
HAL Id: insu-03644932
https://insu.hal.science/insu-03644932

Submitted on 27 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

PHEW: a parallel segmentation algorithm for
three-dimensional AMR datasets. Application to

structure detection in self-gravitating flows
Andreas Bleuler, Romain Teyssier, Sébastien Carassou, Davide Martizzi

To cite this version:
Andreas Bleuler, Romain Teyssier, Sébastien Carassou, Davide Martizzi. PHEW: a parallel segmen-
tation algorithm for three-dimensional AMR datasets. Application to structure detection in self-
gravitating flows. Computational Astrophysics and Cosmology, 2015, 2, �10.1186/s40668-015-0009-7�.
�insu-03644932�

https://insu.hal.science/insu-03644932
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Bleuler et al. Computational Astrophysics and Cosmology (2015) 2:5
DOI 10.1186/s40668-015-0009-7

R E S E A R C H Open Access

PHEW: a parallel segmentation algorithm
for three-dimensional AMR datasets
Application to structure detection in self-gravitating
flows
Andreas Bleuler1*, Romain Teyssier1, Sébastien Carassou1,2 and Davide Martizzi1,3

Abstract
We introduce PHEW (Parallel HiErarchical Watershed), a new segmentation algorithm to detect structures in
astrophysical fluid simulations, and its implementation into the adaptive mesh refinement (AMR) code RAMSES. PHEW
works on the density field defined on the adaptive mesh, and can thus be used on the gas density or the dark matter
density after a projection of the particles onto the grid. The algorithm is based on a ‘watershed’ segmentation of the
computational volume into dense regions, followed by a merging of the segmented patches based on the saddle
point topology of the density field. PHEW is capable of automatically detecting connected regions above the
adopted density threshold, as well as the entire set of substructures within. Our algorithm is fully parallel and uses
the MPI library. We describe in great detail the parallel algorithm and perform a scaling experiment which proves the
capability of PHEW to run efficiently on massively parallel systems. Future work will add a particle unbinding
procedure and the calculation of halo properties onto our segmentation algorithm, thus expanding the scope of
PHEW to genuine halo finding.

1 Introduction
Over the last decades, computer simulations have become
an indispensable tool for studying the formation of struc-
ture on all scales in our universe. The common feature of
those simulations is the clustering of matter due to self
gravity. This clustering is of fractal nature in the sense that
- as long as gravity is the dominant force - aggregations
of matter turn out to have internal substructures, which
are themselves gravitational bound, and may even contain
subsubstructures. A crucial tasks in the analysis of simu-
lations is therefore the identification of overdense regions
and, ideally, their entire hierarchy of substructure.
First algorithms to perform this task have been invented

in the very early days of computer simulations in Astron-
omy and Astrophysics. A halo finder based on spherical
overdensities (SO) was described already four decades ago

*Correspondence: ableuler@physik.uzh.ch
1Institute for Computational Science, University of Zurich, Zurich, CH-8057,
Switzerland
Full list of author information is available at the end of the article

by Press and Schechter () who used it to find structure
in their simulation of , particles. Subsequently, the SO
method has become one of the standard methods for halo
finding. It consists in growing spherical regions around
density peaks and assigning particles inside the spheres to
the respective peak based on physical arguments. The also
very popular friends-of-friends (FOF) method was intro-
duced to halo finding by Davis et al. (). If two particles
are separated by less than a user defined linking length, the
particles are assigned to the same group. This results in
groups of connected particles, the so-called FOF groups.
On top of those two methods, a large variety of algorithms
has been built over the last two decades: a recent halo
finder comparison paper (Knebe et al.) listed dif-
ferent halo finders. For more detailed information about
the halo finders which are on the market today, we refer to
the series of papers that has emerged from the halo finding
comparison project (Knebe et al. ; Onions et al. ;
Knebe et al. ; Pujol et al.).

© 2015 Bleuler et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

http://dx.doi.org/10.1186/s40668-015-0009-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s40668-015-0009-7&domain=pdf
mailto:ableuler@physik.uzh.ch

Bleuler et al. Computational Astrophysics and Cosmology (2015) 2:5 Page 2 of 16

On even larger scales, the identification and character-
ization of cosmic voids is an important task. Similar to
haloes, the voids assemble in a hierarchical structure of
voids and sub-voids which can be found in observational
and simulation data likewise. Way et al. () and Way
et al. () give an overview on void finding techniques
and the relation to the identification of overdensities.
Automatic detection of structure is also performed at

galactic scales. For example, Astronomers performing ra-
dio observations of molecular clouds entered the field
when they started to identify clumps in position-position-
velocity (PPV) data cubes. Stutzki and Guesten ()
tried to fit the data by sums of triaxial Gaussian-shaped
clumps and Williams et al. () identified structure by
contouring the dataset at evenly spaced levels without as-
suming an a priori shape for the clumps. More recently,
Rosolowsky et al. () showed how dendrograms can
be used to exploit the hierarchy that naturally arises from
contouring a PPV cube at multiple emission levels and
used this technique to define substructures in molecular
clouds.
With such a large choice of astrophysical structure find-

ing tools at hand, one might ask the question why there
needs to be yet another one. The trigger for the devel-
opment of a new analysis tool was our need for ‘on-the-
fly’ structure finding in the astrophysical simulation code
(Teyssier), in order to locate gas and/or dark matter
clumps while the simulation is running. As pointed out in
Knebe et al. () there is a general trend towards ‘on-the-
fly’ analysis for many reasons: most modern astrophysical
simulations are performed on large computational infras-
tructure with distributed memory. The sizes of those sim-
ulations often exceed the total memory present in com-
monly used sharedmemorymachines. The structure find-
ing is therefore preferentially performed on the same ma-
chine that is running the simulation. Beyond that, the sizes
of one single output of such simulations can quickly reach
hundreds of GBs, up to several TBs. Storing many outputs
for later post-processing is often not possible due to lim-
ited disk space, so that keeping only a catalogue of struc-
ture is the only viable solution.
Another reason for detecting structures while the simu-

lation is advancing, is the possibility to couple the results of
the halo decomposition to the simulation itself. In Bleuler
and Teyssier (), for example, we have described a new
algorithm for creation of sink particles, based on the prop-
erties of gas clumps detected ‘on-the-fly’. This application
requires an extremely high frequency at which structure
finding must be performed. It must therefore make effi-
cient use of the parallel infrastructure, and deliver good
scaling properties for increasing numbers ofMPI tasks, up
to the number of CPUs the simulation is running on. Oth-
erwise it will unacceptably slow down the simulation.
These requirements resulted in the development of

phew (Parallel HiErarchical Watershed), a new structure

finding algorithm and its implementation into ramses.a
While phew is not based on any pre-existing algorithm,
it combines various concepts that have been used in other
astrophysical structure finding tools before.
First, phew falls into the category of ‘watershed-based’

algorithms. These algorithms assign particles or cells to
density peaks by following the steepest gradient, result-
ing in the so-called ‘watershed segmentation’ (see Sec-
tion .) of the negative density field. Other members of
this category are denmax (Bertschinger and Gelb),
hop (Eisenstein and Hut), skid (Stadel), adap-
tahop (Aubert et al.), grasshopper (Potter and
Stadel, in prep). Note that in contrast to the aforemen-
tioned codes which work on the particles directly, we use
a mesh to define the density field.b Void finding is typ-
ically performed using watershed-based algorithms too
(e.g., Platen et al. ; Aragón-Calvo et al. ; Sutter
et al.).
Second, region merging in phew is based on the topo-

