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ABSTRACT
We perform a detailed comparison of the phase-space density traced by the particle distribution
in GADGET simulations to the result obtained with a spherical Vlasov solver using the splitting
algorithm. The systems considered are apodized Hénon spheres with two values of the virial
ratio, R � 0.1 and 0.5. After checking that spherical symmetry is well preserved by the N-body
simulations, visual and quantitative comparisons are performed. In particular, we introduce
new statistics, correlators and entropic estimators, based on the likelihood of whether N-
body simulations actually trace randomly the Vlasov phase-space density. When taking into
account the limits of both the N-body and the Vlasov codes, namely collective effects due to
the particle shot noise in the first case and diffusion and possible non-linear instabilities due
to finite resolution of the phase-space grid in the second case, we find a spectacular agreement
between both methods, even in regions of phase-space where non-trivial physical instabilities
develop. However, in the colder case, R = 0.1, it was not possible to prove actual numerical
convergence of the N-body results after a number of dynamical times, even with N = 108

particles.

Key words: gravitation – methods: numerical – galaxies: kinematics and dynamics – dark
matter.

1 IN T RO D U C T I O N

Stars in galaxies and dark matter in the Universe can be modelled
in phase-space as self-gravitating collisionless fluids obeying the
Vlasov–Poisson equations,

∂f

∂t
+ u.∇rf − ∇rφ.∇uf = 0, (1)

�rφ = 4πGρ = 4πG

∫
f (r, u, t) du, (2)

where f (r, u, t) represents the phase-space density at position r and
velocity u, φ is the gravitational potential, and G is the gravitational
constant.

In general, these equations do not have simple analytical solu-
tions. They are therefore often solved numerically. The most widely
used numerical scheme is the N-body approach and there exist many
different implementations, which mainly differ from each other in
the way Poisson equation is solved (see e.g. Bertschinger 1998;
Colombi 2001; Dolag et al. 2008; Dehnen & Read 2011 for reviews
on the subject). The N-body method attempts to sample the phase-
space density by an ensemble of Dirac functions that represent
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particles interacting with each other through gravitational force. In
order to avoid numerical artefacts due to the 1/r2 divergence of
the force at small distances, the gravitational potential is usually
replaced by an effective one so that the force is smoothed at scales
smaller than a softening parameter ε. This procedure corresponds
to assuming that the particles are clouds of size ε interacting with
each other.

Approximating the phase-space density with macroparticles,
however, has its own limitation. In particular, the close N-body
encounter is one of the most notable sources of numerical arte-
facts, in addition to more subtle collective effects induced by the
discrete nature of the distribution of the particles (see e.g. Aarseth,
Lin & Papaloizou 1988; Splinter et al. 1998; Boily, Athanassoula &
Kroupa 2002; Binney 2004; Joyce, Marcos & Sylos Labini 2009).
Of course, the time integration scheme and the way to solve the
Poisson equation numerically are well-known sources of errors,
even though not particular to the N-body method.

There are several previous studies that discussed the limitations
of the N-body results, including underestimating strong numerical
artefacts, particularly in the cold case where the initial velocity
dispersion is null (see e.g. Melott et al. 1997; Melott 2007), and long-
term non-linear resonant modes induced by the discrete nature of the
particles (see e.g. Alard & Colombi 2005; Colombi & Touma 2014).
We also note that it is not yet obvious that the fine inner structure of
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dark matter haloes is completely understood from physical and even
numerical points of view, despite numerous intensive convergences
studies of the N-body approach (see e.g. Moore et al. 1998; Jing
& Suto 2000, 2002; Power et al. 2003; Springel et al. 2008; Stadel
et al. 2009).

It is therefore highly desired to develop alternative numerical
methods to the traditional N-body approach so that one can under-
stand better its validity and fundamental limitations.

In the cold case, relevant to the current paradigm of cold dark mat-
ter scenario, the phase-space distribution function is supported by a
three-dimensional sheet evolving in six-dimensional phase-space,
which can be partitioned in a continuous way with an ensemble of
tetrahedra as proposed in recent works (see e.g. Shandarin, Habib &
Heitmann 2012; Hahn, Abel & Kaehler 2013). Unfortunately, the in-
creasing complexity of the structure of the system during evolution
requires more and more sampling elements, and the computational
cost becomes prohibitive after several dynamical time-scales.

In this article, we consider the warm case, in which the system
presents a non-negligible initial local velocity dispersion component
relative to gravitational potential energy. In this case, the phase-
space distribution function has to be sampled on a six-dimensional
mesh, which makes again the computational cost very high. There-
fore, we shall restrict to spherical systems, hence reducing the actual
number of dimensions of the dynamical setup to three.

There exist many methods to solve the Vlasov–Poisson equa-
tions in the warm case, mainly developed in plasma physics. One
of the most famous solvers is the splitting algorithm of Cheng
& Knorr (1976) and its numerous extensions (see e.g. Shoucri &
Gagne 1978; Sonnendrücker et al. 1999; Filbet, Sonnendrücker &
Bertrand 2001; Besse & Sonnendrücker 2003; Alard & Colombi
2005; Besse et al. 2008; Umeda 2008; Crouseilles, Mehrenberger
& Sonnendrücker 2010; Campos Pinto 2011; Rossmanith & Seal
2011; Güçlü, Christlieb & Hitchon 2014, but this list is far from
complete). This algorithm, that we shall adopt below, exploits di-
rectly the Liouville theorem: the phase-space density f (r, v, t) is
conserved along motion. Then the equations of the dynamics during
each time step are divided into ‘drift’ and ‘kick’ parts according to
Hamiltonian dynamics and are solved backwards,

f ∗(r, u) = f (r − u�t/2, u, t), Drift, (3)

f ∗∗(r, u) = f ∗(r, u + ∇rφ�t), Kick, (4)

f (r, u, t + �t) = f ∗∗(r − u�t/2, u), Drift, (5)

where ∇rφ is computed from f ∗. In practice the phase-space distri-
bution function is sampled on a mesh, and each step is performed by
using tracer particles located at mesh sites and following the equa-
tions of motion split as above. Resampling of f ∗, f ∗∗ and finally the
phase-space distribution function at the next time step is performed
by using an interpolation, e.g. based on the spline method.

The splitting scheme was applied for the first time in astron-
omy in early 1980’s, to one-dimensional systems (Fujiwara 1981),
galactic discs (Watanabe et al. 1981; Nishida et al. 1981) and spher-
ical systems (Fujiwara 1983). Nevertheless, it has been almost for-
gotten since then except for a few contributions (e.g. Hozumi,
Fujiwara & Kan-Ya 1996; Hozumi, Burkert & Fujiwara 2000)
that include a recent preliminary investigation of the algorithm in
full six-dimensional phase-space (Yoshikawa, Yoshida & Umemura
2013).

As mentioned above, however, solving fully six-dimensional
phase-space problems with sufficient accuracy is still very unre-
alistic now. In this article, therefore, we focus on spherical systems,

where phase-space is only three-dimensional; the three coordinates
of interest are the radial position r, the radial velocity v and the
angular momentum j. Following earlier works performed in the
framework of one-dimensional gravity (see e.g. Mineau, Feix &
Rouet 1990), we carry out a detailed comparison between an N-body
code, GADGET (Springel, Yoshida & White 2001; Springel 2005), and
an improved version of the splitting algorithm implementation by
Fujiwara (1983), VLASOLVE.1

Our goal is to check how well the particle distribution in GADGET

traces the phase-space density obtained from VLASOLVE, and to see
how the results depend on various parameters of the simulations,
in particular the number of particles in the N-body simulations and
the spatial resolution in the Vlasov code. We would however like to
emphasize here that the purpose of this article is not to compare the
performance of the two codes from the view-point of computational
cost.

