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We present the cosmological bounds on the thermal axion mass in an extended cosmological scenario in
which the primordial power spectrum of scalar perturbations differs from the usual power-law shape
predicted by the simplest inflationary models. The power spectrum is instead modeled by means of a
“piecewise cubic Hermite interpolating polynomial” (PCHIP). When using cosmic microwave background
measurements combined with other cosmological data sets, the thermal axion mass constraints are
degraded only slightly. The addition of the measurements of σ8 and Ωm from the 2013 Planck cluster
catalog on galaxy number counts relaxes the bounds on the thermal axion mass, mildly favoring a ∼1 eV
axion mass, regardless of the model adopted for the primordial power spectrum. However, in general, such
a preference disappears if the sum of the three active neutrino masses is also considered as a free parameter
in our numerical analyses, due to the strong correlation between the masses of these two hot thermal relics.
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I. INTRODUCTION

A possible candidate for an extra hot thermal relic
component is the axion particle produced thermally in
the early Universe. Axions therefore can contribute to the
hot dark matter component together with the standard relic
neutrino background. Axions may be produced in the early
Universe via thermal or nonthermal processes, and arise as
the solution to solve the strong CP problem [1–3]. Axions
are the pseudo-Nambu-Goldstone bosons of a new global
Uð1ÞPQ (Peccei-Quinn) symmetry that is spontaneously
broken at an energy scale fa. The axion mass is given by

ma ¼
fπmπ

fa

ffiffiffiffi
R

p

1þ R
¼ 0.6 eV

107 GeV
fa

; ð1Þ

where fa is the axion coupling constant, R ¼ 0.553�
0.043 is the up-to-down quark masses ratio, and fπ ¼
93 MeV is the pion decay constant. Nonthermal axions
such as those produced by the misalignment mechanism,
while being a negligible hot dark matter candidate, may
constitute a fraction or the total cold dark matter component
of the Universe. We do not explore such a possibility here.
Thermal axions will affect the cosmological observables in
a very similar way to that induced by the presence of
neutrino masses and/or extra sterile neutrino species.
Massive thermal axions such as hot relics affect large-scale
structure, since they will only cluster at scales larger than
their free-streaming scale when they become nonrelativ-
istic, suppressing therefore structure formation at small
scales (large wave numbers k). Concerning cosmic

microwave background (CMB) physics, an axion mass
will also lead to a signature in the CMB photon temperature
anisotropies via the early integrated Sachs-Wolfe effect. In
addition, extra light species such as thermal axions will
contribute to the dark radiation content of the Universe, or,
in other words, will lead to an increase in the effective
number of relativistic degrees of freedom Neff , defined via

ρrad ¼
�
1þ 7

8

�
4

11

�
4=3

Neff

�
ργ; ð2Þ

where ργ refers to the present photon energy density. In the
standard cosmological model in which a thermal axion
content is absent, the three active neutrino contribution
leads to the canonical value of Neff ¼ 3.046 [4]. The extra
contribution toNeff arising from thermal axions can modify
both the CMB anisotropies (via Silk damping) and the light
element primordial abundances predicted by big bang
nucleosynthesis. The former cosmological signatures of
thermal axions have been extensively exploited in the
literature to derive bounds on the thermal axion mass;
see Refs. [5–10].
However, all the cosmological axion mass limits to date

have assumed the usual simple power-law description for
the primordial perturbations. The aim of this paper is to
constrain the mass of the thermal axion using a non-
parametric description of the primordial power spectrum
(PPS hereinafter) of the scalar perturbations, as introduced
in Ref. [11]. While in the simplest models of inflation
[12–22] the PPS has a scale-free power-law form, the PPS
could be more complicated, presenting various features or a
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scale dependence. Several methods have been proposed in
the literature to reconstruct the shape of the PPS (see the
recent work of Ref. [23]). It has been shown [24,25] that
there are small hints for deviations from the power-law
form, even when using different methods and different
data sets.
The energy scales at which the PPS was produced during

inflation cannot be directly tested. We can only infer the
PPS by measuring the current matter power spectrum in the
galaxy distribution and the power spectrum of the CMB
fluctuations. The latter one, measured with exquisite
precision by the Planck experiment [26–28], is the con-
volution of the PPS with the transfer function. Therefore, in
order to reconstruct the PPS, the assumption of an under-
lying cosmological model is a mandatory first step in order
to compute the transfer function.
Here we rather exploit a nonstandard PPS approach,

which can allow for a good fit to experimental data even in
models that deviates from the standard cosmological
picture. In particular, we consider a thermal axion scenario,
allowing the PPS to assume a more general shape than the
usual power-law description. This will allow us to test the
robustness of the cosmological thermal axion mass bounds
(see Ref. [10] for a recent standard thermal axion analysis),
as first performed in Ref. [29] for the neutrino mass case.
The structure of the paper is as follows. Section II

describes the PPS modeling used in this study, as well as
the description of the thermal axion model explored
here and the cosmological data sets exploited to constrain
such a model. In Sec. III we present and discuss the results
arising from our Bayesian analysis, performed through the
Monte Carlo Markov chains (MCMC) package CosmoMC
[30], while the calculation of the theoretical observables is
done through the Boltzman equations solver CAMB (Code
for Anisotropies in the Microwave Background) [31]. We
draw our conclusions in Sec. IV.

II. METHOD

In this section we focus on the tools used in the numerical
analyses performed here. Subsection II A describes the
alternative model for the PPS of scalar perturbations used
for the analyses here (see also Ref. [11]), while in
subsection II B we introduce the cosmological model and
the thermal axion treatment followed in this study. Finally,
we present in subsection II C the cosmological data sets used
in the MCMC analyses.

A. Primordial power spectrum model

The primordial fluctuations in scalar and tensor modes
are generated during the inflationary phase in the early
Universe. The simplest models of inflation predict a
power-law form for the PPS of scalar and tensor perturba-
tions (see e.g. [12–22] and references therein), but in
principle inflation can be generated by more complicated

mechanisms, thus giving a different shape for the PPS (see
Refs. [32,33] and references therein). In order to study how
the cosmological constraints on the parameters change in
more general inflationary scenarios, we assume a non-
parametric form for the PPS.
Among the large number of possibilities, we decided

to describe the PPS of scalar perturbations using a function
to interpolate the PPS values in a series of nodes at fixed
position. The interpolating function we used is named
“piecewise cubic Hermite interpolating polynomial”
(PCHIP) [34] and it is a modified spline function, defined
to preserve the original monotonicity of the point series that
is interpolated. We use a modified version of the original
PCHIP algorithm [35], detailed in Appendix A of Ref. [11].
To describe the scalar PPS with the PCHIP model, we only

need to give the values of the PPS in a discrete number of
nodes and to interpolate among them. We use 12 nodes
which span a wide range of k values:

k1 ¼ 5 × 10−6 Mpc−1;

k2 ¼ 10−3 Mpc−1;

kj ¼ k2ðk11=k2Þðj−2Þ=9 for j ∈ ½3; 10�;
k11 ¼ 0.35 Mpc−1;

k12 ¼ 10 Mpc−1: ð3Þ

We choose equally spaced nodes in the logarithmic scale in
the range ðk2; k11Þ, that is well constrained from the data
[29], while the first and the last nodes are useful to allow for
a nonconstant behavior of the PPS outside the well-
constrained range.
The PCHIP PPS is described by

PsðkÞ ¼ P0 × PCHIPðk;Ps;1;…; Ps;12Þ; ð4Þ

where Ps;j is the value of the PPS at the node kj divided by
P0 ¼ 2.36 × 10−9 [36].