logical properties of saddle surfaces. This is the case as
well for hop, adaptahop and subfind (Springel et al.
). As in the ahf halo finder (Knollmann and Knebe
), phewworks on the density field deriving from par-
ticles that were previously projected onto the AMR mesh.
In contrast to ahf, however, we do not use the AMR grid
as a way of contouring the density field. A low density re-
gion which - for whatever reason - is refined to a high level
does not compromise our results. Thus, in the landscape
of existing halo finders, phew can be seen as filling the gap
between p-hop (Skory et al.)which does not find sub-
structures but is aMPI-parallel version of hop, and adap-
tahop, amulti-threaded software that does find substruc-
tures, but has not yet been MPI-parallelized.
The aim of this paper is to present a new structure find-

ing algorithm that: () can be applied to any density field
defined on an adaptive grid, () is capable of detecting
substructure, () is parallelized using the MPI library on
distributed memory systems, and () is fast enough to be
run at every time step of a simulation without significantly
slowing down the calculation.What is not discussed in the
present paper is an unbinding procedure for particles that
are located inside the volume occupied by a certain halo
but not gravitationally bound to it, as well as the subse-
quent computation of halo properties. These functionali-
ties will be added to phew in the future. As briefly men-
tioned above, a previous version of phew has already been
presented in Bleuler and Teyssier (). The algorithm
described here differs from the previous one in the sense
that it is now fully parallelized. This allows the algorithm
to run now efficiently on thousands of CPUs and handle a
complex topography with millions of density peaks and a
rich hierarchy of substructures.
The article is organised as follows: in Section we de-

scribe the serial version of the phew algorithm. In Sec-
tion we focus on the parallel implementation of the steps

Bleuler et al. Computational Astrophysics and Cosmology (2015) 2:5 Page 3 of 16

presented in Section . Section contains scaling experi-
ments which demonstrate the efficiency of the paralleliza-
tion. Finally, we summarise and discuss our results, pre-
senting an outlook on possible future work in Section .

2 The PHEW algorithm
In this section we describe the serial algorithm. As a

starting point, we assume thatwehave a Ddensity field on
aAMRgrid, particles have beenprojected onto the grid be-
forehand. The algorithm can be broken down in four main
steps:

• Watershed segmentation;
• Saddle point search;
• Noise removal;
• Substructure merging.

In the first step, we assign every cell above a user de-
fined density threshold to a local density maximum by
ascending along the steepest gradient. This results in a
primary segmentation of the computational volume into
‘peak patches’: regions associated to certain density peak.
We establish the connectivity between the peaks by identi-
fying the saddle points. We eliminate the peaks with a low
density contrast to the background by merging them to a
neighbour through their densest saddle point. The struc-
ture surviving the noise removal is considered the finest
(sub)-structure. In a last step, we recursively merge the
substructure to form larger and larger composite objects.

2.1 Watersheds in image processing
Before we start with a more detailed description of the
algorithm, we take a quick look over the fence into the
field of mathematical morphology and its application to
image processing. There, watershed algorithms are a well
known and extensively studied tool for image segmenta-
tion. The basic idea is that a grayscale image can be thought
of as a topographic relief. A drop of water that falls some-
where onto this relief will follow the line of steepest de-
scent until it reaches a local minimum. All points that con-
nect to the same local minimum in that manner form a
catchment basin. The watershed algorithm therefore seg-
ments the picture into catchment basins. The boundaries
of the catchment basins are the actual watersheds. This
technique is usually applied to themagnitude of the images
gradient. In this way, the watershed lines trace regions of
high gradients and segment the original image it into con-
nected regions of small gradients. An excellent overview
of the watershed techniques used in image processing is
given by Roerdink and Meijster ().
An important difference to the watershed algorithms

used for image segmentation lies in the computational cost
for checking all neighbours of a cell/pixel. Working in D
naturally increases the number of neighbours. Using an
AMR grid further increases the number of possible neigh-
bours since one has to consider possible neighbours at the

same level as the original cell as well as one level above and
below. Most importantly, the data structure in an AMR
grid is very different from the one of a flat D array. The
location of neighbouring cells in memory needs to be con-
structed before a neighbor can be checked for its density.
Our main interest lies therefore in reducing the number of
neighbours that have to be accessed. This aspect influences
the choice of watershed algorithm for our purpose.

2.2 Watershed segmentation
In a first step, all cells above the density threshold are
marked. We call those cells ‘test cells’. For every test cell
the densest neighbouring cell is identified and stored. If a
cell has no denser neighbor, it is a local density peak. The
peak obtains a peak ID which is stored as the ‘peak patch
label’ of the corresponding cell. The test cells are sorted by
decreasing density. Once sorted, every cell copies the peak
patch label from its densest neighbor. The previous sort-
ing ensures that the densest neighbour has been accessed
before and has therefore already obtained its peak patch
label. Thus, every cell is assigned to a peak after this one
pass. All cells marked with the same peak patch label form
a peak patch (see Figure , second panel). Note that our
peak patches correspond to the catchment basins intro-
duced in Section .. Since we are working on peaks rather
than minima, we introduce this new terminology to avoid
the cumbersome notion of an ‘inverted catchment basin’.
Note that this procedure is very similar to the hill climbing
method described in Roerdink and Meijster () which
was introduced by Meyer ().

2.3 Saddle point search
Before we canmerge peak patches, we have to establish the
connectivity between them. All test cells are checked for
neighbouring cells that belong to a different peak patch. If
such a neighbouring cell is found, the average density of the
starting cell and its neighbour is considered as the density
at the common surface of the two bordering peak patches.
The maximum density on the connecting surface is the
density of the saddle between the two peaks and stored. At
the end of this step, each peak has its list of neighbouring
peaks together with the corresponding saddle point den-
sities. We denote the maximum saddle point of a peak as
the ‘key saddle’ and the corresponding neighbour as ‘key
neighbour’.

2.4 Noise removal
A known problem of the watershed method is over-seg-
mentation. The presence of a huge number of local min-
ima - for example due to random particle noise or tran-
sient gas density fluctuations - causes segmentation into as
many catchment basins as there are local minima. Gener-
ally speaking, there are two possible strategies to deal with
this problem: not creating the over-segmentation in the

Bleuler et al. Computational Astrophysics and Cosmology (2015) 2:5 Page 4 of 16

Figure 1 Working principle of PHEW. The main steps of the algorithm are visualized on a 1D density field (first panel). The segmentation into peak
patches is shown in the second panel. Based on the relevance of a peak (peak-to-saddle ratio) we decide whether a peak represents ‘noise’ or
substructure. Irrelevant peaks are merged through their highest saddle points (third panel). The surviving objects are labeled as Level 0 clumps and
denote the finest level of substructure. The substructure is merged based on a saddle threshold (third panel) into parent structure (fourth panel).

first place or merging over-segmented regions. Prevent-
ing over-segmentation the can be obtained using mark-
ers to preselect allowed minima (e.g., Moga and Gabbouj
). This usually requires a human intervention, which
in our case is not possible. Another way is to use the so-
called hierarchical watershed algorithmc (Beucher).
Hierarchical watershed algorithms merge artificial catch-
ment basins to more important ones based on some cri-

teria. What we will describe in the following turns our
watershed algorithm into a hierarchical algorithm in the
Beucher () sense.
After having previously identified the saddle points, we

classify the peaks based on their contrast to the back-
ground.Wedefine the contrast as the ratio of the peak den-
sity to the key saddle density and name it ‘relevance’. This is
sketched in the second panel of Figure . Every peak is as-