While a fairly good physical insight is obtained through visual
inspection of the resulting phase-space density plots, we also present
a more quantitative comparison. To do so, we introduce correlators
and entropic estimators based on a likelihood approach, and ask
whether the N-body simulations can be considered as local Poisson
realizations of the Vlasov code phase-space density.

Because of our restrictive choice of the geometry of the system,
it is important to simulate spherical configurations that are known
to be stable against small anisotropic perturbations induced by the
shot noise of the particles. Indeed, we shall use the public treecode
GADGET without any specific modification to enforce spherical dy-
namics. Although an alternative approach consisting in enforcing
pure radial dynamics in GADGET (see e.g. Huss, Jain & Steinmetz
1999) may facilitate comparisons with the Vlasov code, we do not
adopt this approach in order to avoid any possible subtle biases in
the analyses.

In this respect, the Hénon sphere (Hénon 1964) is particularly
suited for our purpose since it is known to preserve well its spheri-
cal nature during the course of dynamics even when being simulated
with an N-body technique and, in particular, it is not prone to radial
orbit instability (see e.g. van Albada 1982; Hozumi et al. 1996; Roy
& Perez 2004; Barnes, Lanzel & Williams 2009). In this configu-
ration, the initial phase-space distribution function is isotropic and
Gaussian distributed in velocity space and given by

fH(r, v, j ) = ρ0

(2πσ 2
v )3/2

exp

(
−1

2

v2 + j 2/r2

σ 2
v

)
,

r ≤ RH, (6)

with (4π/3)ρ0R
3
H = M , the total mass of the system. In the simu-

lations discussed in this article, we work in units where G = 1, and
the initial radius of the Hénon sphere and its total mass are chosen
to be

M = 1, RH = 2, (7)

which fixes σ v in equation (6) once the virial ratio is given.
We shall consider ‘warm’ and ‘cold’ settings, which correspond

to the initial virial ratio R = |2T /W | = 5RHσ 2
v /M of ≈0.5 and

≈0.1, respectively, where T and W are the total kinetic and potential
energy of the system. The two classes of initial conditions exhibit
distinct features, in particular concerning the metastable state to
which the system relaxes through phase mixing. The warm system
builds a core-halo structure, with the halo displaying a power-law

1 VLASOLVE can be obtained by contacting the authors.
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profile ρ(r) ∼ r−4 (see e.g. Hénon 1964; Gott 1973; van Albada
1982). In contrast, the cold system develops a more concentrated
smaller core (see e.g. van Albada 1982; Sylos Labini 2012), but
never reaches a strictly stationary regime because a significant frac-
tion of the mass acquires positive energy and escapes from the
system (see e.g. van Albada 1982; Joyce et al. 2009; Sylos Labini
2012).

This article is organized as follows. In Section 2, we describe
our Vlasov solver, VLASOLVE. Section 3 provides information about
the N-body runs and the parameters used in GADGET. In Section 4,
we check that the N-body simulations stay indeed spherical during
evolution. Section 5 presents a visual inspection of the phase-space
density, which is followed by a quantitative statistical analysis in
Section 6. Finally, Section 7 summarizes and discusses our present
results.

2 T H E V L A S OV C O D E : VLASOLVE

Under spherical symmetry, the Vlasov equation reads

∂f

∂t
+ v

∂f

∂r
+

(
j 2

r3
− GMr

r2

)
∂f

∂v
= 0, (8)

where v is the radial component of the velocity, j is the angular
momentum, Mr = M(< r) is the mass inside a sphere of radius r.

Our code VLASOLVE solves equation (8) numerically with the split-
ting algorithm, following closely Fujiwara (1983).

Phase-space is discretized into a rectangular mesh of size (Nr,
Nv , Nj) for Rmin ≤ r ≤ Rmax, −vmax ≤ v ≤ vmax, and 0 ≤ j ≤ Jmax.
More specifically, we use a logarithmically equal interval for r, a
linearly equal interval for v. The kth-bin of the angular momentum
slice corresponds to the interval [Jmax(k − 1)2/N2

j , Jmaxk
2/N2

j ] and
is represented by jk = Jmax(k − 1/2)2/N2

j .
We modify the splitting algorithm using the fact that the angu-

lar momentum is an invariant of the Hamiltonian system. Hence,
one may treat each slice with a different value of j in phase-space
independently, except for gravitational coupling via the Poisson
equation. We include the inertial component of the force, j2/r3, in
the ‘drift’ step (equations 3 and 5), while the ‘kick’ step (equation 4)
corresponds solely to gravitational force,

f ∗(r, v, j ) = f [r∗(−�t/2), v∗(−�t/2), j , t], (9)

f ∗∗(r, v, j ) = f ∗(r, v + GMr/r
2�t, j ), (10)

f (r, v, j, t + �t) = f ∗∗[r∗(−�t/2), v∗(−�t/2), j ], (11)

where r∗ and v∗ solve analytically the motion in absence of gravity
starting from coordinates (r, v, j) in phase-space (see e.g. Colombi
& Touma 2008),

r∗(h) =

√√√√[√
2r2HK − j 2 + 2 sgn(v)HKh

]2
+ j 2

2HK
, (12)

v∗(h) = sgn(v)

√
2HK − j 2

r∗(h)2 , (13)

with HK ≡ v2/2 + j2/(2r2) (when v∗ < 0, these equations are valid
until v∗ = 0).

Because a non-zero angular momentum bends the trajectories in
(r, v) space, the drift step requires a two-dimensional interpolation
of the phase-space distribution function in (r, v) space, while the
kick step, which only modifies the velocities, can be completed
with a one-dimensional interpolation. We follow Fujiwara (1983),

Table 1. The parameters used for
the VLASOLVE simulations.

Nr Nv Nj �t

1024 1024 512 5 × 10−4

512 512 512 10−3

2048 2048 32 2.5 × 10−4

1024 1024 32 5 × 10−4

and carry out the interpolations using third-order splines. In this
interpolation scheme, however, the positivity of the phase-space
distribution function is not warranted, and numerical aliasing and
diffusion effects are expected when the phase-space distribution
function varies over scales of the order of, or smaller than, the mesh
element size.

In order to reduce such numerical artefacts, we modify equation
(6) as follows:

fH(r, v, j ) = ρ0

(2πσ 2
v )3/2

exp

(
−1

2

v2 + j 2/r2

σ 2
v

)

× 1

2

[
1 + erf

(
RH − r

�

)]
, r ≤ RH, (14)

with � = 1/2. Then, we recompute ρ0 in equation (14) so that
the total mass remains unity. This apodization slightly changes the
actual values of the virial ratio to R � 0.55 and 0.11, although we
shall still denote them by 0.5 and 0.1 just for simplicity. It may also
modify the long-term dynamical properties of the original Hénon
sphere relative to what is expected. This is why we check again the
extent to which the spherical nature of the system is retained in the
N-body simulations (Section 4).

Adopting a logarithmic binning for r is well suited for tracing
small-scale features around the centre of the system. This implies,
however, that radii smaller than a finite minimum value Rmin are
missing from the computing domain. A conventional trick to over-
come the problem is to assume a reflecting boundary at r = Rmin

(see e.g. Gott 1973; Fujiwara 1983). Usually, a systematic time-
lag between orbits in this method is neglected; particles reaching
the reflective kernel boundary instantly travel the 2Rmin distance
through the central region, while they should actually take a finite
time depending on their radial velocity and angular momentum.
In VLASOLVE, we improve the reflecting sphere method by taking
into account the actual time spent by particles travelling inside the
region r ≤ Rmin, which is made easily possible by neglecting the
gravitational force. Technical details about the implementation are
provided in Appendix A1.

