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ABSTRACT
Peculiar velocity measurements are the only tool available in the low-redshift Universe for map-
ping the large-scale distribution of matter and can thus be used to constrain cosmology. Using
redshifts from the 2M++ redshift compilation, we reconstruct the density of galaxies within
200 h−1 Mpc, allowing for the first time good sampling of important superclusters such as the
Shapley Concentration. We compare the predicted peculiar velocities from 2M++ to Tully–
Fisher and SNe peculiar velocities. We find a value of β∗ ≡ �0.55

m /b∗ = 0.431 ± 0.021, suggest-
ing �0.55

m σ8,lin = 0.401 ± 0.024, in good agreement with other probes. The predicted peculiar
velocity of the Local Group arising from the 2M++ volume alone is 540 ± 40 km s−1, towards
l = 268◦ ± 4◦, b = 38◦ ± 6◦, only 10◦ out of alignment with the cosmic microwave background
dipole. To account for velocity contributions arising from sources outside the 2M++ volume,
we fit simultaneously for β∗ and an external bulk flow in our analysis. We find that an external
bulk flow is preferred at the 5.1σ level, and the best fit has a velocity of 159 ± 23 km s−1

towards l = 304◦ ± 11◦, b = 6◦ ± 13◦. Finally, the predicted bulk flow of a 50 h−1 Mpc
Gaussian-weighted volume centred on the Local Group is 230 ± 30 km s−1, in the direction
l = 293◦ ± 8◦, b = 14◦ ± 10◦, in agreement with predictions from � cold dark matter.

Key words: Local Group – cosmic background radiation – cosmological parameters – large-
scale structure of Universe.

1 IN T RO D U C T I O N

Peculiar velocities, i.e. deviations in the motions of galaxies from
the Hubble flow, are valuable tools which probe the underlying
distribution of dark matter, and are in fact the only practical means
of doing so on large scales in the low-redshift Universe. They can be
used to constrain the amplitude of matter density fluctuations on a
range of scales. As the amplitude of such fluctuations are themselves
cosmology dependent, the analysis of peculiar velocities provides
a direct means of testing cosmological predictions.

In the current standard cosmological paradigm, the observed
structure in the Universe is a result of gravitational instabilities
which grew from density perturbations in an otherwise homoge-
neous background. This gravitational attraction of objects to sur-
rounding structure results in peculiar motion, i.e. motion in addition
to that resulting from the expansion of the Universe. Assuming only
mass continuity and standard gravitation in an expanding universe,

� E-mail: lavaux@iap.fr (GL); mike.hudson@uwaterloo.ca (MJH)

in the linear regime where these fluctuations in density are small,
i.e. δ(r) = (ρ − ρ̄)/ρ̄ � 1, peculiar velocities are proportional to
gravitational accelerations. This relation, as expressed in integral
form, is as follows:

v(r) = f (�m)

4π

∫
d3r ′δ(r ′)

(r ′ − r)

|r ′ − r|3 , (1)

where v(r) is the peculiar velocity field, δ(r) is the mass density
contrast, �m is the cosmological density parameter, and where dis-
tances are measured in km s−1 (i.e. r = HR, where H is the Hubble
parameter and R is the comoving distance in Mpc). The growth
rate of density perturbations, f(�m), is generally parametrized by
�γ

m, where γ = 0.55 for � cold dark matter (�CDM; Wang &
Steinhardt 1998), which has recently been shown to be consistent
with observations (Hudson & Turnbull 2012).

As the total matter density contrast cannot be observed, however,
to make use of equation (1), an assumption must first be made as to
how observed galaxies trace the underlying total matter. Assuming
linear biasing holds on large scales, δg = bδ, where b is the linear
bias factor, and where we have used the subscript ‘g’ when referring
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to galaxies. Rewriting equation (1) in terms of the observable den-
sity contrast of galaxies in the nearby Universe, the proportionality
factor between gravitational acceleration and peculiar velocity is
then β ≡ f/b. Thus, if linear theory holds, by comparing measured
peculiar velocities to those predicted by the distribution of galax-
ies in redshift surveys, one can constrain cosmological parameters
through the measurement of β. Furthermore, under the assumption
of linear biasing σ 8, g = bσ 8, where σ 8 is the root mean square
density fluctuations on an 8 h−1 Mpc scale.

By measuring σ 8, g directly from the redshift data, one can elim-
inate b and constrain the degenerate cosmological parameter com-
bination fσ 8 = βσ 8, g. Using this method of velocity–velocity com-
parison, a number of recent studies have constrained this parameter
combination (Pike & Hudson 2005; Davis et al. 2011; Branchini,
Davis & Nusser 2012; Turnbull et al. 2012).

In addition to constraints placed on these parameters, when full
sky surveys are used one can compute the velocity of the Local
Group (hereafter LG) arising from the volume under consideration
as predicted by linear theory. While it has long been assumed that
the dipole in the cosmic microwave background (CMB) temperature
map is a Doppler effect due to the Sun’s motion, this has only
been proved recently, via the aberration of the CMB temperature
anisotropies (Planck Collaboration XXVII 2014b). The motion of
the Sun with respect to the Galaxy and of the Galaxy with respect
to the barycentre of the LG are well known (e.g. Courteau & van
den Bergh 1999), and when combined with the Sun’s motion with
respect to the CMB (Hinshaw et al. 2009) allows a determination
of the motion of the LG with respect to the CMB: 622 ± 35 km s−1

in the direction l = 272◦ ± 3◦, b = 28◦ ± 5◦. A deviation from
the predicted value with that derived from the CMB dipole would
presumably arise from sources beyond the survey and would thus
have implications for large-scale structure. As the tidal field falls off
as r−3, to first order one can model additional velocity contributions
to the LG arising from sources outside the survey volume as a
dipole, with the magnitude of this dipole, or residual bulk flow,
itself being a test for cosmological models. Past studies constraining
cosmological parameters through comparison of predicted motion
of the LG using linear theory and that derived from the CMB include
Erdoğdu et al. (2006a), and Bilicki et al. (2011). Recently such an
analysis has been extended to the non-linear regime using a novel
orbit-reconstruction algorithm to predict motions of nearby objects
(Lavaux et al. 2010).

In addition to reconstructing the motion of the LG, one can ex-
plore the bulk motion of a large volume (typically the mean velocity
of a 50 h−1 Mpc Gaussian-weighted window) as such motion probes
the amplitude of matter power spectrum on large scales. As previ-
ous studies in this vein have found hints of excess power on large
scales (cf. Watkins, Feldman & Hudson 2009), there has been in-
terest in performing such analyses using peculiar velocity surveys
(e.g. Turnbull et al. 2012; Hong et al. 2014).

In this work, we explore the methods used to self-consistently
reconstruct the real space density field from redshift space while
quantifying any biases intrinsic to this reconstruction method. We
then use the recently constructed large full-sky 2M++ catalogue
composed of 69 160 galaxy redshifts to measure β to high precision
and constrain fσ 8. We further explore the growth of the LG’s dipole
as predicted by linear perturbation theory arising from structures
within 2M++, in addition to computing the bulk flow arising from
this survey.

This paper is organized as follows: in Section 2, we briefly re-
view construction of the 2M++ catalogue, we discuss accounting
for incompleteness and functional dependence of galaxy bias on

luminosity when computing the density field, and we outline details
of the reconstruction procedure. In Section 3, we explore the growth
of the LG velocity amplitude arising from 2M++ as a function of
survey depth. In Section 4, we discuss peculiar velocity surveys
used, the methods used in comparing predicted velocities to mea-
sured velocities, as well as the results obtained from such analyses.
We discuss and compare our results to those from recent literature
in Section 5, and conclude in Section 6.

2 D ENSI TY FI ELD RECONSTRUCTI ON

Redshift surveys measure positions of objects in redshift-space.
As equation (1) requires real-space positions, we must first map
observed redshifts to real-space distances. The observed redshift,
zobs, is related to cosmological redshift resulting from the expansion
of the Universe, zcos, and that resulting from peculiar velocities, zpec,
through

(1 + zobs) = (1 + zcos)(1 + zpec), (2)

where for non-relativistic peculiar motions czpec � vpec. Note that
in the above if zobs is corrected to some frame of reference, such
as the CMB, then vpec is the peculiar velocity with respect to that
frame. The comoving distance in the low-redshift Universe is then
related to the cosmological redshift through

H0R � c

(
zcos − 1 + q0

2
z2

cos

)
(3)

(Peebles 1993), where R is the comoving distance, H0 is the local
value of the Hubble parameter, and where q0 is the local value of
the deceleration parameter, which is given by q = �m/2 − �� for
a flat �CDM Universe. As real-space positions are dependent on
peculiar velocity predictions, which are themselves dependent on
real-space positions, mapping redshifts to real-space must be done
with care.

In this section, we discuss the 2M++ redshift catalogue, and out-
line the procedure used in reconstructing comoving positions of the
galaxies therein. Section 2.1 reviews construction of 2M++, and
in Section 2.2 we outline how galaxy weights were computed to ac-
count for the fact that 2M++ is magnitude limited. In Section 2.3,
we briefly review the choice of smoothing kernel. We discuss the
procedure used to normalize the smoothed density field to the same
effective bias in Section 2.4. In Section 2.5, we outline the iterative
scheme used to recover real-space positions from redshift-space,
and in Section 2.6 we take a cosmographic tour through the recov-
ered density field.