B. Cosmological and axion model

The baseline scenario we consider here is the ΛCDM
model, extended with hot thermal relics (the axions),
together with the PPS approach outlined in the previous
section. For the numerical analyses we use the following set
of parameters, for which we assume flat priors in the
intervals listed in Table I:

n
ωb;ωc;Θs; τ; ma;

X
mν; Ps;1;…; Ps;12

o
; ð5Þ

where ωb ≡Ωbh2 and ωc ≡Ωch2 are, respectively, the
physical baryon and cold dark matter energy densities, Θs
is the ratio between the sound horizon and the angular
diameter distance at decoupling, τ is the reionization optical
depth, ma and

P
mν are the axion and the sum of three

active neutrino masses (both in eV), and Ps;1;…; Ps;12 are
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the parameters of the PCHIP PPS. We shall also consider a
scenario in which massive neutrinos are present, to explore
the expected degeneracy between the sum of the neutrino
masses and the thermal axion mass [10].
In order to compare the results obtained with the PCHIP

PPS to the results obtained with the usual power-law PPS
model, we describe the latter case with the following set of
parameters:

fωb;ωc;Θs; τ; ma; ns; log½1010As�g; ð6Þ

where ns is the scalar spectral index, As the amplitude of the
primordial spectrum, and the other parameters are the same
ones described above. The case of several hot thermal relics
for the standard scenario will not be carried out here, as it

has been done in the past by several authors (see e.g. [10]).
The flat priors we use are listed in Table I.
Concerning the contribution of the axion mass-energy

density to the Universe’s expansion rate, we briefly
summarize our treatment in the following. Axions
decoupled in the early Universe at a temperature TD given
by the usual freeze-out condition for a thermal relic:

ΓðTDÞ ¼ HðTDÞ; ð7Þ
where the thermally averaged interaction rate Γ refers to the
π þ π → π þ a process:

Γ ¼ 3

1024π5
1

f2af2π
C2
aπIa; ð8Þ

with Caπ ¼ 1−R
3ð1þRÞ representing the axion-pion coupling

constant and the integral Ia reads as follows

Ia ¼ n−1a T8

Z
dx1dx2

x21x
2
2

y1y2
fðy1Þfðy2Þ

×
Z

1

−1
dω

ðs −m2
πÞ3ð5s − 2m2

πÞ
s2T4

; ð9Þ

in which na¼ðζ3=π2ÞT3 refers to the number density
for axions in thermal equilibrium. The function fðyÞ ¼
1=ðey − 1Þ is the pion thermal distribution and there
are three different kinematical variables [xi ¼ j~pij=T,
yi ¼ Ei=T (i ¼ 1; 2) and s ¼ 2ðm2

π þ T2ðy1y2 − x1x2ωÞÞ].

TABLE I. Priors for the parameters used in the MCMC
analyses.

Parameter Prior

Ωbh2 [0.005, 0.1]
Ωcdmh2 [0.001, 0.99]
Θs [0.5, 10]
τ [0.01, 0.8]
ma (eV) [0.1, 3]P

mν (eV) [0.06, 3]
Ps;1;…; Ps;12 [0.01, 10]
ns [0.9, 1.1]
log½1010As� [2.7, 4]

FIG. 1. The left upper panel shows the temperature of decoupling as a function of the axion mass (solid curve), as well as the big bang
nucleosynthesis temperature, TBBN ≃ 1 MeV (dashed curve). The right upper panel shows the axion contribution to the extra dark
radiation content of the Universe, while the bottom right plot depicts the free-streaming scale of an axion (solid curve) or a neutrino
(dashed curve) versus the axion/neutrino mass, in eV. The left bottom panel shows the current axion mass-energy density as a function of
the axion mass.
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The freeze-out equation above, Eq. (7), can be numerically
solved, obtaining the axion decoupling temperature TD as a
function of the axion mass ma. Figure 1 shows, in the left
upper panel, the axion decoupling temperature as a function
of the axion mass, in eV units. Notice that the higher the
axion mass, the lower the temperature of decoupling. From
the axion decoupling temperature, it is possible to infer the
present axion number density, related to the current photon
density nγ by

na ¼
g⋆SðT0Þ
g⋆SðTDÞ

×
nγ
2
; ð10Þ

where g⋆S represents the number of entropic degrees of
freedom, with g⋆SðT0Þ ¼ 3.91. The contribution of the relic
axion to the total mass-energy density of the Universe will
be given by the product of the axion mass times the axion
number density. The quantity Ωah2 at the present epoch is
depicted in the bottom left panel of Fig. 1. Notice that,
currently, a 1 eV axion will give rise to Ωah2 ≃ 0.005,
while a neutrino of the same mass will contribute to the
total mass-energy density of the Universe with
Ωνh2 ≃ 0.01. Notice, however, that Ωah2 represents the
contribution from relic, thermal axion states. Nonthermal
processes, such as the misalignment production, could also
produce a nonthermal axion population which we do not
consider here; see the work of [37] for the most recent
cosmological constraints on such a scenario. As previously
stated, the presence of a thermal axion will also imply an
extra radiation component at the BBN period:

ΔNeff ¼
4

7

�
3

2

na
nν

�
4=3

; ð11Þ

where na is given by Eq. (10) and nν refers to the present
neutrino plus antineutrino number density per flavor.
The top right panel of Fig. 1 shows the axion contribution
to the radiation component of the Universe as a function of
the axion mass. Notice that the extra dark radiation arising
from a 1 eVaxion is still compatible (at 95% C.L.) with the
most recent measurements of Neff from the Planck mission
[26]. The last crucial cosmological axion quantity is the
axion free streaming scale, i.e. the wave number kfs below
which axion density perturbations will contribute to clus-
tering once the axion is a nonrelativistic particle. This scale
is illustrated in Fig. 1, in the bottom right panel, together
with that corresponding to a neutrino of the same mass.
Notice that they cover the same scales for our choice of
priors for ma and

P
mν and therefore one can expect a

large correlation between these two quantities in measure-
ments of galaxy clustering. We will explore this degeneracy
in the following sections. We summarize the axion param-
eters in Table II, where we specify the values of the
decoupling temperature, ΔNeff , Ωah2, and kfs for the range
of axion masses considered here, (0.1,3) eV.

C. Cosmological measurements

Our baseline data set consists of CMB measurements.
These include the temperature data from the Planck
satellite, (see Refs. [28,38]) together with the WMAP
9-year polarization measurements, following [39]. We also
consider high multipole data from the South Pole Telescope
[40] as well as from the Atacama Cosmology Telescope
[41]. The combination of all the above CMB data is
referred to as the CMB data set.
Galaxy clusters represent an independent tool to probe

the cosmological parameters. Cluster surveys usually report
their measurements by means of the so-called cluster
normalization condition, σ8Ω

γ
m, where γ ∼ 0.4 [42–44].

