
phase-space density distribution function, φ(x, t) the gravitational
potential and ρ(x, t) the projected density.

� E-mail: colombi@iap.fr

In the current paradigm of large-scale structure formation, the
favoured model supposes that dark matter was initially cold, with
close to infinitely small velocity dispersion, that is, in one dimen-
sion,

f (x, v, t = 0) ≡ ρ(x) δD[v − vini(x)]. (4)

Numerical simulations show that cold dark matter aggregates in
dense and compact haloes that seem to follow a nearly universal,
quasi-steady projected density profile (see e.g. Navarro, Frenk &
White 1996, 1997; Navarro et al. 2010; Diemand & Moore 2011,
and references therein). Despite many attempts to understand the
origin of this universality, it is not yet clear how this profile, in
particular its central structure, builds up.

It is believed that self-gravitating systems evolve towards steady
state after a strong mixing phase designated by violent relaxation
during which the entropy of the system augments (see e.g. Lynden-
Bell 1967; Tremaine, Henon & Lynden-Bell 1986). One common
way to try predicting the structure of the system after relaxation
consists in using a statistical approach combined with entropy max-
imization, such as in the theory of Lynden-Bell (1967) and its nu-
merous extensions (see e.g. the recent investigations by Hjorth &
Williams 2010; Carron & Szapudi 2013; Pontzen & Governato
2013, for the case of dark matter haloes, but this list is far from
exhaustive). However, this approach requires some level of coarse
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graining of the distribution function, an operation which is not
unique nor free of biases (see e.g. Arad & Lynden-Bell 2005; Cha-
vanis & Bouchet 2005). Furthermore, the concept of entropy is not
necessarily well defined in the continuous limit (see e.g. Tremaine
et al. 1986; Chavanis 2006, and references therein). One impor-
tant purpose of this article is to convince indirectly the reader that
coarse graining cannot be performed everywhere, particularly in
zones where the structure of the system presents non-trivial singu-
larities that require to be followed dynamically in their full detail,
that is in an entropy-conserving fashion preserving the very needed
memory of initial conditions.

An alternative approach consists in investigating the subset of
self-similar solutions, which allows one to derive important proper-
ties of the system without any need, a priori, for coarse graining (see
e.g. Fillmore & Goldreich 1984; Bertschinger 1985; Alard 2013).
The major issue with self-similarity, although being an intuitive out-
come of gravitational dynamics, is to be able to find the dynamical
route that builds it up. So far, except for important clues provided
by perturbation theory (see e.g. Moutarde et al. 1991), the actual
establishment of self-similarity, when it exists, has never been rigor-
ously demonstrated, to my knowledge, otherwise than by numerical
experiments.

In this paper, we aim to study the dynamics of a self-gravitating
system without using a statistical approach nor assuming self-
similarity, but rather by relying on a simplified description of the
dynamics capturing all the important physical processes at play. To
do this, we focus on the simple case of one-dimensional gravity
and try to compute analytically the evolution of a single, initially
cold and smooth structure, following the footsteps of many previous
works in the literature (see e.g. Doroshkevich et al. 1980; Melott
1983; Shandarin & Zeldovich 1989; Rouet, Feix & Navet 1990;
Gurevich & Zybin 1995; Binney 2004; Schulz et al. 2013; Colombi
& Touma 2014).

Our main tool is Lagrangian perturbation theory (see e.g.
Zel’dovich 1970; Shandarin & Zeldovich 1989; Bouchet et al. 1992,
1995; Buchert 1992; Buchert & Ehlers 1993; Bernardeau et al. 2002,
and references therein) where the small parameter is the displace-
ment field. Lagrangian perturbation theory can be used to follow,
at least partly, the evolution of a system beyond collapse time (see
e.g. Pichon & Bernardeau 1999, for an example of application).
However, the strong feedback due to the appearance of singular-
ities at trajectory crossings is usually not taken into account in
the calculations except by using some ansatz such as, for instance,
Burgers’ equation (see e.g. Gurbatov, Saichev & Shandarin 1989)
or other alternatives (see e.g. Sahni & Coles 1995, and references
therein). These ansätze unfortunately provide a poor description of
the internal structure of collapsed structures. The iterative procedure
relying on a transport equation of the gravitational field proposed
by Buchert (2006) is potentially one exception, but it was not yet
tested against numerical simulations.

The idea of post-collapse Lagrangian perturbation theory intro-
duced in this work is to follow the system beyond collapse in a
ballistic fashion, compute the gravitational field as a function of
time in this approximation, then correct the equations of motion
accordingly in order to improve the description of the post-crossing
dynamics. In this respect, this approach is similar to the iterative
procedure advocated by Buchert, except that I propose here to stop
at the first iteration. If one stays sufficiently close to the centre of the
system, the coordinates of the curve representing it can be approxi-
mated by a polynomial at third order in the Lagrangian position, an
‘S’ shape (see e.g. Shandarin & Zeldovich 1989), which makes pos-
sible the analytical calculation of the force exerted on any point of

the system even when it is multivalued (at most three-valued in our
approximation). While our perturbative approach can theoretically
be accurate only shortly after shell-crossing, we shall see in fact that
it is a spectacularly good approximation up to next crossing time,
which will permit us to follow the system during multiple orbits in
an iterative fashion.

This paper is thus organized as follow. In Section 2, we give
the initial set-up and the solution until first crossing time, which is
exactly given by leading-order Lagrangian perturbation theory, the
so-called Zel’dovich approximation (Zel’dovich 1970). Section 3 is
the core of the paper: it details our post-collapse Lagrangian pertur-
bative approach. It is divided in five parts. The first one describes
the way we summarize the system, which is supposed to be com-
posed of a central self-gravitating S shape plunged in a close to
stationary halo that contributes as a harmonic background on the
dynamics of the S. In the second part, we study the different phases
of the motion, in particular whether the local flow is mono- or mul-
tivalued, and compute the gravitational force exerted on an element
of fluid of the system as a function of time. Once the acceleration
is provided, one can estimate the corresponding corrections on the
ballistic motion: this is the subject of third part of Section 3. Fourth
and fifth parts expose the way we propose to iterate the procedure
from crossing time to crossing time and discuss the results obtained
with it. Section 4 compares our analytical predictions to numerical
simulations. Finally, Section 5 summarizes the main results of this
article, relates them to maximum entropy methods and comments
on possible extensions to higher number of dimensions.

2 IN I T I A L S E T-U P A N D E VO L U T I O N U N T I L
FIRST C RO SSING TIME

We examine a particular but still quite generic case in equation (4),
with v(x) = 0 and where the projected density ρ is an even quadratic
function of x parametrized as follows,

ρ(x) = ρ̄0(1 − 3αx2), ρ̄0 > 0, α > 0, (5)

and becomes null when |x| > xM with xM ≤ 1/
√

3α.
Up to the first crossing time, resolving equations of motion is

straightforward in the cold case. To do so, it is convenient, following
the footsteps of Shandarin & Zeldovich (1989), to trace the phase-
space distribution function with a curve [x(q, t), v(q, t)] where q is
a Lagrangian coordinate along the curve. Our initial configuration
can be conveniently written as follows:

x(q, t = 0) = q, (6)

v(q, t = 0) = 0. (7)

Again, remind that the system extends in the region

q ∈ [−qM, qM], qM ≤ 1/
√

3α. (8)

The Lagrangian equations of motion, prior to shell crossing, read

∂x

∂t
= v, (9)

∂v

∂t
= −sgn(q)M(q), (10)

with interior mass given by

M(q) = 2ρ̄0|q − αq3|. (11)
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Consider the new variables

t̃ = √
ρ̄0t, q̃ = √

αq, x̃ = √
αx, ṽ = ∂x̃

∂t̃
. (12)

Then, we simply have

∂ṽ

∂t̃
= −sgn(q̃)M̃(q̃), (13)

with

M̃(q̃) = 2|q̃ − q̃3| =
√

α

ρ̄0
M(q). (14)

This shows that we can set the parameters

α ≡ ρ̄0 ≡ 1, (15)

without any loss of generality, as assumed from now on.
Prior to shell crossing, the solution of the equations of motion

simply follows Zel’dovich dynamics (Zel’dovich 1970; Shandarin
& Zeldovich 1989) and reads

x(q, t) = q − (q − q3)t2, (16)

v(q, t) = −2(q − q3)t, (17)

for |q| ≤ qM. The projected density can be written

ρ(x, t) = ρ(q)

∣∣∣∣∂x

∂q

∣∣∣∣
−1

= 1 − 3q2

1 − t2 + 3q2t2
. (18)

The first crossing, defined by,

∂x(q, tc)

∂q
|q=0 ≡ 0, (19)

happens at collapse time,

tc ≡ tc,1 = 1. (20)

At collapse time, we have

x(q, tc) = q3, (21)

hence, we obtain the well-known singular behaviour (Zel’dovich
1970; Arnold, Shandarin & Zeldovich 1982)

ρ(x, tc) = 1

3x2/3
− 1. (22)

3 FRO M O N E C RO S S I N G T I M E TO A N OT H E R :
POST-COLLAPSE LAG RANGIAN
P E RTU R BATI O N TH E O RY

We notice from equations (16) and (17) that x(q, t) and v(q, t)
are odd third-order polynomials of q, hence the curve [x(q, t), v(q,
t)] is an evolving ‘S’ shape. In particular, at collapse time, which
corresponds to the first crossing time,

x(q, tc) = aq3, (23)

v(q, tc) = −bq + cq3, (24)

where a, b and c are positive numbers:

a ≡ a1 = 1, b ≡ b1 = 2, c ≡ c1 = 2. (25)

Beyond collapse time, the evolution of the system becomes more
complex than in previous paragraph because there are multiple
valued points (Fig. 1), i.e. the equation x(q, t) = x0 has either no
solution, one solution, two or three solutions according to the value

Figure 1. Schematic representation of the phase-space structure of the
system shortly after collapse. The are some points for which the equation
x(q, h) = x0 has three solutions, (q0, q1, q2), with |q0| ≤ |q1| ≤ |q2|. This
happens for |x0| ≤ |x[qc(t), t]|, with qc defined by equation (37). In this
case, the mass interior to x0 reads Mint(|x| ≤ x0) = M(q2) − M(q1) + M(q0),
where function M(q) is given by equation (11). This is true as long as
q̂c(h) ≡ 2qc(h) ≤ qM. When q̂c(h) > qM, a small additional complication
arises from the fact that Lagrangian coordinates with |q| > qM do not
contribute to the mass.

of x0 considered. After multiple crossing times, t ≥ tc, n, the system
builds up a spiral structure in phase-space, of which the dynamics
is difficult to study without resorting to additional assumptions,
such as for instance self-similarity (Gurevich & Zybin 1995; Alard
2013). However, the central part of this spiral should still remain an
S as long as the evolution of the system is quiescent.