To complete algorithmic details, Appendix A2 discusses the hy-
brid parallelization of VLASOLVE with OpenMP and MPI libraries.

In this paper, we perform four simulation runs with different
resolutions, each for R = 0.1 and 0.5 (Table 1). To cover the dy-
namical range of interest, the computing mesh uses Rmin = 0.01,
Rmax = 25 and Jmax = 1.6. The maximum amplitude of the velocity
is vmax = 2 and 4 for R = 0.5 and 0.1, respectively. With this choice
of the parameters, the computational domains are sufficiently large
to contain all the system up to the end of the simulations, which
corresponds to t = 100 for R = 0.5 and t = 35 for R = 0.1. As will
be illustrated later in phase-space density plots, these final epochs
are sufficient for the system to have relaxed at the coarse level to
a metastable state through mixing. Strictly speaking, this is not the
case in the R = 0.1 case because a fraction of the mass escapes
from the system (see e.g. van Albada 1982; Sylos Labini 2012), as
already mentioned in the Introduction.

MNRAS 450, 3724–3741 (2015)
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Figure 1. Evolution of the departure from spherical symmetry: ratios of the eigenvalues of the inertia tensor of the system as functions of time in the GADGET

simulations. To emphasize the small differences from unity, the quantity sgn(1 − raxis)log10|1 − raxis| is plotted as a function of time, where raxis = b/a
(upper curves on each panel) or b/c (lower curves) and a ≤ b ≤ c are the eigenvalues of the inertia tensor of the GADGET particle distribution. Each colour
corresponds to a given value of the number N of particles as indicated in the panels. Dashed regions correspond to the 1σ confidence level zone expected for a
particle distribution locally Poisson sampling the spherically symmetrical projected density profile ρ(r, t), where ρ(r, t) is estimated from interpolation of the
GADGET particle distribution in spherical shells. To calculate the average of raxis and the associated 1σ error contours, 100 local Poisson realizations have been
performed for each snapshot and value of N considered, except for N = 107 and N = 108 (on right-hand panel only for the latter). In the last cases, the dashed
regions correspond to an extrapolation of the results obtained from N = 106.

We adopt a constant time step �t throughout each simulation.
Just to stay on the conservative side, we choose a resolutely small
value of �t, despite the increased computational cost. Note however
that excessively small time step might artificially increase diffusion
effects related to successive interpolations of the phase-space dis-
tribution function (Hallé, private communication).

In Appendix A3, a comparison among all the simulations is per-
formed for R = 0.1. It indicates that diffusion and aliasing effects
discussed earlier are indeed significant, despite the apodization of
initial conditions, but do not seem to affect the dynamical proper-
ties of the system. Note that is tempting to undersample angular
momentum space since j is an invariant of the dynamics. However,
we show in this appendix that it is not wise to do so, because it can
provoke non-linear instabilities after a few dynamical times.

3 N- B O DY SI M U L ATI O N W I T H GADGET

We perform the N-body simulations using the latest version of
the GADGET-2 code (Springel 2005). Only the treecode part of this
‘TREEPM’ algorithm is employed. The particle number is varied from
N = 104 to 107 for R = 0.1 and 0.5. We also run an additional
simulation with N = 108 for R = 0.1.

We choose the parameters for GADGET runs as follows.

(i) The softening length of the gravitational force is set as
ε = 0.2N−1/3, that is about 1/16 of the initial mean interparticle
distance (4π/3N )1/3RH (this estimate neglects the effects of the
apodization 14).

(ii) In GADGET, each particle has its individual time step bounded
by dt = min[dtmax, (2ηε/|a|)1/2], where a is the acceleration of the
particle and η is a control parameter. We choose η = 0.025 and
�tmax = 0.01.

(iii) The tolerance parameter controlling the accuracy of
the relative cell-opening criterion (parameter designed by
ErrTolForceAcc in the documentation of GADGET, see equation 18
of Springel 2005) is set as αF = 0.005.

Appendix B presents the effects of changing these parameters on
the phase-space distribution function for simulations with N = 106

particles and a virial ratio of R = 0.1. These analyses, performed at
t = 15, confirm that the parameters used for the simulations of this
paper are reasonable. Interestingly, changing the softening length by
large factors does not influence much the results, as already noticed
previously in the literature (see e.g. Barnes et al. 2009), as long as
it is kept small enough.

4 C O N S I S T E N C Y C H E C K : S P H E R I C I T Y O F
T H E N- B O DY R E S U LT S

Before presenting comparisons between GADGET and VLASOLVE, it is
necessary to make sure that the sphericity of the system is preserved
in the GADGET simulations because our Vlasov runs are performed
assuming exact spherical symmetry. Fig. 1 shows, for different
values of the number of particles N, the evolution with time of
the ratios b/a and b/c, where a ≤ b ≤ c are the eigenvalues of the
inertia tensor of the particle distribution.

The dashed regions correspond to the 1σ zone obtained from an
ensemble of 100 local Poisson realizations of the spherical density
ρ(r), which is estimated from interpolation over spherical shells
from the GADGET particles. From the measurements in Fig. 1, devia-
tions from spherical symmetry due to the particle shot noise can be
roughly scaled to〈

b

a

〉
− 1 � 1 −

〈
b

c

〉
� 2σb/a � 2σb/c ∼ 1√

N
, (15)

where σ 2
b/a and σ 2

b/c are the variances of b/a and b/c obtained from
the dispersion over the 100 realizations. Note that equation (15)
is not intended to be accurate. The asphericity due to discreteness
should depend on details of the density profile, as shown in Fig. 1.
While it would be possible to compute in a perturbative way the
quantities in equation (15) from statistical analysis of the inertia
tensor assuming N � 1 and using error propagation formulae, this
is a cumbersome exercise far beyond the scope of this paper.

MNRAS 450, 3724–3741 (2015)
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We also note that another possible source of errors comes from
the position of the centre of the system. Indeed, an inaccurate deter-
mination of the centre obviously worsens the apparent agreement
with spherical symmetry. In the measurements presented in Fig. 1,
the inertia matrix is not computed with respect to the centre of grav-
ity of the particle distribution, which can be affected by the fact that
some particles can get far away from the system through N-body
relaxation. Instead, we determine the centre of the system using an
iterative procedure trying to optimize the match of the phase-space
distribution function with that of the Vlasov code, as detailed in
Section 6.1. This procedure is not free from errors either, and may
contribute to the fluctuations observed in the curves of Fig. 1.

Inspection of Fig. 1 shows that the measured ratios b/a and b/c
behave differently in the R = 0.5 and R = 0.1 simulations. In the
R = 0.5 case, the agreement of the measurements with the Poisson
prediction is in general good, with a slight trend to ellipticity, except
for the top red curve and the bottom green curve where the deviation
from spherical symmetry is larger than the Poisson expectation.
Still, in the case of R = 0.5, the system remains to a very good
approximation spherical for all values of N, given the expected
deviations due to pure statistical noise.

The curves representing the eigenvalue ratios are more steady
for R = 0.1 than for R = 0.5, which might be slightly puzzling at
first sight. However, a very plausible explanation of this difference
is that the initial velocity dispersion is larger for R = 0.5 than for
R = 0.1, hence adding a more prominent random component to the
time behaviour of the deviation from sphericity.

Regarding R = 0.1, deviations from spherical symmetry are
clearly more significant compared to local Poisson expectations
after t ≈ 3, roughly the collapse time of the sphere. While the
N = 104 run exhibits a deviation larger than 10 per cent, spherical
symmetry is confirmed to be a good approximation for N ≥ 105.