We shall use here the cluster normalization condition as
measured by the Planck Sunyaev-Zeldovich (PSZ) 2013
catalog [45], referring to it as the PSZ data set. The PSZ
measurements of the cluster mass function provide the
constraint σ8ðΩm=0.27Þ0.3 ¼ 0.764� 0.025. As there
exists a strong degeneracy between the value of the σ8
parameter and the cluster mass bias, it is possible to fix the
value of the bias parameter according to the results arising
from numerical simulations. In this last case, the error on
the cluster normalization condition from the PSZ catalog is
considerably reduced: σ8ðΩm=0.27Þ0.3 ¼ 0.78� 0.01. In
our analyses, we shall consider the two PSZ measurements
of the cluster normalization condition to illustrate the
impact of the cluster mass bias in the thermal axion mass
bounds, as recently explored in Ref. [46] for the neutrino
mass case. Figure 2 illustrates the prediction for the cluster
normalisation condition, σ8ðΩm=0.27Þ0.3, as a function of
the thermal axion mass. We also show the current PSZ
measurements with their associated 95% C.L. uncertainties,
including those in which the cluster mass bias parameter is
fixed. Notice that the normalization condition decreases as
the axion mass increases due to the decrease induced in the
σ8 parameter in the presence of axion masses: the larger the
axion mass, the larger the reduction in the matter power
spectra will be.
Tomographic weak lensing surveys are sensitive to the

overall amplitude of the matter power spectrum by meas-
uring the correlations in the observed shape of distant
galaxies induced by the intervening large-scale structure.
The matter power spectrum amplitude depends on both
the σ8 clustering parameter and the matter density Ωm.

TABLE II. Values for the axion parameters, TD, ΔNeff , Ωah2

and kfs for the lower and upper prior choice of ma explored here.

Axion parameter

ma (eV) 0.1 3
TD (MeV) 245.6 43.2
Ωah2 0.0003 0.016
ΔNeff 0.18 0.43
kfs (h=Mpc) 0.06 1.46
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Consequently, tomographic lensing surveys, via mea-
surements of the galaxy power shear spectra, provide
additional and independent constraints in the (σ8, Ωm)
plane. The Canada-France-Hawaii Telescope Lensing
Survey, CFHTLenS, with six tomographic redshift bins
(from z ¼ 0.28 to z ¼ 1.12) provides a constraint on the
relationship between σ8 and Ωm of σ8ðΩm=0.27Þ0.46 ¼
0.774� 0.040 [47]. We shall refer to this data set as CFHT.
We also address here the impact of a Gaussian prior on

the Hubble constant H0 ¼ 70.6� 3.3 km=s=Mpc from an
independent reanalysis of Cepheid data [48], referring to
this prior as the HST data set.
We have also included measurements of the large-scale

structure of the Universe in their geometrical form, i.e., in
the form of baryon acoustic oscillations (BAO). Although
previous studies in the literature have shown that, for
constraining hot thermal relics, the shape information
contained in the galaxy power spectrum is more powerful
when dealing simultaneously with extra relativistic species
and hot thermal relic masses [49,50], we exploit here the
BAO signature, as the contribution from the thermal axions
to the relativistic number of species is not very large (see
Table II), and current measurements from galaxy surveys
are mostly reported in the geometrical (BAO) form.
The BAO wiggles, imprinted in the power spectrum of

the galaxy distribution, result from the competition in the
coupled photon-baryon fluid between radiation pressure
and gravity. The BAO measurements that have been
considered in our numerical analyses include the results
from the WiggleZ [51], the 6dF [52], and the SDSS II
surveys [53,54], at redshifts of z ¼ 0.44; 0.6; 0.73, z ¼
0.106, and z ¼ 0.35, respectively. We also include in
our analyses as well the Data Release 11 (DR11) BAO
signal of the BOSS experiment [55], which provides the
most precise distant constraints [56] measuring both the
Hubble parameter and the angular diameter distance at an
effective redshift of 0.57. Figure 3 illustrates the spherically
averaged BAO distance, DVðzÞ ∝ D2

AðzÞ=HðzÞ, as a

function of the axion mass, at a redshift of z ¼ 0.57, as
well as the measurement from the BOSS experiment with
95% C.L. error bars [56]. Notice that, from background
measurements only, there exists a strong degeneracy
between the cold dark matter mass-energy density and
the axion one. The solid black line in Fig. 3 shows the
spherically averaged BAO distance if all the cosmological
parameters are fixed, including ωc. The spherically aver-
aged BAO distance deviates strongly from the ΛCDM
prediction. However, if ωc is varied whilema is changed (in
order to keep the total matter mass-energy density constant,
see the dotted blue line in Fig. 3), the spherically averaged
BAO distance approaches to its expected value in a ΛCDM
cosmology.

D. Compatibility of data

It has been pointed out (see Sec. 5.5 of Ref. [27] and also
Refs. [10,57]) that the value of σ8 reported by cluster
measurements and the value estimated from Planck CMB
measurements show a tension at the ∼2σ level. These
discrepancies may arise due to the lack of a full under-
standing of the cluster mass calibrations. Although some
studies in the literature, including the present one, show
that in extended cosmological models with nonzero neu-
trino masses the discrepancies previously mentioned could
be alleviated, the results from Ref. [57] show, using also
Bayesian evidence, that a canonical ΛCDM scenario with
no massive neutrinos is preferred over its neutrino exten-
sions by several combinations of cosmological data sets.
Therefore, the results presented here and obtained when
considering cluster data depend strongly on the reliability
of low-redshift cluster data. If future data confirm current
low-redshift cluster measurements, one could further test

FIG. 2 (color online). Cluster normalisation condition,
σ8ðΩm=0.27Þ0.3, as a function of the thermal axion mass. We
also show the current PSZ measurements with their associated
95% C.L. uncertainties.

FIG. 3 (color online). The solid black line depicts the spheri-
cally averaged BAO distance DVðzÞ, as a function of the axion
mass, at a redshift of z ¼ 0.57, after keeping fixed all the
remaining cosmological parameters, the cold dark matter in-
cluded. The dashed blue line depicts the equivalent but keeping
fixed the total matter mass-energy density (and consequently
changing the cold dark matter ωc). The bands show the
measurement from the BOSS experiment (DR11) with its
associated 95% C.L. error.
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some of the possible beyond the ΛCDM models using
particle physics experiments. For instance, the existence of
a full thermal sterile neutrino could be tested with neutrino
oscillation experiments, and the active neutrino mass could
also be tested by tritium experiments or, if the neutrino
is a Majorana particle, by neutrinoless double beta decay
searches.

III. RESULTS

Table III depicts our results in the first scenario explored
here, in which the axion mass is a free parameter and the
PPS is described by the approach specified in Sec. II A.
Concerning CMB measurements only, the bounds on the
thermal axion masses are largely relaxed in the case in
which the PPS is not described by a simple power law, as
can be noticed after comparing the results depicted in
Table III with those shown in Table IV. This can be
understood in terms of Fig. 4, which illustrates the
degeneracies in the temperature anisotropies between
the thermal axion mass and the PCHIP PPS. Figure 4 shows
the temperature anisotropies for a ΛCDM model and a
power-law PPS (solid red line), for a 2 eV thermal axion
mass and a power-law PPS (dashed blue line), and for a
ΛCDM model with the PPS described by the PCHIP model
explored here (dotted black line), with values for the Ps;j

chosen to match the nonzero thermal axion mass curve,
according to their current allowed regions (see Table III).
More concretely, we have used the following values for the
PPS parameters: Ps;1 ¼ 1.15, Ps;2 ¼ 1.073, Ps;3 ¼ 1.058,
Ps;4 ¼ 1.03, Ps;5 ¼ 0.99, Ps;6 ¼ 0.97, Ps;7 ¼ 0.966,

Ps;8 ¼ 0.932, Ps;9 ¼ 0.91, Ps;10 ¼ 0.86, Ps;11 ¼ 0.84,
and Ps;12 ¼ 0.77. Notice that the case of a 2 eV thermal
axion can be easily mimicked by a simple ΛCDM model if
the assumptions concerning the PPS shape are relaxed. We
also add in this figure the measurements of the photon
temperature anisotropies from the Planck 2013 data
release [27].
The addition to the CMB data of the HST prior on the