In this section, we use a Taylor expansion of the curve [x(q, t),
v(q, t)] at third order in q in order to be able to follow the evolution
of this S shape after each crossing time. Thus, at each crossing
time, tc = tc, n, equations (23) and (24) apply again but with new
values of the parameters a = an, b = bn, c = cn. This approximation
allows one to resolve easily the problem of multiple valued points
and this is made possible only because we restrict to third order
in q. Fortunately, it will be shown in Section 4 that third order is
enough to preserve all the important aspects of the dynamics of
the centre of the system in phase-space. For large enough values of
|q| corresponding to the tails of the S, our approximation will fail,
but we shall provide arguments to show that these tails feed a halo
around theS corresponding, at the fine level, to the spiral mentioned
above. In addition, the system is supposed to be immersed in a
constant density background, ρb = ρb, n, which accounts for the
presence of this halo.

In order to resolve the equations of the dynamics, in particular to
compute the force as a function of time, we first write the motion
in the presence (or not) of the background ρb, then compute the
additional perturbation induced by the self-gravity of the S. This
perturbation supplies a correction to the evolution of the system
valid at second order in time. Even though this means that our
post-collapse calculations are only valid during a short time after a
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crossing, we shall assume that they stand until next crossing, which
will allows us to compute an + 1, bn + 1 and cn + 1 as functions of an,
bn and cn, hence to follow in a fine-grained fashion the dynamics of
the centre of the system at successive crossing times.

3.1 Equations of motion: the perturbative set-up

In the presence of a pure homogeneous background density ρb, the
system follows the harmonic oscillator motion:

∂2x

∂t2
= −ωx, (26)

with

ω =
√

2ρb. (27)

With the initial conditions given by equations (23) and (24), the
solution of equation (26) is

xb(q, h) = aq3 cos(ωh) + (−bq + cq3) sin(ωh)/ω, (28)

vb(q, h) = (−bq + cq3) cos(ωh) − aωq3 sin(ωh), (29)

with

h ≡ t − tc. (30)

The pure ballistic regime (no background density) is obtained by
taking the limit ω → 0. Note importantly that harmonic oscillator
dynamics preserves the cubic nature of the curve [x(q, t), v(q, t)]
and represents a case where restricting to third order in q is exact.
Basically, the harmonic motion corresponds to a clockwise rotation
of the S shape in phase-space.

Now, we aim to compute the perturbation induced by self-gravity
of the system on equations (28) and (29),

x(q, h) = xb(q, h) + g(q, h), (31)

v(q, h) = vb(q, h) + ∂g

∂h
, (32)

where function g is meant to be evaluated at third order in q. To do
this, we first calculate the gravitational force exerted by the S on a
particle of mass unity,

F ≡ ∂2g

∂h2
, (33)

assuming that the motion is dominated by the (xb, vb) contribution,
i.e. by setting g = 0 in equations (31) and (32). This allows us,
after successive integrations over time on the force, to compute g
and its derivative. At early time, one expects g(q, h) ∼ O(h2). Our
calculation remains accurate as long as the perturbation induced
by self-gravity on (xb, vb) remains small. This should indeed be
the case during a full orbit (the trajectory of a matter element be-
tween two crossing times) if the background density is large, i.e.
2�ρb = �ω2 � M where � is the size of the system and M its mass.
In general, though, our approximation will be rigorously valid only
shortly after collapse. This is particularly true in the pure ballis-
tic case, ω → 0, where the cumulative perturbation induced by F
changes completely the trajectory and allows for a new crossing
that would never be possible otherwise. In this case, it would be
needed to reiterate the procedure on the newly calculated (x, v) to
obtain new corrections beyond second order in time. However, such
an iteration would not only be extremely cumbersome to perform,
it would also be non-sensical, unless considering simultaneously
higher order than third in q. Nevertheless, we shall see in Section 4

by comparisons with a numerical experiment that the simplified pro-
cedure we decided to follow here catches, even quantitatively, all
the important features of the dynamics of the centre of the system.

3.2 The different events during an orbital time and the
acceleration as a function of time

In this section, we assume, following the discussion of previous
paragraph, that the trajectory of a particle tracing the phase-space
distribution function is well approximated by the harmonic motion,
or, when ω → 0, the ballistic solution. We aim to describe, during
this trajectory, the important time events that imply different be-
haviours for the force exerted on the particle. Here, we sketch the
most important steps of the calculations. Explicit expressions are
given in Appendix A, including series expansions allowing one to
simplify the calculations and to perform them at third order in q.

From now on, we assume that the particle has initially positive
Lagrangian coordinate, q ≥ 0, but the same reasoning applies sym-
metrically to q ≤ 0.

Before shell-crossing, the flow is monovalued, so the acceleration
of the particle induced by the self-gravity of the S is just given
equations (13) and (14) that we repeat here for clarity with the
current notations:

F = −sgn(q)M(q), (34)

M(q) = 2|q − q3|. (35)

During the motion, the S shape rotates clockwise in phase-space. A
first event corresponds to the moment h = ĥc(q) when the particle
meets the handle of the S that lies in the positive half-velocity space
on Fig. 1. At this time, we have q = q̂c on Fig. 1 and

xb(q, ĥc) = xb[−qc(ĥc), ĥc], (36)

where qc(h) defines the magnitude of the Lagrangian position of
the rightmost part of the handle and therefore solves the following
equation:

∂xb

∂qc
≡ 0. (37)

In our third-order approximation level,

q̂c(h) = 2qc(h). (38)

Then, ĥc(q) is obtained by resolving the following equation:

q̂c[ĥc(q)] ≡ q. (39)

From this point, the flow becomes three-valued at position x0 = x(q,
h). This equation has three solutions:

x(qj , h) ≡ x(q, h), |q0(q, h)| < |q1(q, h)| < |q2(q, h)|, (40)

one of them coinciding with q, while the two others can be obtained
by solving a second-order polynomial in q, as can be easily seen
from equation (28). At the beginning, we have q2 = q, then q1 = q
after crossing of the axis x = 0, corresponding to a sign change
of the force exerted on the particle. The phases where q2 = q and
q1 = q correspond to a first regime where the acceleration increases
with time, until the particle reaches the leftmost part of the handle
of the S which lies in the negative half-velocity space in Fig. 1,
q = −qc. This event takes place at time h = hc(q) defined by

qc[hc(q)] ≡ q. (41)

When h ≥ hc(q), we have q0 = q, and the force exerted on the
particle presents a new regime.
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During the phase when the system is multivalued, h ≥ ĥc(q), the
expression of the acceleration can be easily calculated from the
mass of the three portions of the S with |x| ≤ |x0|:
F = −sgn(q)[M[min(|q2|, qM)]

− M[min(|q1|, qM)] + M(q0)], (42)

where function M(q) is given by equation (35). In expression (42),
we took into account of the finite extent of the system, that is the
possibility of |q2| or both |q1| and |q2| to be larger than qM. The
events |q2| = qM and |q1| = qM define two respective moments
h−(q) ≤ h+(q):

|q2(q, h−)| ≡ qM, (43)

|q1(q, h+)| ≡ qM. (44)

When h−(q) ≤ h ≤ h+(q), the tails of theS contribute less and less to
the force, until h = h+(q), which corresponds to the moment when
the system becomes monovalued again, that is with an accelera-
tion given again by equation (34). This obviously complicates the
analyses, as it introduces new regimes on the acceleration. While
the ordering ĥc(q) ≤ {ĥc(q), h−(q)} ≤ h+(q) is always correct, we
have ĥc(q) ≤ h−(q) if q ≤ qM/2 and the opposite otherwise.

To understand better what happens during the trajectory of a
matter element, Fig. 2 shows the various event times, ĥc, hc and
h± as functions of q, as well as their second-order series expansion
in q that are needed for subsequent calculations. This figure is
supplemented by Fig. 3 which displays the force exerted on a point
mass particle as a function of time.

Let us recapitulate again the different phases to which a parti-
cle is subject during one orbital time. First, we consider the case
|q| ≤ qM/2 (top panel of Fig. 3):

(i) Prior to first-crossing, h ≤ ĥc(q): the force is simply given by
equation (34), exactly as in Section 2.

(ii) Between first-crossing and interior phase, ĥ(q) ≤ h ≤ hc(q):
the particle is of kind q2, then q1 when xb(q, h) changes sign. The
force is, from now on, given by equation (42) but where qM can
be ignored. Because the particle passes through the centre of the
system, the force first decreases in magnitude with time, changes
sign, then increases in magnitude to reach at the end of this phase
its maximum strength, F[q, hc(q)] = 4q(1 − 4q3) (equation A26
of Appendix A2), roughly twice larger than prior to shell-crossing.
Indeed, not only the part of the S with |q′| ≤ q contributes to the
interior mass, but also the two tails of the S (q1 and q2 on Fig. 1).

(iii) Interior phase, hc(q) ≤ h ≤ h−(q): the particle becomes of
kind q0 i.e. ‘interior’ to the S shape. The force decreases slowly
with time as the particle continues orbiting. During this phase, the
potential well is deeper than prior to shell-crossing and the particle
is losing energy to the tails of the S.

