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The standard cosmological model does not determine the spatial topology of the Universe. This article
revisits the signature of a nontrivial topology on the properties of the cosmic microwave background
anisotropies. We show that the correlation function of the coefficients of the expansion of the temperature
and polarization anisotropies in spherical harmonics encodes a topological signature that can be used to
distinguish a multiconnected space from an infinite space on sizes larger than the last scattering surface.
The effect of the instrumental noise and of a Galactic cut are estimated. We thus establish boundaries for the
size of the biggest torus distinguishable with temperature and polarization CMB data. We also describe the
imprint of the spatial topology on the 3-point function and on non-Gaussianity.

DOI: 10.1103/PhysRevD.92.043003 PACS numbers: 98.80.-k, 12.60.-i, 98.80.Jk

I. INTRODUCTION

In the standard cosmological framework in which the
Universe is described on large scales by a smooth
Friedmann-Lemaître space-time, the spatial sections can
enjoy a locally Euclidean, spherical, or hyperbolic geom-
etry [1]. Whatever the spatial geometry, it is always
possible to assume different topologies for space, i.e.,
different boundary conditions, a property that remains
undetermined by the Einstein field equations. The study
of spatial topology and the possibility to constrain it
observationally have attracted a large amount of activity
in the past decades; see Refs. [2] for reviews.
From an observational point of view, constraining the

shape and size of our Universe requires us to use data
spanning the largest possible scales compared to the
Hubble volume. Initial works focused mostly on large-
scale structures [3], but these techniques were limited by
many effects, such as the completeness of the catalogs,
evolution effects, etc., and limited in the range of scales that
can be probed. The cosmic microwave background (CMB)
anisotropies seem to be the most promising observational
tool for that purpose, mostly because they probe the largest
cosmological scales we can currently access, have com-
paratively limited systematic errors, and, from a theoretical
point of view, only require the use of linear perturbation
theory, which allows one to implement topology very
efficiently [4,5].

When decomposed in spherical harmonics, the multi-
poles alm of CMB temperature anisotropies are random
complex fields characterized by their correlation matrix

Cl0m0
lm ≡ halma�l0m0 i: ð1Þ

Spatial topology imprints mostly three types of signa-
tures on the CMB [6]:

(i) Angular power spectrum. This is the central quantity
used to infer the standard cosmological constraints,
mostly because as long as local isotropy (and thus
statistical isotropy) holds, then the correlation matrix
reduces to

Cl0m0
lm ∝ Clδll0δmm0 ð2Þ

so that the angular power spectrum Cl contains the
whole information of the temperature fluctuations if
they are distributed according to Gaussian statistics.
Since the Cl is obtained by averaging the correlation
matrix, it loses much of the topological information.
For many years however, most constraints on the
topology relied on its behavior. It was used in the
early analysis with COBE data, mostly to constrain
the size of a torus universe [7]. One has however to
note that (1) the topological signature appears on a
large angular scale, where the cosmic variance is the
largest and (2) it depends on assumptions on the
initial power spectrum. It is usually assumed that
the initial power spectrum is almost scale invariant
(as predicted by standard inflation, which at the
same time predicts that the Universe shall be locally
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Euclidean and much larger than the observable
Universe). Topology however sets a new cosmo-
logical characteristic scale and there is a priori no
reason that the scale invariance of the power
spectrum holds [8]. Nonetheless, the low quadrupole
observed by COBE and Wilkinson microwave
anisotropy probe (WMAP) was one of the driving
motivations for topology, in particular of the
Poincaré space [9], and more generally to argue
for a “well-proportioned” Universe [10,11]. The
angular power spectrum is thus a good indicator
but will not be decisive in proving the existence or
absence of any topological structure.

(ii) Pattern correlation. The CMB has been emitted at
the time of last scattering so that all observed CMB
photons arise from a 2-sphere centered on us. In a
nontrivial topology, the last scattering surface can
warp around and self-intersect on circles, which
means, from an observer’s point of view, that there
exist pairs of circles sharing the same temperature
anisotropy pattern along them. This point is at the
heart of the “circles-in-the-sky method” [12] that
allows one, in principle, to detect and reconstruct
[13] space topology if it appears on scales smaller
than the last scattering diameter. We also refer to
Refs. [14] for some critics concerning this method.

(iii) Correlation function violation of global isotropy. As
long as isotropy holds, the correlation matrix is
diagonal, in the sense that halmal0m0 i ∝ δll0δmm0 .
A nontrivial topological structure implies that global
isotropy is broken, which should be imprinted on
deviations of the correlation matrix from a diagonal
matrix; see, e.g., Refs. [6,15] for early considerations.
This property was used to constrain the torus topology
[16]. The knowledge of the shape of the correlation
matrix allows one to design adapted estimators and
can be tested by different techniques [17].

In conclusion, the angular power spectrum is a poor
indicator; the circle method is independent of assumptions
on local physics but restricted to scales smaller than the
diameter of the last scattering surface, DLSS. The informa-
tion contained in the correlation matrix can be used to
probe topology on larger scales, at the expense of being
restricted to a class of topologies.
At the time being, cosmological observations indicate

that space is almost Euclidean, which sets constraints on
topologies that are potentially detectable [18]. The circles-
in-the-sky method was used with WMAP data, mostly to
set the constraint that the length of the shortest closed
spacelike geodesic that self-intersects at our location in the
Universe is 98.5% of DLSS, i.e., about 26 Gpc [19].
Independent constraints have been obtained for lens spaces
[10,20]. These constraints may be improved with the use of
polarization [21] as well as with higher resolution data as
provided by the Planck mission (see Ref. [22] for the

Planck analysis on topology). Note also that all existing
observations of the CMB in COBE, WMAP, and Planck
data have drawn special attention to several possible
anomalies, and statistical deviations from the standard
model, such as north-south asymmetries, the cold spot,
and the axis of evil [23], point toward a possible violation
of statistical isotropy and are the reasons underlying the
search for a new cosmological model.
From a theoretical point of view, the theory of CMB

anisotropies in a nontrivial topology seems under control. It
relies heavily on the linearity of the perturbation equations
and of the temperature-perturbation relation arising from
the Boltzmann equation at linear order. As shown in
Ref. [4], one can work in Fourier space so that the key
ingredient to implement topology is the spectrum of the
Laplacian. Wewill follow this technique that is summarized
in Sec. II.
In this article, we want to investigate the power of the

correlation matrix method by restricting our analysis to a
class of models in order to determine the minimal size of a
nontrivial topology that makes CMB predictions indistin-
guishable from those of a universe with trivial topology.
That question will be addressed by using the Kullback-
Leibler divergence and described in Sec. III. Section IV
focuses on the family of torus universes in order to discuss
their detectability, especially in the context of experimental
issues such as masking and noise. Then Sec. V takes into
account CMB polarization. To finish, we explore in
Appendix B the signature of spatial topology on higher
statistics and on non-Gaussianity. This work will show that
the topology of a flat torus can in principle be detected on
scales larger than the last scattering surface even if one
takes into account mask effects and noises.
In this work, the Python package Healpy based on

HEALPIX [24] was used for all CMB simulations.

II. IMPLEMENTING THE TOPOLOGY

A. General considerations

The topology of three-dimensional spaces of constant
curvature has been extensively described and we refer to
the reviews [2] for an introduction. For the sake of clarity,
we just define the main structures required for our purpose.
In standard relativistic cosmology, the Universe is

described by a Friedmann-Lemaître space-time with locally
isotropic and homogeneous spatial sections. In the case of a
multiply connected universe, we visualize space as the
quotient X=Γ of a simply connected spaceX (which is just a
3-sphere S3, a Euclidean space R3, or a hyperbolic space
H3, depending on the curvature), Γ being a discrete and
fixed point free symmetry group of X. If Γ is not fixed point
free, there is a curvature singularity and general relativity
can no longer be applied. For example string theory can be
used with nonclassical topologies with fixed point, as in
Refs. [25,26]. This group Γ is called the holonomy group
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and its existence changes the boundary conditions on all the
functions defined on the spatial sections, which sub-
sequently need to be Γ-periodic. Hence, the topology
leaves the local physics unchanged while modifying the
boundary conditions on all the fields. Given a field ϕðx; tÞ
living on X, one can construct a field ϕ̄ðx; tÞ living on X=Γ
by projection as

ϕ̄ðx; tÞ ¼ 1

jΓj
X
g∈Γ

ϕðgðxÞ; tÞ; ð3Þ

since then, for all g, ϕ̄ðgðxÞ; tÞ ¼ ϕ̄ðx; tÞ. It follows that any
Γ-periodic function of L2ðXÞ (space of square-integrable
functions lying in the simply connected space X) can be
identified to a function of L2ðX=ΓÞ.
The background space-time being spatially homo-

geneous and isotropic, its metric is of the Friedmann-
Lemaître form

ds2 ¼ −dt2 þ a2ðtÞ½dχ2 þ f2KðχÞdΩ2�; ð4Þ

where the scale factor a is a function of the cosmic
time t and where fKðχÞ ¼ fsinhð ffiffiffiffiffiffiffi