Finally, we also check deviations from spherical symmetry
for subsets of particles in excursions corresponding to f ≥ fth,
where f is the phase-space distribution function measured in the
1024 × 1024 × 512 VLASOLVE runs. For each value of the virial ra-
tio, two thresholds fth are chosen such that the excursions contained
initially about 90 and 60 per cent of the total mass (see bottom pan-
els of Fig. 6 below). Given the uncertainties in the measurements,
the above conclusions still hold: the properties of the deviations
from spherical symmetry, that we do not show here for simplicity,
do not indeed depend significantly on radius. We only notice a slight
improvement in the R = 0.5 case when considering particles in the
excursions.

5 PHASE-SPACE DENSITY: VISUAL
INSPECTION

Now, we are ready to perform direct comparisons between the
Vlasov and N-body simulation results. For this purpose, we consider
the phase-space density at different epochs (Figs 2–5 below). To be
more specific, we plot the constant angular momentum slice of f (r,
v, j) at j = 0.244, and its integral over the angular momentum,

fsummed(r, v) =
∫

f (r, v, j ) 2πjdj . (16)

Figs 2 and 3 plot f (r, v, j � 0.244) and fsummed(r, v), respectively,
for the VLASOLVE and GADGET simulations of the warm case, R = 0.5.
In both figures, snapshots at t = 10, 50, 80 and 100 are plotted from
left to right. The panels correspond to the VLASOLVE runs with (Nr,
Nv , Nj) = (2048, 2048, 32) and (1024, 1024, 512), the GADGET runs
with N = 107, 106 and 105, from top to bottom.

The overall conclusion of the visual inspection of Figs 2 and 3
is that the Vlasov solver and the N-body code exhibit very good
agreement with each other, probably even much more than expected.
In particular, both results present a remarkably similar instability
in the region 1 � r � 100.8, even in details, showing a surprising
reliability of the conventional N-body approach for these particular
initial conditions.

However, before reaching this conclusion, one has to take into
account several limiting factors. In particular, we should bear in
mind the fact that the VLASOLVE simulations are subject to significant
diffusion, which smears out fine details of the phase-space distri-
bution function. This diffusion effect is clearly visible at t = 50,
when comparing the outer filamentary structures observed in the
Vlasov simulations to the N-body result. Putting aside this coarse-
graining effect, the structures are exactly similar in both the N-body
and Vlasov simulations at t ≤ 50, even including small gaps in
the phase-space distribution function related to non-linear instabil-
ities that start building up. These instabilities grow further at later
epochs. They are considerably smeared out in the (1024, 1024,
512) VLASOLVE simulation but unquestionably present. Adding res-
olution in (r, v) space (at the cost of resolution in j) improves the
agreement with GADGET, which confirms that the instabilities ob-
served in the GADGET simulations are physical and not of numerical
nature.

Fig. 2 indicates that lowering the number of particles in the N-
body simulations may be interpreted as a coarse-graining: it makes
finer details more fuzzy but still keeps global features of the phase-
space density correctly. We also note that using a small number of
slices in j in the Vlasov solver does not seem to alter the dynamical
properties of the system despite the considerable level of aliasing it
introduces.

The situation is more complicated for the cold case, R = 0.1
(Figs 4 and 5). Up to t � 10, the above conclusions for R = 0.5 are
still valid. However, some instabilities emerge at t � 10 in the GADGET

simulations with N ≤ 106 particles as well as the (2048, 2048, 32)
Vlasov run. Until this epoch, the N ≥ 107 and the (1024, 1024, 512)
simulations agree perfectly with each other (modulo the smearing
effects already discussed above) and present a smooth phase-space
density without any sign of instability. On the other hand, the other
simulations exhibit slightly irregular phase-space density. Such a
trend is easily seen in Fig. 4, even though not so obvious in the
(2048, 2048, 32) Vlasov simulation. These irregularities appear as
well in the N ≥ 107 simulations but at later epochs, and then develop
in a dramatic way. A careful inspection of successive snapshots of
the simulations indeed suggests that the onset of these irregular
patterns comes later with increasing N.

As discussed in Appendices B and A3, these instabilities result
from the discrete nature of the system in the N-body case, and from
the aliasing effect due to sparse-sampling of the angular momen-
tum space in the Vlasov code. Since the pattern of the instabilities
changes significantly from one simulation to another unlike the
R = 0.5 case, they should be due to numerical, not physical, origin.

As shown in Appendix B, their presence is very insensitive to
the choice of softening, time step or parameters controlling force
accuracy in GADGET. They can therefore be reduced only by increas-
ing the number of particles and the resolution in the GADGET and
VLASOLVE simulations, respectively.

It is important to notice that even the N = 108 result might be
insufficient to describe properly the system at late epochs. In the
(1024, 1024, 512) Vlasov simulation, the phase-space distribution
function seems to be rather smooth at all times and the system
is free of instability, contrarily to the R = 0.5 case. However,
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Vlasov versus N-body: the Hénon sphere 3729

Figure 2. VLASOLVE versus GADGET in phase-space: phase-space density for R = 0.5 and averaged over j ∈ IJ = [0.225, 0.264]. Each column of panels
corresponds to a given value of time t, increasing from left to right. The first two lines of panels display f (r, v, j) for VLASOLVE simulations with (Nr, Nv ,
Nj) = (2048, 2048, 32) and (1024, 1024, 512), respectively, while the three bottom lines correspond to the N-body simulations, with various values of the
number of particles N as indicated on each panel. Note that the VLASOLVE simulation with (Nr, Nv , Nj) = (2048, 2048, 32) has only one angular momentum
slice, J = 0.244, in the interval IJ, so there is no blurring of the filamentary details of f (r, v, j) on the left-hand side of the peak of the distribution function
contrarily to the other cases. In the N-body case, f (r, v, j) was computed on the same mesh as the (1024, 1024, 32) VLASOLVE simulation using nearest grid point
interpolation, which explains the artefacts on the colour pattern in the last two lines of panels.
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3730 S. Colombi et al.

Figure 3. Same as in Fig. 2, but the phase-space distribution function has now been summed up over the whole available range of values of j ∈ [0, Jmax = 1.6],
where Jmax is the maximum sampled value of j for the VLASOLVE simulations.
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Vlasov versus N-body: the Hénon sphere 3731

Figure 4. Same as in Fig. 2, but for a colder initial configuration with virial ratio R = 0.1. There is also an additional line of panels corresponding to the
GADGET simulation with N = 108 particles. Note the large R tail escaping from the system, corresponding to a fraction of the mass with positive energy (see e.g.
van Albada 1982; Joyce et al. 2009; Sylos Labini 2012).

it is difficult at this point to know if actual physical instabilities
build up at late times in the R = 0.1 case, because diffusion in the
Vlasov simulation might prevent the appearance of some unstable
modes.

While the irregular patterns observed in Figs 4 and 5 are defi-
nitely of numerical nature, the fact that they develop so easily may
indicate that the system is prone to react non-linearly to small per-
turbations. Uneven gaps between the filaments of the phase-space
density can be observed at t = 15 (third column of Fig. 4), even
in the (1024, 1024, 512) Vlasov simulation, and one might ex-

pect that they correspond to seeds of actual physical instabilities.
In this respect, the system might actually develop, at some point,
physical unstable modes. These results are quite suggestive of what
was obtained previously with a spherical shell code for cold and
self-similar systems (Henriksen & Widrow 1997).