(iv) Interior phase, but decreasing contribution of the tails,
h−(q) ≤ h ≤ h+(q): qM cannot be ignored anymore in equation
(42). Indeed, the particle is still of kind q0, but the contributions to
the force of the tails of the S are only partial due to the finite size
of the system: they decrease in a way that can be dramatically fast.

(v) Back to the monovariate regime, h+(q) ≤ h: the S shape has
rotated in phase-space in such a way that its tails do not influence
anymore the motion of its central part. The force is again given
by equation (34) and we are ready to proceed until next crossing,
where everything will start over, but with a modified S shape.

The above description of the dynamical process is correct for
|q| ≤ qM/2. When |q| ≥ qM/2 (second panel of Fig. 3), the phase
(iii) disappears, and the end of phase (ii) is increasingly suppressed

Figure 2. The critical event times as functions of Lagrangian coordinate q.
They mark the transitions between different regimes for a particle follow-
ing the trajectory defined by equations (28) and (29). The solid curves
correspond to the exact expressions, equations (A2), (A4) and (A7) of
Appendix A1, while the dotted ones are the second-order expansion in
q we use in our calculations. The top panel corresponds to a no density
background case, ω = 0, with a = 1, b = 2, c = 2 and qM = 1/

√
3,

as obtained after first crossing time tc, 1, while the bottom one assumes a
rather dense background ω = 5, with a = 17.7, b = 1.4, c = 19.4 and
qM = √

b/(3c) as discussed later. First crossing time happens at ĥc(q). For
ĥc(q) ≤ h = t − tc,1 ≤ hc(q), the particle is of kind ‘q2’ in Fig. 1, becomes
of kind ‘q1’ when xb(q, h) changes sign and then of kind ‘q0’ when h ≥ hc(q).
The two other times displayed on the figure mark the moment when only one
point q1 �= q of the S shape has the same position xb as point q (|q2| > qM),
that is when h > h−(q), and finally when the system becomes monovalued
again (|q1|, |q2| > qM), when h > h+(q). Note that the intersection of the
black and the blue curves, hc(q) = h−(q), is obtained for q = qM/2.

with |q|. Indeed, a regime h−(q) ≤ h ≤ hc(q) now appears, during
which the tails of the S gain energy with time, increasingly with |q|,
although we did not estimate analytically the transitional value of q
that demarcates net positive energy gain from net negative energy
gain during an orbital time.

3.3 Calculation of the corrected motion

The calculations of the force during the different phases of the
motion performed in previous section and in Appendices A1 and A2
allow us to compute the velocity and the position at third order in
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Vlasov–Poisson in 1D for initially cold systems 2907

Figure 3. The self-induced gravitational force exerted by theS as a function
of time on an element of mass belonging to it, assuming the equations of
motion (28) and (29). The top panel corresponds to a particle near the centre
of the S while the bottom one corresponds to a particle in one of the tails of
the S. The force computed here (see Appendix A2 for details) thus does not
include the effect of the harmonic background, which is already accounted
for in the equations of motion. The parameters used are the same as in second
panel of Fig. 2. To distinguish clearly between successive phases, the curves
on each panel are alternatively continuous and dotted. The maximum time
displayed corresponds to a full harmonic orbit, h = π/ω. In the top panel,
we have

∫ π/ω
0 F (q, h)v(q, h)dh = −2.7 × 10−4, that implies at net loss of

energy during the orbit, while this integral is equal to 1.6 × 10−3 in the
bottom panel, which implies a net gain of energy, as discussed in the main
text.

q. The velocity can be written, for h ≥ h+(q),

v(q, h) = vb(q, h) +
4∑

i=1

{Gi[q, hi+1(q)] − Gi[q, hi(q)]}

+G5(q, h) − G5[q, h5(q)], (45)

where h1(q) = 0 and the four successive event times are given by
h2(q) = ĥc(q), h3(q) = hc(q), h4(q) = h−(q) and h5(q) = h+(q),
whereas Gi is a primitive of the force F

Gi(q, h) =
∫

F (q, h′) dh′, (46)

of which the explicit expression depends on the phase of the motion,
hence the index i.

In an analogous way, the position can be expressed as follows,
for h ≥ h+(q),

x(q, h) = xb(q, h) + [v(q, h) − vb(q, h)]h

+
4∑

i=1

[Hi(q, hi+1) − Hi(q, hi)]

+
4∑

i=1

[Gi(q, hi)hi − Gi(q, hi+1)hi+1]

+H5(q, h) − H5(q, h5)

+G5(q, h5)h5 − G5(q, h)h, (47)

where the q dependence of the hi’s is now implicit, v(q, h) is given
by equation (45) and Hi is a primitive of Gi:

Hi(q, h) =
∫

h

Gi(q, h′) dh′. (48)

The details concerning the actual calculation of x(q, h) and v(q, h)
at third order in q are cumbersome and are deferred to Appendix A3.
We now quote and discuss the final results, first in the case with
no background, ω = 0. This case is particularly interesting because
quite relevant in the early stages of the evolution of the full system.
In particular, we introduce an interesting toy model neglecting the
finite extent of the system (qM → ∞). Then, we present the results
for ω > 0.

3.3.1 The case with no background: ω = 0

For ω = 0 and h ≥ h+(q), the final expressions at third order in q
for the position and the velocity are

x(q, h) = (x00 + x01h + x02h
2)q

+(x10 + x11h + x12h
2)q3, (49)

v(q, h) = (x01 + 2x02h)q

+(x11 + 2x12h)q3, (50)

with

x00 = −a2q2
M[6b2 + c(c − 9b)q2

M]

c2(b − cq2
M)2

+ 6a2b

c3
ln

(
b

b − cq2
M

)
, (51)

x01 = −b + 2aq2
M(c − 3b)

c(b − cq2
M)

+ 6ab

c2
ln

(
b

b − cq2
M

)
, (52)

x02 = 1, (53)

x10 = a + a2q2
M

[−2b2 + b(3b + c)q2
M + 2cq4

M(b − cq2
M)

]
(b − cq2

M)4
, (54)

x11 = c − 9a

b
+ 4aq2

M

b − cq2
M

+ ab[5b − 3(4b + c)q2
M + 6cq4

M]

3(b − cq2
M)3

, (55)

x21 = −1. (56)
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2908 S. Colombi

Note that we do not assume that qM is a small parameter here,
hence the complexity of the expressions, although these later are
meaningful only if qM < qv, with

qv ≡
√

b

c
. (57)

The reason for not supposing qM small is that this parameter cor-
responds, in phase-space, to the most remote part of the S and
terms containing it have to be fully taken into account for best ac-
curacy. Of course, a small value of qM will definitely improve the
quality of our description: we shall see in next section that there
are stringent conditions on how big can qM be for our calcula-
tion to be actually valid, when iterating from crossing to crossing.
Indeed, for the true dynamical system, the curve [x(q, t), v(q, t)]
in general is not a third-order polynomial in q. This means that
the actual remote tails of the S shape are poorly approximated by
the curve [xb(q, t), vb(q, t)], so the quality level of our force cal-
culation using this approximation is increasingly poor when qM

augments: this is a global effect that affects as well the dynam-
ics of the centre of the system. In particular, it will lead, as we
shall see in Section 4 when comparing analytical predictions to
measurements in numerical experiments, to estimates of the suc-
cessive crossing times slightly offset from their actual values. Note
of course that this discussion also applies to the case ω > 0 treated
below.

While keeping aware of these limitations, it is still interesting
to see what happens when one relaxes the condition qM < qv and
assumes that qM is arbitrarily large. This means that the equation
x(q, h) = x(q0, h) will always have either one or three solutions
(including the trivial one, q0), which simplifies considerably the
calculations of the equations of motion, which no longer require
taking care of the extension of the system up to qM: we only have
to account for the three first phases, (i), (ii) and (iii), of Section A2.
In other words, only terms containing F1, F2 and F3 contribute to
the dynamics. The expressions for the position and the velocity are
then rather simple, for h ≥ hc(q),

x(q, h) =
[
−

(
6ab

c2
+ b

)
h +

(
2 − 3b

c

)
h2

+6ab

c2

(
h + a

c

)
ln

(
1 + ch

a

)]
q

+
[
a +

(
c − 9a

b

)
h + h2

]
q3, (58)

v(q, h) =
[
−b +

(
4 − 6b

c

)
h + 6ab

c2
ln

(
1 + ch

a

)]
q

+
(

c − 9a

b
+ 2h

)
q3. (59)

Interestingly enough, we shall see by comparison with numerical
experiments that this simplification of the dynamics provides rea-
sonable results, at least from the qualitative point of view. The main
reason for this is that the point [xb( ± qv, h), vb( ± qv, h) = 0] is a
stationary one. In realistic situations, only the points with |q| ≤ qv

are expected to contribute, in practice, to the dynamics. However,
q = qv is a rather ‘large’ value of q, where one expect the approx-
imation of the curve [x(q, h), v(q, h)] by a third-order polynomial
in q to be poor, which explains why equations (58) and (59) should
be seen as a toy model rather than a fully realistic description of the
equations of motion.

