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We consider the version of Hořava gravity where “detailed balance” is consistently implemented, so as to
limit the huge proliferation of couplings in the full theory and obtain healthy dynamics at low energy. Since
a superpotential which is third-order in spatial derivatives is not sufficient to guarantee the power-counting
renormalizability of the spin-0 graviton, one needs to go an order beyond in derivatives, building a
superpotential up to fourth-order spatial derivatives. Here we perturb the action to quadratic order around
flat space and show that the power-counting renormalizability of the spin-0 graviton is achieved only by
setting to zero a specific coupling of the theory, while the spin-2 graviton is always power-counting
renormalizable for any choice of the couplings. This result raises serious doubts about the use of detailed
balance.

DOI: 10.1103/PhysRevD.91.124029 PACS numbers: 04.60.-m, 04.50.Kd, 11.30.Cp

Hořava gravity [1,2] has attracted a lot of attention since
it was first proposed, as it encodes all the necessary
ingredients to be both a renormalizable theory of gravity
and a phenomenologically viable one (see Refs. [3–5] for
some reviews).
The fundamental aim of the theory is to be an ultraviolet

(UV) completion of general relativity, pursued by aban-
doning the local Lorentz invariance. It is based on the idea
of modifying the graviton propagator by adding to the
gravitational action higher-order spatial derivatives without
adding higher-order time derivatives. In this way one can
obtain a power-counting renormalizable theory [6,7].
Indeed, at the moment there is no definite evidence that
the theory is fully quantum renormalizable (even if some
evidence in this direction has been recently revealed in
Ref. [8]), and the renormalizability is only supported by
power-counting arguments.
Since the theory treats space and time on different

footing, it is naturally constructed in terms of a preferred
foliation of spacetime, leading to violations of Lorentz
symmetry at all scales. The theory is built using an ADM
decomposition of spacetime,

ds2 ¼ −N2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ; ð1Þ

where N is the lapse function, Ni the shift vector, and gij
the induced three-dimensional metric on the spacelike
hypersurfaces.
The most general action of Hořava gravity can be written

as follows:

S ¼ SK − SV; ð2Þ

where

SK ¼ 2

k2

Z
dtd3x

ffiffiffi
g

p
NðKijKij − λK2Þ

¼ 2

k2

Z
dtd3x

ffiffiffi
g

p
NKijGijklKkl; ð3Þ

is the kinetic term, which is quadratic in the time derivatives,
k is a coupling of suitable dimensions, Kij is the extrinsic
curvature of the spacelike hypersurfaces,

Kij ¼
1

2N
ð_gij −∇iNj −∇jNiÞ; ð4Þ

K ¼ gijKij is its trace, ∇i is the covariant derivative
associated with gij, λ is a dimensionless coupling, and
Gijkl is the generalized DeWitt “metric on the space of
metrics,”which iswritten in terms of the inducedmetric gij as

Gijkl ¼ 1

2
ðgikgjl þ gilgjkÞ − λgijgkl: ð5Þ

The potential term is

SV ¼ k2

8

Z
dtd3x

ffiffiffi
g

p
NV½gij; N�; ð6Þ

and it includes all the operators built with the metric and
the lapse compatibly with the invariance of the theory
under foliation-preserving diffeomorphisms, i.e., t → ~tðtÞ,
xi → ~xiðt; xiÞ. The most general action includes a very large
number of operators ∼Oð102Þ that are allowed by the
symmetry. This makes the theory intractable and com-
promises predictability in the UV. This is the reason why
Hořava in Ref. [2] imposed some restrictions in order to limit
the proliferation of couplings in the full theory. First, the
projectability conditionwas assumed,which requires that the
lapse function is just a function of time, i.e., N ¼ NðtÞ (see
Refs. [9,10] for the full implementation of projectability).
Moreover, Hořava also imposed an additional symmetry on
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the theory called “detailed balance,” which is inspired by
condensed matter systems studied in the context of quantum
criticality and nonequilibrium critical phenomena. The
extension of this condition to the gravitational case sums
up to the requirement that V should be derivable from a
superpotential W as follows:

V ¼ EijGijklEkl; ð7Þ
where Eij is given in terms of the superpotential W as

Eij ¼ 1ffiffiffi
g

p δW
δgij

; ð8Þ

and Gijkl is the inverse of the generalized DeWitt metric,

GijmnGmnkl ¼ 1

2
ðδikδjl þ δi

lδj
kÞ; ð9Þ

explicitly given by

Gijkl ¼
1

2
ðgikgjl þ gilgjkÞ þ

λ

1 − 3λ
gijgkl: ð10Þ

The superpotential has to contain all of the possible terms
which are invariant under foliation-preserving diffeomor-
phisms up to a given order in derivatives. The latter is dictated
by the requirement that the theory is power-counting renor-
malizable, which happens when the number of spatial deriv-
atives is≥ 2d, wheredþ 1 indicates the dimensionality of the
spacetime. In four dimensions, sixth-order spatial derivatives
are then minimally required in the action by power-counting
arguments, which means that at least third-order spatial
derivatives must be included in the superpotential.
However, since the projectable version of the theory,

with or without detailed balance, propagates a scalar degree
of freedom which suffers instabilities and strong coupling
at unacceptably low energies [10–14], in what follows we
are not assuming projectability but only detailed balance.
Our starting point will be the theory constructed from the

following superpotential [15,16]:

W ¼ 1

w2

Z
ω3ðΓÞ þ

Z
d3x

ffiffiffi
g

p ½μðR − 2ΛWÞ þ βaiai�;
ð11Þ

where ω3ðΓÞ is the gravitational Chern-Simons term,
ai ¼ ∂i lnN, and w, μ, ΛW , and β are couplings of suitable
dimensions. This superpotential differs from the one used
in the first proposal of the theory in Ref. [2] for the operator
controlled by the coupling β which is not present there,
since when projectability is implemented, ai ¼ 0. The
potential V corresponding to the superpotential W is then
automatically given by using Eq. (7) (for the details, see
Ref. [15]). The resulting theory provides a well-behaved
dynamics at low energy for both the spin-0 and the spin-2
graviton, choosing the coupling constants within suitable

regions of the parameter space. In fact, it is just the presence
of the extra coupling β which makes healthy the infrared
(IR) dynamics of the scalar degree of freedom (similarly to
what happens in the most general theory, referred to as the
healthy extension of Hořava gravity [17]).
Nevertheless, it was shown in Ref. [15] that the scalar

does not satisfy a sixth-order dispersion relation but a
fourth-order one, which is not sufficient to guarantee the
power-counting renormalizability of the theory. In order to
overcome this problem, it was conjectured that by adding
fourth-order operators to the superpotential W, both sixth-
and eighth-order terms would be generated in the potential
V, thus rendering the theory power-counting renormaliz-
able. However, such a conjecture needs to be checked with
an actual calculation. This is the subject of the present
paper in what follows.
The fourth-order terms one can add to the superpotential

W can be written as

Wextra ¼
Z

d3x
ffiffiffi
g

p ½γR2 þ νRijRij þ ρR∇iai

þ χRijaiaj þ τRaiai þ ςðaiaiÞ2 þ σð∇iaiÞ2
þ θaiaj∇iaj�; ð12Þ

which means that eight additional couplings have to be
taken into account once the fourth-order operators are
included in the superpotential.
Moreover, the superpotential in Eq. (11) gives rise to

parity-violating terms in the action via the presence of the
gravitational Chern-Simons term ω3ðΓÞ. Asking for invari-
ance under parity transformations forces us to exclude such
a term, and this is what we do in the following. In Ref. [15]
it was not possible to exclude that term since it was
necessary in order to guarantee the power-counting renor-
malizability of the spin-2 graviton, in absence of other
higher-order operators that we are instead considering here.
So, in checking if the spin-0 graviton has the correct
behavior in the UV, we should additionally verify that the
spin-2 degree of freedom is behaving well, too. Notice that
the IR behavior of the theory studied in Ref. [15] is
obviously unaffected by the addition of the aforementioned
higher-order operators which will indeed introduce mod-
ifications to the dispersion relations from, at the most, the
fourth-order in derivatives onwards.
Let us now perturb the resulting action to quadratic order

around a Minkowski background. We have

N ¼ 1þ α; Ni ¼ ∂iy; gij ¼ e2ζδij þ hij; ð13Þ

where ∂ihij ¼ δijhij ¼ 0, and we have used part of the
available gauge freedom in order to eliminate the term
∂i∂jE in the most general scalar perturbation for gij by
setting E ¼ 0. Furthermore, the theory does not have vector
excitations.
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At first-order for the extrinsic curvature Kij and its trace
K, we obtain

