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ABSTRACT
The observational evidence that Super-Massive Black Holes (M• ∼ 109–10 M�) are already in
place less than 1 Gyr after the big bang poses stringent time constraints on the growth efficiency
of their seeds. Among proposed possibilities, the formation of massive (∼103–6 M�) seeds
and/or the occurrence of super-Eddington (Ṁ > ṀEdd) accretion episodes may contribute to
the solution of this problem. In this work, using a set of astrophysically motivated initial
conditions, we analytically and numerically investigate the accretion flow on to high-redshift
(z ∼ 10) black holes to understand the physical requirements favouring rapid and efficient
growth. Our model identifies a ‘feeding-dominated’ accretion regime and a ‘feedback-limited’
one, the latter being characterized by intermittent (duty cyclesD � 0.5) and inefficient growth,
with recurring outflow episodes. We find that low-mass seeds (�103–4 M�) evolve in the
feedback-limited regime, while more massive seeds (�105–6 M�) grow very rapidly as they
are found in the feeding-dominated regime. In addition to the standard accretion model with
a fixed matter–energy conversion factor (ε = 0.1), we have also explored slim disc models,
appropriate for super-Eddington accretion, where radiation is trapped in the disc and the
radiative efficiency is reduced (ε � 0.04), which may ensure a continuous growth with Ṁ �
ṀEdd (up to ∼300 ṀEdd in our simulations). Under these conditions, outflows play a negligible
role and a black hole can accrete 80–100 per cent of the gas mass of the host halo (∼107 M�)
in ∼10 Myr, while in feedback-limited systems we predict that black holes can accrete only
up to ∼15 per cent of the available mass.

Key words: accretion, accretion discs – black hole physics – quasars: supermassive black
holes – cosmology: theory – dark ages, reionization, first stars – early Universe.

1 IN T RO D U C T I O N

Recent observations (Mortlock et al. 2011; Wu et al. 2015) have
detected the presence of optically bright quasars at redshifts as high
as z ∼ 7. These high-energy sources are powered by accretion on to
Super-Massive Black Holes (SMBHs), suggesting the presence of
compact objects with mass M• ∼ 109–10 M� less than 1 Gyr after the
big bang (Fan et al. 2006). This evidence contrasts with the standard
theory of black hole growth, which requires a longer time to build
up such massive objects (see Haiman 2013 for a recent review),
due to: (i) the low mass of some of the proposed seeds, born out of
first-generation (Pop III) stars, with masses M• � 103 M� (Madau
& Rees 2001; Bromm & Loeb 2003; Petri, Ferrara & Salvaterra
2012), and (ii) the maximum growth rate allowed for a radiatively
efficient and spherical inflow, the Eddington rate, which provides
a lower limit for the time-scale of the process (Jeon et al. 2012).

� E-mail: fabio.pacucci@sns.it

Generally speaking, the luminosity L emitted due to a gas inflow
with an accretion rate Ṁ ≡ dM/dt is L = εc2Ṁ , where ε is the
matter–radiation conversion factor and c is the speed of light. In the
standard scenario, a black hole grows in mass exponentially, with
a time-scale given by the Salpeter time tS ∼ 0.045ε0.1 Gyr, where
ε0.1 is normalized to the standard value of 10 per cent: starting from
a low-mass seed (M• ∼ 100 M�), this process would require a
constant accretion at the Eddington rate up to z ∼ 7 to build up a
∼109 M� SMBH.

Several ways to overcome these limitations have been pro-
posed in the literature. The possibility of giving a jump start to
the growth process through more massive seeds has been investi-
gated thoroughly (see e.g. Volonteri 2010) with a variety of mech-
anisms: (i) the direct collapse of self-gravitating pre-galactic discs
at high-redshifts (Begelman, Volonteri & Rees 2006; Lodato &
Natarajan 2006; Lodato & Pringle 2007), (ii) the formation of a
very massive star from runaway stellar mergers in a dense cluster
(Devecchi & Volonteri 2009; Davies, Miller & Bellovary 2011) and
(iii) the collapse of a primordial atomic-cooling halo, exposed to a
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Lyman–Werner flux of sufficient intensity, into a Direct Collapse
Black Hole, through a general relativistic instability (Shang, Bryan
& Haiman 2010; Johnson et al. 2012; Ferrara et al. 2014).

An alternative scenario assumes that accretion rates are not
capped by the Eddington limit (Volonteri & Rees 2005). Recent
works (Alexander & Natarajan 2014; Madau, Haardt & Dotti 2014;
Volonteri, Silk & Dubus 2015) have proposed the occurrence of
short and recurring, but strongly supercritical (i.e. super-Eddington)
accretion episodes at high-redshifts, with rates as large as 50–
100 times the Eddington limit ṀEdd ≡ LEdd/(εc2), where:

LEdd ≡ 4πGM•c
κT

. (1)

In the definition of the Eddington luminosity, G is the gravita-
tional constant and κT is the Thomson opacity. The radiative ef-
ficiency of the gas inflow depends on the accretion rate. Recall-
ing the definition of the Eddington luminosity (equation 1), we
define fEdd ≡ Ṁ•/ṀEdd, i.e. the accretion rate normalized to the
Eddington value. It is expected that if matter is accreted at mod-
erate rates 0.01 � fEdd � 1, the inflowing material creates a ra-
diatively efficient, geometrically thin and optically thick accretion
disc (Shakura & Sunyaev 1973). In this case the radiative efficiency
depends only on the black hole spin, and varies from ∼6 per cent
for Schwarzschild black holes to ∼32 per cent for maximally rotat-
ing ones (Thorne 1974). If, instead, accretion occurs supercritically
(fEdd > 1) the structure of the accretion disc is modified because of
advection: the energy produced in the disc is carried inwards, in the
black hole, rather than being radiated away (see e.g. Abramowicz
& Fragile 2013; Lasota 2015). The disc thickness increases and
the disc becomes geometrically thick. The most common solution
proposed for such accretion flows is the ‘slim disc’ (Paczynski &
Abramowicz 1982; Abramowicz et al. 1988; Mineshige et al. 2000;
Sadowski 2009, 2011; McKinney et al. 2014), radiatively inefficient
and with a thick geometric structure, in which photon trapping is
significant inside the trapping radius Rpt:

Rpt = Rs

ε

Ṁ

ṀEdd
, (2)

where Rs is the Schwarzschild radius. Only a fraction of the photons
produced by the viscous process inside the accretion flow is able to
free stream out of the trapping radius, because the photon diffusion
time exceeds the time-scale for accretion. Consequently, the effec-
tive radiation pressure acting on the surrounding gas is decreased
(see e.g. Begelman 1978; Ohsuga et al. 2002) and the luminosity is
only mildly (e.g. logarithmically) dependent on the accretion rate.
Alternatives of the slim disc solution exist, e.g. the ZEro-BeRnoulli
Accretion (ZEBRA; Coughlin & Begelman 2014) and the ADia-
batic Inflow–Outflow Solutions (ADIOS; Blandford & Begelman
1999; Begelman 2012) models, which allow for a fraction of the
inflowing mass to be lost during the accretion process.