3.3.2 Taking into account the background: ω > 0

The case ω �= 0 is more complex, because the analogue of the
expression for x00 in equation (49) is not fully analytical. However,
except for one integral Y that has to be estimated numerically, the full
expressions for the position and the velocity can still be explicitly
written at third order in q:1

x(q, h) = (x00 + x01h + x02h
2 − b

ω
sin ωh)q

+(x10 + x11h + x12h
2

+a cos ωh + c

ω
sin ωh)q3, (60)

v(q, h) = (x01 + 2x02h − b cos ωh)q

+(x11 + 2x12h + c cos ωh − aω sin ωh)q3, (61)

with

x00 = Y + 3bc − c2 − a2ω2

ω2(c2 + a2ω2)
arccos

(
b − cq2

M√
T

)2

− 6ab

ω(c2 + a2ω2)
arccos

(
b − cq2

M√
T

)
ln

(
abω√

T

)
, (62)

x01 = 2(−3bc + c2 + a2ω2)

ω(c2 + a2ω2)
arccos

(
b − cq2

M√
T

)

+ 6ab

c2 + a2ω2
ln

(
b√
T

)
, (63)

x02 = 1, (64)

x10 = a2b2q2
M(3q2

M − 1)

3T 2

+ ab

3ωT 2

[
2bcq2

M(4 − 9q2
M) + b2(12q2

M − 5)

+3q4
M(2q2

M − 1)(c2 + a2ω2)
]

arccos

(
b − cq2

M√
T

)

+ 2

ω2
arccos

(
b − cq2

M√
T

)2

, (65)

x11 = −9a

b
− ab

3T 2

[
2bcq2

M(4 − 9q2
M) + b2(12q2

M − 5)

+3q4
M(2q2

M − 1)(c2 + a2ω2)
]

+ 4

ω
arccos

(
b − cq2

M√
T

)
, (66)

x12 = −1, (67)

where T and Y are given by equations (A12) and (A60), respectively.
Note that the arbitrarily large qM assumption cannot be used to

simplify the calculations and to construct a toy model similarly

1 A MATHEMATICA notebook is available on request from the author.
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Vlasov–Poisson in 1D for initially cold systems 2909

as in the case ω = 0. Indeed, with ω �= 0, the system is rotating
in phase-space due to the harmonic motion. Therefore, the cut at
qM becomes a fundamental part of the dynamics: without this cut-
off, a singular, non-physical behaviour would appear at a time h =
arccos(−c

√
c2 + a2ω2)/ω, where qc(h) diverges (equation A1).

However, one can still display, for completeness, the large ω

regime:

x(q, h) �
[
h2 + π

ω
h − b

ω
sin(ωh)

]
q

+
[
−h2 +

(
2π

ω
− 9a

b

)
h

+a cos(ωh) + c

ω
sin(ωh)

]
q3, (68)

v(q, h) �
[
2 h + π

ω
− b cos(ωh)

]
q

+
[
−2h + 2π

ω
− 9a

b
+ c cos(ωh) − aω sin(ωh)

]
q3.

(69)

3.4 State of the system at next crossing time: a recurrence
formula

The expressions calculated in previous section are of the form

x(q, h) = E(h, a, b, c, qM, ω)q − A(h, a, b, c, qM, ω)q3, (70)

v(q, h) = B(h, a, b, c, qM, ω)q − C(h, a, b, c, qM, ω)q3, (71)

with, naturally, B = ∂E/∂h and C = ∂A/∂h. Crossing time corre-
sponds to the smallest possible strictly positive value of h with

E(h, a, b, c, qM, ω) = 0. (72)

Note that this equation has an analytic solution in the limit ω → 0
(that we do not write here, for simplicity), since in this case E is a
second-order polynomial in h (equation 49).

(i) Recurrence formula: resolving equation (72) (explicitly if
ω = 0, numerically otherwise) allows us to rewrite the position
and the velocity at crossing time in the same form as in equations
(23) and (24):

x(q, tc,n) = anq
3, (73)

v(q, tc,n) = −bnq + cnq
3, (74)

and to establish a recurrence of the state of the system at successive
crossing times as a function of crossing time number n:

an+1 = A(hn, an, bn, qM,n, ωn), (75)

bn+1 = B(hn, an, bn, qM,n, ωn), (76)

cn+1 = C(hn, an, bn, qM,n, ωn), (77)

tc,n+1 = tc,n + hn, (78)

hn = min
h>0

{
h | E(h, an, bn, cn, qM,n, ωn) = 0

}
, (79)

where a transformation q → −q has been performed to take into
account of the rotation of the system in phase-space by half a circle.

This transformation is made so to preserve, in general, the positive
nature of the coefficients an, bn and cn.

(ii) Choice of the extension of the system, qM, n: at each iteration,
a crucial step consists in defining the Lagrangian size qM = qM, n

of the system between crossing times n and n + 1. A natural
choice for such a scale is to take the point where velocity reaches is
extremum,

∂v

∂qM,n

≡ 0, (80)

i.e.

qM,n ≡
√

bn

3cn

, (81)

which will be our choice in the subsequent analyses.
(iii) Recurrence for the background: we may assume that qM, n is

a decreasing function of n, to reflect the fact that at each crossing
time, the central S shape loses some material from its two tails, and
that this material contributes to the background:

ωn =
√

2ρn, (82)

where ρn is given by the recursion

ρn+1 = ρn + 
ρn, (83)


ρn = β
M(qM,n) − M(qM,n+1)

2x(qM,n, tc,n+1)
, (84)

and β = O(1) is a parameter that specifies the typical extension of
the region filled up by the matter escaping from the tails of the S,
while, with our initial set-up, ρ0 ≡ 0. In reality, the system looks like
a spiral in phase-space, which means that the two parts of the tails
contributing to the background are elements of this spiral. These
elements are getting elongated with time as a result of the differential
rotation speed of the system in phase-space. They occupy a ring
of approximately fixed boundaries, due to the (supposedly) nearly
adiabatic nature of the halo, and progressively fill this ring up in
a homogeneous way. Combining arguments based on total energy
conservation and stationarity would probably allow one to compute
iteratively the shape of this ring rather accurately but this would
go beyond the scope of this paper. Instead, we chose to keep β

as a single but adjustable parameter when performing comparisons
with numerical experiments. However, it might, in reality, depend
on time, i.e. on n. Choosing it fixed implicitly assumes some kind
of similarity behaviour, which is not guaranteed.

(iv) Condition of validity: for the recurrence to make sense, it
is required that x(qM, n, tc, n) and v(qM, n, tc, n) have a chance to
remain close enough to their actual values. We already discussed
partly this issue in Section 3.3.1, where we argued that the ana-
lytical predictions are expected to behave better when qM is kept
smaller. In fact, because the equations of motions are integrated
for h ≥ h+(q) ≥ hc(q), it is needed, for having a chance to have a
realistic description of the system at qM, n, to have

hn � max[hc(qM,n+1), h+(qM,n+1)], (85)

where hc and h+ are given by their approximations, equations (A10),
(A11) or (A13) (hence, one can have hc > h+, as illustrated by sec-
ond panel of Fig. 2). If this non-trivial (necessary, but not sufficient)
condition is not fulfilled, it means that our recurrence will definitely
go away from a good approximation of the true dynamics.
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2910 S. Colombi

3.5 Discussion

We now examine what is the outcome of the recurrence with the
initial conditions of Section 2. Fig. 4 shows the evolution of the
coefficients an, bn and cn of equations (73) and (74) as functions
of number of crossings. Three cases are shown on the figure: a full
calculation with an additional increasing halo background consis-
tent with the mass-loss of the S in the tails, the calculation ignoring
the effect of the background (ωn = 0) and the toy model (still corre-
sponding to ωn = 0) described in Section 3.3.1. Several important
properties show up:

(a) The three models match rather well each other up to fourth
crossing. The effect of the halo background on the dynamics of
the centre of the system becomes critical only when n ≥ 5 which
corresponds to a rather advanced time in the evolution of the system.

(b) The velocity scale coefficient bn remains approximately con-
stant with time and of order of unity, whatever model.

(c) The coefficients an and cn augment approximately geomet-
rically with number of crossings, for n � 4. In the case ω = 0,
this regime extends indefinitely, and the geometric amplitude is the
same for an and cn, but different for the toy model and the ‘realistic’
calculations. In the presence of background, on the other hand, the
geometric amplitude is different for an and cn and this exponential
behaviour is limited in duration.

(d) For ω > 0, the geometric growth of an and cn gets indeed
interrupted at late times, n ∼ 9, where an and cn start bending.
Furthermore, the symbols on Fig. 4 stop at large time because an

changes sign at the 14th crossing, which corresponds to a ‘reversal’
of the shape of theS. Whether this instability in our analytical model
reflects something inherent to the true dynamical system remains
to be understood. As discussed in subsequent section, Section 4,
we unfortunately do not have at our disposal a sufficiently cold set-
up to demonstrate the existence of this instability with numerical
experiments.

Figure 4. The coefficients an (black), bn (red) and cn (blue) describing the
shape of the central S shape at crossing times (equations 73 and 74) as
functions of the number of crossings. The symbols correspond to the full
calculation with ωn > 0 (equations 60 to 67) and β = 1.5 in equation (84).
This value of β was chosen such that the mass interior to qM, n obtained at
successive crossing times roughly fits the one measured in the simulation
with vmax = 0.0003 of Section 4. The solid lines correspond to the case
ω = 0 (equations 49 to 56) and the dots to the toy model (still assuming
ω = 0) given by equations (58) and (59).

Figure 5. The crossing time, tc, n, as a function of crossing number, n.
In the top panel, the three models (red symbols: with background, dotted
blue: without background; dashed pink: toy model) are compared to the
simulations of Section 4 (black and green circles). The errorbars on the
simulation points reflect the uncertainty induced by the gap in time between
successive snapshots, combined with human error: the successive crossing
times have been determined by visual inspection, which is the main source
of fluctuations at late times. The bottom panel compares the crossing time
obtained with background to hc(qM, n + 1) (dots) and h+(qM, n + 1) (solid) to
test the validity of the model (equation 85). Of course, there is no dotted nor
solid line at n = 1, where Zel’dovich dynamics provides an exact answer.

For completeness, top panel of Fig. 5 displays the crossing time
as a function of number of crossings for the three models of the
dynamics. After a peak corresponding to what could be described
as a violent relaxation period, the system reaches a plateau. Bottom
panel of Fig. 5 is a test for the model with background of the
validity condition (85), which is verified, except for 3 ≤ n ≤ 6
where a marginal violation can be observed.