−K
p

χÞ= ffiffiffiffiffiffiffi
−K

p
; χ;

sinð ffiffiffiffi
K

p
χÞ= ffiffiffiffi

K
p g, respectively, for the comoving space

curvature K negative, null, and positive.
The classification of the topologies of three-dimensional

spaces of constant curvature depends on the geometry of
the universal covering space. In this article, we focus on the
Euclidean space R3, for which there exist 18 different
topologies that can be split into 10 compact spaces (6
orientable and 4 nonorientable), 5 chimney spaces having
only 2 compact directions (2 orientable and 3 nonorient-
able), 2 slab spaces having 1 compact direction (1 orient-
able and 1 nonorientable), and the Euclidean space. Their
holonomy group is a finite subgroup of the isometry of the
Euclidean space G ¼ R3 × SOð3Þ. Their structure and
fundamental polyhedron are given explicitly in Ref. [5].
In the standard cosmological framework, the properties

of large-scale structures can be understood using perturba-
tion theory. At linear order, the perturbation equations
reduce to partial differential equations involving time
derivatives up to second order and spatial derivatives, that
appear only through a Laplacian because of the local spatial
homogeneity of the background space-time. It is thus
convenient to solve these equations in Fourier space where
they become ordinary differential equations.
The strategy to implement topology is then in principle

simple (we refer to Refs. [4,5] for early developments of
this approach). First we shall solve the cosmological
perturbation equations as in the standard framework but
only for the eigenmodes of the Laplacian that are compat-
ible with the boundary conditions imposed by the topology.
One technical step is thus the determination of the
eigenfunctions and we shall determine them by developing

on the basis of the natural eigenfunctions of the Laplacian
of the universal covering space. Then, the CMB predictions
can be inferred from the linearity of the Sachs-Wolfe
formula.

B. Eigenmodes of the Laplacian

Let us consider the usual Helmholtz equation

ðΔþ k2ÞΥ ¼ 0: ð5Þ

Once the topology is fixed, we must first determine the

eigenmodes Υ½Γ�
k ðxÞ and eigenvalues k2 − K of the

Laplacian on X=Γ through the generalized Helmholtz
equation

ΔΥ½Γ�
k ðxÞ ¼ −ðk2 − KÞΥ½Γ�

k ðxÞ; ð6Þ

where k indexes the set of eigenmodes. These eigenmodes
must satisfy the periodicity conditions

Υ½Γ�
k ðgðxÞÞ ¼ Υ½Γ�

k ðxÞ ∀ x ∈ X=Γ; ∀ g ∈ Γ: ð7Þ

These modes, on which any function on X=Γ can be
expanded, respect by the above definition the boundary
conditions imposed by the topology: they correspond
precisely to the modes of X that are invariant under the
action of the holonomy group Γ so that any linear
combination of such modes will satisfy, by construction,
the required boundary conditions.
In order to compute CMB anisotropies, one needs to

determine both the eigenvalues and eigenfunctions. It has
been shown that it is fruitful to expand the modes of X=Γ on

the basis Y½X�
klm of the eigenmodes of the universal covering

space as

Υ½Γ�
k ¼

X
l¼0

Xl
m¼−l

ξ½Γ�k;lmY
½X�
klm; ð8Þ

so that all the topological information is now encoded in the

coefficients ξ½Γ�k;lm. The sum over l runs from 0 to infinity if
the universal covering space is noncompact (i.e., hyperbolic
or Euclidean). These coefficients have been computed for
many topologies and in particular for all the Euclidean
topologies [5], the infinite class of spherical lens and prism
topologies [27], and they must be performed numerically
for hyperbolic spaces [28].
As a working example, we focus on the example of a

rectangular 3-torus of comoving size ðL1; L2; L3Þ. This
implies that the wave vectors, i.e., the eigenvalues of the
Helmholtz equation, are given by

k ¼ 2π

�
n1
L1

ex þ
n2
L2

ey þ
n3
L3

ez

�
; n ∈ Z3; ð9Þ
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with the notations n ¼ ðn1; n2; n3Þ and n ¼ ffiffiffiffiffiffiffiffiffi
n · n

p
. We

also introduce

n̂≡ n=n: ð10Þ

The magnitude of the wave number is defined as usual by
k2 ¼ k · k and k̂≡ k=k.
In order to determine the eigenfunctions, we start from

the fact that for any mode k, the eigenmodes of the
Laplacian of the universal covering space in Cartesian
coordinates are simply given by

ΥkðxÞ ¼ eik·x: ð11Þ

These modes are indeed not square integrable and are
normalized as

Z
ΥkðxÞΥ�

k0 ðxÞ
d3x
ð2πÞ3 ¼ δð3Þðk − k0Þ; ð12Þ

δð3Þ being the Dirac distribution. As can be seen from
Eq. (8), we need to know the eigenmodes of the Laplacian
in spherical coordinates. For the Euclidean space, they can
be decomposed as the product of a radial and an angular
part as

Yklmðχ; θ;φÞ ¼
ffiffiffi
2

π

r
ð2πÞ3=2jlðkχÞYm

l ðθ;φÞ; ð13Þ

where ðχ; θ;φÞ are the usual spherical coordinates
defined by

x ¼ χ sin θ cosφ

y ¼ χ sin θ sinφ

z ¼ χ cos θ: ð14Þ

The radial factor jlðkχÞ is a spherical Bessel function of
index l, and the angular factor Ym

l ðθ;φÞ is the standard
spherical harmonic. The mode Yklm is not square inte-
grable and is normalized according to

Z
YklmY�

k0l0m0
χ2dχd cos θdφ

ð2πÞ3 ¼ 1

k2
δð1Þðk − k0Þδll0δmm0 ;

ð15Þ

which is analogous to the normalization (12) and which
determines the numerical coefficient

ffiffiffiffiffiffiffiffi
2=π

p
.

The coefficients ξ½Γ�k;lm need to express the Cartesian
eigenmodes in terms of the spherical eigenmodes. Using
Eqs. (5.17.3.14) and (5.17.2.9) of Ref. [29], we have

eik·x ¼
X∞
l¼0

iljlðkjxjÞð2lþ 1ÞPlðcos θk;xÞ

¼
X∞
l¼0

iljlðkjxjÞ
�
4π

Xl
m¼−l

Ym
l ðx̂ÞYm�

l ðk̂Þ
�

¼
X∞
l¼0

Xl
m¼−l

ilYm�
l ðk̂Þ½4πjlðkjxjÞYm

l ðx̂Þ�

¼
X∞
l¼0

Xl
m¼−l

ðilYm�
l ðk̂ÞÞYklmðxÞ; ð16Þ

where x̂≡ x=jxj. Comparing with Eq. (8) it gives

ξ½Γ�klm ¼ ilYm�
l ðk̂Þ: ð17Þ

C. Implementations and tests

1. CMB primer

The CMB is observed as a blackbody radiation with
temperature T0 ¼ 2.7255� 0.0006 K [30], almost inde-
pendently of the direction. After accounting for the peculiar
motion of the Sun and Earth, the CMB has remaining
temperature fluctuations of order δT=T0 ∼ 10−5 that are
usually decomposed in terms of spherical harmonics as

δT
T0

ðθ;φÞ ¼
X∞
l¼0

Xl
m¼−l

almYlmðθ;φÞ: ð18Þ

This relation can be inverted by using the orthonormality of
the spherical harmonics to get

alm ¼
Z

δT
T0

Y�
lm sin θdθdφ. ð19Þ

The coefficients alm obviously satisfy al−m ¼ ð−1Þma�lm.
The angular correlation function of these temperature
anisotropies is observed on a 2-sphere around us and
can be decomposed on a basis of the Legendre polynomials
Pl as

Cobsðθ12Þ ¼
�
δT
T0

ðγ̂1Þ
δT
T0

ðγ̂2Þ
�

γ̂1:γ̂2¼cos θ12

¼ 1

4π

X
l

ð2lþ 1ÞCobs
l Plðcos θ12Þ; ð20Þ

where the brackets stand for an average on the sky, i.e., on
all pairs of directions ðγ̂1; γ̂2Þ subtending an angle θ12. The
coefficients Cobs

l of the development of Cobsðθ12Þ on the
Legendre polynomials are thus given by
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Cobs
l ¼ 1

2lþ 1

Xl
m¼−l

haobslma
obs�
lm i: ð21Þ

These Cobs
l can be seen as estimators of the variance of the

alm and represent the rotationally invariant angular power
spectrum. They have therefore to be compared to the values
Cl predicted by a given cosmological model, which is
specified by (i) a model of structure formation which fixes
the initial conditions for the perturbation (e.g., inflation,
topological defects, etc.); (ii) the geometry and matter
content of the Universe (via the cosmological parameters);
and (iii) the topology of the Universe.
In the particular case of a Euclidean space that we are

considering here, the temperature fluctuation in a given
direction of the sky can be related to (i) the eigenmodes
expðik · xÞ of the Laplacian by a linear convolution

operator O½R3�
k ðeik·xÞ depending on the modulus k, the

universal cover (here, R3), and the cosmological parame-
ters; and (ii) a three-dimensional variable êk related to the
initial conditions,

δT
T0

ðθ;φÞ ¼
Z

d3k

ð2πÞ3=2O
½R3�
k ðeik·xÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
PϕðkÞ

q
êk; ð22Þ

where PϕðkÞ is the gravitational potential initial power
spectrum, normalized so that PϕðkÞ ∝ k−3 for a Harrison-
Zel’dovich spectrum. The detail of the transfer function

encoded in the operatorO½R3�
k ðeik·xÞ is described in Eq. (27).