This work investigates, both analytically and numerically, the
growth of high-redshift (z ∼ 10) black hole seeds. The growth
process may be controlled by the amount of gas available in the
halo (feeding-dominated) or by the radiative feedback (feedback-
limited). The growth is feeding-dominated if the radiative back-
reaction of the black hole is negligible: the rapidity of the process is
mainly determined by the gas accretion rate that the host halo can
provide. The black hole growth is more efficient and rapid if the
flow is feeding-dominated, assuming that a sufficient amount of gas
is present in its host halo.

We devise a very general analytic model which is able to predict
the growth efficiency from the physical properties of the system

formed by the black hole seed and its host halo. Furthermore, we
employ a radiation-hydrodynamic code to follow the growth pro-
cess from small (0.002 pc) to large scales (�RB, where RB is the
Bondi radius), spanning a spatial dynamic range of four orders of
magnitude, with special emphasis on the properties of the inner re-
gions of the host halo, providing most of the accretion material to
the central object. The growth is monitored as a function of differ-
ent parameters, namely: the accretion model (radiatively efficient or
inefficient), the density profile of the halo ρ(r) and the initial mass
of the seed M0 = 103–6 M�.

This study is a natural follow-up of the paper by Pacucci & Ferrara
(2015), where the authors have simulated in great detail the accretion
process on to a z ∼ 10 black hole seed of initial mass 105 M�,
embedded in a dark matter halo with a gas mass of ∼107 M� and
with extreme density conditions (a number density of hydrogen
particles at ∼0.1 pc from the centre of the halo ∼107 cm−3), finding
that in ∼142 Myr about 90 per cent of the gas mass of the halo has
been accreted on to the compact object.

In this general framework, we aim at clarifying several aspects,
including (i) do the radiatively inefficient accretion models provide
an effective way to rapidly increase the mass of the seed? If so,
why? (ii) What is the final fate of black hole seeds as a function
of their initial mass? How long can they accrete? (iii) Is it possible
to predict the growth efficiency of the accretion process from the
physical properties of the (black hole + host halo) system? In
the cosmological context, answering these questions will provide
some insights into the mass that has been locked inside black holes
during the cosmic evolution. This would be of great interest to
understand both the formation of high-redshift SMBHs and their
remnant population.

The outline of this paper is as follows. In Section 2, we briefly
describe the physics and equations of the radiation-hydrodynamic
problem, along with the initial conditions for the density profiles.
In Section 3, we present our analytic model for the black hole
growth, while in Section 4 we show the results of our simulations.
Finally, in Section 5 we provide some further discussion and the
conclusions. Throughout, we adopt recent Planck cosmological pa-
rameters (Planck Collaboration XIII 2015): (�m, ��, �b, h, ns,
σ 8) = (0.32, 0.68, 0.05, 0.67, 0.96, 0.83).

2 PH Y S I C A L A N D N U M E R I C A L
I M P L E M E N TAT I O N

The present study employs a series of radiation-hydrodynamic sim-
ulations to test the predictions of our growth model. Our code is
designed to perform a fully consistent treatment of uni-dimensional
spherically symmetric hydrodynamic equations and a simplified,
frequency-integrated, version of radiative transfer equations. While
the spherical symmetry is an idealization of a real accretion flow,
several works have shown that 1D simulations provide a reliable
description of many of its most important features. For instance, in
Novak, Ostriker & Ciotti (2011) the authors performed a compara-
tive analysis between the outputs of a code run in 1D and 2D, finding
similar results in terms of black hole growth and duty cycle. The
main difference, for which the multidimensional approach is a sig-
nificant improvement, concerns the fact that the additional degrees
of freedom allow classical instabilities (e.g. the Rayleigh–Taylor
and the Kelvin–Helmholtz ones) to operate. Their net effect is to
produce a somewhat higher accretion rate, a less effective feedback
and a more irregular pattern of bursts, compared with the 1D case.
Notwithstanding the dimensionality of the code, our implementa-
tion cannot take into account the full complexity of the accretion
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flow, which only a more advanced treatment of angular momen-
tum transport would allow. Due to the triaxiality of the host halo,
the angular momentum field is extremely complex and variable in
time, at every location inside the inflow (see Choi, Shlosman &
Begelman 2013, 2015). Overall, the outward angular momentum
transfer is very efficient (Choi et al. 2015), due to the gravitational
torques induced by both the dark matter and the gas distributions.
The gas loses its angular momentum efficiently and flows well be-
yond its centrifugal barrier: the gas that reaches the black hole is
expected to have low angular momentum. Therefore, despite its
simplifications, our approach helps in acquiring physical insight
on the process of black hole growth. In this section, we present
a general overview of the most important aspects of the physical
implementation, while the interested reader is referred to the paper
Pacucci & Ferrara (2015) for a detailed description of the code.

The domain of our simulations1 spans approximately from 0.002
to 20 pc. The characteristic spatial scale for accretion is the Bondi
radius RB:

RB = GM•
c2
s(∞)

. (3)

Here, cs(∞) is the sound speed at large distances from the black hole,
defined as

cs(∞) =
√

γRT∞
μ

, (4)

where γ = 5/3 is the ratio of specific heats, R is the gas con-
stant, T∞ is the gas temperature at large distances and μ = 1.15
is the mean molecular weight for a primordial gas. For in-
stance, the Bondi radius corresponding to a seed with initial
mass M• = 105 M� with cs(∞) ∼ 12 km s−1 (i.e. T∞ ∼ 104 K)
is RB = 3 pc ∼ 10−3 Rvir ∼ 108 RS, where Rvir is the virial radius
of the halo. Our spatial range, spanning ∼4 orders of magnitude,
covers the entire range of RB corresponding to an initial mass of the
seed within the range 103–6 M�.

In the hydrodynamic module we solve the standard system of
ideal, non-relativistic Euler’s equations (conservation laws for mass,
momentum and energy, neglecting viscosity, thermal conduction
and magnetic fields) for a primordial (H–He) composition gas with
helium fraction YP = 0.246 65 (Planck Collaboration XIII 2015) and
no metals, spherically accreting on to a central black hole, supposed
at rest and already formed at the beginning of the runs, with a given
initial mass M0 ≡ M•(t = 0). The infalling gas has zero angular
momentum with respect to the black hole.