2.1 2M++ redshift compilation

The integral in equation (1) is over all space. In reconstructing the
velocity field of the local Universe, therefore, clearly one would like
a redshift survey that is very deep and as close to all-sky as possible.
Two such catalogues which have been used extensively in the past
include the sparsely sampled IRAS Point Source Catalogue Red-
shift Survey (PSCz; Saunders et al. 2000), and more recently, the
shallower but more densely sampled Two-Micron All-Sky Redshift
Survey (2MRS; Huchra et al. 2012). In this work, we use a super-
set of 2MRS, dubbed 2M++, constructed by Lavaux & Hudson
(2011). This sample has greater depth than 2MRS, and superior
sampling than PSCz. The photometry is from the Two-Micron-
All-Sky-Survey (2MASS) Extended Source catalogue, (2MASS-
XSC; Skrutskie et al. 2006), an all-sky survey in the J, H and KS

bands. Redshifts in the KS band of the 2MASS Redshift Survey
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Constraints from 2M++ 319

Figure 1. Left: all galaxies in 2M++ with measured redshifts; blue galaxies are nearest, red are farthest. The 2MRS region (K2M++ ≤ 11.5) with lower
density of galaxies is apparent. The Galactic Centre is in the centre of the plot, and Galactic longitude increases to the left. Right: histogram of galaxies in
catalogue as a function of distance (bin width of 10 h−1 Mpc).

(2MRS) are supplemented by those from the Sloan Digital Sky Sur-
vey Data Release Seven (SDSS-DR7; Abazajian et al. 2009), and
the Six-Degree-Field Galaxy Redshift Survey Data Release Three
(6dFGRS; Jones et al. 2009). Data from SDSS were matched to that
of 2MASS-XSC using the NYU-VAGC catalogue (Blanton et al.
2005). As 2M++ draws from multiple surveys, galaxy magnitudes
from all sources were first recomputed by measuring the apparent
magnitude in the KS band within a circular isophote at 20 mag
arcsec−2. Following a prescription described in Lavaux & Hud-
son (2011), magnitudes were then corrected for Galactic extinction,
cosmological surface brightness dimming and stellar evolution. Af-
ter corrections the sample was limited to K2M++ ≤ 11.5 in regions
not covered by 6dFGRS or SDSS, and limited to K2M++ ≤ 12.5
elsewhere.

Other relevant corrections which were made to this catalogue in-
clude accounting for incompleteness due to fibre-collisions in 6dF
and SDSS, as well as treatment of the zone of avoidance (ZoA).
Incompleteness due to fibre-collisions was treated by cloning red-
shifts of nearby galaxies within each survey region as described in
Lavaux & Hudson (2011).

In treating the ZoA, for Galactic longitudes in the range [30◦,
330◦], lower latitudes (|b| < 5◦) were first masked and then cloned
with the redshifts from 2MRS in an equal-area strip just above the
missing northern (0◦ < b < 5◦) Galactic strip, and, for the negative
Galactic latitudes in the south, a strip below that was cloned. Near
the Galactic Centre, for longitudes in the range [−30◦, 30◦], the
wider Galactic latitude strip |b| < 10◦ was filled with the redshifts
from 6dFGRS in a similar way. A histogram of distances is shown
in Fig. 1.

2.2 Luminosity function and galaxy weights

Before using the catalogue to construct the density field, we must
first account for survey incompleteness. In this section, we provide
a summary of the method used to obtain the luminosity function
fit to the catalogue; this luminosity function is in turn used in the
weighting scheme employed to account for incompleteness. For a
complete description of these calculations as applied to this cata-
logue see Lavaux & Hudson (2011). The luminosity function used

to characterize the data set is the Schechter function (1976)), which
when written in terms of absolute magnitudes is given by


(M) = 0.4 log(10)n∗100.4(1+α)(M∗−M) exp(−100.4(M∗−M)), (4)

where n∗ is the density normalization, M∗ is the absolute magnitude
break, and α is additional power-law parameter to be determined.
Schechter function parameters are computed using likelihood for-
malism, where the product of all conditional probabilities of observ-
ing galaxies intrinsic magnitudes is maximized given their redshifts,
Schechter parameter values, and survey completeness at their spec-
ified angular positions and distances.

Before computing weights we first discuss the different ways by
which we can model the galaxy density contrast. As we cannot
compute the mass density contrast of observed galaxies directly, we
must use either the number-density of galaxies, or their luminosity-
density in computing δg. In the context of linear biasing, our goal is
to create a galaxy density contrast field which most closely traces
the underlying total mass density contrast. Although luminosity-
density may be a better proxy for stellar mass, and thus for the
underlying mass distribution of dark matter, we will consider both
schemes in this work.

To account for incompleteness, galaxies are weighted according
to a common prescription similar to that of Davis & Huchra (1982).
In the case of a number-density scheme, observed galaxies are
weighted to account for the number of galaxies not observed at
a given distance due to the magnitude limit of the survey. When
using the galaxy number-density for a single homogeneous redshift
survey, galaxies are weighted by

wN (r) = Naverage

Nobserved(r)
=

∫ ∞
Lmin


(L) dL∫ ∞
4πr2fmin


(L) dL
, (5)

when 4πd2
Lfmin > Lmin, and unity otherwise. The flux limit, fmin,

corresponds to a Ks band apparent magnitude limit of 11.5 for
galaxies drawn from 2MRS and 12.5 otherwise. The luminosity
Lmin used above corresponds to a Ks band absolute magnitude of
−20. Computed weights used in this work additionally account
for the inhomogeneous incompleteness of 2M++ and a complete
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Figure 2. Computed luminosity weights obtained from the procedure out-
lined in Section 2.2. As 2MRS is magnitude limited to Ks < 11.5, weights
rise more sharply than for SDSS and 6dF galaxies which are magnitude
limited to Ks < 12.5. The scatter in the weights at a given distance arises
from varying levels of redshift completeness across the sky.

description of their determination can be found in Lavaux & Hudson
(2011).

In this paper, by default, we will use luminosity-density to com-
pute the galaxy density contrast. The weight assigned to each
galaxy’s luminosity is again based on the fraction of the total lu-
minosity expected, given the magnitude limit of the survey, to the
luminosity one expects to observe at a given distance. Thus, for a sin-
gle homogeneous redshift survey, galaxy luminosities are weighted
by

wL(r) = Laverage

Lobserved(r)
=

∫ ∞
Lmin

L 
(L) dL∫ ∞
4πr2fmin

L 
(L) dL
. (6)

The calculated luminosity weights obtained for the best values of
cosmological parameters are shown in Fig. 2.

2.3 Smoothing

In order to use equation (1), the density field must first be suffi-
ciently smooth for linear perturbation theory to apply. The optimal
scale on which to smooth the data was determined by compar-
ing velocities from an N-body simulation to predictions obtained
through linear theory using different smoothing lengths. Smooth-
ing the density contrast with a 4 h−1 Mpc Gaussian was found to be
the best compromise in minimizing the scatter in predicted veloc-
ities versus simulation velocities, while simultaneously returning
an unbiased slope in the comparison of observed nonlinear veloci-
ties (from the simulation) with the linear theory predictions from a
smoothed, reconstructed density field of haloes. These comparisons
are discussed in greater detail in Appendix A.

2.4 Accounting for magnitude dependence
of galaxy-matter bias

For magnitude limited surveys such as 2M++, the mean luminosity
of observed galaxies increases with depth. As galaxy-matter bias
has been found to increase with luminosity, this means that ob-
jects observed at higher redshift are on average more biased than
those observed nearby. In this section, we account for this effect
by rescaling the density field to the same effective bias. We do so

Figure 3. Number-weighted (lower) and luminosity-weighted (up-
per) effective bias as a function of distance for the most sig-
nificant 1σ deviation of parameters from the scaling relation
b/b∗ = (0.73 ± 0.07) + (0.24 ± 0.04)L/L∗. Plots are obtained using the
parameter values α = −0.85 and M∗ = −23.25 for the Schechter luminosity
function.

using the bias model of Westover (2007) in which bias is a function
of luminosity. By comparing the correlation function of 2MASS
volume-limited subsamples, converting the binned absolute magni-
tude to a luminosity and defining b/b∗ = (ξ (s)/ξfid(s))1/2, Westover
(2007) found b/b∗ = (0.73 ± 0.07) + (0.24 ± 0.04)L/L∗, where
b∗ is the bias of an L∗ galaxy. This result is consistent with that of
Norberg et al. (2001) and Tegmark et al. (2002), who did similar
analyses using projected correlation functions of 2dFGRS and the
SDSS power spectrum, respectively.