Even with our N = 108 particle simulation, it is not clear
whether these unstable modes dominate over collective effects
due to discreteness. A better understanding of the phenomenon
would require a convergence study using even higher-resolution
simulations.
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Figure 5. Same as in Fig. 3, but for R = 0.1 and with the additional N-body simulation involving N = 108 particles.

6 STATISTICAL ANALYSIS

6.1 Correlators and entropic estimators: definitions and
concepts

To perform a more accurate analysis, one can try to quantify to
which extent the particle distribution in the N-body simulations
can be considered as a local Poisson process of the phase-space
density calculated in the semi-Lagrangian code. To do so, we use, in
addition to entropic measurements described further, the following
correlators,

Ck ≡ μk

κk

, (17)

with

μk = M

N

N∑
i=1

[f (�i)]
k, (18)

κk =
∫

[f (�)]k+1d�. (19)

In these equations, k is a positive integer, f the VLASOLVE phase-space
density, M the total mass, d� ≡ 2πdr × dv × jdj and �i = (ri, vi,
ji), where ri, vi and ji are respectively the radial position, radial
velocity and angular momentum of each particle of the GADGET

simulation.
For a point set randomly sampling a smooth density distribution g,

the probability density p(�) of having a given particle at phase-space
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Vlasov versus N-body: the Hénon sphere 3733

position � is independent from the rest of the particle distribution
and is simply proportional to g(�),

p(�)d� = g(�)

M
d�. (20)

The density probability of having N particles at respective positions
�1, �2, . . . , �N is given by

P(�1, · · · , �N ) =
N∏

i=1

p(�i). (21)

Ensemble averaging of μk under the law g then reads

〈μk〉g = M

N

∫ N∑
i=1

[f (�i)]
k P(�1, · · · , �N ) d�1 · · · d�N, (22)

= M

N

N∑
i=1

∫
�

1

M
[f (�i)]

kg(�i)d�i

×
∏
j �=i

∫
�j

g(�j )

M
d�j (23)

=
∫

[f (�)]kg(�)d�, (24)

and

〈Ck〉g =
∫

[f (�)]kg(�)d�∫
[f (�)]k+1d�

. (25)

Hence, if the distributions g and f coincide, i.e. in our case, if
GADGET actually Poisson samples the VLASOLVE phase-space density,
one obtains 〈Ck〉g = f = 1 after ensemble averaging.

When increasing k, more weight is given to regions in phase-
space corresponding to larger values of f. For a point process totally
anticorrelated with f, Ck cancels, while its largest possible value is
given by Ck = (Mmax f k)/κk > 1, when all the particles stay in the
region where f is maximal.

An important issue is to compute properly the centre of the system
position in the GADGET simulations. In order to do this, we find the
coordinate origin maximizing C1, even though the result of such a
procedure can potentially lead to C1 > 1, to optimize the match
between concentrations of particles and local extrema of f.

The variance of Ck can also be calculated in an analogous way to
〈μk〉g,

�C2
k ≡ 〈C2

k 〉g − 〈Ck〉2
g (26)

= 1

κ2
k

[
M

N
〈μ2k〉g − 1

N
〈μk〉2

g

]
, (27)

which reduces to �C2
k = (M/N )(κ2k/κ

2
k ) − 1/N when f and g co-

incide. In practice, we shall use the following estimator for this
statistical error,

�C2
k � 1

κ2
k

[
M

N
μ2k − 1

N
μ2

k

]
, (28)

where μ2k and μk are directly estimated from the N-body simulation.
The log-likelihood that the GADGET particle distribution locally

Poisson samples the VLASOLVE phase-space density f can be written,
following the reasoning that leads to equation (21),

lnL =
N∑

i=1

ln

[
f (�i)

M

]
. (29)

However, the regionD where f > 0 being of finite extent, one expects
lnL = −∞ as soon as a particle escapesD, which is very likely, due

for instance to N-body relaxation. Furthermore, the Vlasov solver
does not guaranty the positivity of f. To take into account in a fair
way both the defects of the N-body and the Vlasov simulations, it
is better to restrict to a region Dth where f is strictly positive,

Dth ≡ {� such that f (�) ≥ fth, fth > 0}. (30)

The log-likelihood of having Q ≤ N particles in the region Dth and
the rest outside it (leaving the freedom of the remaining particles to
span all the space outside Dth) is given by a binomial law,

lnLb(Q, ν) = ln

[
N !

(N − Q)!Q!
νQ(1 − ν)N−Q

]
, (31)

where ν is the fractional mass inside Dth in the VLASOLVE simulation.
Hence, equation (29) simply becomes

lnL =
∑

�i∈Dth

ln

[
f (�i)

Mth

]
+ lnLb(Qth, ν), (32)

where Qth is the number of particles of the GADGET simulation inside
Dth and Mth = ∫

Dth
d� f (�).

Note that the distribution of particles which maximizes the first
term in equation (32) corresponds again to the case where all the
particles of Dth stay in the region where f is maximal, similarly to
the case when the correlator Ck is equal to its maximum possible
value. Clearly, this situation is not typical, but it is in fact the most
likely to consider when it can take place; this is why we maximize
C1 to estimate the centre of the N-body system, even though it might
turn to be larger than unity.

The expectation value of lnL under the law f can be obtained by
ensemble averaging

S(fth) ≡ − 1

νN
〈lnL〉f = Sf (fth) + Sb(fth), (33)

Sf (fth) ≡ −
∫

Dth

f (�)

Mth
ln

[
f (�)

Mth

]
d�, (34)

Sb(fth) ≡ − 1

νN

N∑
Q=0

Lb(Q, ν) lnLb(Q, ν). (35)

In the limit fth → 0, the quantity Sf(fth) reduces to the Gibbs entropy
of the system, which explains the choice of notations. Moreover, if
N � 1 and if the fractional mass ν inside the domain of interest
Dth is of order of unity, which is the case for our analyses, the term
Sb(fth) is in practice negligible compared to Sf(fth), so S(fth) depends
only weakly on the total number of particles, as expected.

The variance of lnL can be calculated likewise

σ 2
L ≡ 1

(νN )2

[〈lnL2〉f − 〈lnL〉2
f

]
(36)

� 1

νN

{∫
Dth

f (�)

Mth
ln2

[
f (�)

Mth

]
d� − ν[S(fth)]2

}
, (37)

where we have neglected, following the arguments developed ear-
lier, the contributions of Sb to the error.

To understand better the interest of using the statistics given
by equation (32), one can introduce the difference between the
measured value of the log-likelihood and its expectation under the
law f,

δS = 1

νN

[〈lnL〉f − lnL]
, (38)

whereL is given by expression (32) calculated for �i extracted from
a GADGET simulation. The quantity δS estimates the magnitude of
the difference between the underlying smooth phase-space density
g sampled by GADGET and the VLASOLVE phase-space density, f: its
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ensemble average other many GADGET realizations indeed reads,
when neglecting the binomial term in equation (32),

〈δS〉g �
∫

f ≥fth

1

Mth
[g(�) − f (�)] ln

[
f (�)

Mth

]
d�. (39)

Under the assumption that the N-body simulation Poisson samples
the distribution f, the magnitude of δS should be of the same order
of σ L.

6.2 Correlators and entropic estimators: measurements

Top panels of Fig. 6 show the quantity Sf (fth) as a function of
time for the various VLASOLVE simulations we performed and two
values of fth chosen such that approximately 90 and 60 per cent of
the total mass is initially inside the excursion Dth, respectively. The
quantity Sf(fth) is a Casimir invariant – that is an integral over a
function of f – and should thus be conserved during runtime if
the code was perfect. This not the case because of diffusion and
aliasing effects in (r, v) space: deviation from conservation of Sf

happens shortly after collapse time. Then there is a strong mixing
phase during which Sf increases, then possibly decreases, according
to the value of fth, and finally reaches an approximate plateau.
Deviation from conservation of Sf naturally happens sooner when
resolution in (r, v) space is smaller. Resolution in j space does
not have much influence on Sf because angular momentum is an
invariant of the dynamics. However, as clearly shown in Section 5
and in Appendix A3 for R = 0.1, we already know that sparse
sampling in j space is not recommended since it can introduce some
instabilities in the dynamics, even though this effect does not affect
much our likelihood measurements.