The forces acting on the gas are (i) the thermal pressure, (ii) the
gravitational pull of the black hole and (iii) the radiation pressure.
The thermal pressure is given by the usual equation for ideal gases:

Pg = ρRT

μ
, (5)

where ρ is the mass density. The gravitational acceleration at the
distance r from the central object is

g(r, t) = −GM•(t)

r2
. (6)

1 We performed a series of convergence tests on the extension of the spatial
range (see Pacucci & Ferrara 2015) which confirmed that the main outputs
of our simulations (e.g. duty cycles and accretion rates) do not depend on it
as long as (i) it covers a sufficiently large radial range around RB (e.g. from
∼0.1 to ∼2RB) and (ii) the centrifugal radius, where the accretion disc starts
to form, is not resolved.

The value of the black hole mass M•(t) changes with time, due to gas
accretion, with the following set of rules, where Ṁ• = 4πr2ρ|v|:{

Ṁ•(t) �= 0 ⇔ v(r = r0, t) < 0
M•(t) = M0 + (1 − ε)

∫ t

0 Ṁ• dt,
(7)

where v is the velocity of the gas and ε ranges2 from ε = 0.057
for a Schwarzschild (i.e. non-rotating) black hole to ε = 0.32 for a
maximally rotating object (see Thorne 1974). The mass flow Ṁ• is
computed at the accretion radius r0 (the innermost cell of our spatial
grid) and it is equivalent, by definition, to the accretion rate on to
the black hole. The acceleration caused by the radiation pressure is

arad(r) = κ(ρ, T )L(r)

4πr2c
, (8)

where L is the emitted luminosity and κ(ρ, T) is the opacity of
the gas, which includes the Thomson term (with the additional in-
clusion of a temperature dependence, as in Begelman, Rossi & Ar-
mitage 2008) and bound-free terms. In our code, all radiation-related
quantities are integrated over frequencies: matter and radiation are
coupled via Thomson (electron) scattering and bound-free inter-
actions. The radiative transfer employs a simplified two-streams
approximation presented in Novak, Ostriker & Ciotti (2012), to
which the interested reader is deferred for a detailed description.

The relation between the emitted luminosity L0 ≡ L(r0) and the
accretion rate Ṁ• is{

L0 ≡ εc2F (Ṁ•) if v(r0) < 0
L0 ≡ 0 if v(r0) ≥ 0,

(9)

where F (Ṁ•) is a generic function of the accretion rate. In the
simple case of radiatively efficient accretion (treated in Pacucci &
Ferrara 2015) the following relation holds:

L

LEdd
= fEdd . (10)

In the radiatively inefficient accretion mode (for instance, the slim
disc solution) the luminosity L depends on fEdd as in the following
prescriptions (Mineshige et al. 2000; Volonteri et al. 2015):

L

LEdd
= fEdd

25
(fEdd < 50); (11)

L

LEdd
= 2

[
1 + ln

fEdd

50

]
(fEdd ≥ 50). (12)

In this scenario, only a fraction of the emitted luminosity escapes
to infinity, and the effective radiation pressure depends only weakly
on the accretion rate: note that L = 2LEdd for fEdd = 50. In the ra-
diatively inefficient accretion mode the matter–radiation conversion
efficiencies are ε = 0.04 for fEdd < 50 and

ε = 1

25

(
fEdd

50

)−1 [
1 + ln

(
fEdd

50

)]
≤ 0.04 (13)

for fEdd ≥ 50.
Due to radiation pressure, the accretion may occur in an inter-

mittent manner. Therefore, it is useful to introduce the duty cycle,

2 We assume that the matter–radiation conversion factor ε is numerically
equal to the accretion efficiency η, i.e. all the gas reaching the inner boundary
is actually accreted by the black hole (see e.g. Jiang, Stone & Davis 2014;
McKinney et al. 2014; Sadowski et al. 2014).
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defined as the fraction of time spent accreting within a given time
frame of duration ttot:

D ≡ 1 − tidle

ttot
. (14)

Here, tidle is the idle time, i.e. the time spent without accretion taking
place.

2.1 The initial density profile

In this work, we simulate the spherically symmetric gas accretion
on to a black hole seed at the centre of a dark matter halo of
virial temperature Tvir ∼ 104 K and total mass (dark matter and
baryons) Mh = 6.7 × 108 M� at z = 10. For r � Rvir, as in our
computational domain, most of the mass is baryonic. We assume
that the gas initially follows the isothermal (T ∼ 104 K) density
profile derived from the simulations in Latif et al. (2013a), well
approximated by the functional form:

ρ(r) = ρ0

1 + (r/a)2
, (15)

where a is the core radius.
In order to study how the black hole growth depends on the host

halo, we implemented two different density profiles, schematically
shown in Fig. 1. A high density profile (HDP) with a central density
ρ0 = 10−12 g cm−3 and a core radius a = 1.6 × 10−3 pc and a low
density profile (LDP) with a central density ρ0 = 10−18 g cm−3 and
a core radius a = 2 pc. Both density profiles yield a total baryonic
mass Mgas ∼ 107 M� over the entire spatial domain. In the HDP
case the spatial domain has been slightly enlarged, with respect to
the LDP one, to fulfill this condition. The yellow-shaded area in
Fig. 1 shows that the LDP may be interpreted as the density profile
resulting after the formation of a black hole of mass ∼105 M�
at the centre of the halo (see Latif et al. 2013b; Latif, Niemeyer
& Schleicher 2014). Consequently, the HDP may be interpreted
as the density profile resulting after the formation of a very small
(�103 M�) black hole seed, which leaves the matter distribution of

Figure 1. The two density profiles employed, both yielding a total baryonic
mass of ∼107 M� over the integration range. The LDP has a much larger
core radius, but the central density is smaller by ∼6 orders of magnitude.
The yellow-shaded region contains a total mass of 105 M� and may be
interpreted as the gas which has been extracted from the HDP to produce
a black hole of the same mass. Consequently, the HDP profile may be
interpreted as the density profile resulting after the formation of a small
black hole of mass M• � 103 M�.

the halo almost unaltered. In summary, we study four models: HDP
with radiatively efficient accretion, HDP with radiatively inefficient
accretion, LDP with radiatively efficient accretion and LDP with
radiatively inefficient accretion.

3 A NA LY T I C A L I N S I G H T S

In this section, we present our analytic model to describe the growth
of high-redshift black holes. We predict whether the mass inflow is
feeding-dominated or feedback-limited, as a function of the main
physical properties of the (black hole + host halo) system. This
analytic framework is then employed to determine a time-evolving
spatial scale outside of which the radiative feedback is highly effec-
tive and outflows dominate. Moreover, we envisage the existence
of a mass scale above which the accretion flow is always feeding-
dominated.