Since bias is a function of luminosity, this means that a naive
computation of the density field using a magnitude limited survey
would lead to a larger effective bias at larger distances. As our end
goal is to compare predicted velocities with measured velocities
and determine f/b, we must first correct the density contrast field
by normalizing the field to the same effective bias. The effective
number-weighted bias is computed as follows:

bN
eff (r) =

∫ ∞
4πr2fmin

b(L) 
(L) dL∫ ∞
4πr2fmin


(L) dL
= ψN (r)b∗. (7)

Using a luminosity-weighting scheme in computing the density
contrast, the effective luminosity-weighted bias is given by

bL
eff (r) =

∫ ∞
4πr2fmin

b(L) L 
(L) dL∫ ∞
4πr2fmin

L 
(L) dL
= ψL(r)b∗. (8)

Using the functional form of b(L) quoted above from Westover
(2007), this normalization procedure was applied to the 2M++
density contrast fields. Both the number-weighted and luminosity-
weighted effective bias for α = −0.85, M∗ = −23.25, and a mag-
nitude limit of 12.5 are shown in Fig. 3. We can then rewrite
equation (1) as

v(r) = β∗

4π

∫
d3r ′δ∗

g (r ′)
(r ′ − r)

|r ′ − r|3 , (9)

where we have defined β∗ ≡ f(�)/b∗, and δ∗
g (r) ≡ b∗δ(r) =

δg(r)/ψ(r).
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2.5 Reconstruction procedure

The weighted galaxies from 2M++ have measured redshifts cz,
and not precise distances r. However, application of (1) requires
distances as opposed to redshifts. We refer to the inverse problem
of determining the positions from redshifts as ‘reconstruction’. Re-
construction was accomplished via an iterative procedure modelled
on that of Yahil et al. (1991). Objects were first grouped using the
‘Friends-of-friends’ algorithm (Huchra & Geller 1982), and then
placed at the mean of their group redshift distance to suppress the
‘Fingers-of-God’ effect. Gravity was then ‘adiabatically’ turned on
by increasing β∗ ≡ f(�m)/b∗ from 0 to 1 in steps of 0.01. The
reconstruction took place in the LG frame, and on each iteration the
following steps were taken.

(i) A Schechter luminosity function is fitted to the data using the
likelihood formalism discussed in Section 2.2. The LF is in turn
used to compute either the luminosity or number weights following
the procedure discussed in Section 2.2.

(ii) Galaxies from 2MRS with distances greater than 125
h−1 Mpc are assigned a weight of zero. Galaxy properties, including
newly computed weights are then cloned to account for incomplete-
ness and fill the ZoA as described in Section 2.1.

(iii) Number weighted galaxies or their weighted luminosities
within 200 h−1 Mpc are then placed on a grid.

(iv) The density contrast field is then computed and normalized
to the same bias, b∗, as described in Section 2.4. The field is in turn
smoothed with a Gaussian kernel of width 4 h−1 Mpc.

(v) Using equation (9), the density contrast field is then used to
obtain predicted peculiar velocities for all objects in the catalogue.

(vi) In conjunction with measured redshifts, predicted peculiar
velocities projected on to the line of sight (LOS) are then used to
predict comoving distances using equations (2) and (3).

(vii) The previous five predictions for a galaxy’s distance are
then averaged to suppress oscillations arising from triple valued
regions, i.e. regions of high-density near which there are multiple
solutions for distance given redshift (discussed further in Appendix
B). The averaged distance is in turn assigned to the galaxy and used
to recompute the galaxy’s absolute magnitude. Computed distances
and magnitudes are then used in the subsequent iteration.

Catalogues containing updated distances, luminosities and weights
were saved at each iteration (corresponding to increasing values of
β) in addition to the computed density and velocity fields.

It should be noted that this iterative reconstruction procedure
was found to be unbiased in determining the best-fitting value of
β∗ when the full analysis was run on an N-body simulation using a
�CDM cosmology (see Appendix A for more details).

2.6 Cosmography

Fig. 4 shows the luminosity-weighted density field of the Super-
galactic Plane for β∗ = 0.43, smoothed with a 4 h−1 Mpc Gaussian
kernel. The incomplete coverage due to the lower magnitude limit of
2MRS is clearly visible in this figure beyond SGX � 125 h−1 Mpc.
The most prominent overdensity in this plane is the Shapley Concen-
tration located at (SGX, SGY) � (−125, 75) h−1 Mpc. Other notable
structures in Fig. 4 include the Virgo Supercluster directly above
the LG, the Hydra–Centaurus Supercluster at (−40, 20) h−1 Mpc,
and the Perseus-Pisces Supercluster (40, −30) h−1 Mpc. Additional
slices through SGZ are shown in Fig. 5, though smoothed on a
7 h−1 Mpc scale to enhance the contrast of large overdensities. For
instance, Horologium-Reticulum Supercluster can be readily ob-

served at SGZ � −112 h−1 Mpc, SGX � −70 h−1 Mpc, SGY �
−140 h−1 Mpc. The supergalactic plane is also shown with this
smoothing for comparison.

3 2 M++ PREDI CTED PECULI AR V ELOCITY
O F T H E LO C A L G RO U P

The velocity of the LG as predicted by linear perturbation theory
for an ideal distance-limited catalogue is given by

vLG = β

4π

∫ Rmax

0
d3r ′δg(r ′)

r ′

r ′3 + V ext , (10)

where V ext encapsulates contributions from beyond Rmax, and to
first order, can be approximated as a dipole, or ‘residual’ bulk flow.
For a realistic flux-limited catalogue, we do not detect a continuous
distribution of matter but a finite number of galaxies. As a result,
our estimate of the velocity of the LG using 2M++ is subject to
shot noise. To estimate the effect of shot noise on our predicted
motion of the LG, we computed the standard deviation in each of
the components of 500 bootstrap samples. The shot noise in the
amplitude of the LG’s motion from this analysis was found to be
56 km s−1.

Under the assumption that the observed CMB dipole arises from
the motion of the LG, there has been much debate as to the structures
sourcing this motion. Most recent work has made use of 2MASS-
XSC or 2MRS in reconstructing the motion of the LG, and there
has yet to be consensus on the distance at which the LG’s motion
coincides with that derived from the CMB. Erdoǧdu et al. (2006b)
argue that more than 70 per cent of the LG’s motion results from
structures within 50 h−1 Mpc, such as Hydra–Centaurus Superclus-
ter. While others argue for convergence at distances greater than
∼120 h−1 Mpc such as Lavaux et al. (2010) using Monge–Ampère–
Kantorovich orbit-reconstruction method, or Bilicki et al. (2011),
who explored the convergence of the 2MASS dipole moment of
the angular distribution of galaxies as a function of the limiting
flux of the sample. As 2M++ is a superset of 2MRS and contains
redshift measurements up to a magnitude limit of Ks = 12.5, these
data are well suited to examine the influence of structures beyond
120 h−1 Mpc on the velocity of the LG.

Using density fields for different values of β∗ that were obtained
throughout the iteration procedure discussed in Section 2.5, the ve-
locity field of increasingly larger concentric spheres centred on the
LG was computed. The direction and amplitude of the LG velocity
as a function of distance for different values of β∗ was then obtained.
The amplitude of the LG velocity as predicted by 2M++ for dif-
ferent values of β∗ is shown in Fig. 6(a). The expected agreement
between predictions using linear perturbation theory for a survey of
a certain depth with values derived from the CMB is plotted for com-
parison. This conditional probability assumes a �CDM Wilkinson
Microwave Anisotropy Probe 9 (WMAP9) cosmology. A derivation
of this conditional velocity can be found in appendix A of Lavaux
et al. (2010), and is based on Lahav, Kaiser & Hoffman (1990). The
convergence of the direction of LG velocity with that derived from
the CMB (l = 272◦ ± 3◦, b = 28◦ ± 5◦) is plotted in Fig. 6(b).
For our best-fitting value of β∗ = 0.43 from Section 4 below, the
misalignment is 10◦. This misalignment angle is significantly better
than those found by past studies using the shallower 2MRS, such as
the 21◦ misalignment found by Erdoğdu et al. (2006a), 19◦ found
by Bilicki et al. (2011), or the ∼45◦ misalignment found by Lavaux
et al. (2010).
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322 J. Carrick et al.

Figure 4. The Supergalactic Plane (SGZ = 0) of the 2M++ luminosity-weighted galaxy density contrast field, reconstructed with β∗ = 0.43 smoothed with
a Gaussian kernel of radius 4 h−1 Mpc. The dashed contour is δ∗

g = −0.5, the bold white contour is δ∗
g = 0, and successive contours thereafter increase from 1

upwards in steps of 3. The Galactic plane runs roughly along the SGY=0 axis. The Shapley Concentration is located at (SGX, SGY) � (−125, 75) h−1 Mpc,
the Virgo Supercluster directly above the LG, the Hydra–Centaurus Supercluster at (−40, 20) h−1 Mpc, and the Perseus-Pisces Supercluster is at (40, −30)
h−1 Mpc. The density field is shallower at positive SGX because this region is only covered by the 2MRS, whereas the rest of the plane is covered by the
deeper 6dFGRS and SDSS.