Middle panels of Fig. 6 show the quantity − lnL/(Nν) measured
in GADGET from the particles belonging to the excursion Dth as
a function of time, where lnL is given by equation (32). For a
given value of the threshold fth, if the GADGET simulations would
actually behave like Poisson realizations of the VLASOLVE ones, all the
coloured curves should be close to the solid line, which corresponds
to Sf. This is clearly not the case for small fth (upper group of
curves), except at early times. Increasing the number of particles
in the N-body simulation improves the agreement with the Vlasov
code for R = 0.5 but does not seem to have a convincing impact
in the R = 0.1 case: for fth = 0.02, all the N-body simulations
converge to the same plateau somewhat below the Vlasov code
result. On the contrary, for fth = 0.2 and R = 0.1, the agreement
between GADGET and VLASOLVE is striking at all times, except may
be for the N = 104 simulation during the strong mixing phase.
Note also, that at late times, all the N-body simulations converge
which each other, independently of fth and R, except again for the
N = 104 simulation with R = 0.1, but we know that this latter
presents significant deviations from spherical symmetry and should
be probably discarded for the analyses performed here.

To complete the analyses and understand better the results ob-
tained for the log-likelihood, the fractional mass inside the excur-
sions f ≥ fth is shown in bottom panels of Fig. 6. Again, this quantity
is a Casimir, so it should not change with time in the idealistic case.
In practice, while it is difficult to predict the effects of aliasing
on the VLASOLVE mass inside Dth, diffusion effects are more likely
to decrease it, especially by dilution of filamentary structures that
build up during the course of dynamics. In the R = 0.5 case, most
of the disagreement between GADGET likelihood and its expectation
given by VLASOLVE can be understood in terms of fractional mass:
effects related to the discrete nature of the N-body simulations seem
to spread particles away from Dth. However, this process is subtle

and seems to remain local as suggested by visual inspection of
Figs 2 and 3. We also checked that it does not affect dramatically
the projected density, ρ(r).

In the R = 0.1 case, the interpretation of the results is slightly more
complicated. For fth = 0.2, the GADGET fractional mass inside the
excursion Dth behaves similarly as in the R = 0.5 case as a function
of particle number. On the other hand, when examining the quantity
− lnL/(Nν), the N-body measurements converge with each other
and with VLASOLVE much better, especially after relaxation. This
means that particles left in Dth are redistributed in a non-trivial way,
such that the effects of the excursion mass-loss are compensated.
For fth = 0.02, even the N = 108 GADGET sample disagrees with
the VLASOLVE simulation. Clearly, the Vlasov simulation becomes
quickly defective in regions where f is small. On the other hand,
convergence of the GADGET simulations at late times might be mis-
leading. Indeed, we noticed from visual inspection of Figs 4 and 5
that some instabilities appeared in all of them as soon as t � 15,
although later when N is larger. Interestingly, the measurements in
the N = 107 and N = 108 simulations are nearly indistinguishable
from each other, which is a sign that we are nevertheless close to
numerical convergence.

Entropic measurements of Fig. 6 are confirmed, at least partly,
by Fig. 7. In particular, a depression of which the depth depends
on the number of particles in the N-body simulation appears on
all the curves. When increasing N, the amplitude of the depression
decreases and the occurrence of its maximum amplitude is delayed,
independently of the actual dynamical state of the system. Again, it
can certainly be attributed to collective effects due to Poisson noise.
Overall agreement between N-body and Vlasov codes improves
when increasing the number of particles in the N-body simulation.
For R = 0.5, this is rather independent of k in equation (17), i.e. of
the fact of putting more or less weight to overdense regions in phase-
space. In the R = 0.1 case, putting aside the depression of which the
depth depends on the number of particles, the correlator C1 starts
to decrease with time at t ∼ 10. This can be mainly attributed to
defects in the Vlasov simulation in underdense regions as discussed
earlier. For k ≥ 2, which gives more weight to higher values of the
phase-space density, the correlator indeed stays steady as a function
of time (again putting aside the N-dependent depression). However,
one notices for k = 3 a net increase with time of the correlator for
the simulation with N = 104 particles, but let us remind that this
simulation presents significant deviations from spherical symmetry.

7 C O N C L U S I O N

In this paper, we have compared the phase-space distribution func-
tion traced by the particle distribution in GADGET simulations to the
results obtained with our new Vlasov code VLASOLVE for spherical
systems, an improved version of the splitting algorithm of Fujiwara
(1983). For the specific comparison, we have chosen (apodized)
Hénon spheres, which are known to be insensitive to radial orbit
instability and in particular to preserve the spherical nature of the
system. The latter property is confirmed from simulations run with
three-dimensional N-body codes. We considered two values of the
initial virial ratio of the spheres, R = 0.5 and R = 0.1, corresponding
to ‘warm’ and ‘cold’ configurations, respectively.

We have plotted detailed structures of the phase-space distribu-
tion functions varying the spatial/mass resolution of the numerical
code in a systematic fashion. We have conducted further a quan-
titative analysis by introducing two new statistical tools. The first
one is of entropic nature and corresponds to the log-likelihood
quantifying to which extent the N-body results represent a local
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Vlasov versus N-body: the Hénon sphere 3735

Figure 6. Entropic measurements: effects of VLASOLVE resolution (top two panels) and GADGET number of particles (four bottom panels). The left- and right-hand
panels correspond, respectively, to R = 0.5 and 0.1. On the top panels, the quantity Sf (fth) given by equation (34) is plotted as a function of time for the
Vlasov simulations and for two values of fth indicated on each panel corresponding to approximately initially keeping 90 and 60 per cent of the mass inside
the excursion. Each curve corresponds to a given resolution as indicated on each panel (the dashes are nearly superposed to the solid line). The top/bottom
group of four curves correspond to a smaller/larger value of fth. On the middle panels, the solid line is the same as on the top panels, while the coloured curves
display, for each value of the particle number N in the GADGET simulations, the quantity − lnL/(Nν) as a function of time, where lnL is given by equation
(32). If the N-body simulations would Poisson sample the VLASOLVE phase-space density, the ensemble average of this quantity over many GADGET realizations
should match the solid line (except for a negligible correction due to the Sb term in equation 34). Finally, the bottom panels show the fractional mass as a
function of time for the two values of fth considered. On the two bottom right panels, there is an additional purple curve nearly indistinguishable from the red
one, corresponding to the additional simulation with 100 million particles we performed for R = 0.1. In the four bottom panels, the thickness of each coloured
curve takes into account statistical errors (equation 37 for lnL). In addition, for the middle panels, systematic errors due to the interpolation of the phase-space
distribution function in the VLASOLVE simulations also contribute to the estimated errors. In the latter case, we compute f(�i) both using nearest grid point and
linear interpolation from the values of f on the computational mesh. The difference between the two interpolating methods adds to the thickness of the curves.
Note that we use the (1024, 1024, 512) VLASOLVE simulation to perform the comparison to N-body results, to minimize the effects of interpolation.
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Figure 7. Correlators between VLASOLVE and GADGET as functions of time. These quantities, defined in equations (17)–(19), are plotted for k = 1, 2, 3 increasing
from top to bottom, while left- and right-hand panels correspond to R = 0.5 and 0.1, respectively. The thickness of the curves, analogously to Fig. 6, takes into
account statistical errors according to equation (28) using the measured value of ν2k and νk and systematic errors due to the interpolation of the phase-space
density in the VLASOLVE samples. Note that there is an additional purple curve on each panel of the right column corresponding to the 100 million particles
simulation.