3.1 Modelling the mass inflow

Our analytic model takes into account the following properties: (i)
the density of the gas in the inner sections of the halo ρ0, (ii) the
mass of the black hole seed M•, (iii) the matter–radiation conversion
factor ε, (iv) the Eddington factor fEdd. Starting from quasi-static
conditions, the accretion rate increases, due to the black hole’s grav-
itational pull. The build-up of the accretion rate causes an increasing
emission of radiation, which eventually might be able to stop the
gas inflow, or even invert its velocity: this depends on the intensity
of the radiation field and on the inertia of the gas. The rate at which
the linear momentum of the gas is changed relies on the comparison
between two time-scales: (i) the feedback time-scale, tfb, defined as
the time needed by the radiation pressure to significantly (i.e. by a
factor e) change Ṁ•, and (ii) the accretion time-scale, tacc, which
estimates the time needed to consume the gas mass inside the inner
regions of the accretion flow.

Given the general expression for the acceleration caused by the
radiation pressure (equation 8) and the relations between the lu-
minosity L and the Eddington factor fEdd for radiatively efficient
and inefficient flows (equations 10, 11, 12), we calculate tfb. The
impulse theorem (radial component) states that dp = Fdt, where p
is the linear momentum per unit volume of the gas, F is the force
applied on the gas per unit volume and t is the time:

d(ρv) = ρaraddt = ρ
κ

4πc

L

r2
dt . (16)

This equation needs to be evaluated at some radius representative of
the accretion process on to the black hole. In a simulation, this radius
is the innermost cell of the spatial grid, where the gas is assumed
to be accreted by the black hole. From a purely theoretical point of
view, it may be considered as the radius where the accretion disc
forms. In either case, we designate this spatial scale r0, the accretion
radius. Evaluating the previous equation at r = r0 gives

d(4πr2
0 ρ0v0) = ρ0κ0

c
L0 dt . (17)

Here, L0 is computed with equation (9) and the mass flux is com-
puted at the accretion boundary, corresponding to the accretion rate
Ṁ•. Therefore

dṀ• = ρ0κ0

c
L0 dt . (18)

We solve this ordinary differential equation with the initial condition
Ṁ•(t = 0), assuming that the accretion rate decreases with time: in
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the case of an increasing mass flux, only the sign of the exponential
solution changes. The general solution is

Ṁ•(t) = Ṁ•(t = 0)e−t/tfb , (19)

where

tfb = ψ

ερ0κ0c
, (20)

and

ψ = fEdd
LEdd

L
. (21)

In the standard radiatively efficient scenario ε = 0.1 and ψ = 1,
while in the radiatively inefficient case ε = 0.04 and ψ = 25 (for
fEdd < 50) and ε < 0.04 and ψ > 25 (for fEdd ≥ 50). The feedback
time-scale is not related to the black hole mass M•, but only to the
mass of the inflowing gas, via ρ0. In the slim disc case, for a given
density ρ0, the feedback time-scale is �60 times longer: the system
reacts to a modification of the accretion rate in a much slower way.

To calculate tacc, we estimate the time-scale for the consumption
(due to accretion) of the gas mass inside some radius r, given an
accretion rate Ṁ•:

tacc = Mg(< r)

Ṁ•
= εcκ

4πGfEdd

Mg(< r)

M•
, (22)

where on the right-hand side we have parametrized the luminos-
ity through the Eddington factor fEdd. The accretion time-scale3

is inversely proportional to the black hole mass M• and directly
proportional to the gas mass within the radius r.

Defining the ratio of the two time-scales as T (r, t) ≡ tfb/tacc, a
transition radius, rT, exists such that tacc(rT) = tfb(rT). The flow
is feeding-dominated in the region where r � rT, tacc � tfb,
T (r, t) � 1 and gas is easily available for the accretion. The flow is
instead feedback-limited where r � rT, tacc � tfb, T (r, t) � 1 be-
cause outflows dominate over inflows and accretion proceeds in an
intermittent way, or can be even halted if the gas reservoir is empty.
The parameter T (r, t) allows us to determine whether an accretion
flow is feeding-dominated or feedback-limited. The expressions for
rT and T (r, t) are as follows:

rT =
[
ψ

3GfEddM•
(ερ0κ0c)2

]1/3

; (23)

and

T (r, t) = ψ
3 GfEddM•
(ερ0κ0c)2r3

=
( rT

r

)3
. (24)

Note that the black hole mass M• increases with time, while ρ0

decreases as gas is consumed, therefore the transition radius in-
creases with time: a larger fraction of the host halo enters the
feeding-dominated region, and accretion becomes progressively
easier. Moreover, we define T (r0, t) ≡ T0.

Equation (24) shows that the efficiency of an accretion flow de-
pends on several variables that we discuss in turn. First, the smaller
the internal density of the halo, ρ0, the longer is tfb. This is be-
cause when the gas density is low the physical accretion rate on
the black hole is small, and, at a given black hole mass, radia-
tion pressure is less effective. It will be easier to have a feeding-
dominated flow in the LDP than in the HDP case. Secondly, a
smaller radiative efficiency ε yields a less effective radiation pres-
sure, and consequently radiatively inefficient accretion would be

3 The accretion time-scale is also very well approximated by a fraction 1/3
of the crossing time for a particle at some radius r: M/Ṁ = r/(3ṙ).

Figure 2. Comparison, at t = 0, between the accretion time-scale (tacc)
and the feedback time-scale (tfb) for the accretion flow on to a black hole of
initial mass 105 M� in the radiatively efficient and LDP case. The black line
is the value of T (r, t0). The yellow-shaded area is the region of integration
in this work, while the orange-shaded region indicates the transition region,
where 0.1 � T � 10. The inner and outer boundaries, the Bondi radius and
the virial radius of the halo are shown. The black star indicates the position
of the transition radius.

more likely feeding-dominated. Thirdly, a larger Eddington fac-
tor fEdd ∝ Ṁ• ∝ v implies a higher inward linear momentum of the
gas. In this case, the inward velocity of the gas mass is less easily in-
verted. Lastly, the black hole mass M•: since ṀEdd ∝ M•, a smaller
mass corresponds to a smaller physical critical accretion rate: in a
given halo a small black hole is more likely to be fed at rates that,
for its mass, give rise to high radiation pressure. A small black hole
is therefore more likely to find itself in the feedback-limited regime.