It is interesting at this point to discuss the properties of the system
assuming, following point (c) above, that an and cn vary geometri-
cally with time, as well as bn:

an ∝ γ n
a , bn ∝ γ n

b , cn ∝ γ n
c . (86)

According to point (b) above, we should have γ b � 1 < γ c, which
is clearly incompatible with self-similarity in phase-space of the
centre of the system, that would imply γ b � γ c. This deviation
from self-similarity might be due to limitations of our theoretical
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Vlasov–Poisson in 1D for initially cold systems 2911

model. On the other hand, as discussed further in Section 4, we
shall see that measurements in numerical simulations suggest that
we should have γb � γ −1/4

a � 1, hence γ b still smaller than γ c.
We now try to compute, in the framework of the recurrence

proposed in Section 3.4, the properties of the expected projected
density profile, ρ(x), assuming property (86) and that the halo is
stationary. With these hypotheses, the projected density at position
x(qM, n, tc, n) reads

ρ[x(qM,n, tc,n)] � M(qM,n)

2x(qM,n, tc,n)
+

∑
m<n


ρm. (87)

From equations (86) and (81), we have

qM,n ∝
(

γb

γc

)n/2

, (88)

hence (since qM, n is small),

M(qM,n) ∝
(

γb

γc

)n/2

, x(qM,n, tc,n) � x̂ γ n
x , (89)

with

γx ≡ γaγ
3/2
b

γ
3/2
c

< 1 (90)

and where x̂ is some number. Note as well that x(qM,n, tc,n−1) ∝
γ n

x . The property γ x < 1 steams from the fact that x(qM, n, tc, n)
should strictly decrease with n (unless the harmonic contribution
completely dominates). Therefore, in equations (83) and (84),


ρn � ρ̂γ n
ρ , (91)

where ρ̂ is some number and

γρ ≡ γc

γaγb

. (92)

As a result, we have

ρ(x̂γ n
x ) = ρ̃γ n

ρ + ρ̂
γ n
ρ −1

γρ−1 , γρ �= 1, (93)

= ρ̃ + (n − 1)ρ̂, γρ = 1, (94)

where ρ̃ is some number. So, for x � 1 (large n),

ρ(x) ∝ xγ , γρ > 1, (95)

∝ ln x, γρ = 1, (96)

= constant, γρ < 1, (97)

with

γ ≡ ln γρ

ln γx

< 0. (98)

This means that for the toy model as well as for the case when
the harmonic background is neglected, γ c � γ a and γ b � 1, one
expects a logarithmic divergence of the projected density at small x.
If the harmonic contribution is taken into account, we notice from
Fig. 4 that γ c > γ a for n � 4 while γ b � 1, supporting at least in
some scaling range a power-law singularity paradigm for the pro-
jected density, as illustrated by Fig. 6. Then, if our calculations are
qualitatively valid at large crossing times, the instability observed
at late time for ω > 0 [item (d) above] suggests the existence of a
very small core, but this is very speculative.

Figure 6. The total mass interior to x(qM, n, tc, n) obtained at different
crossing times, where qM, n corresponds to the Lagrangian coordinate of the
extrema of the theoretical velocity and tc, n is the theoretical nth crossing
time. Therefore, the x-axis of the plot is entirely determined by the theory,
because we do not have a simple mean to estimate accurately the value of
x(qM, n, tc, n) from the simulation, except at early times. This is due to the
fact that opposite borders of the waterbag ‘slide’ with respect to each other.
The symbols with errorbars represent measurements in the two simulations
described in Section 4 (black and green, respectively, for vmax = 0.0003 and
vmax = 0.001), which can be directly compared to the theoretical prediction
including the contribution of the halo background (red symbols). The free
parameter β in equation (84) has been tuned so that theory globally matches
the simulations in their range of validity. This range is limited by the warm
nature of the waterbag set-ups, inducing the presence of a small core with
Mint(x) ∝ x when x is very small (green and black dotted lines). If the system
was stationary, the mass Mint, n interior to x(qM, n, tc, n) at crossing time n
should be equal to the interior mass measured at the same position, but at
later times. The latter is shown as a function of position for both simulations
(black and green dashes), and indeed approximately matches Mint, n, except,
not surprisingly, at collapse time (n = 1). Finally, the solid line corresponds
to the power-law behaviour Mint(x) ∝ x1/2 conjectured by Binney (2004).

4 C O M PA R I S O N W I T H C O N T RO L L E D
N U M E R I C A L E X P E R I M E N T S

We analyse two waterbag simulations performed with the Vlasov
solver presented and tested in Colombi & Touma (2008, 2014). The
latter exploits directly Liouville theorem to follow accurately, in
an entropy-conserving fashion, the borders of a patch of constant
phase-space density – the waterbag – with a self-adaptive, orientated
polygon. The waterbag, of total mass m = 1, initially occupies in
phase-space the ellipse of equation

(x/xmax)2 + (v/vmax)2 = 1, (99)

with xmax = 1, vmax = 0.001 for the first simulation and
vmax = 0.0003 for the second one, which corresponds in both cases
to a rather cold set-up, as needed to test our analytical predictions.
Inside the ellipse defined by equation (99), the phase-space density
reads

f (x, v) = m

πxmaxvmax
. (100)

The initial projected density does not depend on the initial velocity
dispersion and reads

ρi(x) = 2m

πxmax

√
1 − (x/xmax)2 � ρ̄0(1 − 3αx2), (101)

MNRAS 446, 2902–2920 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/446/3/2902/2892985 by guest on 28 April 2022



2912 S. Colombi

Figure 7. Evolution in phase-space of the distribution function at early times. Each panel represents a state of the evolution of the system at a given crossing
time (except for the upper-left one which corresponds to initial conditions), with the simulation time ts indicated on the upper-left part, in addition to the
number of crossings, n. On each panel, there is a black curve, which corresponds to the simulated f(x, v) with vmax = 0.0003 in equation (99). Note that this is
not really a curve but the contour of a single waterbag. However, the very cold nature of the system does not allow us here to really distinguish the borders of
the waterbag: for instance, the initial ellipse looks like a flat line. The red solid curve corresponds to our analytical model, that includes a harmonic contribution
when n ≥ 3, with β = 1.5 in equation (84). The blue dotted curve on the lower-right panel is the same as the red one, but the harmonic background is neglected
in the dynamics (ω = 0). Finally, the pink dashed curve on the lower-right panel corresponds to the toy model for the ω = 0 case, when used from second
crossing time. On the bottom-right panel, the tails of the theoretical curves are truncated at q = qM, 2. Note furthermore, on this panel, that a time shift has been
applied to the theory in order to synchronize it with the simulation, due to the difference between the theoretical and the numerical crossing time.

with

ρ̄0 = 2m

πxmax
, α = 1

6x2
max

. (102)

To match the mass of our theoretical model and that of the simulated
system, one needs to set the initial value of qM to qM = 0.3722 <

1/
√

3. This is obtained by solving the equation

m = 2ρ̄0

[
qM√

α
− α

(
qM√

α

)3
]

. (103)

Figs 7 and 8 show the evolution of the phase-space distribu-
tion function at successive crossing times for the simulation with
vmax = 0.0003 and compare it to our theoretical predictions for the
shape of the central S.

Up to first crossing time (top-right panel of Fig. 7), the Zel’dovich
dynamics of Section 2 (equations 16 and 17) describes exactly
the evolution of the system and the difference between analytical
prediction (red curve) and simulation (black curve) is just due to
the fact that the theoretical system is initially slightly different from
the simulated one, increasingly far away in the tails.

The description of the transition between first crossing time and
second one represents the first non-trivial result of our theoretical

investigations, in the ω = 0 case. The red curve on bottom-left panel
of Fig. 7 is given by equations (49) to (56), when starting from the
state at collapse time given by the red curve on the top-right panel.
The match between the red curve and the black one is very good,
especially if one remembers that theory is valid only to third order
in q and is therefore expected to be very approximate in the tails of
the S.

In bottom-right panel of Fig. 7, that corresponds to third crossing
time, we added the presence of a background with β = 1.5 in
equation (84). The red curve is thus now given by equations (60)
to (67), starting from the state at second crossing given by the red
curve on bottom-left panel. The value of β was adjusted manually
to visually reproduce as well as possible the mass interior to x(qM, n,
tc, n) measured in the simulations at successive crossing times, as
illustrated by Fig. 6. Importantly enough, with the right choice of
this single free parameter β, theory matches the simulations rather
well when the interior mass profile is at concern, in particular it is
close to a power-law behaviour, Mint(x) ∝ √

x. Such a power-law
behaviour cannot be obtained when the effect of the background
is not taken into account in the dynamics. Indeed, in this case, the
interior mass is underestimated as soon as n � 5 (this is not shown
on Fig. 6, for simplicity): as shown in previous section, when ω = 0
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Vlasov–Poisson in 1D for initially cold systems 2913

Figure 8. Evolution in phase-space of the distribution function at later times. This figure is the follow-up of Fig. 7 but the presentation is slightly different.
Each line of panels corresponds to a state of the evolution of the system at a given crossing time, with a zoom on the centre of the system on left-hand panel,
while a global view of the phase-space distribution function is presented on the right-hand panel. The curves are the same as in bottom-right panel of Fig. 7.
When n ≥ 6, only the red curves are represented on right-hand panels for clarity. The toy model is only displayed up to n = 6, as it clearly diverges from the
true solution. Again, similarly as in bottom-right panel of Fig. 7, a time shift is applied to theory in order to synchronize it with the simulation to account for
the difference between the theoretical and the measured crossing times. At late times, the appearance of an elliptic core due to the slightly warm nature of the
waterbag simulation makes the comparison between theory and measurements somewhat irrelevant. On the bottom-left panel, the tails of the red curve have a
curvature opposite to previous times. This is due to a sign change of the coefficient an in equation (73).
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2914 S. Colombi

or in the toy model case, the projected density is expected to present
a logarithmic singularity for small values of x.

Yet, it is interesting to see the differences in phase-space between
various approximations when 3 ≤ n ≤ 6: on bottom-right panel of
Fig. 7, the blue dotted curve assumes ω = 0, while the pink dashed
one corresponds to the toy model given by equations (58) and (59).
At third crossing time, the central shape of the S between the two
extrema of the velocity is well described by the theory, whichever
approach is considered. Obviously, this is not true for the remote
tails, as expected.