Poisson sampling of the Vlasov phase-space density. The second
tool is a correlator of order k, proportional to the integral over phase-
space of the product between the Vlasov phase-space density raised
to the power k and the particle distribution function.

The overall conclusion is that both the Vlasov and N-body meth-
ods agree remarkably well with each other, both from the visual and
statistical points of view, if sufficient resolution is employed. Given
the completely different numerical approaches to collisionless
dynamics, this is not trivial at all, and the degree of agreement

that we have shown for the first time is perhaps even better than
what had been expected before. This is reassuring for numerous
previous results that have been almost exclusively obtained from
the N-body method.

Nevertheless there are still unsolved subtle issues in details:

(i) When performing a visual inspection of the phase-space dis-
tribution function in the cold case, R = 0.1, although still good at
the coarse level, we find that the level of agreement between the
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N-body and the Vlasov codes worsens at small scales after a few
dynamical times. This is mainly due to collective effects induced
by the shot noise of the particles in the N-body simulations (and not
to close particle encounters). Even with N = 108 particles, we are
not able to prove numerical convergence of the N-body results. The
comparison at this level, however, is made difficult by the fact that
the Vlasov code is significantly diffusive, which might prevent the
development of a variety of physical unstable modes.

(ii) While the statistical tools do not provide as rich and intuitive
information as visual inspection, they identify some subtle effects.
In particular, when taking into account general trends due to dif-
fusion in the Vlasov code, significant for R = 0.1, we notice that
the match between GADGET and VLASOLVE worsens with time, then
improves. The degree of the mismatch increases, and it shows up
earlier, when reducing the number of particles in the N-body simu-
lation. Again, this may be ascribed to collective effects due to the
shot noise of the particles. Nevertheless, the very good match be-
tween the GADGET simulations with N = 107 and N = 108 particles
may suggest that convergence is nearly reached in terms of number
of particles and information theory, even if it is not fully proved.

It is worth mentioning again that the collective effect mentioned
above is not related to N-body relaxation, but rather results from
random Poisson fluctuations. This can be formulated as follows (see
Aarseth et al. 1988; Henriksen & Widrow 1997; Boily et al. 2002;
Joyce et al. 2009 for similar arguments): a given particle at some
distance r from the centre of the system feels a force proportional
to the number Nin of particles inside the sphere of radius r. Poisson
fluctuations imply thus that there is a relative error of the order
of 1/

√
Nin on this force. Importantly, the inner number of parti-

cles Nin changes with time with random fluctuations around the
mean behaviour. These fluctuations can be considered as a corre-
lated random walk. Indeed, because of the finite velocity dispersion,
particles cross both inwards and outwards the frontier of the sphere
of radius r. A larger velocity dispersion weakens the amount of
correlation, thus makes the errors on the force more random, which
should have a fuzzy effect on the phase-space density, similarly as
collisional relaxation: this is what we can expect for R = 0.5 and as
observed on Fig. 3. On the contrary, a smaller velocity dispersion
makes the error on the force more systematic which should induce
coherent distortions of the phase-space density: this is what we can
expect for R = 0.1 and confirmed by visual inspection of Fig. 5.
This effect has non-trivial consequences on the energy spectrum of
the particles, particularly in cold configurations (Joyce et al. 2009).
It certainly explains as well the deviations between VLASOLVE and
GADGET observed when measuring the statistical estimators defined
in this paper. According to Aarseth et al. (1988), this collective effect
is dominant over N-body relaxation, and, as confirmed by our de-
tailed numerical tests in Appendix B, is not significantly influenced
by softening.

Note as well that shot noise creates anisotropies in the system,
i.e. deviations from spherical symmetry that may be eventually
amplified. Aarseth et al. (1988) argue that this effect is subdominant
compared to the radial component of the noise-induced perturbation
when considering the collapse of an homogeneous sphere. Although
their calculation is performed only prior to collapse and in the cold
case, we believe that the conclusion still remains valid for the kind of
initial conditions studied in this paper, as suggested by our numerical
experiments that seem to preserve well spherical symmetry.

Clearly, the collective effect due to particle shot noise is a real
problem for simulations of close to cold spherical systems when
it comes to examine fine structures of the phase-space density. We

were not able to prove convergence of the phase-space density in
the R = 0.1 case even for an N = 108 particle simulation. Notably,
this may have non-trivial consequences on the fine structure of
simulated dark matter haloes, where numerical convergence in terms
of number of particles might not have been reached yet despite
the numerous intensive studies. Indeed, convergence towards the
continuous limit might be much slower than expected, hence giving
the false impression that it is achieved.
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Hénon M., 1964, Ann. Astrophys., 27, 83
Henriksen R. N., Widrow L. M., 1997, Phys. Rev. Lett., 78, 3426
Hozumi S., Fujiwara T., Kan-Ya Y., 1996, PASJ, 48, 503
Hozumi S., Burkert A., Fujiwara T., 2000, MNRAS, 311, 377
Huss A., Jain B., Steinmetz M., 1999, ApJ, 517, 64
Jing Y. P., Suto Y., 2000, ApJ, 529, L69
Jing Y. P., Suto Y., 2002, ApJ, 574, 538
Joyce M., Marcos B., Sylos Labini F., 2009, MNRAS, 397, 775
Melott A. L., 2007, preprint (arXiv:0709.0745)
Melott A. L., Shandarin S. F., Splinter R. J., Suto Y., 1997, ApJ, 479, L79
Mineau P., Feix M. R., Rouet J. L., 1990, A&A, 228, 344
Moore B., Governato F., Quinn T., Stadel J., Lake G., 1998, ApJ, 499, L5

MNRAS 450, 3724–3741 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/450/4/3724/991225 by guest on 28 April 2022

http://arxiv.org/abs/1112.1859
http://arxiv.org/abs/0709.0745


3738 S. Colombi et al.

Nishida M. T., Yoshizawa M., Watanabe Y., Inagaki S., Kato S., 1981, PASJ,
33, 567

Power C., Navarro J. F., Jenkins A., Frenk C. S., White S. D. M., Springel
V., Stadel J., Quinn T., 2003, MNRAS, 338, 14

Rossmanith J. A., Seal D. C., 2011, J. Comput. Phys., 230, 6203
Roy F., Perez J., 2004, MNRAS, 348, 62
Shandarin S., Habib S., Heitmann K., 2012, Phys. Rev. D, 85, 083005
Shoucri M. M., Gagne R. R. J., 1978, J. Comput. Phys., 27, 315
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APPENDIX A : V LASOV SOLVER: DETA ILS O N
T H E A L G O R I T H M

A1 Reflecting boundaries with time delay

In this appendix, we explain how reflecting boundaries conditions
with time delay are implemented in VLASOLVE.

If the mass inside the sphere of radius Rmin is neglected, the
trajectories followed by each test particle associated with a grid site
that penetrates the sphere are fixed and do not depend on time. This
property, combined with the fact that we use a constant time step,
allows us to pre-compute these trajectories once and for all. The
delayed central sphere method is then implemented by associating
a linked list to each grid site whose associate test particle radial
position r half a time step backward in time is such that r ≤ Rmin.
Each linked list contains as many elements as the number of time

steps needed for the particle to travel a distance of 2Rmin and the
nth element in the list stores the coordinates of the test particle
n time steps backward in time. Before starting the simulation, we
initialize each element coordinate and the corresponding value of
the initial distribution function. For each time step, the value of each
element is then simply updated by assigning to it the value of its
successor while the last element value, whose coordinates fall inside
the computing domain, r ≥ Rmin, is interpolated. A comparison of the
results obtained with the reflective central sphere to our improved
delayed central sphere is shown on Fig. A1. The improvements are
unquestionable.