As an example, Fig. 2 shows a comparison between the accretion
time-scale (tacc) and the feedback time-scale (tfb), both computed at
t = 0, for the accretion flow on to a black hole of initial mass 105 M�
embedded in an LDP in the radiatively efficient case (equation 10).
The transition radius rT ∼ 2 × 10−2 pc is larger than the accretion
radius (r0 ∼ 2 × 10−3 pc), so we expect the black hole growth
to be feeding-dominated. Moreover, an overall modification of the
spatial velocity profile of the accretion flow should be visible around
the position of the transition radius, in the spatial range that we
schematically call transition region, where 0.1 � T � 10. These
effects are discussed in Section 4, dedicated to the results of our
numerical simulations.

In the HDP case the transition radius would be smaller than the
accretion radius and the growth would be feedback-limited. On the
contrary, in the radiatively inefficient cases, both HDP and LDP,
the transition radius would be even larger than the one shown in
Fig. 2, leading to a more extended feeding-dominated region.

3.2 Relation between D and T0

In the following we derive an analytic relation between our model,
through the quantity T0 (equation 24), and D, the duty cycle for
the black hole growth (equation 14), which is a phenomenological
way, computable only a posteriori, to describe if the gas inflow is
continuous. Even Adaptive Mesh Refinement cosmological simula-
tions cannot resolve the typical spatial scale of accretion, therefore
they have to resort to some kind of subgrid prescriptions to model
the black hole growth, like assuming that they continuously accrete
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at the Bondi–Hoyle–Lyttleton rate (Bondi 1952), capped at the Ed-
dington rate (see e.g. Springel et al. 2005; Di Matteo et al. 2008;
Dubois et al. 2013; Costa et al. 2014; Dubois et al. 2015). Our model
may provide in such cases more realistic values for the duty cycles
of these sources.

Calling tidle the fraction of ttot during which the black hole is not
accreting, it is possible to show that this relation holds:

tidle

ttot
= e−tfb/2tacc , (25)

by solving the following differential equation (where χ is the time-
scale for the variation of Ṁ•):

− dχ

dt
= χ

2tacc
. (26)

The factor 2 accounts for the fact that, once the radiation pressure
exerts an action on the infalling gas for some time t, a time 2t is
needed to re-establish the accretion rate preceding the acceleration
(see equation 19). We obtain

D = (1 − e−T0/2) . (27)

With our definition, D(T0 = 1) ∼ 0.4. A proof of the validity of
equation (27) is provided in Fig. 7, described in Section 4.2.1.

3.3 The black hole–host halo connection

The transition radius, which separates the feeding-dominated region
(r � rT) from the feedback-limited region (r � rT), increases with
time (cf. equation 23). Consequently, if the black hole growth is
feeding-dominated at r0 and t = 0, it will always be so. Asking that
T (r0, t0) � 1 translates into a black hole mass above which the flow
will always be feeding-dominated:

Mcrit = 3 × 106

ψfEdd

( ε

0.1

)2
(

ρ0

5 × 10−15 g cm−3

)2

×
(

r0

10−4 pc

)3

M� . (28)

Here, we considered r0 ∼ 10−4−10−3 pc ∼ 20−200 au as a typical
spatial scale for accretion discs.

In the HDP case for the standard accretion scenario the previous
limit reads:

T (r0, t0) > 1 if M• > Mcrit ∼ 3 × 106 M� (HDP − Std) ,

(29)

while both in the LDP case and in the slim disc accretion scenario
(both density profiles) the limit is negligible:

T (r0, t0) > 1 if M• > Mcrit ∼ 10−100 M� (other cases) . (30)

The physical meaning of Mcrit requires a clarification, since one
normally expects that feedback halts the black hole growth above
a given mass, rather than below (see e.g. Silk & Rees 1998; King
2003, 2010). The meaning of the lower limit we find is that when
M• > Mcrit the accretion rate needed to exert a sufficiently strong
feedback is so high, for the halo in question, that the accretion flow
cannot produce it. In other words, the inflow rate is determined by
the halo properties, and is, at least initially, independent of the black
hole mass. If a given halo provides the same Ṁ• to a small black
hole or a large black hole, it will be the smaller black hole that
will reach the Eddington limit first, having its growth stunted. As
a general result, smaller black hole seeds should encounter great
challenges during the first stages of the growth, characterized by

outflows and very low values of the duty cycle. This effect could
play an important role at high redshifts, where black hole seeds of
different mass may form from the same host halo, depending on the
thermal and radiative properties of the environment.

4 N U M E R I C A L R E S U LT S

The following two subsections describe our numerical simulations
and their analysis through the growth model outlined so far.

4.1 Inflows and outflows

As an example, we discuss a simulation of the accretion flow on to
a black hole of initial mass 105 M� in the radiatively efficient and
LDP case. Starting from static and isothermal conditions, the gravity
of the black hole rapidly pulls in the gas, building up the accretion
flow. Fig. 3 shows the time evolution of the velocity and tempera-
ture spatial profiles, which may be interpreted as the dynamical and
thermal counterparts of Fig. 2, bearing in mind that rT(t) always in-
creases. The transition and the outflow regions are defined as the set

Figure 3. Velocity and temperature spatial profiles for the accretion flow
on to a M0 = 105 M� black hole embedded in a LDP density profile,
accreting in the radiatively efficient mode. The total integration time is
ttot = 105 yr (ttot = i t with t = 104 yr and i = 0, 2, 4, 6, 8, 10). The
initial conditions are marked with the label ‘IC’. The transition and outflow
regions are defined by 0.1 � T (r) � 10 and T (r) � 0.1, respectively. The
inner and outer boundaries are shown with orange dashed lines.
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Figure 4. Time evolution of the mass flux computed at the inner boundary,
outer boundary and inside the transition region highlighted in Fig. 3. There is
a slow but constant (∼2.0 × 10−3 M� yr−1) accretion at the inner boundary,
while the outer region is characterized by a strong outflow, with a mass
flux up to ∼0.8 M� yr−1. The transition region is characterized by a mild
outflow, on average.

of radii r where, at least once during the time evolution of the sys-
tem, the relations 0.1 � T (r) � 10 and T (r) � 0.1, respectively,
hold. In the region close to the accretion boundary the inflow is very
smooth, with inward velocities up to ∼15 km s−1 and temperatures
rising up to ∼2.4 × 104 K. In the transition region, the flow starts to
be disturbed by radiative feedback, which becomes more effective
due to the increase of tacc, with frequent velocity inversions and a
more complex temperature profile. In the outflow region the radia-
tive feedback is dominant, with large (up to ∼5 km s−1) outflowing
velocities and a temperature profile which reconnects to the thermal
floor (T ∼ 104 K) of the host halo.