In most inflationary models the random variable êk
describes a Gaussian random field and satisfies

hêkê�k0 i ¼ δð3Þðk − k0Þ; ð23Þ

with ê−k ¼ ê�k. Decomposing the exponential as in Eq. (16),
one gets

δT
T0

ðθ;φÞ ¼
X
l;m

il
Z

k2dk
ffiffiffiffiffiffiffiffiffiffiffiffi
PϕðkÞ

q
O½R3�

k ðY½R3�
klmÞêlmðkÞ;

ð24Þ

with

êlmðkÞ≡
Z

dΩkYm�
l ðθk;φkÞêk: ð25Þ

This quantity is a two-dimensional Gaussian random vari-
able satisfying hêlmðkÞê�l0m0 ðk0Þi ¼ δðk − k0Þδll0δmm0=k2. It
follows that the coefficients alm take the general form

alm ¼ il
Z

k2dk
ffiffiffiffiffiffiffiffiffiffiffiffi
PϕðkÞ

q
GlðkÞêlmðkÞ; ð26Þ

withGlðkÞ ¼ O½R3�
k ðR½R3�

kl Þ andR½R3�
kl ¼

ffiffi
2
π

q
jl½kðη0 − ηLSSÞ�.

The transfer function is well approximated by (see, e.g.,
Refs. [31,32])

GlðkÞ ¼ jl½kðη0 − ηLSSÞ�

×

�
δT
T0

ðk; ηLSSÞ þ Φðk; ηLSSÞ þΨðk; ηLSSÞ
�

þ j0l½kðη0 − ηLSSÞ�
vbðk; ηLSSÞ

k

þ
Z

η0

ηLSS

jl½kðη0 − ηÞ�ð _Φðk; ηÞ þ _Ψðk; ηÞÞdη: ð27Þ

ηLSS and η0 are the conformal times at last scattering and
today, Φ andΨ are the two Bardeen potentials, and vb is the
velocity divergence of the baryons. The first term is the
Sachs-Wolfe contribution, the second one the Doppler
contribution, and the last one the integrated Sachs-Wolfe
contribution [1]. As the topology is the study of large scales,
i.e., lowmultipoles,wewillmainly useonly theSachs-Wolfe
contribution, instead of the full transfer function, in our
analysis.

2. Implementing topology

The topology does not affect local physics, so the
equations describing the evolution of the cosmological
perturbations are left unchanged. As a consequence,
quantities such as the Bardeen potentials Φ, Ψ, etc., are
computed in the same way as in the standard case, and the

operator O½X�
k is therefore the same. However, a change of

topology translates into a change of the modes that can be
excited. We thus need to decompose the perturbation on the
basis of Υk instead of Yklm.
Using Eq. (8) and the fact that the convolution operator

O½X�
k is linear, Eq. (22) now takes the form

δT
T0

ðθ;φÞ ¼ ð2πÞ3
V

X
k

O½X�
k ðΥ½Γ�

k Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
PϕðkÞ

q
êk; ð28Þ

where now êk is a three-dimensional random variable
which is related to the discrete mode k. These random
variables satisfy the normalization

hêkê�k0 i ¼
V

ð2πÞ3 δkk0 : ð29Þ

By inserting the expansion of Υk in terms of the covering
space eigenmodes, as given by Eq. (8), we obtain

δT
T0

ðθ;φÞ ¼ ð2πÞ3
V

X
k;s

X
l;m

ξ½Γ�sklmO
½X�
k ðY½X�

klmÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
PϕðkÞ

q
êk:

ð30Þ
It follows that the alm, seen as random variables, are
given by
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alm ¼ ð2πÞ3
V

X
k

ffiffiffiffiffiffiffiffiffiffiffiffi
PϕðkÞ

q
O½X�

k ðR½X�
kl Þ

X
s

ξ½Γ�sklmêk: ð31Þ

Note that the sum over s is analogous to the sum over
angles defining the two-dimensional random variable êlm
in Eq. (22). Since the alm are linear functions of the initial
three-dimensional random variables, they are still Gaussian
distributed but they are not independent anymore (as
explained before, this is the consequence of the breakdown
of global isotropy and/or homogeneity). The correlation
between the coefficients alm is given by

halma�l0m0 i ¼ ð2πÞ3
V

X
k

PϕðkÞO½X�
k ðR½X�

kl ÞO½X�
k ðR½X�

kl0 Þ

×
X
s

ξ½Γ�sklmξ
½Γ�s�
kl0m0 : ð32Þ

Clearly these correlations can have nonzero off-diagonal
terms, reflecting the global anisotropy induced by the
multiconnected topology. This means in particular that
for fixed l, the alm might not have the same variance,
although they all follow Gaussian statistics as long as the
initial conditions do. This translates into an apparent non-
Gaussianity in the sense that the Cl will not follow the
usual χ2 distribution. Strictly speaking, this is not a
signature of non-Gaussianity but of anisotropy.
Note also that the correlation matrix (32) is not rotation

invariant. It explicitly depends on the orientation of the
manifold with respect of the coordinate system. However,
knowing how the spherical harmonics transform under a
rotation allows us to compute the correlation matrix under
any other orientation of the coordinate system. To finish let
us note that one can define the usual Cl coefficients in any
topology by the formula

Cl ≡ 1

2lþ 1

X
m

Clm
lm; ð33Þ

which is easily shown to be rotationally invariant. The Cl
coefficients can be generalized for higher statistical orders.
In Appendix B, we present the computation of the
equivalent coefficients Blll for the 3-point function of
a torus.

3. Tests

The Clm
lm generation code was implemented by picking

the ξ½Γ�sklm defined in Eq. (17) and then computing the
discrete wave modes of the topology in an octile of N3,
reversing the nonzero components in order to cover the
whole space and summing these wave modes as described
by Eq. (32). We validate the code by testing the existence of
the circles-in-the-sky properties and the behavior of the
angular power spectrum already discussed in the literature.

The investigation of the existence of circles can only be
pursued for sizes L smaller thanDLSS. Our code reproduces
with great success these CMB pattern properties as repre-
sented explicitly in Fig. 1. We also compute the Cl angular
power spectrum for different sizes of cubic 3-tori as
illustrated in Fig. 2. We got the same qualitative results
as in Ref. [4], concerning the damping of the curve at low l
and the great amplitude oscillations of the plot for large l.

4. Correlation matrices

We remind the reader that it has been demonstrated in
Ref. [4] that

FIG. 1 (color online). This figure is composed of three identical
spherical CMB temperature maps with a resolution lmax ¼ 50 of
the same cubic torus universe whose edge is of size L ¼ RLSS.
The origin of the framework is the center of the middle sphere.
The distance between the centers of two neighboring spheres is
equal to RLSS. Let us assume that we are living in the universe
whose CMB temperature fluctuations are displayed by the middle
sphere. Thanks to this example, we can illustrate that (i) there is a
periodic pattern in the CMB due to an invariance of translation ~t
along the ŷ axis, with ∥t∥ ¼ RLSS; and (ii) the intersection of the
last scattering surface with itself is a circle pattern in the CMB
and we thus have pairs of correlated circles. For example, in this
figure, we can check the existence of two correlated circles whose
centers are C1 ¼ ð0;−RLSS=2; 0Þ and C2 ¼ ð0; RLSS=2; 0Þ and
whose radii are equal to

ffiffiffi
3

p
RLSS=2.

FIG. 2 (color online). Angular power spectrum Cl for universes
with the topology of a cubic torus with size L ¼ 0.25DLSS (blue),
0.5DLSS (green), and DLSS (red), compared with the angular
power spectrum of the Euclidean space (black). The norm is taken
to have the angular spectrum of the isotropic space at a plateau
equal to 1. All the computations were done by taking into account
only the Sachs-Wolfe effect (justified for small l).
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Cl0m0
lm ∈ R ð34Þ

and that

Cl0m0
lm ¼ 1

4
½1þ ð−1Þm−m0 �½1þ ð−1Þl−l0 �Cl0m0

lm ; ð35Þ

so that Cl0m0
lm ≠ 0 if m −m0 ≡ 0mod2 and l − l0 ≡ 0mod2.