Bleuler et al. Computational Astrophysics and Cosmology (2015) 2:5 Page 5 of 16

signed a ‘final peak’ label which is initialized to the peaks
own peak ID and updated whenever a peak is merged to
another one. The peaks are sorted by decreasing peak den-
sity. For each peak, the key saddle is determined from the
list of saddle points and the relevance is computed. Peaks
with a relevance below a relevance threshold are consid-
ered noise.d If the peak is relevant, it is not touched. For
an irrelevant peak, we check whether its key saddle links
it to a denser peak. If this is the case, it will inherit the
final peak label from this key peak. As in the watershed
segmentation, the previous sorting makes sure that the fi-
nal peak labels can propagate through long chains of con-
nected peaks in just one loop. If a peak is both isolated and
irrelevant, it is discarded.
When two peaks merge, their lists of saddle points are

merged as well. If both peaks used to have a connection to
the same third peak, the maximum of the two saddles is
kept.
Now, we iterate the procedure: from the updated lists

of saddle points, the key saddles are determined. Peaks
are accessed in the order of decreasing peak density and
irrelevant peaks are merged. After an iteration without
any mergers, all irrelevant peaks have been merged or dis-
carded and the noise removal is finished. Note that the de-
scribedmerging process follows exactly the same principle
as the watershed segmentation. We have simply replaced
cells by peaks, densest neighbour cells with key neighbours
and the peak patch label by the final peak label. We call
the structures which survive the noise removal Level
clumps. They constitute the finest structure (see Figure ,
third panel) in our hierarchy.
Using the relevance as a merging criterion results in a

similar definition of a clump as it is obtained by algorithms
that contour the dataset at evenly spaced levels in log-
space (e.g., Williams et al.). There, a peak-to-saddle
ratio above a given value guarantees that a contour level
will fall between peak density and key saddle density and
thus the detection of the corresponding clump as an indi-
vidual object. However, a contour level can coincidentally
lie between the peak density and the key saddle density of
an object with a very low peak-to-saddle ratio, resulting
in the detection of an irrelevant density fluctuation as a
clump. Merging based on the relevance removes this ran-
domness from the analysis.
For a density field that is obtained from an underlying

particle distribution, the relevance criterion can be inter-
preted as a signal-to-noise criterion on the basis of an indi-
vidual cell. We assume a roughly constant number of par-
ticles per cell as this number is often used as a refinement
criterion for dark matter simulations in ramses. A large
relevance thus translates into a small probability that the
peak density is simply drawn from a Poisson distribution
with the mean being equal to the saddle point density.
A true signal-to-noise criterion would consider the prob-
ability that the entire peak patch is consistent with being

randomly drawn from the density at the saddle point. We
would expect such a criterion to distinguish noise from
physical structure more reliably. However, such a criterion
is not compatible with our parallelization strategy of the
merging procedure, as it includes quantities that are ‘addi-
tive’ under a merger - such as the size or the total mass of
a peak patch - into the merging criterion. As we will de-
scribe in Section ., this would make the outcome of the
merging process depend on the exact order at which the
peaks are considered for merging.

2.5 Saddle threshold merging
If desired, the remaining peaks and their associated clumps
can be merged further to form composite clumps. This
happens by exactly repeating the previousmerging process
with a differentmerging criterion.We have implemented a
density threshold for the key saddle as a criterion. If the key
saddle density is above that threshold, a peak is merged to
its key neighbour (see Figure , fourth panel). Another pos-
sible criterion is the repeated use of the relevance thresh-
old, this time with a higher value.

2.6 A hierarchy of saddle points
We have seen in Section . that saddle points are re-
moved in groups or levels by merging through them. All
key saddles which link their peak to a denser one are re-
moved at once. Through the merging, other saddle points
become key saddles and the next level of saddle points is
removed. By repeating this process, a natural hierarchy of
saddle points and clumps is produced. In Figure we illus-
trate the construction of this hierarchy. We start with the
Level clumps after the noise removal (no substructure
except for noise) and assume that the saddle threshold for
merging is below any of the saddles depicted in Figure .
The Level saddle points are identified and used for merg-
ing. The resulting objects are Level clumps as they have
one level of substructure. In general, a Level n clump is
formed through a merger which removes a Level n saddle
point and contains n levels of substructure. This produces
a very natural hierarchy of saddle points and clumps based
on the levels of substructure. Note that the level of a saddle
point does not reflect its density. Amore traditional way of
grouping substructure based on the density of the saddle
that connects two substructure objects as it is for exam-
ple produced by adaptahop can easily be recovered from
this hierarchy.

2.7 Merging order
We will see in Section that we have to drop the idea of
sorting the peaks globally when we parallelize phew. This
will alter the order in which peaks are merged in an unpre-
dictable way. It is therefore crucial that the phew allows
the order of mergers to change without causing different
results. This not true in general. Yet, as we will show in

Bleuler et al. Computational Astrophysics and Cosmology (2015) 2:5 Page 6 of 16

Figure 2 Hierarchy of saddle points as it is produced by our
merging algorithm. Level n saddle points are used for merging
during the nth round of mergers. Level n clumps emerge from a
merger through a Level n saddle point and contain n levels of
substructure.

this section, it is the case when we respect the three merg-
ing rules:

. A peak is only merged to a denser one (upward).
. A peak is only merged through its key saddle.
. The density of the key saddle or the relevance are

used as merging criterion.
The result of the merging procedure is uniquely deter-

mined by the set of saddle points that is used for merg-
ing. This is a subset of all saddle points. In order to affect
the outcome of the merging process, changing the order
of mergers therefore has to change the set of used saddle
points. Let us consider a peak n connected to its key neigh-
bour m through the key saddle snm at the very beginning of
the merging process. The peak density of m is higher than
that of n, m > n. There are three possible types of mergers
related to n or m that can happen before n is considered
for merging. We will show that none of them can change
the fate of n.

. A third peak might be merged into m. Due to
upward merging, this cannot change the peak
density of m and therefore decision if n will be
merged into m is not influenced.

. Peak m might merge into another peak m′. The
saddle snm will still exist, now linking n to m′. Due
to upward merging we have m′ > m > n which
means that n is still the lower of the two peaks
connected by snm′ . The decision whether n is
merged through snm is unaltered.

. A third peak i might be merged into n. The peak
density of n cannot change due to that since it

would mean that peak i had a higher density than n
which contradicts the upward merging. The key
saddle cannot change because this would mean that
peak i had a saddle point sij higher than snm. This
would imply that the saddle point sni through which
i was merged into n was even higher, sni > sij
otherwise sni had not been the key saddle of peak i.
Yet, sni > sij > snm contradicts that snm is the key
saddle of peak n. The peak density of n and its key
saddle are thus unchanged, therefore the relevance
of n is not changed either.

This shows that we can arbitrarily delay the moment
when we consider a peak for merging as long as we respect
the three merging rules. The mergers happening in the
mean time cannot change the properties deciding if and
through which saddle this peak will be merged. A possible
way to prevent violation of merging rule (ii) is to consider
all peaks for merging until no further mergers are possi-
ble before any new key saddle of the merged peaks is com-
puted. This results in using the saddle points for merging
on a ‘level-by-level’ basis. This is a key to the paralleliza-
tion of phew since it will allow performing a big number
of operations (mergers), in between each round of commu-
nication (finding new key saddles). Note that this line of ar-
gumentation breaks when we violate merging rule (iii) and
use for example the clump mass as merging criterion. The
mass is a property that changes with every merger. There-
fore, altering the merging order does change the mass of
a clump at the moment it is considered for merging and
can thus change the decision whether the clumps should
be merged or not.

3 Parallel implementation
We now turn to the implementation of the previously
described steps in a parallel, distributed-memory frame-
work.Where a detailed description of an algorithmic block
in words would prevent readability of the paper, we re-
fer the interested reader to a corresponding block writ-
ten in pseudocode located in Algorithms and . We as-
sume that the computational domain has been previously
decomposed into non-overlapping spatial domains, each
domain containing a partition of the AMRmesh on which
the density field is defined. In everyMPI task, the local par-
tition of themesh is referred to as the ‘active cells’. They are
wrapped by a thin layer of cells that belong to other tasks.
These ghost cells are referred to as belonging to the ‘virtual
boundaries’. These virtual boundaries are updated through
MPI communication before phew is called to make sure
that the densities in the virtual boundary cells are equal
to the densities in the corresponding active cells hosted by
other MPI tasks.