For the same simulation, Fig. 4 shows the time evolution of the
mass flux at the inner boundary (i.e. the accretion rate), at the outer
boundary and inside the transition region, in which the computed
values are a spatial average over the cells belonging to this region at
each time of the simulation. The inner region is characterized by a
slow, but constant, accretion of the order of ∼2.0 × 10−3 M� yr−1.
The outer region is swept by large outflows, whose magnitude in-
creases with time, reaching a peak of ∼0.8 M� yr−1, while the
transition region is characterized by a mild outflow.

In the HDP case (for the same accretion scenario), rT � r0 and
the growth is feedback-limited: the accretion is discontinuous and
the transition region would extend down to the accretion boundary,
while the outflows would be more intense. On the contrary, in
the radiatively inefficient cases, both HDP and LDP, rT � r0: the
accretion flow would be smooth and continuous over a large fraction
of the spatial domain, with the transition region starting to be visible
only close to the outer radius.

4.2 The growth efficiency

In the following we numerically test the predictions of our model
with 16 runs, in order to adequately explore the range of density
profiles (HDP and LDP), black hole mass seeds (103–6 M�) and
radiative efficiencies (L ∝ fEdd and L ∝ ln fEdd). The simulations are
run for ∼105 yr to allow all the simulated accretion flows to reach

Figure 5. Radiatively efficient case – Comparison between the parame-
ters used to describe the accretion flow (T , M/M0, fEdd and D), for
black hole seed masses in the range 103–6 M� and two density profiles
(HDP above and LDP below). The vertical purple lines show the val-
ues of Mcrit for fEdd = 25 and fEdd = 1, from left to right. The physical
accretion rates are, in ascending order of mass: 4.0 × 10−4 M� yr−1,
4.5 × 10−3 M� yr−1, 1.5 × 10−3 M� yr−1, 6.5 × 10−3 M� yr−1

for the HDP, and 2.0 × 10−5 M� yr−1, 2.0 × 10−4 M� yr−1,
2.0 × 10−3 M� yr−1, 2.0 × 10−2 M� yr−1 for the LDP. The simulation
with M0 = 107 M� shows a very large value for the physical accretion rate,
∼2.0 × 10−1 M� yr−1. See the main text for further details.

steady-state conditions without arriving at a complete depletion of
the gas reservoir. The parameters reported in the figures, 〈T (r0)〉,
〈fEdd〉 and 〈D〉, are an average over the entire simulation time, while
the parameter M/M0 expresses the total mass growth at the end
of the simulation, normalized to the initial value of the seed mass.
Fig. 5 shows the results in the radiatively efficient case, while Fig. 6
refers to the radiatively inefficient one. The top panels refer to HDP,
while the bottom ones to LDP.

4.2.1 The M• = 103–6 M� runs

The HDP case in the radiatively efficient scenario (Fig. 5, top panel)
is particularly interesting because T crosses unity twice, allowing
us to test the D−T relation. The simulated masses are all below
Mcrit ∼ 3 × 106 characteristic of this density profile and radiative
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Figure 6. Radiatively inefficient case (slim disc) – Same as Fig. 5. The phys-
ical accretion rates are, in ascending order of mass: 7.0 × 10−3 M� yr−1,
7.0 × 10−2 M� yr−1, 1.5 M� yr−1, 1.4 × 101 M� yr−1 for the HDP,
and 2.0 × 10−4 M� yr−1, 2.0 × 10−3 M� yr−1, 2.0 × 10−2 M� yr−1,
1.5 × 10−1 M� yr−1 for the LDP. See the main text for further details.

efficiency for fEdd = 1, therefore one expects the flow not be feeding-
dominated at all times. However, Pacucci & Ferrara 2015 show that
supercritical accretion is feasible, for short times, also in radiatively
efficient scenarios. Indeed, in the mass range 103–4 M� the entire
galaxy is in outflow (rT ∼ r0), but the radiation pressure is active only
when the gas accretion is underway, while during the remaining time
the inflow builds up again. As a consequence, the radiation pressure
is unable to sweep all the gas away from the accretion boundary,
and a small physical accretion rate is sufficient to grow such small
black holes, so the flow can sustain, on average, fEdd ∼ 25, with duty
cycles D ∼ 0.8−0.9. The relevant Mcrit, therefore, is not the one for
fEdd ∼ 1, but for fEdd ∼ 25. The values of T and rT slowly increase
as the initial mass of the seed M• approaches Mcrit ∼ 1.2 × 105 M�
for fEdd ∼ 25 (see the left-most vertical line in Fig. 5, top panel).

In the range 105–6 M� a super-Eddington flow is no more sus-
tainable, since the radiation pressure is progressively more power-
ful: the flow stabilizes at fEdd ∼ 1. For an Eddington-limited flow,
Mcrit ∼ 3 × 106 M� (see the right-most vertical line in Fig. 5,
top panel). In the process of going from fEdd ∼ 25 to fEdd ∼ 1 the
flow becomes mildly feedback-limited (T ∼ 0.7 for M• = 106 M�,
D ∼ 0.3−0.5). The physical accretion rates in the HDP case

Figure 7. Data points in the (D,T ) plane, obtained from the 16 runs
performed (Figs 5 and 6). The overplotted line is the theoretical relation
between D and T , discussed in the main text (equation 27).

are within the range 10−3–10−4 M� yr−1 (see Fig. 5 for further
details).

In the LDP case of the radiatively efficient scenario, the criti-
cal mass value Mcrit is <103 M�: as a consequence the growth is
feeding-dominated (D ∼ 1 and T � 102) for all runs and accretion
rates are stable, close to the Eddington value (fEdd ∼ 1). The physical
accretion rates are within the range 10−2–10−5 M� yr−1, increasing
with the mass M• just as the Eddington rate.

In the HDP case of the radiatively inefficient scenario (Fig. 6,
top panel) the situation is similar, because Mcrit < 103 M�: so
rT � r0 and the growth is always feeding-dominated (T up to
∼104). Accretion is not capped at the Eddington rate, so we reach
rates as high as fEdd ∼ 300, leading to a super-Eddington emitted
luminosity L ∼ 5LEdd (equation 12). The physical accretion rates
reach large values, with a peak of 14 M� yr−1.

Similarly, in the LDP case of the radiatively inefficient scenario
(Fig. 6, bottom panel) all accretion flows are feeding-dominated,
with physical accretion rates within the range 10−1–10−4 M� yr−1.
While the Eddington factor is fEdd ∼ 5 for all masses, the emitted
luminosity is strongly sub-Eddington, due to the low mass density
of the LDP scenario, which is unable to produce a mass inflow
leading to supercritical luminosities.