Furthermore,

Cl0m0
lm ¼ Cl0−m0

l−m : ð36Þ

These properties of the correlation matrix hold for
any torus.
In the particular case of a cubic torus, there exists an

invariance under a π=2-rotation about the z axis, so if
ðn1; n2; n3Þ corresponds to a wave number, then so does
ðn2;−n1; n3Þ, and one has

Cl0m0
lm ≠ 0 ⇒ m −m0 ≡ 0mod4. ð37Þ

In the following, we considered the normalized corre-
lation matrix defined by

Css0 ¼
hasa�s0 iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihasa�sihas0a�s0 i

p ; ð38Þ

that is, the correlation matrix normalized to the angular
power spectrum where we have used the notation

s≡ lðlþ 1Þ þm; −l ≤ m ≤ l; ð39Þ

so that s is strictly increasing.
Figure 3 presents the correlation matrix for cubic tori of

increasing size. We can notice that cubic 3-tori correlation
matrices are nondiagonal, because the topology is aniso-
tropic, and block diagonal, due to the properties (35) and
(37). The nonzero elements are progressively switched off
as the size of the 3-torus increases and the correlation
matrix looks more like the correlation matrix of a simple
Euclidean space, which is a simple diagonal matrix of 1.
In Fig. 4, we can see that the block structure of

rectangular 3-tori correlation matrices is not exactly the
same as in a cubic 3-tori. Also, the modes are differently
switched on inside nonzero blocks, especially when
Lx ≠ Ly, Lx ≠ Lz, and Ly ≠ Lz, where we can guess
rhombic shapes into the blocks. Furthermore rectangular

FIG. 3 (color online). Correlation matrices of the alm for a cubic torus of size L ¼ RLSS (left), L ¼ DLSS (middle), and L ¼ 1.25DLSS
(right). All assume lmax ¼ 20.

FIG. 4 (color online). Correlation matrices of the alm for a rectangular torus of size Lx ¼ DLSS, Ly ¼ 0.8DLSS, Lz ¼ 0.6DLSS (left),
and Lx ¼ Ly ¼ DLSS, Lz ¼ RLSS (right). All assume lmax ¼ 20.
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tori have more nonzero modes than cubic ones. This could
be a good way to know if we are dealing more likely with a
cubic or a rectangular torus, but we should keep in mind
that it is just a qualitative approach. Noise and systematic
errors will also affect the appearance of the correlation
matrix.

III. COMPARING UNIVERSE MODELS

A. Heuristic argument and goal

As can be seen by eyes on Fig. 3, the correlation matrix
tends to become more and more diagonal when L increases.
Once rescaled by the Cl of the isotropic Euclidean space,
the normalized correlation matrix Ass0 defined by

Ass0 ¼
Cð2Þ
ss0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cð1Þ
l Cð1Þ

l0

q ; ð40Þ

where Cð1Þ
l is the covariance matrix of the isotropic space

and Cð2Þ
ss0 the covariance matrix of a nontrivial topology,

shall converge toward the identity matrix as the size of the
nontrivial space increases. This convergence can be visu-
alized heuristically by plotting the distribution of the
eigenvalues of the normalized correlation matrix Ass0 . As
can be seen on Fig. 5, the distribution tends to be more and
more peaked around 1.

B. Kullback-Leibler divergence

Given the previous discussion, we would like to compare
two theories that predict that the coefficients of the
expansion of the temperature anisotropies in spherical
harmonics, alm, are Gaussian and satisfy

halma�l0m0 i1 ¼ Cð1Þ
ll0mm0 ¼ Cð1Þ

l δll0δmm0 ð41Þ

for model 1 (isotropic) and

halma�l0m0 i2 ¼ Cð2Þ
ll0mm0 ð42Þ

for model 2 (nontrivial topology), where the ensemble
average is taken for each theory, respectively.

Such a comparison can be performed in terms of the
Kullback-Leibler [33] divergence for two probability dis-
tribution functions p and q defined by

DKLðp∥qÞ ¼
Z

pðxÞ ln
�
pðxÞ
qðxÞ

�
dx: ð43Þ

This divergence is the expectation value of lnðp=qÞwith the
ensemble average related to p,

DKLðp∥qÞ ¼
�
ln

�
pðxÞ
qðxÞ

��
p
:

Due to the Gibbs inequality, DKL is always positive. In
terms of information theory, DKLðp∥qÞ quantifies the
amount of information lost when the data ðpÞ are repre-
sented by the model ðqÞ. Comparing any multiconnected
space (2) with the Euclidean trivial space (1) is interesting
because the latter has a rotationally invariant covariance
matrix. Consequently the Kullback-Leibler divergence
does not depend on the relative orientation of the two
spaces and thus quantifies how much information “sepa-
rates” model 2 from model 1. Furthermore the flat
Euclidean space is the most probable topology given the
previous studies. It is important to see if a deviation from it
can be easily detected. In our case the probability distri-
bution function of the alm are given by

lnPiðalmÞ ¼ −
1

2
talmðCðiÞÞ−1ll0mm0a�l0m0 −

1

2
ln detCðiÞ

ll0mm0 ;

ð44Þ
so that

DKLð1∥2Þ ¼
�
ln

�
P1ðalmÞ
P2ðalmÞ

��
1

: ð45Þ

If we introduce a cutoff lcut for the multipole l, it is
explicitly given by

DKLð1∥2Þ ¼
1

2
ln

�
detCð2Þ

ll0mm0

detCð1Þ
ll0mm0

�
þ 1

2
htalmðCð2ÞÞ−1ll0mm0a�l0m0 i1

−
1

2
htalmðCð1ÞÞ−1ll0mm0a�l0m0 i1 ð46Þ

FIG. 5. Distribution of the eigenvalues of the reduced correlation matrix Ass0 . The distribution should just be peaked on 1 for a universe
without any topological structure. Left: L ¼ RLSS and the mean is 0.984 and variance 1.07. Middle: L ¼ DLSS and the mean is 0.998 and
variance 0.32. Right: L ¼ 1.25DLSS and the mean is 0.9993 and variance 0.047. All assume lmax ¼ lcut ¼ 20.
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¼ 1

2
ln

�
detCð2Þ

ll0mm0

detCð1Þ
ll0mm0

�
þ 1

2
ðCð2ÞÞ−1ll0mm0 ðCð1ÞÞll0mm0

−
1

2
½lcutðlcut þ 2Þ − 3�; ð47Þ

and we conclude that

2DKLð1∥2Þ ¼ ln

�
detCð2Þ

ll0mm0

detCð1Þ
ll0mm0

�
þ
Xlcut
l¼2

Cð1Þ
l

Xl
m¼−l

ðCð2ÞÞ−1llmm

− lcutðlcut þ 2Þ þ 3: ð48Þ

As we are interested in cosmological signal only, we
start the sum at l ¼ 2 (i.e., s ¼ 4) to get rid of the
isotropic component l ¼ 0 and the dipole l ¼ 1. It is

easily seen on this expression that if Cð2Þ
ll0mm0 ¼ Cð1Þ

ll0mm0 ,
then DKLð1∥2Þ ¼ 0. We also notice that in the case of a
large cubic torus (L > DLSS),DKLðp∥qÞ ≈ 1

2
χ2, where χ2 is

the usual chi-square distribution.

C. Implementation for the topology

Our previous computation suggests that we work with
the matrix Ass0 . In the case of an isotropic Gaussian
distribution it reduces to δss0 . We now want to estimate
how fast does

Ass0 → δss0 asL → ∞. ð49Þ

From the previous expressions, the Kullback divergence is
given by

DKLð1∥2Þ ¼
1

2

�
ln j detAss0 j þ

Xlcutðlcutþ2Þ

s¼4

ðAÞ−1ss

−lcutðlcut þ 2Þ þ 3

�
: ð50Þ

It takes a simple expression in terms of the eigenvalues λi of
Ass0 as

DKLð1∥2Þ ¼
1

2

X
i

½ln jλij þ λ−1i − 1�: ð51Þ

It is obvious on this expression that DKLð1∥2Þ ¼ 0 when
Ass0 reduces to the identity. The main interest of this
approach is that, unlike the circles-in-the-sky method,
one can measure a distance even for spaces with a size
larger than DLSS.

D. Detection threshold

Let us introduce the Bayes factor B12 defined as

B12 ¼
P1ðdjM1Þ
P2ðdjM2Þ

: ð52Þ

If B12 > 1 (B12 < 1) it represents the increase (decrease) of
the credence in favor of model 1 (M1) versus model 2 (M2)
given the observed data [34]. It gives the factor by which
the relative odds between the two models have changed
after taking into account the data. The data are the alm in
this experiment.
If we take into account formula (43), we have

DKLð1∥2Þ ¼ hlnðB12Þi1: ð53Þ

There is thus a direct link between the Kullback
divergence and the Bayes factor. The Jeffrey scale, sum-
marized in Table I, is usually used to interpret the Bayes
factor. We notice that it is not modified if we consider
hlnðB12Þi1 instead of lnðB12Þ. As a consequence we obtain
the same levels of significance, with a threshold of
detectability for DKL ¼ 1. This threshold of detectability
quantifies the level at which we can distinguish a torus
topology from the isotropic model. IfDKL < 1, the result is
inconclusive and the torus topology cannot be distin-
guished from a Euclidean space. This threshold will be
represented as a black dotted line in our graphs.