3.1 Parallel watershed
The watershed segmentation is non-local by nature. This
can easily be understood by imagining a mountain ridge.

Bleuler et al. Computational Astrophysics and Cosmology (2015) 2:5 Page 7 of 16

 for testcell ∈ {testcells} do
 for neighbour ∈ {neighbours} do
 if (PeakPatch [neighbour] �=PeakPatch [testcell]) and (PeakPatch [neighbour] >) then
 i=GetLocalPeakIndex (PeakPatch [testcell])
 j=GetLocalPeakIndex (PeakPatch [neighbour])
 if AverageDensity (testcell,neighbour) > SaddleMatrix [i,j] then
 SaddleMatrix [i,j]=AverageDensity (testcell,neighbour)
 SaddleMatrix [j,i]=AverageDensity (testcell,neighbour)
 end

 end
 end
 end

Algorithm : Pseudocode describing the construction of the local saddle point matrices

Two drops of water falling onto both sides of the ridge will
initially move away into different directions. They might
flow into different rivers which flow into different lakes, or
they might as well end up in two rivers which join before
reaching a lake. The two situations cannot be distinguished
based on local properties. Parallelization of the watershed
algorithm is therefore a non-trivial task. In the literature,
one finds various approaches to parallelization for the dif-
ferent watershed algorithms (see e.g., Roerdink and Mei-
jster). Our technique is very close to the technique
described in Moga () and called ‘hill climbing by lo-
cally ordered queues’.
Each task performs a loop over all its active cells, in order

to identify first the test cells (cells above the density thresh-
old). For faster access, the indices of all test cells are stored
in an array. A loop over all test cells is performed where
the densities of all neighbouring cells are checked. The in-
dex of the densest neighbouring cell is stored for each test
cell, since itwill be used several times during the algorithm.
Note that the densest neighbour of a cell can lie inside the
virtual boundary, while test cells are always inside the ac-
tive domain.
During the first loop, all peaks (local extrema) are

counted. After the loop, the number of peaks in each MPI
domain are communicated between all MPI tasks, which
allows each MPI task to compute a global index (ID) for
its peaks. In another loop over test cells, cells which repre-
sent a peak are labeled with their global peak ID, all other
test cells are initialised with a peak patch label equal to
zero. The peak patch labels are updated inside the virtual
boundaries using MPI communication (Figure , second
panel). As explained in Section , every MPI task com-
putes a permutation which sorts test cells in decreasing
density order, using the quick sort algorithm (Press et al.
). Using this permutation, a sorted loop, where every
cell inherits the peak patch label from its densest neigh-
bour is performed (Figure , third panel). During this loop,
the number of cells that have changed their peak patch la-
bel is counted. After the loop, the peak patch labels in the

virtual boundaries are updated again through MPI com-
munications. This procedure is iterated (Figure , fourth
panel) until no cell inside the entire computational box has
changed its peak patch label during a full loop. This com-
pletes the parallel watershed segmentation.

3.2 Virtual peak boundary
As we have already described in Section , our peak patch
merging step is analogous to the segmentation step. The
patches now take the role of the cells, the peak patch label
is replaced by the final peak label and the densest neigh-
bouring cell is replaced by the key neighbouring patch. As
explained before, the parallelization of the peak patch seg-
mentation is exploiting the virtual boundaries surrounding
each MPI domain. If we want to use the same strategy to
parallelize the merging process, we need the analog of the
virtual mesh boundary: a virtual peak boundary. In con-
trast to our usual virtual mesh boundary, the virtual peak
boundary does not represent a fixed region in space. As the
merging process advances, new connections appear and
newpeaks have to be introduced in the virtual peak bound-
ary. Our virtual peak boundary is therefore more dynamic
than our virtual mesh boundary.
Figure shows a possible layout of peaks in memory.

Note the distinction between a peaks global ID and its lo-
cal index. The latter of the two is the position of the peak
in local memory. The peaks that are located inside a tasks
MPI domain are called active peaks. They take the first
Nactive places in memory. The active peaks are followed by
the ghost peaks that belong to the virtual peak boundary.
Since it is unknown at the beginning of the merging pro-
cess howmuch space for ghost peaks will be necessary, we
set

Nmax = max
{
max

tasks
{Nactive}, ,

}
, ()

as a default value that can bemodified by the user. The pre-
set Nmax is mostly a large overestimation of the effectively

Bleuler et al. Computational Astrophysics and Cosmology (2015) 2:5 Page 8 of 16

 Preparatory step - initialize two peak-based properties.
 for peak ∈ {active peaks} do
 alive [peak]=
 FinalPeak [peak]=GlobalPeakID [peak]
 end

 Loop over Levels in the saddle point hierarchy.
 mergers=
 while mergers > do
 mergers=

 Propagate the final peak label through key saddle points.
 LevelMergers=
 while LevelMergers > do
 LevelMergers=
 CommunicateSaddlepoints
 BuildPeakCommunicator
 ScatterCommunicate (PeakDensity,FinalPeak,alive)
 for peak ∈ {sorted active peaks} do
 if alive [peak]> then
 PSratio=PeakDensity [peak]/KeySaddle [peak]
 if PSratio > . and PeakDensity [KeyNeighbor [peak]]> PeakDensity [peak] then
 FinalPeak [peak]=FinalPeak [KeyNeighbor [peak]]
 LevelMergers=LevelMergers+
 end
 end
 end
 ScatterCommunicate (FinalPeak)
 LevelMergers=MPIsum (LevelMergers)
 end

 For every merger, merge the corresponding lines in the saddle point array.
 for peak ∈ {all peaks} do
 if GlobalPeakID [peak] �= FinalPeak [peak] then
 NewIndex=GetLocalPeakIndex (FinalPeak [peak])
 for column ∈ {matrix columns} do
 if SaddleMatrix [peak,column] > SaddleMatrix [NewIndex,column] then
 SaddleMatrix [NewIndex,column]=SaddleMatrix [peak,column]
 SaddleMatrix [column,NewIndex]=SaddleMatrix [peak,column]
 end
 end
 SaddleMatrix [NewIndex,peak]=
 SaddleMatrix [NewIndex,NewIndex]=
 end
 end
 BuildPeakCommunicator

 Set alive to zero for dead peaks and count mergers.
 for peak ∈ {active peaks} do
 if GlobalPeakID [peak] �= FinalPeak [peak] and alive [peak]== then
 alive [peak]=
 mergers=mergers+
 end
 end
 ScatterCommunicate (alive)
 mergers=MPIsum (mergers)

 Remove saddle points linking to dead peaks.
 for peak ∈ {all peaks} do
 for column ∈ {matrix columns} do
 if alive [peak]== or alive [column]== then
 SaddleMatrix [peak,column]=
 end
 end
 end
 end

Algorithm : Pseudocode describing the parallel merger procedure

Bleuler et al. Computational Astrophysics and Cosmology (2015) 2:5 Page 9 of 16

Figure 3 Parallelization of the watershed segmentation shown
on a 2D field. The top panel depicts the computational box with the
density field. In the second panel, the two MPI domains and the
virtual boundaries are shown, the peaks have obtained their IDs and
the cells are labeled. In a loop over all test cells, the peak patch labels
can propagate inside the MPI domains (third panel). After the loop,
the virtual boundaries are updated and the procedure is repeated
(fourth panel).

used space in memory for peaks (see Section), designed
to be sufficient for all setups we have tested. However, the
memory consumption for peak properties is still negligi-
ble compared to the necessary space for the AMR grid.e
All peak properties such as the peak density are allocated
up to Nmax.
Since every task is aware of its starting number of global

peak IDs, switching from global peak ID to local peak in-
dex and vice versa is trivial for active peaks. To recover a

Figure 4 Example of peak layout in memory for 3 MPI tasks. The
figure shows the global peak ID as a ‘function’ of the MPI task and the
local peak ID. The local peak index for a given global peak ID is stored
in a hash table.

boundary peaks global ID from its local index, we simply
store the global ID in memory at the position of its local
index. For the opposite direction we use a hash table that
contains the local peak index for a given global peak ID
(hash key).f Whenever we introduce a new boundary peak
into the virtual peak boundary, it obtains the local peak in-
dex corresponding to the first free space in memory. The
global peak ID is stored and a hash key is computed.Which
peaks need to be present in the virtual peak boundary de-
pends on the connectivity of peaks. The initial state of the
virtual boundary will thus be constructed while searching
for saddle points that connect the peaks.