Kij ¼ _ζδij − ∂i∂jyþ
1

2
_hij; ð14Þ

K ¼ 3_ζ − ∂2y; ð15Þ
where ∂2 ≡ δij∂i∂j, and for the Ricci tensor and the Ricci
scalar of gij, we get

Rij ¼ −∂i∂jζ − δij∂2ζ −
1

2
∂2hij; ð16Þ

R ¼ −4∂2ζ: ð17Þ
By using the full superpotential as given by the sum of
Eqs. (11) and (12) (with the exception of the ω3ðΓÞ term
that we are not considering), we can now write down the
operators which contribute to the quadratic perturbative
action, order by order in derivatives,

Vð2Þ ¼ μ2ΛW

−1þ 3λ
Rþ μΛWβ

−1þ 3λ
aiai; ð18Þ

Vð4Þ ¼
�
μ2−

μΛWν

−1þ3λ

�
RijRijþ μΛWρ

−1þ3λ
ai∇iR

þ
�
−4μΛWγþð1−4λÞμ2

4ð−1þ3λÞ
�
R2−μΛW

�
χþ3σ

−1þ3λ

�
ð∇iaiÞ2

−2μΛW

�
χþσ

−1þ3λ

�
ai∇j∇iaj−

μΛWχ

−1þ3λ
∇iaj∇jai

−2μΛW

�
χþ4τ

−1þ3λ

�
ai∇2ai−2μΛW

�
χþ4τ

−1þ3λ

�
∇iaj∇iaj;

ð19Þ

Vð6Þ ¼ μðνþ 8γλÞ
2ð−1þ 3λÞR∇

2Rþ 2μλρ

−1þ 3λ
R∇2∇iai

− 2μðνþ 2γÞRij∇j∇iRþ 2μνRij∇2Rij

− 2μρRij∇j∇i∇kak; ð20Þ

and

Vð8Þ ¼−
�
16γ2ð1þλÞþ16γνþ3ν2

4ð−1þ3λÞ
�
ð∇2RÞ2

þðνþ2γÞ2∇i∇jR∇i∇jR

þ2ρðνþ2γÞ∇i∇jR∇k∇i∇jak

−2νðνþ2γÞ∇i∇jR∇2Rij

−2ρ

�
νþ2γð1þ λÞ

−1þ3λ

�
∇2R∇2∇iai

þρ2∇i∇j∇kak∇l∇i∇jalþν2∇2Rij∇2Rij

−2νρ∇i∇j∇kak∇2Rij−
ρ2ð1þλÞ
−1þ3λ

ð∇2∇iaiÞ2; ð21Þ

where ∇2 ≡ gij∇i∇j, and the number ðlÞ just indicates the
order in derivatives. There is also a bare cosmological
constant term that we are omitting here as it is not relevant
to the conclusions of this work. For a full discussion about
the magnitude and sign of the bare cosmological constant,
the reader can refer to Ref. [15].

Let us first look at scalar perturbations. The variation of
the action with respect to y yields

∂2y ¼ 1 − 3λ

1 − λ
_ζ: ð22Þ

Moreover, the variation with respect to α leads to

α ¼ −2μ2ΛW þ 2μρ½ΛW þ ðλ − 1Þ∂2�∂2 þ 2ρð3νþ 8γÞð1 − λÞ∂6

μΛWβ þ μΛWσ∂2 þ 2ρ2ð1 − λÞ∂6
ζ: ð23Þ

In order to obtain the above equations, we have assumed
suitable regular boundary conditions. It follows that both y
and α are nondynamical auxiliary fields which can be
integrated out in terms of ζ.
The perturbed potential term for the sixth- and eighth-