4 PE C U L I A R V E L O C I T Y C O M PA R I S O N S

In principle, it is possible to constrain cosmological parameters
by comparing the growth of predicted motion of the LG with its
observed motion. This is difficult in practice because one expects
contributions from sources beyond the survey limit, which we have
modelled here as a residual dipole Vext. There is therefore a de-
generacy between β∗ and Vext parameters appearing in equation
(10). Very early studies of the growth of the LG gravity dipole ob-
served the flatness at large radii from data similar to that shown in
Fig. 6, therefore assumed that Vext was negligible, and hence solved
for β∗. This procedure, however, leads to a value of β which is
biased high, since Vext and the integral in (10) are correlated. An
alternative approach is to constrain Vext by assuming a cosmological
model of density fluctuations, but this then makes the exercise model
dependent.

A better approach is to break the degeneracy by measuring pecu-
liar velocities of galaxies or groups other than the LG. In this section,
we discuss comparisons between the predicted and observed mo-
tions of two samples of galaxies, derived from the Tully–Fisher
(TF) relation and from Type Ia supernovae.

4.1 Peculiar velocity surveys

4.1.1 SFI++
SFI++ (Springob et al. 2007) builds primarily on Spiral Cluster
I-band (SCI) and Spiral Field I-band (SFI) samples and uses a
mixture of 21-cm line profile widths and optical rotation curves in
determining the I-band TF relation from a subset of 807 galaxies in
the fields of 31 clusters and groups (Masters et al. 2006). From the
derived TF relation, they in turn determine the peculiar velocities of
5780 galaxies. Upon removing galaxies without high-quality width
measurements and those that are located beyond the volume covered
by 2M++, SFI++ can be divided in to two subsets of 2583 field
galaxies and 735 galaxy groups.

As noted by Davis et al. (2011), the SFI++ TF relation has a
kink in the faint end (M > −20), and an asymmetric distribution of
outliers about the expected velocity width parameter η ≡ log (W) −
2.5 (Springob et al. 2007). As we will be fitting for the inverse TF
relation, we will account for the outliers and deviation from lin-
earity of the relation by excluding galaxies with redshift-distance
magnitudes fainter than −20. We then iteratively compute the TF
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Constraints from 2M++ 323

Figure 5. The 2M++ density field at various slices of SGZ. The density field was smoothed with a 7 h−1 Mpc Gaussian kernel. The SGZ = −110h−1 Mpc
panel shows the Horologium-Reticulum supercluster. The dashed contour is δ∗

g = −0.5, the bold white contour is δ∗
g = 0, and successive contours thereafter

increase from 1 upwards in steps of 2.

relation parameters and remove those with a velocity width that
deviates by more than 0.2 in η (3.8σ ) from the relation, until de-
rived parameter values converge. Selection on both magnitude and
velocity width resulted in the rejection of 503 field galaxies and
137 galaxy groups. Furthermore, when comparing predicted veloc-
ities from 2M++ with those from SFI++, the remaining objects

which were found to differ by more than 3.5σ with all velocity
fields obtained through the reconstruction procedure were rejected
(0.6 per cent). The final sample was composed of 2067 field galax-
ies and 595 galaxy groups. The typical or characteristic depth of
the sample can be quantified by a weighted mean distance, where
the weights are the inverse square of the uncertainties. This yields
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324 J. Carrick et al.

Figure 6. Left: growth of LG velocity amplitude as predicted by linear perturbation theory for successively larger concentric spheres. The non-monotonic
curves correspond to the 2M++ predicted growth of the LG amplitude for different values of β∗ as indicated in the legend. The solid purple curve is for our
best-fitting value β∗ = 0.43. The smooth thick grey line corresponds to the expected velocity amplitude for a survey of a depth indicated by the x-axis in a
�CDM WMAP9 cosmology. The thin grey lines indicate the 68 per cent uncertainties due to cosmic variance. The shaded cyan band corresponds to the velocity
of the LG and its 68 per cent uncertainties as inferred from the CMB dipole. Right: the misalignment of the LG predicted direction of the velocity arising from
2M++ with that derived from the CMB (l = 272◦, b = 28◦). The smooth grey curve indicates the 68 per cent uncertainty on the alignment expected in the
WMAP9 cosmology.

depths of 42 h−1 Mpc and 25 h−1 Mpc for field and group samples,
respectively.

For the TF relation, we will perform the fit two different ways. The
first is a direct maximum-likelihood fit to the observed linewidths:
the VELMOD method of Willick et al. (1997), as described in Sec-
tion 4.2.1 below. The second method uses the estimated distances
as given by Springob et al. (2007), but corrected for the fact that
their peculiar velocities were obtained under the assumption that
czobs = H0R + vpec. Specifically, we use the analytic relation from
equation (2) to obtain velocities from measured positions.

4.1.2 First Amendment Supernovae

The First Amendment (A1) catalogue Type Ia Supernovae (SNe)
data sets were compiled by Turnbull et al. (2012). A1 is composed
of SNe within 200 h−1 Mpc and draws 34 SNe from Jha, Riess &
Kirshner (2007), 185 from Hicken et al. (2009) and 26 from Folatelli
et al. (2010). Of these 245 SNe, 237 are within the volume spanned
by 2M++, and have an uncertainty-weighted depth of 31 h−1 Mpc.

4.2 Velocity–velocity comparisons

For the SFI++ subsets, we use the distances as determined in
Springob et al. (2007) which have not been corrected for Malmquist
bias. We similarly do not use Malmquist bias corrected A1 dis-
tances. Of the comparison methods discussed below, VELMOD
is unaffected by inhomogeneous Malmquist bias, and accounts for
homogeneous Malmquist bias in the likelihoods. The Forward Like-
lihood method discussed accounts for both homogeneous and in-
homogeneous Malmquist bias in the likelihoods. The simple χ2

comparison, however, neither accounts for homogeneous nor inho-
mogeneous Malmquist bias, and as such, the results yielded from
this analysis are taken to be biased.

4.2.1 VELMOD

VELMOD is a rigorous maximum likelihood method first proposed
and implemented by Willick et al. (1997) and described further

in Willick & Strauss (1998). It is a velocity–velocity comparison
method used to fit for the TF relation parameters (zero-point, slope
and scatter) while simultaneously fitting for β. VELMOD takes as
inputs TF parameters, an object’s redshift and one of the observables
(velocity-width or apparent magnitude), and maximizes the proba-
bility of observing one given the other. The strength of VELMOD
analysis is that it neither assumes a one to one mapping from red-
shift space to real space (accounting for errors due to triple-valued
regions), nor does it require calibration of the TF relation prior to
its implementation.

Forward VELMOD uses the velocity-width to predict a galaxy’s
apparent magnitude, whereas the inverse method uses the appar-
ent magnitude to predict the velocity-width parameter. The forward
method is strongly dependent on selection effects, and thus requires
a well-modelled selection function. The inverse method, however,
is much less sensitive to selection effects due to sample selection’s
possible weak dependence on velocity-width. As the selection func-
tion of SFI++ is rather difficult to model accurately due to its being
a compilation of various surveys with a range of selection criteria,
we will make use of the inverse method in our analysis. This anal-
ysis assumes a TF relation of the form η0(M) = −b−1

inv (M − ainv),
where η = log10(W) − 2.5, M = m − 5 log (dL(r)) is the absolute
magnitude, dL is the luminosity distance, and where binv, ainv and
ση are the slope, intercept and rms scatter of the inverse relation,
respectively.

The conditional probability of observing a measured velocity-
width of a galaxy with an apparent magnitude, m, and an observed
redshift, z, is given by

P (η|m, cz) = P (η,m, cz)∫ ∞
−∞ dη P (η, m, cz)

, (11)

where

P (η, m, cz) =
∫ ∞

0
dr P (η,m|r) P (cz|r) r2 , (12)

P (η, m|r) ∝ 
(m−μ(r))S(m, η, r) exp

(
− [η−η0(m−μ(r))]2

2σ 2
η

)
,

(13)
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P (cz|r) = 1√
2πσ 2

v

exp

(−[cz − czpred]2

2σ 2
v

)
, (14)

(1 + zpred) = (1 + zcos(r))(1 + β∗u(r)/c), (15)

where zcos(r) is related to the comoving distance r ≡ H0R through
equation (3), S(m, η, r) is the selection function, u is the radial
predicted velocity scaled to β∗ = 1, σ v is the scatter in the ac-
tual velocity compared to the linear theory prediction, and where
μ(r) ≡ 5 log r is the distance modulus. We take σv = 150 km s−1

based on the tests discussed in Appendix A. We can then com-
pute the product of the conditional probability P(η|m, cz) over all
galaxies and minimize the quantity

LIV = −2
∑

i

ln P (ηi |mi, czi) (16)

for the parameters β∗, ainv, binv, and the three components of V ext.

4.2.2 Forward likelihood

We use a maximum likelihood method first described in Pike &
Hudson (2005) which was developed to compare peculiar velocities
obtained through SNe surveys while accounting for triple-valued re-
gions. In addition to constraining β∗ and the three components of
V ext this method can be used to constrain h̃, a nuisance parame-
ter which permits a rescaling of published distances. The forward
likelihood method maximizes the probability of a galaxy having its
observed redshift

P (cz) =
∫ ∞

0
drP (cz|r)P (r) , (17)

where

P (cz|r) = 1√
2πσ 2

v

exp

(−[cz − czpred]2

2σ 2
v

)
, (18)

(1 + zpred) = (1 + zcos(r, h̃))(1 + β∗u(r)/c), (19)

where zcos is given through the relation

h̃r = czcos

(
1 − 1 + q0

2
zcos

)
, (20)

and where

P (r) ∝ exp

(
− [r − d]2

2σ 2
d

)
[1 + δ∗

g (r)], (21)

d is the distance as determined by the peculiar velocity survey, and
where σ d is the uncertainty is the measured distance. The product
of P(cz) for all objects is then computed, from which the quantity
LFL = −2

∑
i ln P (czi) is minimized.