IV. HOW LARGE A TORUS SPACE NEEDS TO BE
TO DISTINGUISH IT FROM AN INFINITE

UNIVERSE

A. Ideal experiment: Example of a cubic 3-torus

We have implemented the previous formulas in
Python. For a given lcut ≤ lmax, the complexity of the
computation of the Kullback-Leibler divergence scales
as Oðlmaxlcut

9L3Þ.
We present in this section the results for cubic 3-tori,

which depend on a single parameter, their size L. We let L
range from 0.4DLSS to 1.5DLSS so that the last tori are
larger than the last scattering surface. The correlation

matrices Cð2Þ
ss0 include multipoles up to lmax ¼ 20 that is

up to s ¼ 440 for all cutting to lcut ≤ lmax.

TABLE I. Jeffrey scale characterizing the relation between the
Bayes factor and the odds.

j lnðB12Þj Odds Strength of evidence

<1 <3∶1 Inconclusive
1 ≈3∶1 Weak evidence
2.5 ≈12∶1 Moderate evidence
5. ≈150∶1 Strong evidence
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On the one hand, we clearly see from Fig. 6, as expected,
that the Kullback divergence DKL decreases while the size
of the 3-torus L increases for a given lcut. We can
distinguish two general behaviors: (1) for L < DLSS, the
decrease occurs quite regularly whereas (2) for L > DLSS
there is a dramatic falloff and a change of slope at
L ¼ DLSS. This induces an abrupt difference of 3 orders
of magnitude from the previous regime.
On the other hand, DKL seems to increase quadratically

with lcut for a given fixed L < DLSS as seen in Fig. 7.
When L > DLSS, the curve reaches a plateau after a smooth
rise for a very small lcut as depicted in Fig. 8. For given lcut
and L, there is no significant influence of lmax on DKL: the
very small variations detected when lmax is increased are
only due to the increase of the number of k modes allowed
in the jl functions and are negligible.
For a given lcut, the Kullback-Leibler divergence DKL

decreases as the size of the 3-torus L increases, which was
intuitively expected as when L → ∞, the model gets closer
to the isotropic Euclidean space, so the difference between
the two models becomes thinner.
DKL also increases with lcut, i.e., when we include more

multipoles in the computation: the more alm taken, the
more precise the results are on small scales. For large tori,
we could have thought that we need to push the

computation to high lcut in order to obtain a large
Kullback-Leibler divergence from Euclidean space, but
we notice with Fig. 6 that increasing lcut does not allow us
to gain much above the threshold of detection. It is thus
useless to compute at very high lcut. This saturation effect
implies that for large tori, the dominant part of the
information about topology is effectively restricted to large
scales. Finally, for smaller tori with L < DLSS,DKL evolves
asymptotically as Oðlcut

2Þ for big lcut, roughly following
the number of available modes [sum over lcutðlcut þ 2Þ − 3
terms] but it does not seem that we can write an analytic
expression of DKLðL;lcut;lmaxÞ valid in all regimes. We
also perform the same analysis with rectangular tori and we
can see from Figs. 9 and 10 that the results are very similar
to the previous results obtained with cubic tori.
The results obtained are qualitatively consistent with

those briefly described in the appendix of Ref. [16],
although we do not reproduce precisely the same results.
There are also results very similar to ours in Ref. [25],
where the same Kullback-Leiber analysis was performed
on a nonclassical topology presenting an orbifold point.
These references both reproduce the smooth decrease of
DLSS before L ¼ DLSS and then the sharp decrease for
universes bigger than the observable Universe.

FIG. 6 (color online). Kullback-Leibler divergence at lmax ¼
30 for lcut ¼ 10 (purple), 20 (green), and 30 (blue) as a function
of the size of the cubic 3-torus.

FIG. 7 (color online). Kullback-Leibler divergence for cubic 3-
tori of size L ¼ 0.5DLSS (dark blue), 0.6DLSS (green), 0.7DLSS
(red), 0.8DLSS (pale blue), 0.9DLSS (purple), and DLSS (black) as
a function of lcut.

FIG. 8 (color online). Kullback-Leibler divergence for cubic 3-
tori of sizes DLSS (black), 1.1DLSS (blue), 1.2DLSS (green), and
1.3DLSS (red) as a function of lcut.

FIG. 9 (color online). Kullback-Leibler divergence for rectan-
gular 3-tori of sizes for Lx ¼ 0.6DLSS, Ly ¼ 0.8DLSS, and Lz ¼
DLSS (dotted black) and the associated cubic 3-tori L ¼ 0.6DLSS
(green), 0.8DLSS (pale blue), and DLSS (black) as a function of
lcut for lmax ¼ 20.
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One major difficulty is the detectability of very big tori
spaces. With synthetic ideal data the computation can be
pushed as far as possible, with computation time limits
only. With real data, we are also limited by the resolution of
the satellite, which gives an upper bound on lmax. The
computation is also limited by a threshold of detection
explained in Sec. III C: if DKL < 1, the detection is
considered nonvalid. As a consequence, we expect to be
able to realistically constrain spaces with tori sizes smaller
than 1.15DLSS, as shown in Fig. 6. In contrast with the
circles-in-the-sky method, which is relevant for L < DLSS
only, our study thus provides a way to investigate spaces
with tori larger than DLSS.
One can wonder if the results obtained with only the

Sachs-Wolfe contribution of the transfer function are
representative of the full transfer function case.
As it can be seen in Fig. 11 we get smaller values ofDKL

for 3-tori smaller than DLSS when the full transfer function
is used in place of the Sachs-Wolfe approximation. This
may be explained by the contribution of the integrated
Sachs-Wolfe (ISW) and Doppler effects at intermediate
scales. Indeed, the ISW contribution depends on the photon
path from the LSS to the observer, while the Doppler effect
depends on the viewing angle of the LSS. Thus, both effects

tend to decrease the correlations of matched LSS circles
and overall make it harder to distinguish tori spaces from
the Euclidean space. This effect is shown in [4]: the
detection of circles in the sky in small tori is excellent
with only the Sachs-Wolfe contribution, but if the Doppler
effect and the ISW are taken into account, the matched
circles are less correlated, and thus more difficult to detect.
However, in our study, for 3-tori bigger than DLSS the
curves are very similar. In the latter regime, the Sachs-
Wolfe effect is indeed dominant over the other effects. The
largest 3-torus distinguishable from a Euclidean space has
size L� ¼ 1.15DLSS. Once more, there is a similar result in
Ref. [25], where the specific nonclassical topology studied
is detectable until at least L ¼ 1.1DLSS.
The computation described here is idealized in the sense

that it does not take into account instrumental noise and
foreground contaminants, which are major issues of CMB
data processing. Their impact on DKL is studied in the
following sections.

B. Noise contribution

So far we have discussed the case of an ideal experiment.
In reality, many observational effects, such as, e.g., a
Galactic cut (to mitigate foreground contamination) or
anisotropic instrumental noise, induce nondiagonal com-
ponents to the observed correlation matrix, even in the case
of a trivial topology. A purely homogeneous white noise
contribution will not induce nondiagonal elements but will
make it harder to distinguish between different topologies.
The impact of these effects on the detectability of topology
therefore needs to be discussed. In the following, we will
investigate the impact of a homogeneous white noise
component on the Kullback-Leibler divergence. For that
purpose, we use noise levels typical of the COBE experi-
ment, as noise levels typical of WMAP or Planck are too
weak to have an impact on the DKL, which is predomi-
nantly sourced by large-scale modes where the CMB
anisotropies have the largest variance.
Let us redefine the temperature fluctuation as

½ΘðΩÞ�tot ¼ ΘðΩÞ þ nðΩÞ where n is the noise of the
satellite. We have, as before,

nlm ¼
Z

d2ΩY�
lmðΩÞnðΩÞ;

and ½alm�tot ¼ alm þ nlm, Nl0m0
lm ¼ hnlmn�l0m0 i, ½Cl0m0

lm �tot ¼
Cl0m0
lm þ Nl0m0

lm because the temperature fluctuations and the
noise are uncorrelated, with Nl ≡ 1

2lþ1

P
mjNlmj2.

These computations are performed assuming

Nl ¼ ðΩpixσ
2
pixÞelðlþ1Þσ2 ð54Þ

with Ωpix ¼ 4π
Npix

the global solid angle on the map pixels
and Npix the number of pixels in the map.

FIG. 10 (color online). Kullback-Leibler divergence for rec-
tangular 3-tori of sizes for Lx ¼ Ly ¼ 0.5DLSS and Lz ¼ DLSS
(dotted black) and the associated cubic 3-tori L ¼ 0.5DLSS (dark
blue) and L ¼ DLSS (black) as a function of lcut for lmax ¼ 20.