Hubble constant provides a 95% C.L. upper limit on the
thermal axion mass of 1.31 eV,1 while the further addition
of the BAO measurements brings this constraint down to
0.91 eV, as these last data sets are directly sensitive to the
free-streaming nature of the thermal axion. Notice that
these two 95% C.L. upper bounds are very similar to the
ones obtained when considering the standard power-law
power spectrum, which are 1.56 eV and 0.83 eV for the
CMBþ HST and CMBþ HSTþ BAO data combina-
tions, respectively.
Interestingly, when adding the CFHT bounds on the

σ8 −Ωm relationship, the bounds on the thermal axion
mass becomeweaker. The reason for that is due to the lower
σ8 values preferred by weak lensing measurements, values
that can be achieved by allowing for higher axion masses.
The larger the axion mass, the larger is the reduction of
the matter power spectrum at small (i.e. cluster) scales,

TABLE III. The 95% C.L. constraints on the physical cold dark matter density Ωch2, the axion mass ma (in eV), the clustering
parameter σ8, the relative matter energy density Ωm, and the Ps;j parameters for the PPS nodes from the different combinations of data
sets explored here in the ΛCDM þma model, considering the PCHIP PPS modeling.

CMB CMBþ HST CMBþ BAO
CMBþ BAO

þHST
CMBþ BAO
HSTþ CFHT

CMBþ BAO þ HST
þPSZ (fixed bias)

CMBþ BAO
þHSTþ PSZ

Ωch2 0.127þ0.007
−0.007 0.122þ0.006

−0.006 0.122þ0.003
−0.003 0.121þ0.003

−0.003 0.120þ0.003
−0.003 0.118þ0.002

−0.002 0.119þ0.003
−0.004

ma [eV] Unconstrained < 1.31 < 0.89 < 0.91 < 1.29 1.00þ0.50
−0.48 0.93þ0.70

−0.71
σ8 0.788þ0.079

−0.086 0.821þ0.052
−0.074 0.827þ0.044

−0.057 0.825þ0.045
−0.059 0.793þ0.049

−0.058 0.760þ0.023
−0.022 0.767þ0.046

−0.044
Ωm 0.369þ0.070

−0.065 0.314þ0.045
−0.039 0.308þ0.016

−0.015 0.304þ0.016
−0.014 0.302þ0.016

−0.015 0.304þ0.016
−0.015 0.304þ0.016

−0.016
Ps;1 < 8.13 < 8.17 < 7.91 < 8.06 < 7.85 < 8.09 < 8.11
Ps;2 1.09þ0.42

−0.35 1.01þ0.43
−0.35 1.01þ0.40

−0.32 0.99þ0.42
−0.33 1.02þ0.43

−0.34 1.01þ0.42
−0.33 1.05þ0.43

−0.38
Ps;3 0.68þ0.39

−0.36 0.71þ0.39
−0.39 0.71þ0.39

−0.37 0.72þ0.39
−0.38 0.69þ0.39

−0.37 0.70þ0.40
−0.38 0.69þ0.40

−0.39
Ps;4 1.14þ0.24

−0.22 1.15þ0.24
−0.22 1.15þ0.23

−0.21 1.15þ0.23
−0.20 1.15þ0.23

−0.21 1.15þ0.23
−0.21 1.15þ0.22

−0.21
Ps;5 1.02þ0.11

−0.10 1.01þ0.11
−0.11 1.00þ0.11

−0.10 1.00þ0.11
−0.10 0.99þ0.11

−0.10 0.99þ0.11
−0.10 0.99þ0.11

−0.11
Ps;6 1.03þ0.08

−0.07 1.00þ0.08
−0.07 1.00þ0.08

−0.07 1.00þ0.08
−0.07 0.98þ0.07

−0.06 0.98þ0.07
−0.07 0.98þ0.08

−0.07
Ps;7 0.99þ0.07

−0.06 0.98þ0.08
−0.07 0.98þ0.07

−0.07 0.98þ0.08
−0.07 0.96þ0.07

−0.06 0.95þ0.07
−0.06 0.96þ0.07

−0.06
Ps;8 0.94þ0.06

−0.06 0.95þ0.08
−0.07 0.95þ0.07

−0.06 0.95þ0.08
−0.07 0.94þ0.07

−0.06 0.94þ0.07
−0.06 0.94þ0.07

−0.06
Ps;9 0.92þ0.06

−0.05 0.94þ0.08
−0.06 0.94þ0.07

−0.06 0.94þ0.08
−0.06 0.93þ0.07

−0.06 0.93þ0.07
−0.06 0.94þ0.07

−0.06
Ps;10 0.90þ0.06

−0.06 0.91þ0.08
−0.07 0.91þ0.07

−0.06 0.91þ0.08
−0.06 0.90þ0.07

−0.06 0.90þ0.07
−0.06 0.90þ0.07

−0.07
Ps;11 1.25þ0.30

−0.28 1.24þ0.32
−0.31 1.23þ0.31

−0.31 1.24þ0.31
−0.31 1.22þ0.30

−0.31 1.22þ0.32
−0.28 1.23þ0.31

−0.30
Ps;12 Unconstrained Unconstrained Unconstrained Unconstrained Unconstrained Unconstrained Unconstrained

1There exists a very large degeneracy between H0 and the
neutrino masses when restricting the numerical analyses to CMB
measurements. The addition of the HST prior on the Hubble
constant helps enormously in breaking this degeneracy, see [50].
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leading consequently to a smaller value of the clustering
parameter σ8.
If we instead consider now the PSZ data set with fixed

cluster mass bias, together with the CMB, BAO and HST
measurements, a nonzero value of the thermal axion mass
of ∼1 eV (∼0.80 eV) is favored at ∼4σ (∼3σ) level, when
considering the PCHIP (standard power-law) PPS approach.2

However, these results must be regarded as an illustration of
what could be achieved with future cluster mass calibra-
tions, as the Planck collaboration has recently shown in
their analyses of the 2015 Planck cluster catalog [46].
When more realistic approaches for the cluster mass bias
are used, the errors on the so-called cluster normalization
condition are larger, and, consequently, the preference for a

nonzero axion mass of 1 eV is only mild in the PCHIP PPS
case, while in the case of a standard power-law PPS such an
evidence completely disappears.
Figure 5 (left panel) shows the 68% and 95% C.L.

allowed regions in the (ma, Ωch2) plane for some of the
possible data combinations explored in this study, and
assuming the PCHIP PPS modeling. Notice that, when
adding BAO measurements, lower values of the physical
cold dark matter density are preferred. This is due to the
fact that large-scale structure allows for lower axion masses
than CMB data alone. The lower is the thermal axion mass,
the lower is the amount of hot dark matter and consequently
the lower should be the cold dark matter component. This
effect is clear from the results shown in Table III and
Table IV, where the values of the physical cold dark matter
density Ωch2 and of the relative current matter density Ωm
arising from our numerical fits are shown, for the different
data combinations considered here.

TABLE IV. 95% C.L. constraints on Ωch2, the axion mass ma (in eV), σ8, Ωm, logð1010AsÞ and ns from the different combinations of
data sets explored here in the ΛCDM þma model, assuming the standard power-law PPS.