However, although the shape of the system at third crossing time
is well described by the analytical calculations, the crossing time
itself is slightly underestimated by the theory. This is illustrated by
top panel of Fig. 5. In the case ω > 0, the disagreement between
theory and measurements remains significant for 3 ≤ n � 6, which
corresponds to the time interval where our description of the dy-
namics is expected to be only marginally correct (bottom panel of
Fig. 5). In the case ω = 0 or in the toy model, theory soon presents
a plateau at late times that overestimate the true crossing time.

We therefore have to set a time shift between the theory and the
simulation in order to synchronize them. Equivalently, this simply
consists in comparing theory to simulation at exact crossing times,
as performed in Figs 7 and 8. This time shift is due to the fact
that the effective density at the centre of the system is slightly too
large for the theoretical model, hence accelerating the rotation of the
S in phase-space. This is not very surprising if one remembers the
discussion after equation (57) in Section 3.3.1. Indeed, passing from
the first crossing time to the second one can be performed accurately
because the segment of time during which the system is multivalued
is short, making our ballistic approximation rather accurate (when
the system becomes monovalued again, the calculation of the force
becomes exact again, as we get back to the Zel’dovich regime).
When the system gains some spatial extension (limited by our cut-
off at qM corresponding to the extrema of the velocity), the relative
amount of time between two crossings spent in the multivalued
regime increases, which makes our calculation of the cumulated
force exerted on a mass element less accurate. Yet, our estimate
of the crossing times remains rather good as illustrated by top
panel of Fig. 5. Note however that the effects of the warm nature
of the initial waterbag on the value of the crossing time are felt
quite early in the simulations: comparing the vmax = 0.0003 to the
vmax = 0.001 simulation suggests that the simulations tend, at some
point, to overestimate the true value of tc, n. Comparison of theory
and simulations at late times is therefore not fully meaningful.
Strictly speaking, the numerical experiments can be trusted only up
to n = 6, where the two simulations still coincide with each other in
terms of crossing times, or at best up to n ∼ 8 for the vmax = 0.0003
simulation, in terms of interior mass and contamination at small
scales by the presence of a warm core (Fig. 6).

Even though the crossing time is underestimated by the theory for
3 ≤ n � 6, the shape of the centre S remains in agreement with the
simulated one for up to 11 crossings, as illustrated by Fig. 8, if one
takes into account the presence of the background, ω > 0. However,
this does not mean that theory approaches the true solution beyond
n = 8 (strictly speaking, n = 6, from the discussion just above),
since the simulation is increasingly contaminated in the centre by
its warm nature.

For n � 12, the agreement between the theory and the simulation
worsens. At the last crossing time considered, n = 14 (lower-left
panel of Fig. 8), the curvature of the tails of the red curve reverses,
which is the signature of an instability that results in a change of sign
of coefficient an, as already discussed in point (d) of Section 3.4. If

such an instability was present, the system would most likely build
up a small flat core. To decide whether this instability is physical
is not possible because, first, our post-Lagrangian approach is only
approximate and, secondly, we do not have access to cold enough
initial conditions in the simulations to prove that this instability
would appear in the real system.

To check even more accurately the validity of our iterative pro-
cedure, a powerful test consists in analysing the properties of the
phase-space energy distribution function, fE(E), which corresponds
to the average of the phase-space density per energy level. Indeed,
it has been shown in Colombi & Touma (2014) (hereafter, CT) that
this function becomes nearly stationary for n � 3 when studied as a
function of E − Emin, where Emin is the (time-dependent) minimum
of energy coinciding with the minimum of the potential. Further-
more, it was found by CT that the logarithmic slope of fE(E) was
consistent, even at late times, with the one predicted at crossing
times for small values of E − Emin.

Function fE(E) is defined as

fE(E) ≡ lim
δE→0

∫
E(x,v)∈[E,E+δE] f (x, v) dx dv∫

E(x,v)∈[E,E+δE] dx dv
, (104)

where

E(x, v) ≡ 1

2
v2 + φ(x) (105)

is the specific energy and φ(x) is the gravitational potential. For
systems where the phase-space density depends only on energy,
one thus has f(x, v) = fE[E(x, v)]. At crossing times, equations (73)
and (74) imply a potential of the form

φ(x) � Emin + φ0x
4/3 = Emin + φ0anq

4, x, q � 1, (106)

with

φ0 = 3

2
a−1/3

n . (107)

The specific energy can be easily computed as a function of q,

E � Emin + 1

2
b2

nq
2, q � 1. (108)

A convenient way to rewrite equation (104) is

fE(E) = 2ρ(q)

[
∂E

∂q

]−1 [
∂J

∂E

]−1

, (109)

where J(E) is the action given by

J (E) ≡
∮

E(x,v)=E

vdx = 4
∫ xmax

0

√
2[E − φ(x)]dx, (110)

and xmax is such that E ≡ φ(xmax). For a potential of the form
φ − Emin = φ0x

βφ , we have

J (E) =
4
√

2πβφ
(1 + 1
βφ

)φ
− 1

βφ

0 (E − Emin)
1
2 + 1

βφ

(2 + βφ)
( 1
2 + 1

βφ
)

(111)

(see e.g. CT). From equations (106), (107), (108), (109) and (111),
we obtain

fE(E) � (3/2)3/4
(5/4)

2
√

π
(7/4)

(E − Emin)−3/4

a
1/4
n bn

,

E − Emin � 1. (112)

In particular, we should have, for n � 2,

a1/4
n bn � constant, (113)

according to the measurements of CT.
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Vlasov–Poisson in 1D for initially cold systems 2915

Figure 9. Phase-space energy distribution function: comparison of theory to the simulation with vmax = 0.0003. The left-hand panel shows the quantity
(E − Emin)3/4fE(E) as a function of specific energy at the first five crossing times as well as the most evolved time of the simulation, ts = 50. The straight red
lines with different patterns correspond to the theoretical prediction at each crossing time given by our iterative procedure with background taken into account.
Each line has to be compared to the curve with the same pattern. The right-hand panel focuses on a particular value of the energy, E − Emin = 0.01. The
phase-space energy distribution function is shown as a function of number of crossings and is compared to the normalization given by the theory in the regime
E � 1.

Fig. 9 shows (E − Emin)3/4fE(E) as a function of specific en-
ergy (left-hand panel) as well as fE(Emin + 0.01) as a function of
time (right-hand panel). The method employed to compute fE(E)
from equation (104) is explained in details in CT. 2500 linear bins
were used in the interval [Emin, Emax], where Emin and Emax are,
respectively, the minimum and the maximum of energy inside the
waterbag. Left-hand panel of Fig. 9 confirms the results of CT,
namely the power-law behaviour fE(E) ∝ (E − Emin)0.75. However,
the normalization of function fE(E), in particular equation (113), is
reproduced by our analytic calculations only up to n � 6 (right-hand
panel). After this, the energetic properties of the approximate sys-
tem deviate significantly from the simulation and probably from the
true solution. Indeed, the close to stationary behaviour of function
fE(E) at late times – modulo the small-scales fluctuations due to the
cold nature of the system – seems to be a robust numerical result
according to the convergence analysis performed in CT. In partic-
ular, the deviation between theory and measurements observed on
right-hand panel of Fig. 9 cannot be attributed to the fact that the
simulation is not exactly cold.

5 SU M M A RY A N D D I S C U S S I O N

In this work, we have studied analytically the evolution of an ini-
tially smooth and cold system following Vlasov–Poisson dynamics
in one dimension. We focused on the central part of the system,
which presents an S shape in phase-space. We approximated the
equations of motion of the S using a Lagrangian perturbative ap-
proach, which allowed us to describe its dynamics beyond crossing.
Then, by iterating the procedure, we followed the system during
several crossing times. The S rotates in phase-space and its cen-
tral part contracts under the action of self-gravity. Its tails feed a
halo which contributes to the dynamics of the S as an increas-
ing harmonic background. With this simple recipe, in which the
phase-space coordinates of the curve representing the S are just
third-order polynomials of the Lagrangian coordinate q, we were
able to describe rather accurately the evolution of the central part
of the system during several orbits and the establishment of a close

to power-law behaviour for the projected density, as measured in
numerical simulations.

From these conceptually simple but yet cumbersome calcula-
tions, it seems that the detailed dynamics of the shape of the S
completely determines the very existence and the nature of the sin-
gularity at the centre of the system, if one assumes that the tails
of the S feed a nearly stationary halo. This result, which can be
only derived by following the exact phase-space distribution func-
tion of the centre of the system at the microscopic level, is clearly
incompatible with any coarse grained approach, such as methods
using entropy maximization, unless they account for the non-trivial
constraints induced by the dynamics of this S.

In the continuous and cold limit considered here, coarse grain-
ing can indeed be used to define a macro-state that consists of a
region of phase-space large enough compared to the typical sep-
aration between two close elements of the spiral composing the
system, but small enough compared to the extension of the system.
Entropy maximization assumes that small regions of phase-space
corresponding to ‘micro-states’, initially very far from each other,
hence uncorrelated statistically, can end up in the same macro-
state as consequence of mixing. Entropy is a count of the number
of combinations of micro-states leading to the same macro-states.
Maximizing the entropy is thus equivalent to finding the most likely
state of the system given the lack of knowledge we have about it.
Additional constraints, which on the contrary reflect our knowledge
about the system, are used to set limits to the statistical freedom
expressed here in terms of number of micro-states.

In Lynden-Bell theory (Lynden-Bell 1967), conservation of the
total mass, total energy and of local phase-space volume represents
such constraints. However, Lynden-Bell theory has been proven to
have a limited predicting power. For instance, although it is partly
successful (see e.g. Yamaguchi 2008), it fails to reproduce in de-
tail the steady state of many one-dimensional systems (see e.g.
Joyce & Worrakitpoonpon 2011). Additional insights on the dy-
namical properties of the system can however significantly improve
it, but they always rely on a particular treatment at the centre of
system, for instance through a tunable parameter defining the grav-
itational potential depth (see e.g. Williams, Hjorth & Wojtak 2010;
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2916 S. Colombi

Carron & Szapudi 2013) or a second component of the phase-space
distribution function (see e.g. Pontzen & Governato 2013).