FIG. 11 (color online). Kullback divergence at lmax ¼ 20 for
lcut ¼ 20 (green) as a function of the size of the cubic 3-torus
with the full transfer function as a dotted line and only the Sachs-
Wolfe contribution as a plain line.
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Then we apply our Kullback divergence method on the
matrix to get

Ass0 ¼
½Cl0m0

lm �totffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC½L→∞�

l þ Nlm
lmÞðC½L→∞�

l0 þ Nl0m0
l0m0 Þ

q : ð55Þ

For a homogeneous white noise contribution, it
reduces to

Ass0 ¼
Cl0m0
lm þ δll0δmm0Nlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðC½L→∞�
l þ δll0δmm0NlÞðC½L→∞�

l0 þ δll0δmm0Nl0 Þ
q :

ð56Þ

We can see in Fig. 12 that the effect of the noise on the
Kullback-Leibler divergence remains negligible for large
tori, even in the case of large noise (COBE data). The loss
of information is more important for small tori, but
remains minor.

C. Galactic mask

In a realistic situation of CMB data contaminated by
Galactic foregrounds, the simplest procedure is to exclude
the most contaminated part of the sky around the Galactic
plane from the analysis. In this section, we investigate the
impact of a sky cut on our ability to distinguish between
a torus model and an isotropic one. Masking a part of the
sky is equivalent to the application of a projector that is
diagonal in real space, hence applying stricto sensu a
rank-deficient matrix on the data. We would therefore
naively expect a loss of information proportional to the
missing fraction of the sky, and therefore a corresponding
decrease of the Kullback divergence DKL.
However, since we are in practice limiting our

analysis to low multipoles, we have to investigate the
effect of the projector on the vector space spanned by
the spherical harmonics up to the maximum multipole
considered. As soon as we work in this band-limited
setting, it is impossible to get any combination of

spherical harmonics with a support strictly contained
inside the masked area, and therefore the masking
matrix becomes full rank again. We would then expect
(again, naively) to get the same results for DKL as in the
full-sky ideal case, since no information is lost in
principle. This is not the case however, as masking
adds an additional coupling between the multipoles, and
effectively transfers power to higher multipoles.
Therefore, at a fixed maximum multipole, we expect
a loss of information due to this power transfer to scales
that are not considered in the analysis.
For simplicity, we consider here an azimuthally sym-

metric Galactic mask centered on the equatorial plane (see
Fig. 13). Our former covariance matrices are modified as
follows:Cð1Þ → KCð1ÞKT andCð2Þ → KCð2ÞKT , whereK is
the matrix related to the mask

Kl0m0
lm ¼

Z
dΩY�

lmðΩÞMðΩÞYl0m0 ðΩÞ; ð57Þ

if we takeMðΩÞ as the function describing the effect of the
mask on the sphere,

Mðθ;ϕÞ ¼
	
1 if jθ − π=2j < i

0 else
ð58Þ

In the particular case of an azimuthal cut, the matrix K
does not couple to azimuthal modes [35]:

FIG. 12 (color online). Kullback divergence at lmax ¼ 30 for
lcut ¼ 30 as a function of the size of the 3-torus without noise
(green line) and with COBE noise (black doted line).

FIG. 13 (color online). The form of the mask for the sky cut is
taken to be very simple. It reduces to an azimuthal strip of
colatitude i (top), so that the map used for the analysis is given by
the bottom figure.
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Kl0m0
lm ¼ Kl0m

lm δmm0 : ð59Þ

We depict in Fig. 14 the net impact of masking our data
on DKL, for different lcut and different sizes of masks. We
observe, as expected, a noticeable decrease ofDKL for large
masks, but a negligible effect for smaller masks. This is
compatible with the results of Ref. [36] who found that for
sufficiently small masks and low multipoles, there is
effectively no loss of information compared to the full-sky
case.

V. POLARIZATION

Up to now we have only considered CMB temperature
anisotropies. Another source of information is the polari-
zation of the CMB, even if only 10% of the anisotropies are
expected to be polarized at maximum [37]. The CMB is
almost unpolarized before decoupling but Thompson scat-
tering tends to linearly polarize the radiation in the direction
normal to the surface of diffusion. This effect only occurs if
the radiation is anisotropic before scattering, with a quad-
rupolar anisotropy [1,37]. The goal of this section is to
investigate if the additional information brought by polari-
zation does or does not improve the detection of nontrivial
topologies. After briefly describing polarization formalism
on the sphere, we show the effect of a torus topology
on the polarized power spectra. We then generalize the
computation of the Kullback-Leibler divergence to include
polarization information and show how the detectability of
tori of size L < DLSS is enhanced in the case of an ideal
experiment.

A. Stokes parameters

Let us consider an electromagnetic wave

~E ¼ ~E0eiðωt−kzÞ; ð60Þ

with

~E0 ¼ Ex ~ex þ Ey ~ey; Ex ¼ A1e−iΘ1 and Ey ¼ A2e−iΘ2 :

ð61Þ

We define the four Stokes parameters as in Refs. [1,37],

I ¼ hA2
1i þ hA2

2i; ð62Þ

which represents the total intensity of the wave,

Q ¼ hA2
1i − hA2

2i; ð63Þ

which measures the excess of linear polarization in the x
direction compared to the y direction,

U ¼ 2hA1A2 cosðΘ1 − Θ2Þi; ð64Þ

which is determined via I2 ¼ Q2 þ U2 and is a charac-
terization of linear polarization, too, and

V ¼ 2hA1A2 sinðΘ1 − Θ2Þi; ð65Þ

which gives the difference between the positive and the
negative helicities and is thus related to circular polariza-
tion. If there is no initial circular polarization in the
radiation, then Thompson scattering will not generate
any. That is why we do not consider V. Furthermore I is
completely deduced from U and Q. As a consequence it is
sufficient to study CMB polarization to consider only Q
and U, which characterize entirely the polarization field.
The interesting quantity to study is ½Q� iU� [1,37]. We can
thus make an analogy with formula (17) by projecting these
functions on the adequate spherical harmonics basis as

½Q� iU�ðθ;φÞ ¼
X∞
l¼0

Xl
m¼−l

að�2Þ
lm Yð�2Þ

lm ðθ;φÞ: ð66Þ

Q and U are real numbers, so að−2Þlm
� ¼ að2Þl−m.

B. E-modes and B-modes

Let us introduce

Elm ¼ −
1

2
ðað2Þlm þ að−2Þlm Þ ð67Þ

and

Blm ¼ i
2
ðað2Þlm − að−2Þlm Þ: ð68Þ

We thus have two nonlocal parameters in real space E
and B describing totally the polarization field

Eðθ;φÞ ¼
X∞
l¼0

Xl
m¼−l

ElmYlmðθ;φÞ ð69Þ

FIG. 14 (color online). Impact of masking out data on the
Kullback-Leibler divergenceDKL between a cubic torus model of
size 0.5DLSS (black), as a function of the analysis bandwidth lcut,
and for different mask sizes, respectively, for i ¼ 60° (green), 18°
(blue), and 3.6° (red), as defined in Eq. (58).
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and

Bðθ;φÞ ¼
X∞
l¼0

Xl
m¼−l

BlmYlmðθ;φÞ: ð70Þ

There has been, to the present day, no detection of
B-modes. Theoretically E-modes are generated by scalar,
vector, and tensor perturbations, whereas B-modes are
generated by vector and tensor perturbations.
In Ref. [38], the limit of the tensor-to-scalar ratio r

evaluated with the WMAP data combined with baryon
acoustic oscillations and supernovae is found to be r <
0.22with a 95% confidence level. More recently the Planck
Collaboration [39] has established an upper boundary
r < 0.11 with a 95% confidence level. As a consequence,
even if B-modes are supposed to take part in the CMB
fluctuations, their contribution is negligible compared to
E-modes. That is why in the remaining part of the study, we
will only consider E-modes as in Ref. [21].

C. Power spectra

The full transfer functions for temperature fluctuations
and polarization have been obtained from the CAMB
software [40].
The cross-correlations between B and E, or B and T,

disappear because of parity properties. There are only EE,
BB, ET, and of course TT correlations (already studied in
Sec. II C 3.). In contrast to the temperature anisotropies,
polarization is entirely induced by scattering at the LSS,
and therefore cannot be present on scales much larger than
the Hubble scale at the epoch of recombination. Polarized
power spectra thus sharply decrease at low l, except for the
contribution, on very large scales, of scattered radiation due
to reionization [37].
Figures 15 and 16 show the EE and ET power spectra,

respectively, for different sizes of tori. As for the TT power
spectra, there is a remarkable suppression of power on the

largest scales for small tori, with oscillations at intermediate
scales.

D. Kullback-Leibler divergence and polarization

The goal of this section is to use the polarization of the
CMB with the Kullback-Leibler divergence. The imple-
mentation of the Kullback-Leibler divergence is similar to
what was done in Sec. III. We just have to change the
correlation matrix.
Figure 17 shows the Kullback-Leibler divergence of

3-tori models as a function of their size, based on E-mode
polarization only. One can notice that the shape of the curve
is smoother and less affected by the transition at L ¼ DLSS
than with pure temperature data TT. There is also another
transition at L ¼ 0.6DLSS in addition to the transition at
L ¼ DLSS. We can note that small tori are much better
distinguished with EE data than with TT data.
Unfortunately big tori are less constrained. The threshold
of detection gives a boundary of L� ¼ 1.03DLSS for the
biggest cubic 3-torus distinguishable with only EE data in
the ideal case with no noise and no mask.
These results are in very good agreement with [21]. In

these references, the circles-in-the-sky method is applied on
simulated polarization data and it appears that polarization

FIG. 15 (color online). EE angular power spectrum for 3-tori of
size L ¼ 0.25DLSS (blue), L ¼ 0.5DLSS (green), L ¼ DLSS (red),
and for the Euclidean space (dotted black line). The computation
was done by taking into account the full transfer functions from
CAMB. The norm is taken to be equal to 6CEE;iso

2 .