4.2.3 χ2 minimization

In addition to the comparison method discussed above, we also
perform a simple χ2 minimization procedure to determine the best
value of β∗ and V ext. For this minimization procedure we compare
the observed redshift of the object with the sum of its measured
distance and predicted peculiar velocity at that distance, i.e.

χ2(β∗) =
∑

i

(czi − czpred)2

σ 2
di

+ σ 2
v

, (22)

Table 1. Summary of best-fitting values of β∗ using dif-
ferent weighting schemes, methods of analysis and pecu-
liar velocity data sets. Results obtained using luminosity
weighting are indicated by (LW), whereas those obtained
using number weighting are indicated by (NW). Unless ex-
plicitly indicated, all data sets were used for the method
mentioned with the exception of Inverse VELMOD which
used all individual galaxies from SFI++.

β∗ χ2/(DOF)

Forward likelihood (LW)
A1 0.440 ± 0.023 –
SFI++ Galaxy Groups 0.429 ± 0.022 –
SFI++ Field Galaxies 0.423 ± 0.045 –
All 0.431 ± 0.021 –

Forward likelihood (NW) 0.439 ± 0.020 –

Inverse VELMOD (LW) 0.387 ± 0.048 –

χ2 (LW) 0.444 ± 0.026 2194/2899

χ2 (NW) 0.442 ± 0.028 2200/2899

Table 2. TF relation constants obtained through Inverse
VELMOD analysis of SFI++ galaxies. Results listed are
those obtained using a luminosity-weighting (LW) recon-
struction scheme.

ainv binv

Masters et al. (2006) −20.881 −8.435
This study −20.918 ± 0.012 −8.19 ± 0.06

where zpred is given by equation (19). Note that this expression
does not account for the effects of density inhomogeneities along
the LOS. The recovered value of β∗ is affected by inhomogeneous
Malmquist bias and results from this method are thus expected to
be biased high as a result. Nevertheless, the χ2 statistic is useful to
assess goodness-of-fit and so is included here.

4.3 Results

Key results obtained through velocity–velocity comparison methods
discussed in Section 4.2 are summarized in Table 1. To determine
the value of β∗ at which LFL and χ2 are minimized, a cubic function
was fit to resultant data. Comparison of the TF relation constants
(ainv, binv) obtained to those found by Masters et al. (2006) are shown
in Table 2. The best-fitting value for all parameters, including β∗ and
its errors were obtained from 500 bootstrap samples of both 2M++
and the peculiar velocity data sets. Through bootstrap analysis it
was found that peculiar velocity data sets and 2M++ contributed
essentially equal amounts to overall parameter errors. The value
obtained for the best-fitting residual bulk flow, V ext, is given in
Table 3 along with the bulk flow (50 h−1 Mpc Gaussian-weighted
mean of the velocity field) and the predicted velocity of the LG
arising from 2M++. A comparison of χ2 with and without the
residual bulk flow results in a difference of 34 for the 3 degrees of
freedom, the residual bulk flow model is thus preferred at the 5.1σ

level.
For a qualitative illustration of the agreement of predicted veloc-

ities arising from 2M++ with the published values from SFI++
and A1, we have plotted the projected LOS velocity within a 30◦

cone centred on the Shapley Supercluster and Hydra Superclus-
ter in Fig. 7. These two structures were chosen as they lie in
approximately the same direction as V ext. From this figure, it is
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326 J. Carrick et al.

Table 3. The bulk flow and motion of the LG arising from 2M++ for our best value of β∗ = 0.43. The best residual bulk flow, V ext,
that was fitted simultaneously with β∗ using the Forward likelihood is also shown below. The bulk flow was computed by taking a
50 h−1 Mpc Gaussian-weighted mean of the velocity field corresponding to β∗ = 0.43.

vx (km s−1) vy (km s−1) vz (km s−1) ‖v‖ (km s−1) Longitude (◦) Latitude (◦)

BF2M++ − 3 ± 8 − 72 ± 11 38 ± 11 81 ± 11 268 ± 6 28 ± 10
LG2M++ − 18 ± 27 − 422 ± 41 328 ± 37 535 ± 40 268 ± 4 38 ± 6
V ext 89 ± 21 − 131 ± 23 17 ± 26 159 ± 23 304 ± 11 6 ± 13
BF2M++ + Vext 86 ± 22 − 203 ± 26 55 ± 28 227 ± 25 293 ± 8 14 ± 10
LG2M++ + Vext 71 ± 34 − 553 ± 47 345 ± 46 656 ± 47 277 ± 4 32 ± 6

Figure 7. Measured velocities of objects from A1 and SFI++ lying within
a 30◦ cone of Shapley/Great Attractor (upper), and Hydra Superclusters
(lower). Velocities are projected on to the LOS. Predictions arising from
2M++ for our best value of β∗ = 0.43 for these objects are shown above
with and without the preferred residual bulk flow as connected blue dashed
and red solid curves, respectively. Values plotted are the error weighted
mean of velocities within bins of 10 h−1 Mpc. To the left of the origin the
negative value of the peculiar velocity is plotted so that a bulk flow would
appear as a constant offset.

apparent that predictions do in fact follow the trends observed in
measured velocities. Furthermore, it is apparent that addition of
V ext to predicted velocities seems to provide better agreement, sug-
gesting that such a residual bulk flow is in fact warranted.

In combination with a measurement of σ ∗
8,g, β∗ can be used to

constrain the cosmology-dependent (and survey independent) de-
generate parameter combination f σ8 = β∗σ ∗

8,g. To measure σ ∗
8,g

from 2M++, we follow a similar prescription to that of Efstathiou
et al. (1990), we compute σ ∗

8,g = 〈
σ8,g(r)/ψ(r)

〉
using counts in

cells within radial shells. Using this maximum likelihood scheme
we obtain the value σ ∗

8,g = 0.99 ± 0.04, where the errors quoted are
derived from the scatter among different shells, as this value was
found to be more conservative then the formal errors from the like-
lihood analysis. This value is in good agreement with that found by
Westover (2007) of σ ∗

8,g = 0.98 ± 0.07 obtained by fitting projected
correlation functions to 2MRS galaxies within the magnitude range
containing L∗ galaxies, i.e. −23.5 < Ks < −23.0. The product of
the growth factor and non-linear σ 8 is thus fσ 8 = 0.427 ± 0.026.
By adopting the value of �m = 0.3, we can transform our non-
linear value of σ 8 to a linearized value following the prescrip-
tion of Juszkiewicz et al. (2010). We in turn obtain the constraint
fσ 8, lin = 0.401 ± 0.024. It is important to note that linearization is
only weakly dependent on the adopted value of �m (�m = 0.266
results in fσ 8, lin = 0.398 ± 0.024). We compare these results with
those obtained using independent methods in the following section.

5 D I SCUSSI ON

5.1 Potential systematic effects

In this section, we discuss the various effects which could bias our
measurement of β∗ and our prediction of the motion of the LG.
Possible contributing factors include the following.

(i) Choice of smoothing length used for Gaussian kernel may
skew our estimate of β∗.

(ii) Non-linear contributions to velocities from nearby small-
scale structure may systematically bias results.

(iii) Triple valued regions may result in incorrectly reconstructed
galaxy positions skewing velocity predictions derived therefrom.

(iv) As the reconstruction is being done in the LG frame, at each
iteration we are subtracting the motion of the LG from all galaxies,
our procedure may thus be susceptible to the Kaiser rocket effect.

(v) Sparseness of survey may result in an under-representation
of structures within the survey volume.

(vi) Structures which lie in the ZoA are not included in 2M++
and could contribute to the direction and amplitude of the motion
of the LG as well as influencing predictions of peculiar velocities
of galaxies near the galactic plane.

(vii) A non-linear relation between mass and luminosity as well
as scatter in the underlying relation may influence predictions.

We have addressed some of these concerns above, but will review
them again here for completeness.

In addressing (i), the width of the Gaussian kernel was chosen to
be 4 h−1 Mpc as this length was shown to be least biased when veloc-
ity predictions were compared to those derived from simulations.
Furthermore, this smoothing length was found to produce mini-
mal scatter in the derived relation. We have accounted for (ii) and
by performing the full reconstruction and analysis on data derived
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from N-body simulations. It was found that a value of 150 km s−1

should be used for the scatter around predictions to account for these
effects. As for (iii), we used maximum likelihood methods which
integrate likelihoods along the LOS. As these methods account for
uncertainty in a galaxy’s position, results should not be sensitive
to a misallocation of a galaxy in the event that it lies within a
triple-valued region. The value of β∗ derived from this analysis was
found to be unbiased when performed on simulations. A more com-
plete discussion of the quantification of these systematics through
analysis of N-body simulations can be found in Appendix A.