CMB CMBþ HST CMBþ BAO
CMBþ BAO

þHST
CMBþ BAO
þHSTþ CFHT

CMBþ BAOþ HST
þPSZ (fixed bias)

CMBþ BAO
þHSTþ PSZ

Ωch2 0.124þ0.006
−0.005 0.124þ0.005

−0.005 0.122þ0.004
−0.004 0.121þ0.004

−0.004 0.120þ0.003
−0.003 0.119þ0.003

−0.003 0.120þ0.003
−0.003

ma [eV] < 1.83 < 1.56 < 0.84 < 0.83 < 1.16 0.80þ0.53
−0.50 < 1.26

σ8 0.785þ0.064
−0.083 0.791þ0.057

−0.076 0.803þ0.041
−0.048 0.803þ0.041

−0.048 0.783þ0.047
−0.054 0.758þ0.028

−0.029 0.767þ0.045
−0.045

Ωm 0.337þ0.048
−0.044 0.328þ0.041

−0.039 0.310þ0.025
−0.023 0.308þ0.024

−0.023 0.305þ0.025
−0.024 0.307þ0.027

−0.026 0.306þ0.027
−0.025

log½1010As� 3.10þ0.05
−0.05 3.10þ0.05

−0.05 3.10þ0.05
−0.05 3.10þ0.05

−0.05 3.10þ0.05
−0.05 3.09þ0.05

−0.05 3.09þ0.05
−0.05

ns 0.961þ0.014
−0.015 0.963þ0.013

−0.014 0.968þ0.011
−0.011 0.969þ0.011

−0.011 0.971þ0.011
−0.011 0.973þ0.011

−0.011 0.972þ0.011
−0.011

FIG. 4 (color online). Temperature anisotropies for the pure ΛCDM model and a power-law PPS (solid red line), for a 2 eV thermal
axion mass and a power-law PPS (dashed blue line) and for the standardΛCDMmodel but the PPS described by the PCHIP model (dotted
black line). The data points and the error bars in the left panel show the measurements of the photon temperature anisotropies arising
from the Planck 2013 data release [27].

2A similar effect when considering PSZ data for constraining
either thermal axion or neutrino masses has also been found in
Refs. [10,58–61].
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The right panel of Fig. 5 shows the 68% and 95% C.L.
allowed regions in the (ma, σ8) plane in the PCHIP PPS
scenario. The lower values of the σ8 clustering parameter
preferred by PSZ data (see the results shown in Table III
and Table IV) are translated into a preference for nonzero
thermal axion masses. Larger values of ma will enhance
the matter power spectrum suppression at scales below
the axion free-streaming scale, leading to smaller values
of the σ8 clustering parameter, as preferred by PSZ

measurements. The evidence for nonzero axion masses
is more significant when fixing the cluster mass bias in the
PSZ data analyses.
Figure 6 shows the equivalent to Fig. 5 but for a standard

power-law PPS. Notice that, except for the case in which
CMB measurements are considered alone, the thermal
axion mass constraints do not change significantly, if they
are compared to the PCHIP PPS modeling. This fact clearly
states the robustness of the cosmological bounds on

FIG. 5 (color online). The left panel depicts the 68% and 95% C.L. allowed regions in the (ma, Ωch2) plane for different possible data
combinations, when a PCHIP PPS is assumed. The right panel shows the equivalent but in the (ma, σ8) plane.

FIG. 6 (color online). The left panel depicts the 68% and 95% C.L. allowed regions in the (ma, Ωch2) plane for different possible data
combinations, when a power-law PPS is assumed. The right panel shows the equivalent but in the (ma, σ8) plane.
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thermal axion masses and it is applicable to the remaining
cosmological parameters, see Tables III and IV. Note that,
for the standard case of a power-law PPS, the preference for
nonzero axion masses appears only when considering the
(unrealistic) PSZ analysis with a fixed cluster mass bias.
When more realistic PSZ measurements of the cluster
normalization condition are exploited, there is no prefer-
ence for a nonzero thermal axion mass.
The last scenario we explore here is a ΛCDMþma þP
mν universe, in which we consider two coexisting hot

dark matter species: thermal axions and three active
(massive) neutrinos. Table V illustrates the equivalent of
Table III but including the active neutrino masses in the
MCMC parameters. We do not perform here the analysis
for the hot mixed dark matter model with the standard
power-law matter power spectrum, as it was already
presented previously in Ref. [10]. If we compare to the
standard power-law case, we find that the bounds on the
axion and neutrino masses presented here are very similar.
Furthermore, no evidence for neutrino masses nor for a
nonzero axion mass appears in this mixed hot dark matter
scenario (except for the axion case and only if considering
PSZ clusters with the bias fixed). The reason for that is due
to the strong degeneracy betweenma and

P
mν, see Fig. 7,

where one can notice that these two parameters are
negatively correlated: an increase in the axion mass will
increase the amount of the hot dark matter component. In
order to compensate the changes in both the CMB temper-
ature anisotropies (via the early ISW effect) and in the
power spectrum (via the suppression at small scales of

galaxy clustering), the contribution to the hot dark matter
from the neutrinos should be reduced. We have shown in
Fig. 7 three possible data combinations. Notice that for the
case in which PSZ cluster measurements (with the bias
fixed) are included the strong degeneracy between ma and

TABLE V. The 95% C.L. constraints on the physical cold dark matter density Ωch2, the axion mass ma, the sum of the active neutrino
masses

P
mν (both in eV), the clustering parameter σ8, the relative matter energy density Ωm and the Ps;j parameters for the PPS nodes

from the different combinations of data sets explored here in the ΛCDMþma þ
P

mν model, considering the PCHIP PPS modeling.

CMB CMBþ HST CMBþ BAO
CMBþ BAO

þHST
CMBþ BAO
þHSTþ CFHT

CMBþ BAOþ HST
þPSZ (fixed bias)