Our calculations suggest, in the same line of thought, that it is
needed in the cold and one-dimensional case studied in this article to
add fully deterministic constraints on the phase-space density in the
vicinity of the centre of the system to have any hope for an entropic
prescription to produce the correct quasi-stationary solution. Indeed,
in the very centre of the system, there is no mixing, at least during
a significant amount of time after which the system has already
reached a metastable state. Furthermore, the spiral structure that
builds up during the course of the dynamics is well defined (see
e.g. Gurevich & Zybin 1995; Alard 2013). In particular, a given
small patch of phase-space does not contain random parts of such a
spiral: this may actually render the concept of entropy maximization
questionable in full when considering the system examined in this
article.

Indeed, it is tempting to believe that there should be a random
component at play during the mixing process for the maximum en-
tropy method to really make sense. When the system is composed
of particles, Poisson noise combined with local encounters plays the
role of such a random component. Hence, the long-term evolution
of the system leads in this case to the thermodynamic solution that
can be obtained by maximizing the entropy (see e.g. Lynden-Bell &
Wood 1968; Rybicki 1971; Chavanis 2006, and references therein).
In the continuous limit, there is no such random component, un-
less the system becomes chaotic or there are seeds in the initial
distribution playing the role of small units randomly distributed.
Interestingly, in the cold dark matter paradigm, the formation of a
dark matter halo is not a monolithic process but results from suc-
cessive mergers of smaller structures formed earlier. In this respect,
one might imagine that the randomness of such a process could be
approached efficiently with a maximum entropy method.

As a final note on entropy maximization, is also important to
point out another problem in the continuous limit. The definition
of micro-states that would be ‘statistically equivalent to each other’
is not unique, because there is a priori no obvious elementary unit
to deal with, at variance with systems of particles. Moreover, as
already mentioned in the Introduction, there are many ways to de-
fine coarse graining that lead different answers for the maximum
entropy solution. This means that there is no unique definition of
entropy, which complicates even furthermore the problem (see e.g.
Tremaine et al. 1986; Chavanis 2006, and references therein). De-
composing the phase-space density into a set of indistinguishable
particles interacting with each other gravitationally and maximizing
the entropy of such a system2 leads, as said above, to the thermo-
dynamic solution which is not, in general, the physical solution of
interest in the continuous limit, for which it is known that there
exist infinitely many stationary and stable solutions to which the
system can converge (see e.g. Campa, Dauxois & Ruffo 2009, and
references therein).

The post-Lagrangian perturbative method developed in this work
can certainly be applied to spherical systems to give clues about the
establishment of so-called universal profiles of dark matter haloes.
In this case, phase-space is three-dimensional: the radial position,
the radial velocity and the angular momentum. Because the angular
momentum is an invariant of the motion, the problem presents at the
end formally the same level of complexity as the two-dimensional

2 In the latter case, one can directly define from first principles a statisti-
cal entropy, equivalent to the one used by physicists, without necessarily
resorting to coarse graining (see e.g. Jaynes 1957).

phase-space case we studied in this paper. Therefore, the calcula-
tions should not be significantly more difficult to perform. However,
the interest of repeating the exercise in such a restrictive geometry is
limited since it is known that pure spherical dynamics is unrealistic
(see e.g. Huss, Jain & Steinmetz 1999).

It might however be possible to apply, at least partly, the method
to ellipsoidal systems, although the task would become complex
despite the high level of symmetry of these configurations. Indeed,
in this case, there are up to three directions in which the system can
collapse successively, depending on the nature of initial conditions.
While one-dimensional approximations of the dynamics as devel-
oped in this work would certainly be relevant during the early stages
of the evolution of the system, it might be difficult to account for
the expected non-trivial couplings occurring between the different
directions of motion.

The extension of the method to the general three-dimensional
case is of course even trickier due to the complexity of the structure
of the singularities that build up during the course of dynamics and
can be classified according to catastrophe theory (see e.g. Arnold
et al. 1982; Arnold 1984; Shandarin & Zeldovich 1989; Hidding,
Shandarin & van de Weygaert 2014, and references therein). In-
deed, in one dimension, there are only two types of singularities:
the first kind corresponds to the case for which the central part of
the S shape is vertical in phase-space, leading to equation (22),
i.e. a behaviour with ρ(x) ∝ x−2/3. The second kind of singular-
ity corresponds to the case where the curve supporting the phase-
space density is also locally vertical but with non-zero curvature.
In the latter case, the singularity is of the form ρ(x) ∝ x−1/2. While
the first kind of singularity only appears at crossing times in the
centre of the system, the second kind continues existing after its
genesis. Creation of singularities of the second kind results from
the rotation of the S in phase-space, which transforms immediately
a singularity of the first kind into two singularities of the second
kind standing for the handles of the S shape.

In this work, we described the system in a perturbative way in
the region where the singularity of the first kind appears. The singu-
larities of the second kind do not really matter from the dynamical
point of view except when they correspond to the handles of the S.
In higher number of dimensions, the number of species of singular-
ities increases and their structure is more complex (see e.g. Hidding
et al. 2014). Isolating the singularities which matter from the dy-
namical point of view and implementing a realistic description of
the dynamics in their vicinity with our post-Lagrangian approach
seems a challenging task. Such a task would become practically
impossible if one would have to go beyond third order in the pertur-
bative description. Solving first the ellipsoid case might help quite
a lot, because the dynamical setting can to a large extent be locally
reduced to the ellipsoid case by working in the coordinate frame that
diagonalizes the deformation tensor. This is indeed what Zeldovich
approximation suggests us (Zel’dovich 1970), at least during the
early stages of the dynamics. However, the resolution of the prob-
lem does not reduce to the formation and evolution of single objects
around initial singularities. Indeed, one then has to take into account
mergers between various structures that create complex composite
systems. The proper dynamical description of such merger events
at the level of accuracy intended here is highly non-trivial and goes
well beyond the simplified dynamical model discussed in this paper.
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A P P E N D I X A : C A L C U L AT I O N O F T H E
E QUAT I O N S O F MOT I O N : D E TA I L S

A1 The expression for the different event times

In this appendix, we provide detailed analytical expressions for the
various event times as well as their second-order series expansion,
which is used for the calculation of the correction to the harmonic
(or ballistic if ω = 0) approximation of the trajectory, [xb(q, h),
vb(q, h)].

The positive Lagrangian coordinate corresponding to the leftmost
position of the handle of the S shape is defined by equation (37). It
reads

qc(h) =
√

b sin(ωh)

3[aω cos(ωh) + c sin(ωh)]
. (A1)

This equation can be inverted into the event time

hc(q) = 1

w
arccos

[
b − 3cq2√

(b − 3cq2)2 + 9a2ω2q4

]
, (A2)

or, in the absence of background,

hc(q) = 3aq2

b − 3cq2
, w → 0. (A3)

Remind that this time marks the transition when, due to clockwise
rotation of the curve [xb(q, t), vb(q, t)], a point being of ‘q1’ kind
becomes of ‘q0’ kind on Fig. 1.

Inverting equation q̂c(h) = q, with q̂c ≡ 2qc (equation 38) allows
us to define another critical event time ĥc(q) ≤ hc(q),

ĥc(q) = 1

ω
arccos

[
4b − 3cq2√

(4b − 3cq2)2 + 9a2ω2q4

]
, (A4)

or, in the absence of background,

ĥc(q) = 3aq2

4b − 3cq2
, w → 0. (A5)

This time marks the transition when a point becomes of ‘q2’ kind,
that is when one passes from single-valued solution to triple-valued
one, or, in other words, when the point x(q, t) crosses for the first
time another trajectory x(q′, t).

Depending on the value of h considered, both qc and q̂c can
have larger magnitude than qM. Indeed, even though |q| ≤ q̂c, the
solutions q′ of the equation xb(q′, h) = xb(q, h) can be outside the
system, |q′| > qM. This defines two new important time events for
a Lagrangian point q, which correspond, respectively, to the two
solutions (in time), h−(q) ≤ h+(q), of the equation x(q, h) = x(qM,
h):

h±(q) = 1

ω
arccos

[
b − c
±√

a2ω2
±2 + (b − c
±)2

]
, (A6)


± ≡ q2 + q2
M ± qM|q|, (A7)

or, in the absence of background,

h±(q) = a
±
b − c
±

. (A8)

The time h−(q) defines the instant when the number of valid solu-
tions of the equation x(q′, h) = x0 with x0 = x(q, h) passes from three
(including q itself) to two (one solution is outside the system). The
time h+(q) defines the instant when the number of valid solutions
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of the equation x(q′, h) = x0 with x0 = x(q, h) passes from two
(including q itself) to one (two solutions are outside the system).

To understand better what happens during the trajectory of a
matter element, Fig. 2 shows the various event times, ĥc, hc and h±
as functions of q, as well as their second-order series expansion in
q that we shall use in the subsequent calculations:

ĥc(q) = 3aq2

4b
+ O(q4), (A9)

hc(q) = 3aq2

b
+ O(q4), (A10)

h±(q) = 1

ω
arccos

(
b − cq2

M√
T

)
± abqM

T
|q|

+ab2(b − cq2
M)

T 2
|q|2 + O(q3), (A11)

with

T = (b − cq2
M)2 + a2q4

Mω2. (A12)

For completeness, the no background limit of equation (A11) reads

h±(q) = aq2
M

b − cq2
M

± abqM

(b − cq2
M)2

|q|

+ ab2

(b − cq2
M)3

|q|2 + O(q3), ω → 0. (A13)

A2 The expression for the acceleration in different phases of
the motion

We now compute the force exerted on a particle of mass unity
belonging to the system in each of the time intervals delimited by
the critical events described in previous section. These latter are
ranked in the following order, ĥc ≤ hc ≤ h− ≤ h+, if q is small
enough.