As seen in Fig. 6, although the direction of the LG is not very
susceptible to the value of β∗, the overall amplitude varies by
∼1200 km s−1 between β∗ = 0 and β∗ = 0.8. As we are doing
the reconstruction in the LG frame, an error in the estimate of
the motion of the LG may result in spurious distance estimates of
objects along this line of motion. Putting objects at the incorrect
distance may in turn result in incorrect object weights, and in turn,
incorrect velocity predictions. This phenomenon has come to be
known as the Kaiser ‘Rocket Effect’, as it was first discussed in
Kaiser (1987). To account for this effect, Strauss et al. (1992) ex-
plored a ‘Kaiser Fix’ to the IRAS 1.2 Jy sample. This ‘fix’ amounts
to altering the predicted distances of objects to

r = cz − r̂ · (
V (r) − V (0) exp

(−r2/r2
K

)
− V CMB

[
1 − exp

(−r2/r2
K

)])
, (23)

where V CMB is the velocity of the LG as inferred from the CMB
dipole, and where rK is 1000 km s−1 as determined by the observed
velocity correlation function (Bertschinger, Gorski & Dekel 1990).
Note that this fix assumes that galaxies more distant than rK are in
fact at rest in the CMB frame, which may not be the case; indeed
our data suggest otherwise. Nevertheless, to estimate the sensitivity
of our results to this effect, we have implemented the Kaiser fix. We
find that the final estimate of β∗ differs by only 3 per cent, which is
small compared to the random errors.

The impact of survey sparseness on the methodology applied
in this work has been estimated in the past by Pike & Hudson
(2005). For the 2MASS catalogue, they found that undersampling
by 50 per cent produced negligible results on their final estimate of
β∗ (2–3 per cent). Furthermore, we have accounted for the effects
of sparse sampling by obtaining our quoted results and errors from
bootstrap resampling of both 2M++ and peculiar velocity data sets.
In addressing (vi) we measured β∗ at high latitudes (b > 50◦) and
found no deviation from previous results beyond that of the random
errors.

When the density field was normalized to the same bias, number-
weighting and luminosity-weighting schemes yielded consistent re-
sults. As the χ2 was found to be smaller for the luminosity weighted
result than that obtained with number weighting, we hereafter will
be quoting the best value of β∗ as that obtained from the luminosity-
weighting scheme. Results obtained in this paper account for neither
a non-linear relation between mass and luminosity, nor do they ac-
count for scatter in mass–luminosity relation. More sophisticated
models have been proposed, such as the halo-model of Marinoni &
Hudson (2002), and recently an iterative prescription to reconstruct
the density field from the distribution of haloes (Wang et al. 2009).
We will consider implementation of such methods in a future paper.

5.2 Comparison with other results

As the bias depends on luminosity and possibly morphology (cf.
Pike & Hudson 2005), the value of β obtained is survey dependent.

As 2M++ draws primarily from 2MASS, however, a loose com-
parison can be made with other values of β obtained therefrom.
Most recently, in comparing the clustering dipole of galaxies from
2MASS-XSC to predictions from linear perturbation theory assum-
ing a �CDM cosmology and convergence of the LG dipole with that
derived from the CMB, Bilicki et al. (2011) found β = 0.38 ± 0.04.
After constructing β-dependent predictions of peculiar velocities,
Branchini et al. (2012) in turn estimate β by minimizing the scatter
of predicted 2MASS absolute magnitudes about a universal lumi-
nosity function and find β = 0.323 ± 0.083. Davis et al. (2011) ex-
pand the velocity field in spherical harmonics and fit the inverse TF
relation to SFI++ finding β = 0.33 ± 0.04. The TF data span a range
of distances, and because the effective bias changes with distance it
is difficult to compare this directly with our number-weighted result
β∗ = 0.44 ± 0.02. The characteristic, or error-weighted, depth of
all individual SFI++ galaxies is ∼32 h−1 Mpc. At this distance, the
typical relative bias of a number-weighted sample with the mag-
nitude limit of 2MRS is ψN

2MRS = beff/b∗ = 0.93, and so applying
this to the Davis et al. (2011) result yields β∗ = 0.31 ± 0.04

Our value of fσ 8, lin =0.40 ± 0.02 is in good agreement with those
obtained using the same methodology, such as that of Turnbull et al.
(2012) (0.40 ± 0.07), that of Pike & Hudson (2005) (0.44 ± 0.06), as
well as with the weighted IRAS average of multiple studies reported
therein (0.40 ± 0.03). As noted above, it is, however, in slight
tension with that found by Davis et al. (2011) (0.31 ± 0.04). Note
that where necessary the values quoted here have been linearized
following the procedure discussed above in Section 4.3.

5.3 Cosmological implications

5.3.1 The value of fσ 8, lin

We can also compare our value fσ 8, lin to constraints placed on a de-
generate combination of �m and σ 8 through independent means. In
particular our value is in excellent agreement with a different pecu-
liar velocity probe, namely measurements of f(z)σ 8(z) at different
redshifts via redshift space distortions, which yield a best-fitting
value of fσ 8 =0.40 ± 0.02 (Hudson & Turnbull 2012).

An analysis of second- and third-order weak-lensing
aperture-mass moments measured by CFHTLenS yields
σ 8(�m/0.27)0.6 = 0.79 ± 0.03 (Kilbinger et al. 2013). Con-
straints can also be obtained from the number counts and mass
of galaxy clusters as measured through X-ray surface bright-
ness (Vikhlinin et al. 2009) and measurements of the Sunyaev–
Zeldovich (SZ) effect (Planck Collaboration XX 2014a, Re-
ichardt et al. 2013). Finally, we can obtain a value for fσ 8

from CMB temperature anisotropy from Planck (�0.55
m σ8 =

0.427 ± 0.010; Planck Collaboration XIII 2015) and WMAP9
(�0.55

m σ8 = 0.407 ± 0.029; Hinshaw et al. 2013). The measure-
ments use different methods and are at different redshifts, and so
their dependence on �m differs in the exponent. To make a quan-
titative comparisons between different results, we adopt �m = 0.3
(see Fig. 8). There is some tension between some results e.g.
Kilbinger et al. (2013) and Planck SZ (Planck Collaboration XX
2014a) versus Planck CMB temperature (Planck Collaboration XIII
2015). The peculiar velocity result presented here is consistent with
all of these values.

5.3.2 The motion of the LG

For our best value of β∗ we can compare the predicted growth of
the LG velocity amplitude with the result that one would expect to
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328 J. Carrick et al.

Figure 8. Comparison of f σ8,lin measured results. Values plotted above
derived from weak-lensing (Kilbinger et al. 2013, CFHTLenS) and cluster
abundances [Vikhlinin et al. (2009, X-rays); Rozo et al. (2010, MaxBCG);
Planck Collaboration XX (2014a, Planck-SZ); Reichardt et al. (2013, SPT)]
have assumed a value of �m = 0.3 in mapping constraints to �0.55

m σ8. Results
obtained through previous analyses of measured peculiar velocities are also
shown [Davis et al. (2011, DNM); Turnbull et al. (2012, THF)], as well as
from redshift space distortions (Hudson & Turnbull 2012, HT). CMB results
are from WMAP9 and the Planck Collaboration XIII (2015). The horizontal
line is the error-weighted mean of all values (fσ 8 = 0.400 ± 0.005), shown
here for reference.

measure using linear perturbation theory for a �CDM cosmology
(conditional on VCMB). For β∗= 0.431 ± 0.021, as determined
from peculiar velocity comparisons, we obtain the prediction for
the motion of the LG arising from 2M++ to be 535 ± 40 km
s−1 in the direction l = 268◦ ± 4◦, b = 38◦ ± 6◦, only 10◦ out
of alignment with the direction of the motion as inferred from the
CMB dipole. The residual LG motion is therefore 100 ± 37 km
s−1 in the direction l = 303◦ ± 36◦, b = 34◦ ± 36◦. This value
is in reasonable agreement with the best-fitting residual bulk flow
obtained through peculiar velocity comparisons in the CMB frame
of 159 ± 23 km s−1 in the direction l = 304◦ ± 11◦, b = 6◦ ± 13◦.
Inclusion of this residual bulk flow with the predicted motion of
the LG arising from 2M++ results in a total predicted motion of
656 ± 47 km s−1 in the direction l = 277◦ ± 4◦, b = 32◦ ± 6◦, in
even better agreement with both the amplitude and direction of the
motion as inferred from the temperature dipole of the CMB.

5.3.3 The residual bulk flow

We find that the amplitudes and directions of Vext fit to each of
the SFI++ and A1 SNe data sets separately are consistent with
one another. Furthermore, comparing A1 with PSCz (of com-
parable depth to 2M++), Turnbull et al. (2012) found a resid-
ual flow of Vx = 144 ± 44 km s−1, Vy = −38 ± 51 km s−1,
Vz = 20 ± 35 km s−1, in reasonable agreement with the values
found here of Vx = 89 ± 21 km s−1, Vy = −131 ± 23 km s−1,
Vz = 17 ± 26 km s−1. This suggests that the residual bulk flow
is not an artefact of either the analysis or redshift-catalogue and is
sourced by structures outside the 2M++ and PSCz volumes.