In summary, radiatively inefficient accretion allows for largely
feeding-dominated growths of the central black hole, while stan-
dard accretion scenarios may be feedback-limited when the gas
density is very high. Moreover, the main difference between the
two density profiles, notwithstanding the accretion mode, is related
to the accretion rates that they can sustain to feed the black hole:
the HDP produces an accretion rate up to fEdd ∼ 300, decreasing
dramatically the growth time of the central object.

With the average values of T and D computed so far for the 16
runs, we are in the conditions of testing our model for the D−T
relation, given by equation (27). Fig. 7 shows that our analytic
model offers a very good fit to the points in the (D,T ) plane.

In order to have a general overview of the mass accreted (across
the inner boundary) and ejected (across the outer boundary) in
the different simulations performed, Fig. 8 provides a mass balance
summary. The mass growth (M• ≡ M•(t) − M0) for a black hole
seed of initial mass 105 M� is shown with solid lines, while the
dashed lines indicate the mass ejected through outflows. The black
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Figure 8. Mass accreted (solid lines) and ejected (dashed lines) for a black
hole seed with initial mass 105 M�, embedded in a HDP (top panel) and in
a LDP (bottom panel), in radiatively efficient and inefficient scenarios. The
black solid diamonds indicate the final mass that the same seed would reach
accreting continuously at the Eddington rate with ε = 0.1.

solid diamonds indicate the final mass that the same seed would
reach accreting continuously at the Eddington rate (D = 1, fEdd = 1)
with ε = 0.1. The ejected mass is larger than the accreted mass,
except for the HDP in the slim disc scenario (brown line), due to the
large values of fEdd available under these physical conditions. The
mass growth in the standard radiatively efficient scenario is smaller
than or equal to the one predicted by a continuous accretion at the
Eddington rate, while in the slim disc scenario it is two to three
orders of magnitude larger (in particular, the slim disc and HDP
accretion provides a final mass which is ∼1000 times larger).

In a preceding work (Pacucci & Ferrara 2015), the authors found
that only ∼10 per cent of the halo mass is expelled with outflows
during the accretion process. In this work, during the first 105 yr of
evolution of a 105 M� seed embedded in a HDP halo the outflowing
gas is ∼85 per cent of the total. This difference is explained by
three reasons. First, the relative importance of outflows decreases
with time, due to the fact that the gradient of rT(t) is positive: the
simulation presented in Pacucci & Ferrara (2015) is ∼1000 times
more extended in time than the ones analysed here. Secondly, the
spatial range of this work is much larger, then more apt to probe

the outflow regions. Lastly, the halo density profiles are different,
since the one employed in Pacucci & Ferrara (2015) had a higher
central density. Most of the baryonic mass of a Tvir ∼ 104 K halo
at z ∼ 10 was confined inside a sphere of radius ∼3 pc, leading to
values of the optical depths of the order of NH ∼ 9 × 1025 cm−2 at
the beginning of the collapse, which may have strongly reduced the
impact of outflows.

4.2.2 The M• = 107 M� run: a test case for Mcrit

In the radiatively efficient case with HDP (Fig. 5, top panel) the
value of T reaches a minimum (∼0.7) around M• ∼ 106 M� and
rises up to ∼60 again for M• ∼ 107 M�, allowing us to test the value
of Mcrit ∼ 3 × 106 M� (equation 28) predicted for this scenario.
For M• � Mcrit, the Eddington rate is so large (�0.3 M� yr−1)
that the accretion flow from the halo simply cannot provide it (the
free-fall rate at t = 0 is ∼0.2 M� yr−1). As a consequence, the
Eddington factor remains below unity (fEdd = 0.7) while D ∼ 1. In
this case, the physical accretion rates are very large (∼0.2 M� yr−1),
a factor ∼100 higher than the values for other seed masses (see the
caption of Fig. 5). This feeding-dominated simulation has produced
continuous accretion with very large rates and with sub-Eddington
luminosities.

4.3 The final black hole mass

The integration time for all simulations is much shorter than the
typical evolutionary time-scale for these systems (Pacucci & Ferrara
2015; Pacucci et al. 2015). In this section, we estimate the depletion
time tend needed to void the inner regions of the host halo from its
gas content, due to both gas accreted by the black hole, and ejected
through outflows. Furthermore, from tend we can provide a rough
estimate of the final black hole mass, by extrapolating the average
accretion rates up to tend.

Extrapolating the lines in Fig. 8, we find the depletion time tend

with the following condition:

Macc(t = tend) + Mej(t = tend) = Mgas , (31)

where Macc(t) is the accreted mass, Mej(t) is the ejected mass and
Mgas = 107 M� is the total gas mass within our computational do-
main. Table 1 provides a general outline of the accretion history for a
black hole seed with initial mass M• = 105 M� in the four scenarios
investigated so far, including the depletion time tend, the extrapolated
final mass of the black hole M•(tend) and its ratio with the initial
baryonic mass of the host halo M•(tend)/Mgas. While in standard
accretion scenario the typical time-scale is ∼100 Myr (Pacucci &
Ferrara 2015) and the black hole can accrete ∼5–15 per cent of the
baryonic mass of the host halo, in radiatively inefficient modes the
growth is much more rapid and efficient. Specifically, in the slim
disc scenario we predict that the evolutionary time-scale is of the
order of ∼10 Myr (Pacucci et al. 2015), with outflows playing a
negligible role: the black hole is able to accrete ∼80–100 per cent
of the host halo gas.

4.4 A bimodal evolution of the black hole seeds

Several works in literature (e.g. Silk & Rees 1998; King 2003, 2010)
have investigated various forms of the so-called M•–σ relation,
which provides an upper limit for the black hole mass: a compact
object embedded in a halo with velocity dispersion σ ∼ vesc (the
halo escape speed) can grow up to a mass given by the M•–σ
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Table 1. Analytic estimate of the accretion history for a black hole seed with
initial mass M• = 105 M� in the four scenarios investigated so far.

Accretion scenario tend (Myr) M•(tend) (M�) M•(tend)/Mgas

Standard accretion – HDP 225 7.4 × 105 7 per cent
Standard accretion – LDP 110 1.5 × 106 15 per cent
Slim disc accretion – HDP 14 1.0 × 107 100 per cent
Slim disc accretion – LDP 9 8.3 × 106 83 per cent

relation, while the remaining gas is dispersed by radiation-driven
(Silk & Rees 1998) and/or momentum-driven (King 2003) outflows.
The usual assumption adopted in these works is that the momentum
flux (Ṁoutv) of the outflowing gas is comparable to the one in the
Eddington-limited radiation field: Ṁoutv ∼ LEdd/c. In this work we
have taken an alternative view where, comparing the time-scales for
gas infall and gas ejection as a function of radius, we prove that the
momentum flux may be very different from the Eddington value:
for instance, in the slim disc model where supercritical accretion
rates may be associated with sub-Eddington luminosities.