CMBþ BAO
þHSTþ PSZ

Ωch2 0.130þ0.008
−0.007 0.125þ0.006

−0.007 0.121þ0.003
−0.003 0.121þ0.003

−0.003 0.119þ0.003
−0.003 0.118þ0.003

−0.003 0.118þ0.003
−0.003

ma [eV] < 2.48 < 1.64 < 0.81 < 0.86 < 1.23 0.81þ0.59
−0.69 < 1.46P

mν [eV] < 2.11 < 0.43 < 0.22 < 0.21 < 0.27 < 0.32 < 0.35
σ8 0.700þ0.172

−0.202 0.803þ0.082
−0.091 0.833þ0.055

−0.058 0.834þ0.058
−0.064 0.787þ0.052

−0.055 0.766þ0.043
−0.044 0.757þ0.023

−0.022
Ωm 0.486þ0.277

−0.193 0.356þ0.064
−0.062 0.309þ0.016

−0.015 0.308þ0.016
−0.015 0.306þ0.015

−0.015 0.308þ0.016
−0.016 0.308þ0.017

−0.016
Ps;1 < 8.01 < 8.13 < 7.00 < 8.17 < 7.59 < 8.29 < 8.18
Ps;2 1.17þ0.42

−0.38 1.09þ0.41
−0.37 1.03þ0.40

−0.35 1.02þ0.39
−0.34 1.02þ0.40

−0.32 1.03þ0.36
−0.34 1.05þ0.40

−0.36
Ps;3 0.66þ0.37

−0.35 0.69þ0.38
−0.37 0.70þ0.38

−0.38 0.72þ0.38
−0.37 0.68þ0.37

−0.33 0.71þ0.40
−0.39 0.69þ0.39

−0.37
Ps;4 1.17þ0.23

−0.23 1.15þ0.23
−0.22 1.15þ0.22

−0.21 1.15þ0.21
−0.21 1.15þ0.20

−0.19 1.14þ0.21
−0.20 1.16þ0.22

−0.21
Ps;5 1.05þ0.15

−0.14 1.01þ0.11
−0.10 1.00þ0.11

−0.10 1.00þ0.11
−0.10 0.98þ0.11

−0.10 0.99þ0.11
−0.10 0.98þ0.11

−0.10
Ps;6 1.04þ0.09

−0.08 1.01þ0.08
−0.07 1.00þ0.07

−0.07 1.00þ0.07
−0.07 0.98þ0.07

−0.06 0.98þ0.07
−0.07 0.98þ0.07

−0.07
Ps;7 0.99þ0.06

−0.06 0.98þ0.07
−0.06 0.98þ0.07

−0.07 0.98þ0.07
−0.07 0.95þ0.07

−0.06 0.95þ0.06
−0.06 0.95þ0.07

−0.06
Ps;8 0.93þ0.06

−0.05 0.94þ0.06
−0.06 0.95þ0.07

−0.07 0.95þ0.07
−0.07 0.93þ0.07

−0.05 0.94þ0.07
−0.06 0.93þ0.07

−0.06
Ps;9 0.91þ0.06

−0.05 0.93þ0.06
−0.06 0.94þ0.07

−0.06 0.94þ0.07
−0.06 0.93þ0.07

−0.06 0.93þ0.06
−0.06 0.93þ0.07

−0.06
Ps;10 0.90þ0.06

−0.06 0.90þ0.07
−0.06 0.91þ0.07

−0.07 0.91þ0.08
−0.07 0.88þ0.07

−0.06 0.89þ0.07
−0.07 0.90þ0.07

−0.07
Ps;11 2.18þ0.85

−0.77 2.07þ0.81
−0.80 2.12þ0.90

−0.86 2.15þ0.95
−0.94 1.64þ0.79

−0.75 1.83þ0.87
−0.86 1.84þ0.86

−0.87
Ps;12 Unconstrained Unconstrained Unconstrained Unconstrained Unconstrained Unconstrained Unconstrained

FIG. 7 (color online). The 68% and 95% C.L. allowed regions
in the (

P
mν, ma) plane, both in eV, for three different possible

data combinations, when a PCHIP PPS is assumed.
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P
mν is partially broken, due to the smaller value of σ8

preferred by the former data set. However, these results
strongly rely on the numerical results concerning the cluster
mass bias and therefore the evidence for ma ≠ 0 should be
regarded as what could be obtained in if these measure-
ments are further supported by independent data from
future cluster surveys.
Besides the results concerning the thermal axion mass

and the standard ΛCDM parameters, we also obtain
constraints on the form of the PPS when modeled according
to the PCHIP scenario. The 95% C.L. limits for the Ps;j

parameters are shown in Table III, while an example of the
reconstructed PPS is given in Fig. 8, where we show the
68%, 95%, and 99% C.L. allowed regions arising from a fit
to CMB data of the PCHIP PPS scale dependence, in the
context of a ΛCDMþma model. We do not show the
corresponding figures obtained from all the other data
combinations since they are equivalent to Fig. 8, as one can
infer from the very small differences in the 95% C.L.
allowed ranges for the Ps;j parameters arising from differ-
ent data sets; see Table III. Note that both Ps;1 and Ps;12 are
poorly constrained at this confidence level: the reason for
that is the absence of measurements at their corresponding
wave numbers. All the remaining Ps;j, with j ¼ 2;…; 11
are well constrained. In particular, in the range between k5
and k10 [see Eq. (3)], the Ps;j are determined within a few
percent accuracy. Indeed, in the range covered between
these nodes, the PPS does not present features and can be
perfectly described by a power-law parametrization.
Among the interesting features outside the former range,
we can notice in Fig. 8 a significant dip at wave numbers
around k ¼ 0.002 Mpc−1, which comes from the dip at

l ¼ 20–30 in the CMB temperature power spectrum and a
small bump around k ¼ 0.0035 Mpc−1, corresponding to
the increase at l≃ 40. These features have been obtained
in previous works [11,24,25] using different methods and
data sets. In addition, we obtain an increase of power at
k≃ 0.2 Mpc−1, necessary to compensate for the effects of
the thermal axion mass in both the temperature anisotropies
and the large-scale structure of the Universe.

IV. CONCLUSIONS

Axions provide the most elegant scenario to solve the
strong CP problem and may be produced in the early
Universe via both thermal and nonthermal processes. While
nonthermal axions are highly promising cold dark matter
candidates, their thermal companions will contribute to the
hot dark matter component of the Universe, together with
the (light) three active neutrinos of the standard model of
elementary particles. Therefore, the cosmological conse-
quences of light massive thermal axions are very much like
those associated with neutrinos, as axions also have a
free-streaming nature, suppressing structure formation at
small scales. Furthermore, these light thermal axions will
also contribute to the dark radiation background, leading
to deviations of the relativistic degrees of freedom Neff
from its canonically expected value of Neff ¼ 3.046. Based
on these signatures, several studies have been carried out
in the literature deriving bounds on the thermal axion
mass [5–10].
Nevertheless, these previous constraints assumed that the

underlying primordial perturbation power spectrum follows
the usual power-law description governed, in its most
economical form, by an amplitude and a scalar spectral

FIG. 8. The 68%, 95%, and 99% C.L. allowed regions for the PCHIP PPS scale dependence in the ΛCDMþma model, using CMB
data only. The bands are obtained with a marginalization of the posterior distribution for each different value of the wave number k in a
fine grid. The black line represents the peak of the posterior distribution at each value of k.
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index. Here we have relaxed such an assumption, in order
to test the robustness of the cosmological axion mass
bounds. Using an alternative, nonparametric description of
the primordial power spectrum of the scalar perturbations,
named PCHIP and introduced in Ref. [11], we have shown
that, in practice, when combining CMBmeasurements with
low redshift cosmological probes, the axion mass con-
straints are only mildly sensitive to the primordial power
spectrum choice and, therefore, are not strongly dependent
on the particular details of the underlying inflationary
model. These results agree with the findings of Ref. [29]
for the neutrino mass case. The tightest bound we find in
the PCHIP primordial power spectrum approach is obtained
when considering BAO measurements together with CMB
data, with ma < 0.89 eV at 95% C.L. In the standard
power-law primordial power spectrum modeling, the tight-
est bound is ma < 0.83 eV at 95% C.L., obtained when
combining BAO, CMB, and HST measurements. Notice
that these bounds are very similar, confirming the robust-
ness of the cosmological axion mass measurements versus
the primordial power spectrum modeling.
Interestingly, both weak lensing measurements and

cluster number counts weaken the thermal axion mass
bounds. The reason for that is due to the lower σ8 values
preferred by these measurements, which could be generated
by a larger axion mass. More concretely, Planck cluster
measurements provide a measurement of the so-called
cluster normalization condition, which establishes a rela-
tionship between the clustering parameter σ8 and the
current matter mass-energy densityΩm. However, the errors
on this relationship depend crucially on the knowledge of
the cluster mass bias. A conservative approach for the
cluster mass calibration results in mild (zero) evidence for a
nonzero axion mass of 1 eV in the PCHIP (power-law) PPS

case. We also illustrate a case in which the cluster mass
bias is fixed, to forecast the expected results from future
cosmological measurements. In this case, a nonzero value
of the thermal axion mass of ∼1 eV (∼0.80 eV) is favored
at ∼4σ (∼3σ) level, when considering the PCHIP (power-
law) PPS approach. When considering additional hot relics
in our analyses, as the sum of the three active neutrino
masses, the evidence for a ∼1 eV thermal axion mass
disappears almost completely. Furthermore, these values of
axion masses correspond to an axion coupling constant
fa ¼ 6 × 106 GeV, which seems to be in tension with the
limits extracted from the neutrino signal duration from SN
1987A [62,63] (albeit these limits depend strongly on the
precise axion emission rate and still remain rough esti-
mates). Precise cluster mass calibration measurements are,
therefore, mandatory to assess whether there exists a
cosmological indication for nonzero axion masses, as the
cluster mass bias is highly correlated with the clustering
parameter σ8, which, in turn, is highly affected by the free-
streaming nature of a hot dark matter component, as
thermal axions.