When q ≥ q̂c, the force is monovalued and given by equation
(34), while it is given by equation (42) when the system becomes
multivalued, that is when q < q̂c. The parameters q0, q1 and q2,
ranked in increasing magnitude order such that |q0| ≤ qc ≤ |q1| ≤
|q2| ≤ q̂c, are solutions of the equation

q3 − 3

4
qq̂2

c = q ′3 − 3

4
q ′q̂2

c , (A14)

or

(q − q ′)[q2 + qq ′ + q ′2 − 3q̂2
c /4] = 0. (A15)

The non-trivial solutions of this equation are

q ′ = −q

2
± 1

2

√
3(q̂2

c − q2). (A16)

In particular, on Fig. 1, we have the circular relations,

q1 = −q0

2
− 1

2

√
3(q̂2

c − q0
2), (A17)

q2 = −q0

2
+ 1

2

√
3(q̂2

c − q0
2), (A18)

q0 = −q1

2
− 1

2

√
3(q̂2

c − q1
2), (A19)

q2 = −q1

2
+ 1

2

√
3(q̂2

c − q1
2), (A20)

q0 = −q2

2
+ 1

2

√
3(q̂2

c − q2
2), (A21)

q1 = −q2

2
− 1

2

√
3(q̂2

c − q2
2). (A22)

Now, we are ready to compute the force exerted on a particle of
mass unity at any instant of the trajectory [xb(q, h), vb(q, h)]. First,
we consider the case q ≤ qM/2, where qM/2 marks the transition
hc(q) = h−(q). The force presents a different behaviour for each
phase delimited by the event times plotted on Fig. 2, as illustrated
by top panel of Fig. 3 and discussed in Section 3.2:

(i) Prior to first-crossing, h ≤ ĥc(q): the force is simply given
by

F (q, h) = F1(q, h) ≡ −2(q − q3), (A23)

exactly as in Section 2.
(ii) Between first-crossing and interior phase, ĥ(q) ≤ h ≤ hc(q):

using equations (42), (35) and e.g. (A21) and (A22), we obtain

F (q, h) = F2(q, h), (A24)

F2(q, h) ≡ −2(q − q3)

+2 sgn(q)

[
1 − 3

4
q̂2

c (h)

] √
3q̂2

c (h) − 3q2. (A25)

(iii) Interior phase, hc(q) ≤ h ≤ h−(q): the force reads

F (q, h) = F3(q, h) ≡ 2q(2 + q2) − 9

2
q̂2

c (h)q. (A26)

Note for completeness that, in the limit ω → 0,

F3(q, h) = 2q(2 + q2) − 6bt

a + ct
q, ω → 0. (A27)

(iv) Interior phase, but a tail not contributing anymore,
h−(q) ≤ h ≤ h+(q): the tails of the S contribute only partly to
the force, which complicates its expression:

F (q, h) = F4(q, h), (A28)

F4(q, h) ≡ 2(qM − q3
M)sgn(q)

+
[

1 − 3

4
q̂2

c (h)

] [
3q − sgn(q)

√
3q̂2

c (h) − 3q2

]
.

(A29)

(v) Back to the monovariate regime, h+(q) ≤ h: the S shape has
rotated in phase-space in such a way that its tails do not influence
anymore the motion of its central part. The force is again equal to

F (q, h) = F5(q, h) ≡ 2(q − q3), (A30)

and we are ready to proceed until next crossing.

When |q| ≥ qM/2 (second panel of Fig. 3), the phase (iii) disap-
pears. A regime h−(q) ≤ h ≤ hc(q) now appears, where the force
is

F (q, h) = F̃3(q, h), (A31)

F̃3(q, h) ≡ 2(qM − q3
M)sgn(q)

+
[

1 − 3

4
q̂2

c (h)

] [
3q − sgn(q)

√
3q̂2

c (h) − 3q2

]
.

(A32)

MNRAS 446, 2902–2920 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/446/3/2902/2892985 by guest on 28 April 2022



Vlasov–Poisson in 1D for initially cold systems 2919

Since our calculations aim to be only accurate at third order in q,
we can simplify the expressions of the force obtained at the various
times above. For instance, the correction to the velocity can written,
for q ≤ qM/2 and h ≥ h+(q),

∂g

∂h
=

∫ ĥc(q)

0
F1(q, h)dh +

∫ hc(q)

ĥc(q)
F2(q, h)dh

+
∫ h−(q)

hc(q)
F3(q, h)dh +

∫ h+(q)

h−(q)
F4(q, h)dh

+
∫ h

h+(q)
F5(q, h)dh. (A33)

Because both ĥc(q) and hc(q) are of the order ofO(q2), it is required
to be only accurate at first order in q and h for F1 and F2,

F1(q, h) � −2q, (A34)

F2(q, h) � −2q + 2 sgn(q)

√
4bh

a
− 3q2. (A35)

On the other hand, F3 cannot be Taylor expanded because h−(q) ∼
O(1). From equation (A11) (or equation A13), one finds h+(q) −
h−(q) ∼ O(q), which means that we need second order in q and in
h − h−(q) for F4. Setting

θ = h − h−(0), (A36)

and performing the expansion at second order in θ for q̂2
c :

3

4
q̂2

c � q3
M + T

ab
θ + T [q2

M(c2 + a2ω2) − bc]

a2b2
θ2 + O(θ3), (A37)

where T is given by equation (A12), the series expansion of F4 can
be performed easily

F4(q, h) � F4,1q + F4,2 sgn(q) [h − h−(0)]

+F4,3 q [h − h−(0)] + F4,4 sgn(q) q2

+F4,5 sgn(q) [h − h−(0)]2, (A38)

with

F4,1 = 3(1 − q2
M), (A39)

F4,2 = (3q2
M − 1)T

abqM
, (A40)

F4,3 = −3T

ab
, (A41)

F4,4 = 3(1 − q2
M)

4qM
, (A42)

F4,5 = T [(c2 + a2w2)q2
M − bc](3q2

M − 1)

a2b2qM

+T 2(1 + 3q2
M)

4a2b2q3
M

. (A43)

In equation (A38), we have kept terms up to q2, qθ and θ2.
Finally, obviously, F5 cannot be simplified.

A3 Calculation of the corrected motion

In equation (45), one has to estimate, for each of the phases of the
motion, the primitives with time, Gi(q, h), of the functions Fi(q, h)
calculated in previous appendix. After some algebra, one obtains,
at third order in q:

G1(q, h) = −2qh, (A44)

G2(q, h) = −2qh + a

3b
sgn(q)

(
4b

a
h − 3q2

)3/2

, (A45)

G3(q, h) = 2q

(
2 + q2 − 3bc

c2 + a2ω2

)
h

+6ab ln[aω cos(ωh) + c sin(ωh)]

c2 + a2ω2
q, (A46)

= 2q

(
2 − 3b

c
+ q2

)
h + 6ab ln(a + ch)

c2
q

ω → 0 (A47)

G4(q, h) = F4,1 q [h − h−(0)]

+1

2
F4,2 sgn(q) [h − h−(0)]2

+1

2
F4,3 q [h − h−(0)]2

+F4,4 sgn(q) q2 [h − h−(0)]

+1

3
F4,5 sgn(q) [h − h−(0)]3, (A48)

G4(q, h) = 2(q − q3)h. (A49)

Note that, even though the analytical result provided by equation
(45) – from which a few terms remain to be dropped out in order
to stay at third order in q – was computed in the regime q ≤ qM/2,
it stands as well for q ≥ qM/2, by continuity. Indeed, if we would
perform all the calculations in this regime, by taking into account the
modifications in phases (ii) and (iii) and the force F̃3 instead of F3

as discussed in Section A2, at the end, we would obtain exactly the
same expressions at third order in q. This is not surprising because
there is no reason of having a discontinuity at q = qM/2.

Turning to the position, we can happily drop the terms i = 1 and
i = 2 in the sums in second and third line of equation (47), since
they are beyond third order. We still need functions H3, H4 and H5

of which we would like to keep the part that contributes up to third
order in q. There is no particular difficulty for H4 and H5:

H4(q, h) = 1

2
F4,1 q [h − h−(0)]2

+1

6
F4,2 sgn(q) [h − h−(0)]3, (A50)

H5(q, h) = (q − q3)h2, (A51)

where we used the fact that in the range [h−(q), h+(q)], h − h−(0) ∼
O(q).

Unfortunately, analytical calculation of function H3 is beyond
our skill, except in the limit ω → 0:

H3(q, h) = −6ab

c2
qh +

(
2 − 3bq

c

)
qh2
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+6ab

c3
q(a + ch) ln(a + ch) + q3h2,

ω → 0. (A52)

To consider the case ω �= 0, we first notice that H3(q, h) needs
to be evaluated at h3 = hc(q) and h4 = h−(q). The smooth nature
of function G3(q, h) in the domain [0, h−(q)] allows us to define
function H3(q, h) as

H3(q, h) ≡
∫ h

0
G3(q, h′)dh′. (A53)

For evaluating H3(q, h) at h3 = hc(q), one just needs to Taylor
expand G3 at leading order in h and integrate it to obtain

H3(q, h) � 6ab ln(aω)

c2 + a2ω2
qh, h � 1. (A54)

The estimate of H3(q, h) at h4 = h−(q) can be performed as
follows:

H3(q, h) = I1 + I2, (A55)

I1 ≡
∫ h−(0)

0
G3(q, h)dh (A56)

= Y + h−(0)2q

(
2 + q2 − 3bc

c2 + a2ω2

)
(A57)

I2 ≡
∫ h

h−(0)
G3(q, h)dh (A58)

� 3q[bc − q2
M(c2 + ω2)]

c2 + a2ω2
[h − h−(0)]2

+q

(
2 − 3bc

c2 + a2ω2

)
[h2 − h−(0)2]

+ 6abq

c2 + a2ω2
ln

(
abω√

T

)
[h − h−(0)], (A59)

with

Y ≡
∫ h−(0)

0

6ab ln[aω(cos ωh) + c sin(ωh)]

c2 + a2ω2
dh. (A60)

The quantity Y has to be estimated numerically. To compute integral
I2, we performed a Taylor expansion of function G3(q, h) in the
vicinity of h � h−(0).

Note again, similarly as for the velocity, that some terms still
need to be dropped out in order to stay at third order in q and that
the calculation stands for q ≥ qM/2, as long as we are happy with
third order in q.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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