order operators is, respectively, given by

SVð6Þ ¼ k2

8

Z
dtd3x

�
−
4μð−1þ λÞð3νþ 8γÞ

−1þ 3λ
ζ

þ 4μρð−1þ λÞ
−1þ 3λ

α

�
∂6ζ ð24Þ

and

SVð8Þ ¼ k2

8

Z
dtd3x

��
2ð−1þ λÞð3νþ 8γÞ2

−1þ 3λ
ζ

−
4ρð−1þ λÞð3νþ 8γÞ

−1þ 3λ
α

�
∂8ζ

þ 2ρ2ð−1þ λÞ
−1þ 3λ

α∂8α

�
: ð25Þ

Once α is integrated out by using Eq. (23), it is straightfor-
ward to show that the resulting dispersion relation for the
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scalar degree of freedom is at most fourth-order, since the
higher-order contributions exactly cancel out. So the spin-0
graviton is not generically power-counting renormalizable,
a quite unexpected result after having added the afore-
mentioned higher-order operators to the superpotential W.
Nevertheless, if and only if ρ ¼ 0, we get a dispersion

relation where sixth- and eighth-order contributions are
instead present, leading to

ω2
S∼

1

M4
pl

�
1−λ

1−3λ

�
2

½2μð3νþ8γÞp6þð3νþ8γÞ2p8�; ð26Þ

where we have redefined the coupling constant k in terms
of the Planck mass as k2 ¼ 4=M2

pl [15]. Notice that the
coefficient in front of p8 is always positive and then it
cannot lead to instabilities in the UV.
A separate discussion is needed on the spin-2 graviton. As

previously stated, once parity invariance is imposed, one
cannot still consider the Chern-Simons term in the original
superpotential W. By considering only the remaining oper-
ators in the superpotential W, one gets a dispersion relation
for the spin-2 graviton which is not sixth-order anymore.
However, taking into account the extra terms in Wextra, it is
straightforward to see that power-counting renormalizability
is generically preserved in the tensor sector. In fact, consid-
ering tensor perturbationswe find that the operatorsRij∇2Rij

in Vð6Þ and ∇2Rkl∇2Rkl in Vð8Þ generically yield nontrivial
contributions, respectively, at sixth- and eighth-order, to the
dispersion relation of the spin-2 graviton:

ω2
T ∼

ν

M4
pl

½−2μp6 þ νp8�: ð27Þ

So, we generically end up with a power-counting renorma-
lizable theory for the spin-2 graviton. The latter is also
classically stable at very high energies for any choice of the
couplings since the coefficient in front of p8 in Eq. (27) is
always positive.
In conclusion, we have found that the theory where

detailed balance is consistently implemented, taking into
account a superpotential with operators up to fourth-order

in derivatives (which gives rise to a potential with operators
up to eighth-order in derivatives), is not generically power-
counting renormalizable as we would have expected.
Indeed, the perturbations of the action to quadratic order
around flat space lead to a dispersion relation for the scalar
graviton which is neither of sixth- nor of eighth-order.
Nevertheless, we have pointed out that it is still possible
to achieve power-counting renormalizability of the spin-0
graviton by setting to zero the coupling ρ in front of the
operator R∇iai. On the contrary, the spin-2 graviton is
always power-counting renormalizable for any choice of
the couplings.
This result makes us seriously question if detailed

balance is really a viable condition one can impose in
order to limit the huge proliferation of couplings in Hořava
gravity without compromising the power-counting renor-
malizability of the theory. In fact, the choice ρ ¼ 0, through
which it is possible to restore the power-counting renor-
malizability, results to be a very strongly fine-tuned
condition that we have to impose, especially if we want
to keep the discussion fully general without the need of
extra ad hoc assumptions.
Moreover, in Refs. [18,19], generalizations of detailed

balance were considered by including matter fields which
obey it. Also in such cases, serious concerns about the use
of detailed balance were raised.
At any rate, in order to reduce the number of independent

couplings in the full action of Hořava gravity, one is in need
of a principle or symmetry, and since the current sugges-
tions of projectability and detailed balance do not seem
optimal, further proposals in this direction are needed.
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