ACKNOWLEDGMENTS

O.M. is supported by PROMETEO II/2014/050, by the
Spanish Grant No. FPA2011–29678 of the MINECO and
by PITN-GA-2011-289442-INVISIBLES. This work has
been done within the Labex ILP (reference ANR-10-
LABX-63) part of the Idex SUPER and received financial
state aid managed by the Agence Nationale de la
Recherche, as part of the program Investissements d’avenir
under the reference ANR-11-IDEX-0004-02. E. D. V.
acknowledges the support of the European Research
Council via Grant No. 267117 (DARK, P.I. Joseph Silk).

[1] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440
(1977); Phys. Rev. D 16, 1791 (1977).

[2] S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
[3] F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
[4] G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti, and

P. D. Serpico, Nucl. Phys. B729, 221 (2005).
[5] A. Melchiorri, O. Mena, and A. Slosar, Phys. Rev. D 76,

041303 (2007).
[6] S. Hannestad, A. Mirizzi, G. G. Raffelt, and Y. Y. Y. Wong,

J. Cosmol. Astropart. Phys. 08 (2007) 015.
[7] S. Hannestad, A. Mirizzi, G. G. Raffelt, and Y. Y. Y. Wong,

J. Cosmol. Astropart. Phys. 04 (2008) 019.
[8] S. Hannestad, A. Mirizzi, G. G. Raffelt, and Y. Y. Y. Wong,

J. Cosmol. Astropart. Phys. 08 (2010) 001.
[9] M. Archidiacono, S. Hannestad, A. Mirizzi, G. Raffelt, and

Y. Y. Y. Wong, J. Cosmol. Astropart. Phys. 10 (2013) 020.

[10] E. Giusarma, E. Di Valentino, M. Lattanzi, A. Melchiorri,
and O. Mena, Phys. Rev. D 90, 043507 (2014).

[11] S. Gariazzo, C. Giunti, and M. Laveder, J. Cosmol.
Astropart. Phys. 04 (2015) 023.

[12] A. H. Guth, Phys. Rev. D 23, 347 (1981).
[13] A. D. Linde, Phys. Lett. 108B, 389 (1982).
[14] A. A. Starobinsky, Phys. Lett. 117B, 175 (1982).
[15] S. W. Hawking, Phys. Lett. 115B, 295 (1982).
[16] A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48 (1982)

1220.
[17] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger,

Phys. Rep. 215 (1992) 203.
[18] V. F. Mukhanov and G. V. Chibisov, Pis’ma Zh. Eksp. Teor.

Fiz. 33, 549 (1981) [JETP Lett. 33, 532 (1981)].
[19] F. Lucchin and S. Matarrese, Phys. Rev. D 32, 1316 (1985).
[20] D. H. Lyth and A. Riotto, Phys. Rep. 314, 1 (1999).

ROBUSTNESS OF COSMOLOGICAL AXION MASS LIMITS PHYSICAL REVIEW D 91, 123505 (2015)

123505-11

http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevD.16.1791
http://dx.doi.org/10.1103/PhysRevLett.40.223
http://dx.doi.org/10.1103/PhysRevLett.40.279
http://dx.doi.org/10.1016/j.nuclphysb.2005.09.041
http://dx.doi.org/10.1103/PhysRevD.76.041303
http://dx.doi.org/10.1103/PhysRevD.76.041303
http://dx.doi.org/10.1088/1475-7516/2007/08/015
http://dx.doi.org/10.1088/1475-7516/2008/04/019
http://dx.doi.org/10.1088/1475-7516/2010/08/001
http://dx.doi.org/10.1088/1475-7516/2013/10/020
http://dx.doi.org/10.1103/PhysRevD.90.043507
http://dx.doi.org/10.1088/1475-7516/2015/04/023
http://dx.doi.org/10.1088/1475-7516/2015/04/023
http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://dx.doi.org/10.1016/0370-2693(82)90541-X
http://dx.doi.org/10.1016/0370-2693(82)90373-2
http://dx.doi.org/10.1103/PhysRevLett.48.1220
http://dx.doi.org/10.1103/PhysRevLett.48.1220
http://dx.doi.org/10.1016/0370-1573(92)90044-Z
http://dx.doi.org/10.1103/PhysRevD.32.1316
http://dx.doi.org/10.1016/S0370-1573(98)00128-8


[21] B. A. Bassett, S. Tsujikawa, and D. Wands, Rev. Mod. Phys.
78, 537 (2006).

[22] D. Baumann and H. V. Peiris, Adv. Sci. Lett. 2, 105 (2009).
[23] P. A. R. Ade et al. (Planck Collaboration), arXiv:

1502.02114.
[24] P. Hunt and S. Sarkar, J. Cosmol. Astropart. Phys. 01 (2014)

025.
[25] D. K. Hazra, A. Shafieloo, and T. Souradeep, J. Cosmol.

Astropart. Phys. 11 (2014) 011.
[26] P. A. R. Ade et al. (Planck Collaboration), arXiv:

1502.01589.
[27] P. A. R. Ade et al. (Planck Collaboration), Astron.

Astrophys. 571, A16 (2014).
[28] P. A. R. Ade et al. (Planck Collaboration), Astron.

Astrophys. 571, A1 (2014).
[29] R. de Putter, E. V. Linder, and A. Mishra, Phys. Rev. D 89,

103502 (2014).
[30] A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002).
[31] A. Lewis, A. Challinor, and A. Lasenby, Astrophys. J. 538,

473 (2000).
[32] J. Martin, C. Ringeval, and V. Vennin, Phys. Dark Univ. 5-6,

75 (2014).
[33] N. Kitazawa and A. Sagnotti, J. Cosmol. Astropart. Phys. 04

(2014) 017.
[34] F. Fritsch and R. Carlson, SIAM J. Numer. Anal. 17, 238

(1980).
[35] F. Fritsch and J. Butland, SIAM J. Sci. Stat. Comput. 5, 300

(1984).
[36] D. Larson, J. Dunkley, G. Hinshaw, E. Komatsu, M. R.

Nolta, C. L. Bennett, B. Gold, M. Halpern et al., Astrophys.
J. Suppl. Ser. 192, 16 (2011).

[37] E. Di Valentino, E. Giusarma, M. Lattanzi, A. Melchiorri,
and O. Mena, Phys. Rev. D 90, 043534 (2014).

[38] P. A. R. Ade et al. (Planck Collaboration), Astron.
Astrophys. 571, A15 (2014).

[39] C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik, G.
Hinshaw, N. Odegard, K. M. Smith, R. S. Hill et al.,
Astrophys. J. Suppl. Ser. 208, 20 (2013).

[40] C. L. Reichardt, L. Shaw, O. Zahn, K. A. Aird, B. A.
Benson, L. E. Bleem, J. E. Carlstrom, C. L. Chang et al.,
Astrophys. J. 755, 70 (2012).