3.3 The peak communicator
By introducing a peak into the virtual peak boundary, it
only obtains a local peak index. No properties except the
global peak ID of a newly introduced boundary peak are
present at this stage. We now describe how information
is transferred from the MPI task which hosts a peak (the
‘owner’ of that peak) into the virtual peak boundaries of
other tasks and vice versa. There are two types of commu-
nication: inward communication (‘collect’, red arrows in
Figure) from all processes which have a certain peak in-
side their peak boundary to the owner of the peak, and out-
ward communication (‘scatter’, green arrows in Figure)
to update the peak properties in the virtual boundaries.
When performing a collect communication, one has to
specify whether one is computing a sum, minimum or
maximum of the incoming values belonging to the same
peak. When a scatter communication is performed, the
peak properties of boundary peaks are overwritten with
their equivalent from the peaks owner. A typical commu-
nication pattern for a peak property is therefore a collect
communication followed by a scatter communication.

Bleuler et al. Computational Astrophysics and Cosmology (2015) 2:5 Page 10 of 16

Before this communication can be performed, we need
to build a communication structure which we refer to as
the ‘peak communicator’. We allocate a matrix C of size
Ntask × Ntask. The entry cij is the number of peaks inside
the virtual peak boundary of task i that are owned by task j.
Each task builds its line of C in a loop over the boundary
peaks by looking at their global peak IDs. Through MPI
communication, the lines of C are shared between all task
to complete C.g The entries in the matrix C determine the
amount of data that is sent to/received from another MPI
task. This information is used to allocate send and receive
buffers and to direct each entry in a tasks send buffer to the
correctMPI task in a round of all-to-all communication. In
order to complete the setup of the peak communicator, we
use the established structure to perform a collect commu-
nication of the global peak ID. This information allows the
identification of a position in the receive buffer (or in the
send buffer in the case of a scatter communication) with an
active peak. This completes the buildup of the communi-
cation structure. The peak communicator needs to be re-
built whenever new peaks have potentially been added to
the virtual peak boundary of any MPI task.

3.4 The saddle point matrix
To keep track of the saddle points, we establish a symmet-
ric saddle matrix M, where the entry mij is the density of
the saddle point connecting the peaks i and j. As most of
the peaks patches are not touching each other, we use a
sparse matrix representation of M. Note that the indices i,
j are the local peak indices, whichmakesM a sparsematrix
of virtual size Nmax × Nmax. Since we are interested in the
maximum entry of each line and the columnwhere it is lo-
cated when in comes to merging, we keep track of those
two values when adding new entries into M. The maxi-
mum and its column need to be recomputed by checking
each non-zero element of a line only after values have been
removed from the given line in M which reduces the num-
ber necessary accesses to the sparse matrix.
The construction of the sparse matrices is performed lo-

cally theway described in Section ..Whenever a connec-
tion is found to a peak that is not yet present in the virtual
peak boundary, the given peak is introduced by assigning it
a local index. See Algorithm for the pseudocode describ-
ing the saddle point search on each task.

3.5 Communication of saddle points
We could now use a collect communication on the saddle
points for every peak in the entire computational box. As
a result of that, every task would have access to all saddle
points of all his active peaks. The global key saddle and key
neighbour could then be determined by everyMPI task for
his active peaks. However, this approach would introduce
a lot of communication and unnecessarily fill the sparse
saddle matrices. The only necessary information to per-
form one iteration in the merging process is the (global)

key saddle density of a peak and the corresponding key
neighbour. This global maximum saddle can be found by
comparing the local maxima of each MPI task. We thus
minimise communication by performing a collect commu-
nication only on the localmaximumof each row in the sad-
dle point matrix. Together with the local maximum sad-
dle density, we collect the global peak ID that denotes the
local key neighbour. The owner of a peak can now com-
pute the global key saddle for a given peak by comparing
all the local maxima. The global peak ID that was received
from the MPI task which hosts the global key saddle is the
key neighbour of the peak. If not already present, the key
neighbour is introduced into the virtual peak boundary of
the owner task and the key saddle density is written into
the sparse saddle matrix of the owner. Every MPI task can
now perform a complete iteration in the merging process
without any further communication of saddle point densi-
ties.

3.6 Merging in parallel
We are now set for the actual merging of the peaks. We in-
troduce two new peak properties: a logical variable called
alive which is initialised to ‘true’ and set to ‘false’ when
a peak is merged into another one, and the final peak la-
bel which is initialised to the global peak ID for all ac-
tive peaks. These two new properties and the peak density
are updated in the virtual peak boundaries using a scat-
ter communication. A permutation which sorts the active
peaks by decreasing density is computed. Now we prop-
agate the final peak label through the key saddles in a
level-by-level fashion. On each level, we iterate until no fi-
nal peak label is moved, while the virtual boundaries are
updated after every iteration. This is perfectly analogous
to the parallel watershed segmentation. After every level
of saddle points we update the alive variable, the sad-
dle point matrices and the virtual boundaries. The merger
routine is described in Algorithm in pseudocode. The
substructure merging is performed in exactly the same
way, we just replace the relevance threshold by the saddle
density threshold.

4 Scaling test
We use a previously run cosmological dark matter sim-
ulation with particles for a scaling experiment. We
restart the simulation from the output corresponding to
redshift z = using various numbers of MPI tasks. Be-
fore phew can run, we project the particle density onto
the AMR grid using the CIC (Cloud-In-Cell, Hockney
and Eastwood) algorithm. Once we have constructed
the grid-based density field, we run phew with a den-
sity threshold of times the cosmological critical density
(noted ρcrit) and a relevance threshold of . After merg-
ing the peak patches into Level clumps (sub-haloes), we
merge to form haloes by applying a saddle threshold of

Bleuler et al. Computational Astrophysics and Cosmology (2015) 2:5 Page 11 of 16

Table 1 Parameters and some runtime statistics for the
1,024 task runs of the experiment

Nparts 5123 1,0243

Ntasks 1,024 1,024
Density threshold 80ρcrit 80ρcrit
Relevance threshold 3 3
Saddle threshold 200ρcrit 200ρcrit

Number of test cells 104,360,968 835,609,288
Number of density peaks 6,714,764 53,994,995
Number of relevant clumps 1,311,208 10,612,079
Number of haloes* 521,185 4,234,746
Runtime 8.0 s 38.9 s

Number of iterations for. . .
. . .watershed segmentation 7 9
. . . noise removal
Level 1 7 7
Level 2 5 6
Level 3 4 4
Level 4 2 3
Level 5 1 2
Level 6 1 1
Level 7 1 1
Level 8 1
. . . substructure merging
Level 1 4 3
Level 2 3 4
Level 3 3 3
Level 4 2 2
Level 5 1 2
Level 6 1 1
Level 7 1

*Note that we do only count the objects that contain more than 10 dark matter
particles.