FIG. 16 (color online). ET angular power spectrum for 3-tori of
size L ¼ 0.25DLSS (blue), L ¼ 0.5DLSS (green), L ¼ DLSS (red),
and for the Euclidean space (dotted black line). The computation
was done by taking into account the full transfer functions from
CAMB. The norm is taken to be equal to 6CET;iso

2 .

FIG. 17 (color online). Kullback divergence with EE covari-
ance matrices for lmax ¼ 20, lcut ¼ 20 (blue line) as a function of
the size of the cubic 3-torus.
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is better than temperature to perform the search of pairs of
correlated circles into CMB data, and thus better to detect
tori of size smaller than the diameter of the last scattering
surface.

E. Full covariance matrix

One could be tempted to perform this analysis one more
time with ET matrices, but the matrices involved here being
non-Hermitian, it is not possible. However, we consider the
full (temperature, polarization) block correlation matrix

Cð2Þ ¼
"
CTT;torus CTE;torus

CET;torus CEE;torus

#
ð71Þ

Cð1Þ ¼
"
CTT;iso
l CTE;iso

l

CET;iso
l CEE;iso

l

#
ð72Þ

and compute the DKL results. Cð1Þ is block diagonal and
both Cð1Þ and Cð2Þ are still Hermitian. We will truncate each
of the blocks of the matrices at lcut ≤ lmax as before.
This generalization allows us to determine the best we

can do with full temperature and polarization CMB data in
the ideal case.
The computation of formula Eq. (47) needs to be

generalized to the full covariance matrix

2DKLð1∥2Þ ¼ ln

�
detCð2Þ

detCð1Þ

�
þ traceðMTðCð2Þ−1ÞMÞ

− 2½lcutðlcut þ 2Þ − 3�; ð73Þ

where Cð1Þ is decomposed via a Cholesky decomposition
with M a lower triangular matrix

Cð1Þ ¼ M:MT: ð74Þ
Figure 18 shows the evolution of Dtot

KL (with the full
covariance matrix) as a function of the size of the cubic
3-torus. Taking into account the full covariance matrix does
not improve the detectability of cubic 3-tori from Euclidean

space at L > DLSS. However around the size L ¼ 0.86DLSS

where DEE
KL and DTT

KL curves cross there is a good improve-
ment of the detectability due to the contribution of the
polarization. We can say that for L > DLSS, the detect-
ability of the topology is determined by the temperature
data. For small tori, the detectability of the topology is
determined by the polarization. Finally, around L ¼
0.86DLSS, both temperature and polarization data should
be taken into account.
Unfortunately, it means that if we are living in a Universe

bigger than the diameter of the last scattering surface DLSS,
the addition of the polarization will not improve signifi-
cantly the constraints on the cosmic topology obtained with
temperature data only.

VI. CONCLUSION

This article has revisited the signatures of a nontrivial
spatial topology on CMB anisotropy. After checking that
our code recovers the standard results on the 2-point
angular correlation function, we have focused on the
correlation matrix. While the circles-in-the-sky method
allows one to efficiently probe topology in a model-
independent way on scales smaller than the last scattering
surface, we have focused on the isotropization properties of
the correlation matrix when the size of the fundamental
polyhedron increases. This has been implemented in terms
of the Kullback-Leiber distance.
Applied to the family of cubic tori, we have concluded

that its size needs to be larger than 1.15 times the
diameter of the last scattering surface in order for the
finite space to be indistinguishable in practice from an
infinite universe. The effect of the noise was considered
and shown to be negligible for experiments such as
WMAP and Planck and we have also shown that the
conclusion is not affected by a reasonable Galactic cut.
We also applied this analysis to polarization simulation
and discovered that when considering only polarization
data, we have a smaller limit size of L� ¼ 1.03DLSS for
ideal experimental conditions. However, we learned that
the polarization is more effective for distinguishing small
3-tori. As a consequence, when both temperature and
polarization data are taken into account, it improves the
detectability only at L < DLSS.
To finish, we have investigated the signature of a

nontrivial topology on the 3-point function, focusing on
the equilateral bispectrum for simplicity.
Previous constraints on the topology of our Universe

with WMAP data can be found in [41,42] for example.
Planck results on topology in [22] show no detection of a
nontrivial topology. On the one hand the Planck
Collaboration finds no evidence for the existence of
back-to-back circles of correlation. The lower bound of
any spatial dimension L of the fundamental domain of our
Universe evaluated with this particular method is bigger
than 0.94DLSS, with a confidence level of 99%. On the

FIG. 18 (color online). DKL with full covariance matrices (solid
black line), TT matrices only (dotted green line), and EEmatrices
only (dotted blue line) at lmax ¼ 20.
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other hand the Bayesian analysis of the data shows no
strong evidence of a multiconnected universe, even if there
is a faint detection of a torus bigger than the diameter of the
last scattering surface. The future release of Planck
polarization data will allow us to improve considerably
the constraints on models whose size L is smaller thanDLSS
as explained in this paper. However, there is very little hope
for an improvement of the constraints for models bigger
than DLSS as seen earlier.
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APPENDIX A: SPHERICAL HARMONICS

We summarize some basic formulas on spherical har-
monics that have been used in this work. We refer to
Ref. [29] for further properties.
The integral over three spherical harmonics can be

obtained asZ
d2n̂Yl1m1

ðn̂ÞYl2m2
ðn̂ÞYl3m3

ðn̂Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r

×

�
l1 l2 l3

m1 m2 m3

��
l1 l2 l3

0 0 0

�
; ðA1Þ

where the quantities on the rhs are the Wigner 3j-symbol.
The first one, with no m-dependence, is nonvanishing only
if l1 þ l2 þ l3 is even.
The addition theorem is given by

Xl
m¼−l

Ylmðn̂ÞY�
lmðn̂Þ ¼

2lþ 1

4π
Plðn̂:n̂0Þ: ðA2Þ

If l1 þ l2 þ l3 ¼ 2g with g ∈ N, then the 3j-symbol
takes the form

�
l1 l2 l3

0 0 0

�

¼ ð−1Þg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2g − 2l1Þ!ð2g − 2l2Þ!ð2g − 2l3Þ!

ð2gþ 1Þ!

s

×
g!

ðg − l1Þ!ðg − l2Þ!ðg − l3Þ!
: ðA3Þ

APPENDIX B: NON-GAUSSIANITY

The effect of the topology is to kill some wave numbers
and thus project the allowed perturbations in Fourier space
to a subspace compatible with the boundary conditions
imposed by the topology. As we have discussed in Sec. II,
the relation between the eigenmodes is linear so that this
does not affect the statistical properties of the alm.
Nevertheless, and as seen on Fig. 2, the topology has an
imprint on the spectra.
The goal of this section is to generalize our former

analysis of the 2-point correlation function to the 3-point
function and understand the imprint of the topology on the
angular bispectrum

bm1m2m3

l1l2l3
¼ hal1m1

al2m2
al3m3

i: ðB1Þ

1. General formalism

For a Gaussian temperature, bm1m2m3

l1l2l3
¼ 0. Deviations

from Gaussianity are expected to be due to the nonlinear
evolution of the perturbation [43] or primordial non-
Gaussianity generated during inflation [44,45].
From the 2-point correlation matrix, one can construct

the angular power spectrum. Because of the violation of
global isotropy, the 3-point function must be described by
the six-dimensional quantity bm1m2m3

l1l2l3
. As a first insight we

however concentrate on the angular averaged bispectrum
Bl1l2l3 , which is the analog of the angular power spectrum
Cl and is defined as

Bl1l2l3 ¼
X

m1m2m3

�
l1 l2 l3

m1 m2 m3

�
bm1m2m3

l1l2l3
; ðB2Þ

where

�
l1 l2 l3

m1 m2 m3

�

are the Wigner 3j-symbols.
We described non-Gaussianity by decomposing the alm

as the sum of a Gaussian contribution aðLÞlm and of a non-

Gaussian one aðNLÞlm as

alm ¼ aðLÞlm þ aðNLÞlm : ðB3Þ

In the standard description [46] with Euclidean trivial
spatial topology, the alm are given by

aðLÞlm ¼ il
Z

d3k

ð2πÞ3=2 ϕLðkÞGlðkÞY�
lmðk̂Þ; ðB4Þ

which has to be compared to Eq. (26). Similarly, the non-
Gaussian contribution can be decomposed as
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aðNLÞlm ¼ il
Z

d3k

ð2πÞ3=2 ϕNLðkÞGlðkÞY�
lmðk̂Þ: ðB5Þ

ϕLðkÞ and ϕNLðkÞ correspond, respectively, to the Gaussian
and non-Gaussian primordial metric perturbations and
GlðkÞ the radiation transfer function described by
Eq. (27). As usual, the 2-point correlation function of
ϕL defines the linear power spectrum as

hϕLðk1ÞϕLðk2Þi ¼ ð2πÞ3δð3Þðk1 þ k2ÞPϕðk1Þ: ðB6Þ

ϕNL is conveniently described by a function fNL defined
from the 3-point function as

hϕLðk1ÞϕLðk2ÞϕNLðk3Þi ¼ 2ð2πÞ3fNLðk1; k2; k3ÞPϕðk1Þ
× Pϕðk2Þδð3Þðk1 þ k2 þ k3Þ:

ðB7Þ

fNL is a function of the wave numbers, the explicit
form of which depends on the details of the infla-
tionary model.
Let us now consider the case of a 3-torus. From the

general expression (31) and the particular expression of
the coefficients ξ given by Eq. (17) for a 3-torus, we have
that the previous expressions now take the form

aðLÞlm ¼ ð2πÞ3il
V

X
k

1

ð2πÞ3=2 ϕLðkÞGlðkÞY�
lmðk̂Þ ðB8Þ

and

aðNLÞlm ¼ ð2πÞ3il
V

X
k

1

ð2πÞ3=2 ϕNLðkÞGlðkÞY�
lmðk̂Þ; ðB9Þ

keeping in mind that the sum is taken on the wave
numbers defined by Eq. (9). The 2-point and 3-point
correlation functions are now defined as

hϕLðk1Þϕ�
Lðk2Þi ¼ VPϕðk1Þδk1;k2 ðB10Þ

and

hϕLðk1ÞϕLðk2Þϕ�
NLðk3Þi ¼ 2VfNLPϕðk1ÞPϕðk2Þδk1þk2;k3 :

ðB11Þ

As aðLÞl1m1
is Gaussian, we obviously have

haðLÞl1m1
aðLÞl2m2

aðLÞl3m3
i ¼ 0, so that

hal1m1
al2m2

al3m3
i ¼ haðNLÞl1m1

aðLÞl2m2
aðLÞl3m3

i þ ðperm:Þ
þOðfNL2Þ: ðB12Þ

2. Bispectrum in a 3-torus

From the previous definitions, it is easily checked that
for a 3-torus

haðLÞl1m1
aðLÞl2m2

aðNLÞl3m3
i ¼ ð2πÞ9=2il1þl2þl3

V3

×
X

k1;k2;k3

hϕLðk1ÞϕLðk2ÞϕNLðk3Þi

×Gl1ðk1ÞGl2
ðk2ÞGl3

ðk3Þ
× Y�

l1m1
ðk̂1ÞY�

l2m2
ðk̂2ÞY�

l3m3
ðk̂3Þ:

ðB13Þ

Using the definition (B11) and then summing on k3, this
reduces to

haðLÞl1m1
aðLÞl2m2

aðNLÞl3m3
i ¼ 2ð2πÞ9=2il1þl2þl3

V2

×
X
k1;k2

fNLðk1; k2ÞPϕðk1ÞPϕðk2Þ

×Glðk1ÞGlðk2ÞGlðjk1 þ k2jÞ
× Y�

l1m1
ðk̂1ÞY�

l2m2
ðk̂2ÞY�

l3m3
ð−k̂12Þ;

ðB14Þ

where we have defined k̂12 ≡ ðk1 þ k2Þ=jk1 þ k2j. The
bispectrum Bl1l2l3 is obtained by contracting with the
Wigner 3j-symbol and summing on ðm1; m2; m3Þ. Thanks
to the property (A1), we can replace the 3j-symbol by an
integral over three spherical harmonics to get

Bl1l2l3 ¼
6ð2πÞ9=2il1þl2þl3

V2

l1 l2 l3

0 0 0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π

ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

s X
k1;k2

fNLðk1; k2ÞPϕðk1ÞPϕðk2ÞGl1ðk1ÞGl2ðk2ÞGl3ðjk1 þ k2jÞ

×
Z

d2n̂

�X
m1

Yl1m1
ðn̂ÞY�

l1m1
ðk̂1Þ

��X
m2

Yl2m2
ðn̂ÞY�

l2m2
ðk̂2Þ

��X
m3

Yl3m3
ðn̂ÞY�

l3m3
ð−k̂12Þ

�
: ðB15Þ
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We remind that l1 þ l2 þ l3 is even. Each sum over mi
with i ∈ f1; 2; 3g can be expressed in terms of Legendre
polynomials using Eq. (A2) so that the bispectrum takes the
simple form

Bl1l2l3 ¼
βl1l2l3
V2

X
k1;k2

fNLðk1; k2ÞPϕðk1ÞPϕðk2ÞGl1
ðk1Þ

×Gl2
ðk2ÞGl3

ðjk1 þ k2jÞIlðk1; k2Þ; ðB16Þ

with

Ilðk1; k2Þ≡
Z

d2n̂Plðn̂:k̂1ÞPlðn̂:k̂2ÞPlðn̂:k̂12Þ ðB17Þ

and

βl1l2l3 ¼ 3
ffiffiffi
2

p
π2il1þl2þl3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þp
�
l1 l2 l3

0 0 0

� :

ðB18Þ

When l1 ¼ l2 ¼ l3 ¼ l and l1 þ l2 þ l3 is even, this
coefficient reduces to

βlll ¼ 3π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2lþ 1Þ3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3lþ 1Þ!
ðl!Þ3

s
ðl
2
Þ!3

ð3l
2
Þ! : ðB19Þ

Equation (B16) is general and can be computed as soon as
fNLðk1; k2Þ and PϕðkÞ are known.

3. Computation of Ilðk1;k2Þ
The previous expressions can be further simplified since

the kernel Ilðk1; k2Þ can be computed analytically. First, if
we define μ12 and K as

μ12 ≡ k̂1:k̂2 ¼ cosðβ12Þ; K ¼ k1
k2

; ðB20Þ

then Ilðk1; k2Þ can be written as a function of ðK; μ12Þ. To
that purpose, we define kþ, k− and û as

kþ ¼ k̂2 þ k̂1; ðB21Þ

k− ¼ k̂2 − k̂1; ðB22Þ

û ¼ k̂þ ∧ k̂−: ðB23Þ

They clearly satisfy kþ:k− ¼ 0. Now, any vector n can be
decomposed as

n ¼ n∥ þ n⊥û; ðB24Þ

where the first term is the projection on the plane defined by
ðk̂1; k̂2Þ and n⊥ ¼ n⊥û is perpendicular to this plane.
With θ being the angle between n and û, one has n⊥ ¼

cos θ and n∥ sin θ. Then, introducing α the angle between n̂

and k̂þ, we have the relations

n:kþ ¼ n∥kþ cos α ðB25Þ

n:k− ¼ n∥k− sin α ðB26Þ

n:k̂1 ¼ n∥
cos α − sin α

2
ðB27Þ

n:k̂2 ¼ n∥
cos αþ sin α

2
; ðB28Þ

from which we deduce that

n:k12 ¼
k1ðcos α − sin αÞ þ k2ðcos αþ sin αÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k12 þ k22 þ 2k1k2

p ; ðB29Þ

which can also be rewritten as

n:k12 ¼ n∥
ð1þ KÞ cos αþ ð1 − KÞ sin αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2μ12K þ K2
p : ðB30Þ

It follows that Il can be expressed only as a function of
ðK; μ12Þ after integration on θ and α as

IlðK; μ12Þ ¼
Z

dθ sin θdα

× Pl

�
sin θ½cos α − sin α�

2

�
Pl

�
sin θ½cos αþ sin α�

2

�
Pl

�
sin θ

ð1þ KÞ cos αþ ð1 − KÞ sin αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2μ12K þ K2

p �
: ðB31Þ

Given that the Legendre polynomials are of order l, this is an integration of a product of sine and cosine. We thus expect
Il to be of the form

I2pðK; μÞ ¼
P2p

i¼0

P
i
j¼0;iþj≤2p a

ðpÞ
ij Kiμj

ð1þ K2 þ 2KμÞp
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with aðpÞi0 ¼ 0 for i odd, and iþ j ≤ 2p with j ≤ i. These coefficients can be easily computed by, e.g., a Mathematica code.
As an example, the two first Il functions are given by

I0 ¼ 4π

I2 ¼ −
π½ 43

560
ðK2 þ 1Þ þ 3

20
μK�

K2 þ 2μK þ 1
: ðB32Þ

In conclusion, the bispectrum reduces to the triple sum

Blll ¼ βlll
V2

X
K;k2;μ12

fNLðK; k2; μ12ÞPϕðKk2ÞPϕðk2Þ

×Glðk2ÞGlðKk2ÞGl



k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2μ12K þ K2

q �
× IlðK; μ12Þ: ðB33Þ

Recent Planck results in [47] show no strong evidence of possible primordial non-Gaussianities.
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