A2 Parallelization issues

We implemented a hybrid shared and distributed memory version
of VLASOLVE via the OpenMP and MPI libraries, respectively.

Shared memory parallelism is relatively straightforward to
achieve in the spherically symmetric case, by taking advantage of
the fact that the angular momentum j is a conserved quantity. Spline
interpolations, which represent the most expensive part of the code,
can thus be computed independently for each slice of constant j. We
therefore easily reach an almost perfect parallelization up to a num-
ber of tasks equal to the grid resolution Nj of angular momentum
space, which is typically larger than the number of available cores
on a shared memory system.

Distributed memory parallelization via MPI is not as simple. In-
deed, spline interpolations are intrinsically non-local, which makes
the parallelization along dimensions other than j non-trivial. Stick-
ing with the trivial parallelization described above unfortunately
limits the maximum total number of processes running in parallel
to Nj, which is suboptimal. We overcome this limitation by per-
forming MPI domain decomposition in (r, v) space, following the
approach of Crouseilles, Latu & Sonnendrücker (2009), who pro-
pose to localize the cubic spline interpolation to each domain by
using Hermite boundary conditions between the domains with an
ad hoc reconstruction of the derivatives.

Figure A1. Comparison between the reflecting central sphere method (left-hand panel) and our improved delayed central sphere implementation (right-hand
panel). A simulation of a Hénon sphere with (Nr, Nv , Nj) = (200, 200, 200) and a virial ratio R = 0.5 is shown at t = 30 in the (r, u = 0, j) plane. The systematic
artificial speed increase undergone by orbits that penetrate the central region compared to their higher angular momentum counterparts can clearly be observed
at low j on the left-hand panel where a reflective sphere is used, while the distribution function does not exhibit such spurious features when a delayed kernel
is used (right-hand panel).
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Figure A2. Effect of resolution in the Vlasov code: phase-space density for R = 0.1 and j = 0.244. Each column of panels corresponds to a given value of
time t, increasing from left to right, while each line correspond to a given resolution, (Nr, Nv , Nj) = (2048, 2048, 32), (1024, 1024, 32), (1024, 1024, 512) and
(512, 512, 512) from top to bottom, as indicated on each panel. The pictures show only the f ≥ 0 part of the phase-space density, while it can actually become
negative because of aliasing. However, this choice of representation does not hide aliased regions. The prominent one corresponds to the textured zone above
the large r tail of the system on the right-hand panels.

A3 Effects of resolution

Figs A2 and A3 show, respectively, for j = 0.244 and integrated over
angular momentum, the phase-space distribution function measured
in VLASOLVE simulations with different resolutions. These simula-
tions have been performed for a Hénon sphere with initial virial
ratio R = 0.1. Beside the very good global agreement between the
various runs, these figures bring out three effects, which increase
when the resolution of the phase-space grid is reduced:

(i) Diffusion smearing out fine details that build up in phase-
space during the course of dynamics, for instance clearly visible
when one compares top to bottom middle panels of Fig. A2. One
concern with diffusion is that it might prevent the appearance of
unstable modes. However, we did not perform any simulation in
this work that would prove this.

(ii) Aliasing due to artificial oscillations in the spline interpo-
lation: for the problem studied here, aliasing becomes particularly
visible after relaxation in the region above the large r tail, but this
does not have significant impact on the dynamics.

(iii) Aliasing due to undersampling angular momentum space:
it is visible at all times when one examines the phase-space dis-
tribution function integrated over angular momentum (top panels
of Fig. A3) and can have dramatic consequences on the dynamics.
The two top lines of panels of Figs A2 and A3, corresponding to
a sparse sampling in j space with only 32 slices, indeed show the

appearance of an instability, which presents, on the third column
of these figures, the same pattern whether (Nr, Nv) = (2048, 2048)
or (1024, 1024). This instability is not present in the simulations
with higher resolution in j, as shown by the two bottom lines of
panels. Note that the presence of this instability depends on initial
conditions: for R = 0.5, we did not notice it for the time coverage
considered, t ≤ 100 (upper line of panels of Figs 2 and 3).

APPENDI X B: N- B O DY SI M U L AT I O N S :
E X P L O R ATI O N O F TH E C O N T RO L
PARAMETER SPAC E

In Section 5, we noticed the presence of an instability in the R = 0.1
N-body simulations. One aim of this appendix is to confirm that
this instability is related to the number of particles used in the
simulations and not to any other control parameter of the GADGET

code. In the same time, it is also an opportunity to check that our
fiducial choice of the GADGET control parameters, given in Section 3,
is correct.

Fig. B1 illustrates the main results of the tests we performed for
simulations with 106 particles. These tests consisted in changing
the softening length of the force, the maximum time step value
and the tolerance parameter αF controlling the errors on the force.
Improving the accuracy of the force calculation or dividing the max-
imum time step dtmax by a factor 50, which corresponds to imposing
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Figure A3. Same as in Fig. A2, but the phase-space distribution function has now been summed up over the whole available range of values of j ∈ [0,
Jmax = 1.6], where Jmax is the maximum sampled value of j.

Figure B1. Effect of changing the important control parameters in GADGET. The phase-space density is shown at t = 15 for GADGET simulations with the same
initial conditions corresponding to the Hénon sphere with R = 0.1 and involving N = 106 particles. In each of the simulations, one control parameter was
changed compared to the fiduciary simulation shown on left-hand panel and which uses the settings of Section 3. On top- and bottom-left panels, the softening
length of the force was decreased by a factor 5 and increased by a factor 10, respectively. In top-right panel, the maximum possible time step was divided by a
factor 50, while in the bottom-right panel, the tolerance parameter αF defined in Section 3 was divided by a factor 5.

dt ≤ 2 × 10−4, does not change the results. This is confirmed as
well by the measurements of the correlators Ck introduced in Sec-
tion 6, that we do not show here for simplicity. Only the value of the
softening parameter of the force ε has an impact on the dynamics
for the tests we did. Reducing ε by a factor 5 seems to slightly blur

the phase-space density, although this effect is difficult to decipher,
while increasing ε by a factor 10 sharpens the fine structures of the
phase-space density. Since ε controls the intensity of close encoun-
ters between particles, this is not surprising. Note that increasing
ε by a factor 10 is probably an exaggeration, because it worsens
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dramatically the match during the mixing phase between the N-body
simulation and the Vlasov code when examining the correlators Ck,
a sign that ε is probably getting too close to a physical characteristic
scale of the system.2 We indeed noticed that increasing ε only by a
factor 5 does not have much impact, on the other hand, on Ck. How-
ever, all these effects do not affect the amplitude of the large-scale
irregularities on the pattern of f (r, v, j), which are present what-
ever value of ε. This is also a strong indication that close particle
encounters are not at the origin of these irregularities.

2 Increasing ε by a factor 10 gives ε = 0.02, to be compared for example to
the size of the core of the system after relaxation, Rc � 0.1.

We can therefore only conclude that these irregularities and the
associated non-linear instability are the result of non-trivial col-
lective effects related to particle shot noise. This argument is also
supported by the fact that in addition, the moment of their appear-
ance is particle number dependent, as discussed in Section 5.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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