[41] S. Das, T. Louis, M. R. Nolta, G. E. Addison, E. S.
Battistelli, J. R. Bond, E. Calabrese, D. C. M. J. Devlin
et al., J. Cosmol. Astropart. Phys. 04 (2014) 014.

[42] S.W. Allen, A. E. Evrard, and A. B. Mantz, Annu. Rev.
Astron. Astrophys. 49, 409 (2011).

[43] D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein,
C. Hirata, A. G. Riess, and E. Rozo, Phys. Rep. 530, 87
(2013).

[44] E. Rozo, E. S. Rykoff, J. G. Bartlett, and A. E. Evrard,
arXiv:1302.5086.

[45] P. A. R. Ade et al. (Planck Collaboration), Astron.
Astrophys. 571, A20 (2014).

[46] P. A. R. Ade et al. (Planck Collaboration), arXiv:
1502.01597.

[47] C. Heymans, E. Grocutt, A. Heavens, M. Kilbinger,
T. D. Kitching, F. Simpson, J. Benjamin, T. Erben et al.,
Mon. Not. R. Astron. Soc. 432, 2433 (2013).

[48] G. Efstathiou, Mon. Not. R. Astron. Soc. 440, 1138
(2014).

[49] J. Hamann, S. Hannestad, J. Lesgourgues, C. Rampf, and
Y. Y. Y. Wong, J. Cosmol. Astropart. Phys. 07 (2010) 022.

[50] E. Giusarma, R. De Putter, and O. Mena, Phys. Rev. D 87,
043515 (2013).

[51] C. Blake, E. Kazin, F. Beutler, T. Davis, D. Parkinson,
S. Brough, M. Colless, C. Contreras et al., Mon. Not. R.
Astron. Soc. 418, 1707 (2011).

[52] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-
Smith, L. Campbell, Q. Parker, W. Saunders et al., Mon.
Not. R. Astron. Soc. 416, 3017 (2011).

[53] W. J. Percival et al. (SDSS Collaboration), Mon. Not. R.
Astron. Soc. 401, 2148 (2010).

[54] N. Padmanabhan, X. Xu, D. J. Eisenstein, R. Scalzo, A. J.
Cuesta, K. T. Mehta, and E. Kazin, Mon. Not. R. Astron.
Soc. 427, 2132 (2012).

[55] K. S. Dawson et al. (BOSS Collaboration), Astron. J. 145,
10 (2013) [arXiv:1208.0022.

[56] L. Anderson et al. (BOSS Collaboration), Mon. Not. R.
Astron. Soc. 441, 24 (2014).

[57] B. Leistedt, H. V. Peiris, and L. Verde, Phys. Rev. Lett. 113,
041301 (2014).

[58] J. Hamann and J. Hasenkamp, J. Cosmol. Astropart. Phys.
10 (2013) 044.

[59] M. Wyman, D. H. Rudd, R. A. Vanderveld, and W. Hu,
Phys. Rev. Lett. 112, 051302 (2014).

[60] C. Dvorkin, M. Wyman, D. H. Rudd, and W. Hu, Phys. Rev.
D 90, 083503 (2014).

[61] M. Archidiacono, N. Fornengo, S. Gariazzo, C. Giunti, S.
Hannestad, and M. Laveder, J. Cosmol. Astropart. Phys. 06
(2014) 031.

[62] G. G. Raffelt, Lect. Notes Phys. 741, 51 (2008).
[63] G. G. Raffelt, Phys. Rep. 198, 1 (1990).

DI VALENTINO et al. PHYSICAL REVIEW D 91, 123505 (2015)

123505-12

http://dx.doi.org/10.1103/RevModPhys.78.537
http://dx.doi.org/10.1103/RevModPhys.78.537
http://dx.doi.org/10.1166/asl.2009.1019
http://arXiv.org/abs/1502.02114
http://arXiv.org/abs/1502.02114
http://dx.doi.org/10.1088/1475-7516/2014/01/025
http://dx.doi.org/10.1088/1475-7516/2014/01/025
http://dx.doi.org/10.1088/1475-7516/2014/11/011
http://dx.doi.org/10.1088/1475-7516/2014/11/011
http://arXiv.org/abs/1502.01589
http://arXiv.org/abs/1502.01589
http://dx.doi.org/10.1051/0004-6361/201321591
http://dx.doi.org/10.1051/0004-6361/201321591
http://dx.doi.org/10.1051/0004-6361/201321529
http://dx.doi.org/10.1051/0004-6361/201321529
http://dx.doi.org/10.1103/PhysRevD.89.103502
http://dx.doi.org/10.1103/PhysRevD.89.103502
http://dx.doi.org/10.1103/PhysRevD.66.103511
http://dx.doi.org/10.1086/309179
http://dx.doi.org/10.1086/309179
http://dx.doi.org/10.1016/j.dark.2014.01.003
http://dx.doi.org/10.1016/j.dark.2014.01.003
http://dx.doi.org/10.1088/1475-7516/2014/04/017
http://dx.doi.org/10.1088/1475-7516/2014/04/017
http://dx.doi.org/10.1137/0717021
http://dx.doi.org/10.1137/0717021
http://dx.doi.org/10.1137/0905021
http://dx.doi.org/10.1137/0905021
http://dx.doi.org/10.1088/0067-0049/192/2/16
http://dx.doi.org/10.1088/0067-0049/192/2/16
http://dx.doi.org/10.1103/PhysRevD.90.043534
http://dx.doi.org/10.1051/0004-6361/201321573
http://dx.doi.org/10.1051/0004-6361/201321573
http://dx.doi.org/10.1088/0067-0049/208/2/20
http://dx.doi.org/10.1088/0004-637X/755/1/70
http://dx.doi.org/10.1088/1475-7516/2014/04/014
http://dx.doi.org/10.1146/annurev-astro-081710-102514
http://dx.doi.org/10.1146/annurev-astro-081710-102514
http://dx.doi.org/10.1016/j.physrep.2013.05.001
http://dx.doi.org/10.1016/j.physrep.2013.05.001
http://arXiv.org/abs/1302.5086
http://dx.doi.org/10.1051/0004-6361/201321521
http://dx.doi.org/10.1051/0004-6361/201321521
http://arXiv.org/abs/1502.01597
http://arXiv.org/abs/1502.01597
http://dx.doi.org/10.1093/mnras/stt601
http://dx.doi.org/10.1093/mnras/stu278
http://dx.doi.org/10.1093/mnras/stu278
http://dx.doi.org/10.1088/1475-7516/2010/07/022
http://dx.doi.org/10.1103/PhysRevD.87.043515
http://dx.doi.org/10.1103/PhysRevD.87.043515
http://dx.doi.org/10.1111/j.1365-2966.2011.19592.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19592.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19250.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19250.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15812.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15812.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21888.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21888.x
http://arXiv.org/abs/1208.0022
http://dx.doi.org/10.1093/mnras/stu523
http://dx.doi.org/10.1093/mnras/stu523
http://dx.doi.org/10.1103/PhysRevLett.113.041301
http://dx.doi.org/10.1103/PhysRevLett.113.041301
http://dx.doi.org/10.1088/1475-7516/2013/10/044
http://dx.doi.org/10.1088/1475-7516/2013/10/044
http://dx.doi.org/10.1103/PhysRevLett.112.051302
http://dx.doi.org/10.1103/PhysRevD.90.083503
http://dx.doi.org/10.1103/PhysRevD.90.083503
http://dx.doi.org/10.1088/1475-7516/2014/06/031
http://dx.doi.org/10.1088/1475-7516/2014/06/031
http://dx.doi.org/10.1016/0370-1573(90)90054-6