We can also use the 2M++ density field to predict the BF and
compare this to the BF expected in a �CDM universe in Fig. 9. We
have plotted this comparison for the Gaussian-weighted mean of the
2M++ velocity field. It is apparent from this figure that the resulting
bulk flow from our analysis is in agreement with that expected for

Figure 9. Volume-weighted mean of predicted velocity field for Gaussian
window of increasing scale centred on the LG. The inferred values from
2M++ with and without the residual bulk flow are shown by the dashed
grey line with 68 per cent uncertainties in blue hatch, and a dashed black
line, with uncertainties in solid green, respectively. The predicted root-mean-
square velocity for a �CDM WMAP9 cosmology is shown as the red solid
line, the cosmic scatter in the velocity amplitude distribution are shown as
red dot–dashed lines. Bulk flows in Gaussian-weighted spheres of radius 40
h−1 Mpc and 50 h−1 Mpc are shown for the results of Hong et al. (2014,
2MTF), Turnbull et al. (2012, THF) and Watkins et al. (2009, WFH). The
LG motion is also shown, plotted at a radius of 3 h−1 Mpc.

a �CDM universe. Combining the cosmic variance in quadrature
with observational errors, comparison of the measured bulk flow of
a 100 h−1 Mpc Gaussian with predictions from �CDM yield a χ2 of
1.4 for 3 degrees of freedom; clearly the measured value agrees well
with the predicted value from the standard cosmological model.

5.3.4 A large-scale underdensity?

There have been recent claims that the Local Universe (∼150–
200 h−1 Mpc) is underdense (Keenan, Barger & Cowie 2013; Whit-
bourn & Shanks 2013). Such a phenomenon might account for
the discrepancy between the larger value for the Hubble parameter
when measured locally (z ≈ 0) and that obtained from studies of
the CMB temperature anisotropies.

Although the majority of 2M++ lies within the suggested un-
derdensity, we have nonetheless explored the possibility of a un-
derdense volume within 2M++. The luminosity-weighted density
contrast of 2M++ in shells is shown in Fig. 10. We have not ob-
served any global systematic rise in density towards the periphery
of the survey.

To compare our results with others in more detail, note that
Whitbourn & Shanks (2013) use redshift data from three large
regions: 6dF-SGC, 6dF-NGC and SDSS-NGC. Within z < 0.05,
they quote mean density contrast of δ̄g = −0.40 ± 0.05, 0.04 ± 0.10
and −0.14 ± 0.05, respectively. For the same z < 0.05 volumes, we
find density contrasts of δ̄∗ = −0.17, 0.01 and 0.03, respectively,
where the density is normalized with respect to the mean density
within 200 h−1 Mpc (z ∼ 0.067). Boehringer et al. (2015) studied
the large-scale densities of X-ray clusters. For the 6dF-SGC and
6dF-NGC regions, they find mean cluster density contrast of δ̄cl =
−0.55 ± 0.10 and 0.02 ± 0.17 within z < 0.05. However, as they
point out, galaxy clusters are highly biased (bcl ∼ 2.7) and so the
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Figure 10. The mean density contrast of concentric spherical shells of equal
volume centred on the LG.

corresponding mean matter density contrasts are δ̄m = −0.20 ±
0.04 and 0.01 ± 0.06. These latter numbers are in good agreement
with our nearly unbiased galaxy luminosity results. We conclude
that, while the 6dF-SGC region may be mildly underdense within
z � 0.05, there is no evidence for a large-scale void.

5.3.5 Prospects for the future

There are several upcoming peculiar velocity surveys which should
dramatically improve the constraints on both β∗ and fσ 8. Among
these is the survey dubbed ‘Transforming Astronomical Imaging
surveys through Polychromatic Analysis of Nebulae’ (TAIPAN).
Using the UK Schmidt telescope, it is estimated that TAIPAN will
acquire ∼45 000 Fundamental-plane velocity measurements out to
a redshift of 0.2 (Koda et al. 2014). The next generation of TF pecu-
liar velocity surveys include the Widefield ASKAP L-band Legacy
All-sky Blind surveY (WALLABY, Koribalski & Staveley-Smith
2009), and the Westerbork Northern Sky H I Survey (WNSHS).1

An H I survey acquired using the Australian Square Kilometre Array
Pathfinder (ASKAP), WALLABY is planned to cover 3π steradian
of sky. Its Northern hemisphere counterpart, WNSHS, is planned to
cover remaining π steradian of the sky using the Westerbork Syn-
thesis Radio. It is estimated that these surveys will obtain a total
of ∼32 000 velocity measurements, and along with TAIPAN will
not only enable k-dependent measurements of fσ 8 but will improve
constraints on this parameter combination at low redshift (z ≤ 0.05)
to within 3 per cent (Koda et al. 2014). Clearly constraints on cos-
mology through peculiar velocities have a very promising future.

6 C O N C L U S I O N

Under the assumption of gravitational instability, we reconstructed
the galaxy density field within 200 h−1 Mpc using 2M++, a com-
posite all-sky redshift survey with high completeness. We compared
the predicted peculiar velocities arising from this density field to the
measured peculiar velocities of SFI++ and the First Amendment
supernovae data set using various comparison methods in order to
measure β∗= �0.55

m /b∗. Using the VELMOD maximum likelihood

1 http://www.astron.nl/∼jozsa/wnshs/

comparison method with SFI++ spiral galaxies, we simultane-
ously solved for the inverse TF relation zero-point and slope, β∗, as
well as a residual bulk flow due to sources external to the 2M++
volume, denoted Vext. We similarly compared peculiar velocities
data sets to predictions from 2M++ using a forward-likelihood
method in order to constrain β∗ and Vext. All methods and data
subsets yielded consistent values of β∗, with our final result being
β∗ = f(�m)/b∗ = 0.431 ± 0.021. Combining our value of β∗ with
σ ∗

8,gal = 0.99 ± 0.04 as measured from 2M++ for β∗ = 0.43, we in
turn measured the parameter combination fσ 8, lin = 0.401 ± 0.024.
This value was found to be consistent with the majority of results
obtained by independent means, including those of WMAP9 and
Planck.

For our measured value of β∗, we computed the velocity of the
LG as predicted by linear perturbation theory arising from the re-
constructed density field. Our value for the velocity was found to
be consistent with the theoretical value that would be measured
for a survey of this depth in a �CDM Universe. Combining our
predicted value for the motion of LG arising from 2M++ for our
best value of β∗ with the value of Vext obtained through compar-
ing predicted velocities with peculiar-velocity surveys, we predict
a motion of the LG to be 660 ± 50 km s−1, towards l = 277◦ ± 4◦,
b = 32◦ ± 6◦, only 5◦ out of alignment with the direction as in-
ferred from the CMB dipole. Similarly, with addition of this residual
bulk flow to the 50 h−1 Mpc Gaussian-weighted mean of the veloc-
ity field, we obtained a predicted bulk-flow of 230 ± 30 km s−1

towards l = 293◦ ± 8◦, b = 14◦ ± 10◦, an amplitude that is consis-
tent with that expected for a �CDM Universe. We note, however,
that although we find the inclusion of Vext is preferred at the 5.1σ

level, it is unclear whether this residual bulk flow merely compen-
sates for imperfect mapping between luminosity and mass towards
the periphery of 2M++, or whether it is due to structures outside
the 2M++ volume. Future work using more sophisticated biasing
schemes may help in answering this question.

The resulting 2M++ density and peculiar velocity fields obtained
from this analysis are made available at cosmicflows.uwaterloo.ca
and cosmicflows.iap.fr.
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A P P E N D I X A : T E S T S O F T H E
R E C O N S T RU C T I O N W I T H N- B O DY
SIMULATIONS

In this Appendix, we focus on two possible sources of systematic
bias in the reconstructed density and velocity fields. First, when

constructing the density field from a set of point density tracers, it
is necessary to smooth to obtain a continuous density field. If the
smoothing length is too short, density contrasts are high and linear
perturbation theory is no longer applicable. If the smoothing length
is too long, then the density contrast is suppressed and velocities are
underpredicted. Secondly, in ‘reconstructing’ real-space positions
from redshift-space, the iterative technique discussed in Section 3
may also introduce a systematic bias in the recovered density field
and hence in the fitted value of β.

A1 Effect of smoothing

Berlind, Narayanan & Weinberg (2000) used N-body simulations
to show that when predicted velocities derived from smooth density
fields are compared to measured (unsmoothed) velocities, the recov-
ered value of β depends on the smoothing. For Gaussian smoothing,
unbiased results were obtained for a smoothing radius between 4
and 5 h−1 Mpc. It is interesting to confirm these results.

Here we use an N-body simulation of 5123 particles in a
500 h−1 Mpc periodic box using GADGET-2 (Springel 2005). The cos-
mological parameters of this simulation are as follows: �m = 0.266,
�� = 0.734, h = 0.71, and where each particle is 6.83 × 1010

h−1 M�. From the particle positions and velocities of the simula-
tion, a halo catalogue was formed using ROCKSTAR (Behroozi,
Wechsler & Wu 2013) consisting of 693 948 haloes between
5.5 × 1011 and 2.2 × 1015 h−1 M� (between 8 and 31 809 par-
ticles). Either halo or particle positions were smoothed to create a
smooth halo or particle density field.