Our approach predicts the existence of a critical black hole mass
Mcrit above which the accretion is negligibly affected by outflows:
this, in turn, may lead to a bimodal evolution of the initial mass
function of high-redshift black hole seeds. The lower mass seeds
(M• < Mcrit) would go through a feedback-limited growth, with
recurring episodes of strong outflows which deplete the inner re-
gions of the host halo from its mass content: the black hole cannot
accrete more than a few per cent of the gas reservoir. On the con-
trary, higher mass seeds (M• > Mcrit) would go through a feeding-
dominated growth, with outflows playing a negligible role: the black
hole grows in mass very rapidly, possibly even consuming most of
the host halo mass, reaching the SMBH stage early in time. For
the LDP case, and for slim disc accretion in either density profile
Mcrit is very low (∼10–100 M�), and therefore of relevance only
if black hole seeds are stellar-mass or so. For the HDP case, and
standard accretion, Mcrit ∼ 3 × 106 M� is relevant for most seed
masses proposed in the literature.

As a proof-of-concept of this bimodal development, Fig. 9 shows
the cosmological evolution, between z = 10 and z = 7 (the epoch
when the first SMBHs are observed), of two initial mass functions
for high-redshift black hole seeds: a simple flat distribution in the
mass range log10(M•[M�]) = 4.5–5.5 (top panel) and the initial
mass function modelled (at z = 10) in (Ferrara et al. 2014, bottom
panel). This evolution, far from being a precise prediction of the
actual black hole growth, is a proof-of-concept based on the the-
oretical framework described in this work. The basic equation for
the mass growth is the following one:

M•(t) = M•(t = 0) exp

[
DfEdd

t

0.045 Gyr

]
, (32)

where the values for D(M•) and fEdd(M•) are interpolated for each
M• from the solid lines in Fig. 5, in the HDP case. The bimodal
evolution is evident and the mass gap at log10(M•) ∼ 5.7 is expected
to rapidly spread during the cosmic time. Importantly, this effect
does not depend on the shape of the initial mass function.

In the HDP case with a radiatively inefficient accretion the bi-
modal evolution is expected to occur as well since, while D ∼ 1 for
all masses, the value of fEdd does show a mass dependence (see the
upper panel of Fig. 6).

In haloes with a LDP density profile, in any accretion scenario,
the bimodal evolution is not expected to occur, since fEdd and D are
nearly independent of the seed mass (see bottom panels of Figs 5

Figure 9. Proof-of-concept bimodal evolution, between z = 10 and z = 7,
of two initial mass functions for black hole seeds: a flat one (top) and a more
realistic one (bottom). The evolution is computed along the theoretical lines
described in this paper, with values for D(M•) and fEdd(M•) interpolated
from the HDP simulations in the standard accretion scenario.

and 6). None the less, we expect this evolutionary effect to play a
remarkable role in the growth process, since we believe that dark
matter haloes with a HDP density profile harboured at their centre
the black hole seeds with smaller masses (M• � 103–4 M�), the
ones which are affected the most by feedback-limited growth.

5 D I S C U S S I O N A N D C O N C L U S I O N S

The aim of this work is to provide a theoretical framework,
supported by numerical simulations, to describe the growth of
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high-redshift (z ∼ 10) black hole seeds. The growth can be either
feeding-dominated or feedback-limited. It is feeding-dominated if
the radiative back-reaction of the black hole is negligible: the ra-
pidity of the process is mainly determined by the gas accretion rate
that the host halo can provide. In a feeding-dominated accretion
flow the black hole: (i) increases its mass during most of its time
evolution, and (ii) exerts a relatively small mechanical and/or radia-
tive feedback on its surrounding gas reservoir. For these reasons, a
feeding-dominated accretion is the desirable way to grow the black
hole efficiently.

Within this theoretical framework, we investigated, with the aid
of 1D radiation-hydrodynamic simulations, the growth of black hole
seeds with a set of astrophysically motivated initial conditions to
explore the consequences of our model: seed masses in the range
103–6 M�, embedded in a dark matter halo of total mass (dark
matter and baryons) Mh = 6.7 × 108 M� with two different density
profiles and with different prescriptions for the accretion efficiency,
namely a radiatively efficient mode (ε = 0.1) and a slim disc mode
(ε � 0.04).

Three points in particular are worthy of being retained from this
work.

(i) We confirmed that radiatively inefficient accretion modes (for
instance the slim disc model) may ensure a continuous growth with
rates largely exceeding the Eddington limit (reaching ∼300ṀEdd in
our simulations). Radiatively inefficient accretion flows allow for
feeding-dominated growths of the central black hole, while standard
accretion scenarios may be feedback-limited with high values of the
host halo gas density. The feedback time-scale for these radiatively
inefficient modes is �60 times longer than in the standard accretion
scenario: the system reacts to a modification of the accretion rate
in a much slower way because at a given accretion rate the produc-
tion of radiation is reduced, decreasing the feedback effectiveness.
In addition, we numerically proved the feasibility of accretion flows
with sub-Eddington luminosities and super-Eddington rates.

(ii) We theoretically derived the existence of a time-evolving
transition radius, rT, which discriminates between feeding-
dominated and feedback-limited growths. The transition radius, in
addition, determines the spatial scale at which outflows take place,
and provides a mass scale, Mcrit, above which the black hole growth
is always feeding-dominated. The critical black hole mass is 10–
106 M�, depending on the accretion scenario and on the host halo
properties. Consequently, we foresee the possibility of a bimodal
evolution of the population of black hole seeds: low-mass seeds
grow much less efficiently than high-mass ones.

(iii) Our model may be employed in modelling the growth of
high-redshift black holes in large cosmological simulations, which
cannot resolve the typical spatial scales of accretion.

To conclude, our model’s aim is to study high-redshift accretion
flows leading to the growth of the first black holes. In particular,
we provided the theoretical framework needed to understand why
radiatively inefficient accretion models are likely to be a crucial in-
gredient in explaining the presence of SMBHs of mass ∼109–10 M�
less than 1 Gyr after the big bang (Mortlock et al. 2011; Wu et al.
2015). In order to build such extremely massive objects already
at z ∼ 6.5, an Eddington-capped accretion would require, starting
from a stellar-mass (M• ∼ 50 M�) seed, a constant Eddington flow.
However, a low-mass seed would be hindered in its initial growth by
its own feedback, making continuous accretion at Eddington levels
unlikely (see also Johnson & Bromm 2007; Alvarez, Wise & Abel
2009; Milosavljević et al. 2009; Park & Ricotti 2012).
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