ρcrit. The first column in Table summarizes param-
eters and runtime statistics obtained for , tasks. We
see a rich hierarchy of saddle points spread over many lev-
els. The numbers of iterations necessary show that there
is structure extending over several domain boundaries at
every stage of the process (peak patches, clumps, haloes).
Note that phew finds exactly the same structures, inde-
pendent of the number of MPI tasks that have been used.
This empirically confirms what we have described in Sec-
tion .. It is also worth mentioning that the iteration pat-
tern looks surprisingly similar for the other runs in
our scaling experiment. The total number of necessary it-
erations increases from to when going from to
, tasks while it would be only when for the serial al-
gorithm. An example of the hierarchical structure that is
found by phew is shown in Figure which depicts a halo
with four levels of substructure taken from our scaling ex-
periment.
In our numerical experiment, phew was run five times

in a row, for five main simulation time steps following the
restart.Wemeasure the total runtime of each call to phew
as well as the time spent on the different algorithmic steps.
We find the variance of the runtimes to be negligible and

conclude that the timings are stable. Note that the prelim-
inary construction of the density field is performed inside
thewatershed segmentation block.However, theCIC algo-
rithm is quick compared to the watershed segmentation.
We also measure the amount of time necessary for each
MPI task to write the properties of the structure inside its
domain to disk.
The runtimes for the various numbers of MPI tasks are

plotted in the top two panels of Figure . The top panel
shows satisfactory scaling of the overall algorithm up to
, MPI tasks which is four times the numbers of tasks
that were used to perform the original simulation. In this
regime, the total runtime of phew is dominated by the
watershed segmentation and the saddle point search. The
most costly operations inside those two blocks are the con-
struction and access of neighbouring cells. The total work-
load of those blocks thus scales linearly with the number
of test cells per MPI task.
The second panel in Figure shows that the runtime of

those two blocks does actually scale over the entire range
of numbers of tasks that we have tested. It also shows that
the second panel in Figure shows that themerging proce-
dures scale well up to tasks. The scaling of themerging
process in this region is mainly controlled by two effects:
with a growing number of tasks, the load imbalance of the
peaks between the different MPI tasks increases. This is
unavoidable as the domain decomposition is optimised for
all AMR cells, not for the test cells only, and even less for
the peak patches. The second reason is the growing ratio
of surface to volume as the computational box is divided
in smaller parts. This results in more ghost peaks per ac-
tive peak which causes a higher workload per active peak.
Those two effects are quantified in the first two rows of
Table .
The solid line in the bottom panel of Figure is a result

of both effects mentioned above. It depicts max{Nsparse},
themaximumnumber of used sparsematrix elements over
all MPI tasks. In perfect scaling conditions, this number
would decrease as /Ntasks. We thus multiply max{Nsparse}
by Ntasks and rescale to one at tasks. We compare this
to the runtime of the noise removal (also scaled). We ob-
serve that this ‘worst case’ number of entries in the sparse
saddle pointmatrix does explain the scaling of themerging
process up to tasks. Beyond that, we believe that MPI
communications become the performance bottleneck.
In Table we also show the maximum ratio of ghost

peaks to active peaks. For , tasks we have a value of
%. This shows that the number Nmax defined in Equa-
tion () is an overestimation of the effectively used mem-
ory for ghost peaks for this setup. In the same table, we also
list the number of hast table collisions. There are very few
collisions as the hash table is far fromfilling up andwe con-
clude that the relatively simple hash function that we use
is good enough for our purpose. Another fact worth men-
tioning is the relatively constant ratio of non-zero entries

Bleuler et al. Computational Astrophysics and Cosmology (2015) 2:5 Page 12 of 16

Figure 5 Visualization of PHEW applied to a dark matter halo. We show a small sub-volume of the 5123 particle box used in our scaling
experiment. The coordinates indicate the fraction of the box size. The sub-volume contains ≈2× 106 particles. The objects that emerge after the
noise removal (Level 0 clumps) are indicated in the second panel, where all particles belonging to the same object share a color. Every subsequent
panel shows the status after a further round of merging as it is described in Section 2.6.

Bleuler et al. Computational Astrophysics and Cosmology (2015) 2:5 Page 13 of 16

Figure 6 Scaling properties of the different parts in PHEW

obtained by restarting a cosmological dark matter simulation
with 5123 particles at redshift z = 0. The top two panels show the
runtimes of the different algorithmic blocks in PHEW. The peak patch
segmentation and the saddle point search exhibit excellent scaling in
the entire range of MPI tasks that we have tested. The merging in our
test scales well up to ∼256 MPI tasks. The bottom panel shows the
maximum number of sparse matrix elements over all MPI tasks
compared to 1/Ntasks and rescaled to one at 32 MPI tasks. The
increase seen in this number for of tasks is due to the growing load
imbalance in terms of peaks per task and the increase in the surface
to volume ratio of the domain segmentation. It explains the increase
of the scaled runtime of the noise removal very well up to 512 tasks.
The overall scaling of the algorithm is satisfactory up to 1,024 MPI
tasks which is four times the number of CPUs the original simulation
was run on.

in saddle point matrix to the number of peaks seen in the
third line of Table . Divided by two (due to the symmetry
of the saddle point matrix), this number gives a good idea
of the effective number of neighbours per peak.

As a second test we perform a ‘weak scaling’ comparison
of our , task run with another , task run but this
time on a larger, , particle box. The second column
of Table lists the statistics of that run. The numbers of
test cells, peaks, clumps and haloes all increase by the ex-
pected factor of≈.We thus divide the runtimes of phew
for this setup by and compare to the runtime of the ,
task run on the box. This comparison is plotted in
Figure . The figure shows that the runtime per data de-
creases for all parts of phew by increasing the size of the
data. Especially the efficiency of merging routines benefit
a lot from the increased size of the dataset. We thus con-
clude that we can enlarge the range of Ntask where phew
scales well, by increasing the size of the simulation.

5 Conclusions
We have presented phew, a new structure finding algo-
rithm and its MPI parallel implementation into the AMR
code ramses. phew finds density peaks and their associ-
ated regions in a D density field by performing a water-
shed segmentation. The merging is based on the saddle
point topology. We have described a two-step approach
to merging. In a first step, we merge irrelevant density
fluctuations which we consider as noise. In a second step
we merge the finest substructure hierarchically, into large,
connected regions above the adopted density threshold.
This merging process naturally results in a tree-like repre-
sentation of substructure similar to the dendrograms pre-
sented by Rosolowsky et al. ().
The main focus of this article is on the parallel imple-

mentation of the algorithm which we have described in
detail. Our implementation is truly parallel, meaning that
it produces exactly the same results for varying numbers
of MPI tasks. To test the parallelization of phew, we have
performed a scaling experiment on a snapshot from a cos-
mological dark matter simulation. We have found excel-
lent scaling in the relevant range of MPI tasks. When us-
ing the same number of MPI tasks that was used for the
actual simulation, the runtime of phew ∼% the time it
takes to advance the simulation by one time step. This al-
lows for frequent usage of phew on-the-fly and thus more
fine-grained information about how matter assembles in
simulations.
ramses has recently been demonstrated to scale well up

to , MPI task (Alimi et al.) when used to sim-
ulate a very large cosmological volume. Even the largest
haloes that phew will identify in such a simulation cover
only a small fraction of the computational volume. This es-
sentially turns such a setup into a weak scaling experiment
for phew, where the scalability is determined by the do-
main decomposition of ramses. Without having applied
phew to such a large setup, we therefore expect the algo-
rithm to show similar scaling properties in this range as the
ramses code. A more challenging situation for the phew

Bleuler et al. Computational Astrophysics and Cosmology (2015) 2:5 Page 14 of 16

Table 2 Runtime diagnostics for the parallelization of PHEW when various numbers of MPI tasks are used. Nactive and Nghost
are the number of active peaks and ghost peaks respectively and Ntot = Nactive + Nghost denotes the total number of peaks per
MPI task. Nsparse is the number of entries in the sparse saddle matrix and Ncollisions gives the number of hash table collisions.
Sums, maxima and averages are taken over the all MPI tasks