In Fig. A1, we plot both the slope of regression between smoothed
predicted and N-body velocities, as well as the scatter about this
relation, both as a function of smoothing scale.

For particle velocities compared with the linear theory predictions
from the smoothed particle density field, the slope is unbiased at a
smoothing scale of ∼5 h−1 Mpc. The scatter is ∼250 km s−1. The
results are similar for haloes, but the scatter is significantly lower:
∼150 km s−1. This is because the particle velocity field is a sum
of the motion of the haloes themselves plus the internal motion
of particles with respect to the haloes. In both cases, the scatter is
minimum for a smoothing scale of ∼4 h−1 Mpc.

A2 Reconstructing the halo distances from redshifts

With actual galaxy data, the true distances are unknown but red-
shifts are available. In this paper, we use an iterative reconstruction
method to map a galaxy’s position from redshift space to real space.
We will refer to these reconstructed coordinates as ‘recon-space’.
In the N-body simulation, we emulate this by placing haloes in
redshift-space, and then iteratively reconstruct the density field,
slowly increasing β.

Fig. A2 shows the difference between real-space positions and
recon-space positions. The left-hand panel illustrates the absolute
displacement in units of km s−1. From this panel, it is apparent
that in recon-space the majority of haloes do in fact return to a
location close to their real-space positions, with an error that is
typically ∼300 km s−1. This is smaller than the smoothing scale of
∼4 h−1 Mpc. However, in practice this reconstruction error will act
as an additional source of smoothing. We will return to this point
below.

The right-hand panel shows the displacement of each halo from
its real-space position normalized by the difference between the
real-space and redshift-space positions (i.e. by their peculiar ve-
locities). In this way, the haloes which lie in redshift-space have a
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Figure A1. The fitted slope of the regression between N-body observed peculiar velocities and the linear theory predictions as a function of smoothing scale
is shown in the left-hand panel. In the right-hand panel, the scatter about the same regression is plotted. Either particles or haloes can be used as tracers of
the density field, or as tracers of the velocity field. The blue circles and red squares represent halo tracers and particle tracers, respectively. The black curve
with downwards pointing ‘Y’ show the resulting scatter when the known halo velocities are compared to the predictions from the halo density field. The green
curve with ‘Y’-shaped symbols show the resulting scatter when the known halo velocities are compared to the predictions from the reconstructed halo density
field. Note that the reconstruction process shows very nearly unbiased results when the field is smoothed with a Gaussian kernel that is 4 h−1 Mpc in length.

Figure A2. Two sample histograms showing the relative displacement of haloes in recon-space to their real-space positions. The recon-space positions used
are those which correspond to the number of iterations required to recover the known value of β. The left-hand panel illustrates the absolute displacement in
km s−1, whereas the right-hand panel shows the displacement of haloes normalized by the difference between real-space and redshift-space positions. As such,
a normalized displacement of −1 corresponds to a halo lying at its redshift-space position, and a normalized displacement of 0 corresponds to a halo returning
to its real-space position. The solid blue curve corresponds to all haloes, the turquoise dotted curve corresponds to haloes with known velocities greater than
150 km s−1, and the dotted red curve corresponds to haloes with known velocities less than 150 km s−1. Haloes which have a normalized displacement less
than −1 have moved away from their initial positions due to lying within triple-valued regions. Haloes which have a normalized displacement greater than 0
have moved to their initial positions and beyond.

normalized displacement of −1, and those which have returned to
real-space have a normalized displacement of 0. With each succes-
sive iteration, tracers would all ideally return to 0, i.e. return to the
position they had in real-space. Haloes which have a normalized
displacement more negative than −1 have moved away from their
initial positions. We argue below (Section B) that these are haloes
in triple-valued regions. From this figure, it can be seen that the
typical tracer does in fact return to its real-space position. However,
the distinction between low and high peculiar velocity tracers is
more pronounced. The tracers with a low peculiar velocity have a
symmetric distribution of reconstruction error. The haloes which
initially have a high velocity, however, have a more skewed distri-
bution which likely results in part from triple-valued regions.

Having reconstructed the density field in recon-space, we re-
turn to the question of how well this field, once smoothed, can
predict peculiar velocities. Fig. A1 shows the results of this com-
parison. The fitted slope obtained from the reconstructed den-
sity field is systematically offset in comparison to those obtained
from the real-space halo density field. The key result is that pre-
dicted velocities derived from the reconstructed smoothed halo
fields yields an unbiased value of the slope, i.e. β, when a Gaus-
sian kernel of 4 h−1 Mpc is used. This value is smaller than the
value of ∼5 h−1 Mpc found for haloes in real-space, because the
recon-space density field is effectively pre-smoothed (in the red-
shift direction) by the ∼300 km s−1 reconstruction error discussed
above.
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Figure B1. Simplified reconstruction of one test object near a fixed potential
well. In a Universe without structure, Hubble’s law (blue solid line y = x)
would be sufficient to convert from redshift to real-space positions. In a
Universe containing a spherical top-hat overdensity, however, the relation
is complicated by infall towards the well (green solid curve). An object
with an observed redshift in excess of 300 km s−1 can be seen to have
originated from three possible real-space positions (vertical red solid lines).
The reconstruction process starts by placing the particle at its observed
redshift, predicting its velocity, and then subtracting that prediction from
the original observation (the dotted lines parallel to the Hubble law line)
to get a new predicted position. In most situations this new position will
be beyond one of the possible real-space positions where the predicted
infall velocities are small. Repeating the process here results in a much
smaller velocity offset which can be projected (dot–dashed lines) back to
the observed velocity to find the next reconstructed position. The iterative
reconstruction converges in most situations to one of the two outer possible
real-space positions. Reconstructed positions never converge, however, to
the central possible real-space position.

A P P E N D I X B: IT E R ATI V E R E C O N S T RU C T I O N
N E A R T R I P L E - VA L U E D R E G I O N S

One problem with any reconstruction method is correcting for the
fact that mapping from redshift to position is multivalued, i.e. there
can be several distances which map to the same redshift.

To give an illustration as to how this affects the iterative recon-
struction method, we have created a simple toy model in Fig. B1
which shows the velocity field around a spherical overdensity. One
can see that for any object with an observed redshift in the range
∼100 to ∼400 km s−1, there are multiple distances that correspond

to that given redshift. As a concrete example, consider a galaxy at a
redshift of 300 km s−1. We will consider a simplified version of our
reconstruction scheme in order to illustrate the general behaviour.
In this simplified version, the value of β is held fixed, i.e. it is not
increased adiabatically, so the amplitude of the peculiar velocity
curve is fixed and the curve cz(r) is also fixed.

In the first step of this iterative process, we place the galaxy at a
distance corresponding to its observed redshift: 300 km s−1 at posi-
tion r(0) in Fig. B1. At this location, the predicted peculiar velocity is
approximately −190 km s−1, so the object is moved to its first recon-
structed position of 490 km s−1 = 300 km s−1 − (−190 km s−1) at
position r(1). At this position, it has a predicted peculiar velocity of
approximately −20 km s−1, and so this predicted peculiar velocity
is again subtracted from its observed redshift of 300 km s−1, re-
sulting in a reconstructed distance of 320 km s−1indicated r(2). In
this example, each successive loop brings the reconstructed position
closer to the outer redshift solution of approximately 360 km s−1

indicated r(∞). The same behaviour occurs for redshifts between
250 and 400 km s−1, the final position converges to the third (outer)
of the three values. For redshifts between 100 and 250 km s−1, in
contrast, the recon position converges to the first of the three values.
One can see that the outer solutions are attractors, and the middle
solution is unstable.

The above toy model is for a test particle (e.g. galaxy) moving
in a fixed potential well (e.g. supercluster). It can also happen that
two similar-mass galaxies (or two clusters) may each respond to the
other’s gravity. In this situation, the distances of the two objects can
‘leapfrog’, i.e. can exchange the order of their distances in recon-
structed space. This leads to a sign change of the predicted peculiar
velocity, which then leads to another ‘leapfrog’ and a subsequent
sign change in predicted peculiar velocity. Hence some objects show
oscillatory behaviour in the reconstructed distance.

Note however that the simple model described above and in
Fig. B1 is an oversimplification of our reconstruction process. Of
course, while in reality the density field used is a smoothed Gaussian
random sphere not a spherical top-hat overdensity, qualitatively the
behaviour around overdensities is similar. More importantly, our it-
erative scheme is more complex than the one outlined above. First,
we ‘adiabatically’ increase β∗ at each iteration. Consequently, the
amplitude of the predicted peculiar velocity field increase slowly
and so the size of triple-valued regions in redshifts space grows
slowly. Secondly, we reduce oscillatory behaviour by averaging
the positions of several successive iterations. Thus, the conver-
gence is better-behaved than the toy model described above. But
qualitatively, the effect remains the same: as a result of preferen-
tially placing objects towards the periphery of triple-value regions,
the density field is effectively ‘smoothed’ more in the regions of
highest density.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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