Ntasks 32 64 128 256 512 1,024 2,048

Load imbalance (max{Ntot}
avg{Ntot}) 1.4 1.5 1.8 2.4 2.8 3.3 3.9

Surface effect (
∑

Nghost∑
Nactive

) 0.0087 0.012 0.016 0.021 0.030 0.040 0.055

Connectivity (
∑

Nsparse∑
Ntot

) 9.4 9.4 9.4 9.3 9.3 9.3 9.2

max{ Nghost
Nactive

} 0.012 0.017 0.044 0.064 0.10 0.15 0.24

max{Ntot} 3.0× 105 1.6× 105 9.6× 104 6.4× 104 3.8× 104 2.2× 104 1.3× 104

max{Nsparse} 3.3× 106 1.8× 106 1.2× 106 8.7× 105 6.3× 105 4.7× 105 3.0× 105

max{Ncollisions} 4 3 2 3 16 17 13

Figure 7 Weak scaling comparison of PHEW using 1,024 tasks to
find structure in a 5123 and a 1,0243 particle cosmological box.
The PHEW runtimes for the 1,0243 box are divided by a factor of 8 for
comparison with the runtimes for the 5123 box. Increasing the size of
the dataset improves the scaling of PHEW for large numbers of MPI
tasks.

algorithm is posed by high-resolution zoom simulations
of one single halo. In such a situation, the parent halo is
spread over almost all MPI tasks, leading to MPI commu-
nication across the entire computational domain during
the merging process and therefore slightly less favorable
scaling properties.
phew has similarities with already existing watershed

based halo finders, such as denmax (Bertschinger and
Gelb), hop (Eisenstein and Hut), skid (Stadel
), adaptahop (Aubert et al.), grasshopper
(Potter and Stadel, in prep), but these are either not yet
parallelized, do not find substructure or work only on par-
ticles. On a first sight, it looks like our approaches to defin-
ing substructure or parallelization cannot be applied to
particle-based data structures since we operate on amesh-
defined density field, while the other codes work on the
particle distribution directly. However, the only two con-
cepts that we use which are naturally provided by the grid,
namely a local density and the notion of a neighbour, can

be also defined for other data structures that do not rely
on a grid. Once these properties are defined, the algorithm
presented in this paper can be applied to particle data in
the same way as we apply it to grid data.
At the current stage, our implementation of phew is a

topological tool only, meaning that it identifies regions in
space disregarding physical properties such as the kinetic
or gravitational energy of the matter in that volume. For
the application of phew as a genuine halo finder, we need
to develop an unbinding procedure, which removes dark
matter particles from regions they are not gravitationally
bound to. We will exploit our hierarchical decomposition
into substructure, to pass unbound particle to larger and
larger regions, until the particles remain bound. This will
unambiguously define the parent halo (or sub-halo) of the
particles.

Appendix: Glossary
Clump: We use the word clump for the structure after the
noise removal. It is the smallest structure that is not con-
sidered noise.

Key saddle: The highest saddle point connecting a peak to
any neighbouring peak is considered the key saddle. Note
that this definition slightly deviates from the one tradition-
ally used in topography.

Key neighbour: A peaks key neighbour is the peak it is con-
nected to through the key saddle.

Neighbouring cell: Every cell with a common face, edge or
corner is considered a neighbour to a given cell.

Neighbouring peak: If a cell inside peak patch i is neigh-
bouring a cell in peak patch j, their peaks are considered
neighbouring peaks.

Noise: A peak with a small relevance (usually less than .)
is considered noise.

Owner: We denote the MPI task where a given peak is ac-
tive as the owner of that peak.

Bleuler et al. Computational Astrophysics and Cosmology (2015) 2:5 Page 15 of 16

Peak: We denote every cell hosting a local density maxi-
mum as a peak.

Peak patch: Every cell is unambiguously connected to one
single density peak by recursively assigning it to the dens-
est neighbouring cell. All cells belonging to a certain peak
form the so-called peak patch. The peak patch is the equiv-
alent to the watershed catchment basins for the negative
density field.

Relevance: The relevance is defined as the ratio of a peaks
density to its key saddle density or the density threshold in
case of an isolated peak patch. This term is closely related
to the topographical term ‘prominence’, which denotes the
altitude difference of a peak to its highest saddle which
connects the peak to a higher neighbour.

Saddle point: The density maximum on the connecting
surface between two peak patches is located at the saddle
point connecting the two peaks.

Test cell: Cells with a density above the adopted density
threshold are called test cells. Only those are considered
in our analysis.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AB and RT are the main developers of PHEW and authors of the manuscript. SC
has contributed to the application of PHEW to particle data in the course of his
master thesis. DM was involved in the early development of the algorithm. All
authors read and approved the final manuscript.

Author details
1Institute for Computational Science, University of Zurich, Zurich, CH-8057,
Switzerland. 2Institut d’Astrophysique de Paris, 98bis boulevard Arago, Paris,
75014, France. 3Department of Astronomy, University of California, Berkeley,
CA 94720-3411, USA.

Acknowledgements
The authors want to thank Stephane Colombi for his advice on substructure
merging. Furthermore the authors thank Doug Potter for helpful discussions
about programming techniques. The computations leading to this publication
have been performed at on the zBox4 and Schroedinger Supercomputers at
the University of Zurich and at the Swiss Supercomputing Centre CSCS in
Lugano. This work has been supported by the Swiss National Science
Foundation SNF under the project ‘Computational Astrophysics’ and the PASC
co-design project ‘Particles and Fields’.

Endnotes
a The RAMSES code including PHEW are publicly available and can be

downloaded from http://www.bitbucket.org/rteyssie/ramses.
b

DENMAX can be considered an in-between case since it uses a uniform
grid to compute the density gradient which is then used to directly
assign particles to peaks.

c Note that more modern approaches to region merging in image
segmentation use the original image for merging while the watershed is
computed on the gradient image (e.g., Peng and Zhang 2011). Using the
watershed on the gradient image results in regions of similar gray values,
where the densities inside our peak patches are very inhomogeneous.
Approaches to region merging are thus fundamentally different in image
processing than they are in our case.

d The relevance threshold is a user parameter that can be adapted to the
setup. 1.5 is our standard choice for identifying gas clumps in RAMSES

simulations. For identifying dark matter haloes, the value can be picked
according to the expected number of dark matter particles per cell and
the resulting Poisson noise in the density.

e For situations where the memory consumption due to given estimate for
Nmax becomes prohibitive, one could start with a lower number and for
example double the size of the allocation on-the-fly whenever all
available space for ghost peaks is occupied. However, we have not yet
encountered a situation where it was necessary to use this strategy.

f We use a simple hash function based on the remainder of a division of
the peak ID by a prime number chosen according to the maximum size
of the virtual peak boundary. Collisions are dealt with by chaining in the
form of a linked list (Knuth 1998). We found this to be sufficient for our
purpose (see Table 2).

g The introduction of a N2
task sized matrix can become problematic when

the number of MPI tasks is increased beyond the numbers we have
tested for this publication, especially for supercomputers with relatively
little available memory per core (Blue Gene architecture). In order to
apply PHEW to even larger problems, one can drop the construction of
the global matrix C by exploiting the fact that the n-th MPI process only
needs to be aware of the n-th row and the n-th column of C , but not of
the entire matrix. Considering the fact that the rows/columns of C are
sparse, one can thus replace the N2

task sized matrix by a fully scalable
representation of the information contained in C .

Received: 22 October 2014 Accepted: 6 April 2015

References
Alimi, J-M, et al.: First-ever full observable universe simulation. In: Proceedings

of the International Conference on High Performance Computing,
Networking, Storage and Analysis, p. 73. IEEE Computer Society Press,
Washington (2012)

Aragón-Calvo, MA, Platen, E, van de Weygaert, R, Szalay, AS: The Spine of the
Cosmic Web. Astrophys. J. 723, 364-382 (2010).
doi:10.1088/0004-637X/723/1/364

Aubert, D, Pichon, C, Colombi, S: The origin and implications of dark matter
anisotropic cosmic infall on ≈L� haloes. Mon. Not. R. Astron. Soc. 352,
376-398 (2004). doi:10.1111/j.1365-2966.2004.07883.x

Bertschinger, E, Gelb, JM: Cosmological N-body simulations. Comput. Phys. 5,
164-175 (1991)

Beucher, S: In: Serra, J, Soille, P (eds.) Mathematical Morphology and Its
Applications to Image Processing (1994)

Bleuler, A, Teyssier, R: Towards a more realistic sink particle algorithm for the
ramses code. Mon. Not. R. Astron. Soc. 445(4), 4015-4036 (2014)

Davis, M, Efstathiou, G, Frenk, CS, White, SD: The evolution of large-scale
structure in a universe dominated by cold dark matter. Astrophys. J. 292,
371-394 (1985)

Eisenstein, DJ, Hut, P: HOP: a new group-finding algorithm for N-body
simulations. Astrophys. J. 498, 137 (1998). doi:10.1086/305535

Hockney, RW, Eastwood, JW: Computer Simulation Using Particles.
McGraw-Hill, New York (1981)

Knebe, A, et al.: Haloes gone MAD: the halo-finder comparison project. Mon.
Not. R. Astron. Soc. 415, 2293-2318 (2011).
doi:10.1111/j.1365-2966.2011.18858.x

Knebe, A, et al.: Structure finding in cosmological simulations: the state of
affairs. Mon. Not. R. Astron. Soc. 435, 1618-1658 (2013).
doi:10.1093/mnras/stt1403

Knollmann, SR, Knebe, A: AHF: Amiga’s halo finder. Astrophys. J. Suppl. Ser.
182(2), 608 (2009)

Knuth, DE: Sorting and Searching. The Art of Computer Programming, vol. 3.
Addison-Wesley, Reading (1998)

Meyer, F: Topographic distance and watershed lines. Signal Process. 38(1),
113-125 (1994)

Moga, A: Parallel Watershed Algorithms for Image Segmentation. Tampere
University of Technology, Tampere (1997)

Moga, AN, Gabbouj, M: Parallel marker-based image segmentation with
watershed transformation. J. Parallel Distrib. Comput. 51(1), 27-45 (1998)

Onions, J, et al.: Subhaloes gone Notts: spin across subhaloes and finders. Mon.
Not. R. Astron. Soc. 429, 2739-2747 (2013). doi:10.1093/mnras/sts549

Peng, B, Zhang, D: Automatic image segmentation by dynamic region
merging. IEEE Trans. Image Process. 20(12), 3592-3605 (2011)

http://www.bitbucket.org/rteyssie/ramses
http://dx.doi.org/10.1088/0004-637X/723/1/364
http://dx.doi.org/10.1111/j.1365-2966.2004.07883.x
http://dx.doi.org/10.1086/305535
http://dx.doi.org/10.1111/j.1365-2966.2011.18858.x
http://dx.doi.org/10.1093/mnras/stt1403
http://dx.doi.org/10.1093/mnras/sts549

Bleuler et al. Computational Astrophysics and Cosmology (2015) 2:5 Page 16 of 16

Platen, E, van de Weygaert, R, Jones, BJT: A cosmic watershed: the WVF void
detection technique. Mon. Not. R. Astron. Soc. 380, 551-570 (2007).
doi:10.1111/j.1365-2966.2007.12125.x

Potter, D, Stadel, J:. GRASSHOPPER, in prep.
Press, WH, Schechter, P: Formation of galaxies and clusters of galaxies by

self-similar gravitational condensation. Astrophys. J. 187, 425-438 (1974).
doi:10.1086/152650

Press, WH, Teukolsky, SA, Vetterling, WT, Flannery, BP: Numerical Recipes 3rd
Edition: The Art of Scientific Computing, 3rd edn. Cambridge University
Press, New York (2007)

Pujol, A, et al.: Subhaloes gone Notts: the clustering properties of subhaloes.
Mon. Not. R. Astron. Soc. 438, 3205-3221 (2014).
doi:10.1093/mnras/stt2446

Roerdink, JBTM, Meijster, A: The watershed transform: definitions, algorithms
and parallelization strategies. Fundam. Inform. 41(1-2), 187-228 (2000)

Rosolowsky, EW, Pineda, JE, Kauffmann, J, Goodman, AA: Structural analysis of
molecular clouds: dendrograms. Astrophys. J. 679(2), 1338 (2008)

Skory, S, Turk, MJ, Norman, ML, Coil, AL: Parallel hop: a scalable halo finder for
massive cosmological data sets. Astrophys. J. Suppl. Ser. 191(1), 43 (2010)

Springel, V, White, SDM, Tormen, G, Kauffmann, G: Populating a cluster of
galaxies - I. Results at z = 0. Mon. Not. R. Astron. Soc. 328, 726-750 (2001).
doi:10.1046/j.1365-8711.2001.04912.x

Stadel, JG: Cosmological N-body simulations and their analysis. PhD thesis,
University of Washington (2001)

Stutzki, J, Guesten, R: High spatial resolution isotopic CO and CS observations
of M17 SW: the clumpy structure of the molecular cloud core. Astrophys. J.
356, 513-533 (1990). doi:10.1086/168859

Sutter, PM, et al.: VIDE: The Void IDentification and Examination toolkit. Astron.
Comput. 9, 1-9 (2015)

Teyssier, R: Cosmological hydrodynamics with adaptive mesh refinement.
A new high resolution code called RAMSES. Astron. Astrophys. 385,
337-364 (2002). doi:10.1051/0004-6361:20011817

Way, MJ, Gazis, PR, Scargle, JD: Structure in the 3D Galaxy Distribution: II. Voids
and Watersheds of Local Maxima and Minima (2014). arXiv:1406.6111

Way, MJ, Gazis, PR, Scargle, JD: Structure in the three-dimensional galaxy
distribution. I. Methods and example results. Astrophys. J. 727, 48 (2011).
doi:10.1088/0004-637X/727/1/48

Williams, JP, de Geus, EJ, Blitz, L: Determining structure in molecular clouds.
Astrophys. J. 428, 693-712 (1994). doi:10.1086/174279

http://dx.doi.org/10.1111/j.1365-2966.2007.12125.x
http://dx.doi.org/10.1086/152650
http://dx.doi.org/10.1093/mnras/stt2446
http://dx.doi.org/10.1046/j.1365-8711.2001.04912.x
http://dx.doi.org/10.1086/168859
http://dx.doi.org/10.1051/0004-6361:20011817
http://arxiv.org/abs/arXiv:1406.6111
http://dx.doi.org/10.1088/0004-637X/727/1/48
http://dx.doi.org/10.1086/174279

	PHEW: a parallel segmentation algorithm for three-dimensional AMR datasets
	Abstract
	Introduction
	The phew algorithm
	Watersheds in image processing
	Watershed segmentation
	Saddle point search
	Noise removal
	Saddle threshold merging
	A hierarchy of saddle points
	Merging order

	Parallel implementation

	Parallel watershed
	Algorithm 1
	Virtual peak boundary
	Algorithm 2
	The peak communicator
	The saddle point matrix
	Communication of saddle points
	Merging in parallel
	Scaling test
	Conclusions
	Appendix: Glossary
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	Endnotes
	References

