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ABSTRACT

Fluctuations in a stellar system’s gravitational field cause the orbits of stars to evolve. The resulting
evolution of the system can be computed with the orbit-averaged Fokker-Planck equation once the
diffusion tensor is known. We present the formalism that enables one to compute the diffusion tensor
from a given source of noise in the gravitational field when the system’s dynamical response to that
noise is included. In the case of a cool stellar disc we are able to reduce the computation of the
diffusion tensor to a one-dimensional integral. We implement this formula for a tapered Mestel disc
that is exposed to shot noise and find that we are able to explain analytically the principal features of
a numerical simulation of such a disc. In particular the formation of narrow ridges of enhanced density
in action space is recovered. As the disc’s value of Toomre’s Q is reduced and the disc becomes more
responsive, there is a transition from a regime of heating in the inner regions of the disc through the
inner Lindblad resonance to one of radial migration of near-circular orbits via the corotation resonance
in the intermediate regions of the disc. The formalism developed here provides the ideal framework
in which to study the long-term evolution of all kinds of stellar discs.
Subject headings: Galaxies, dynamics, evolution, diffusion

1. INTRODUCTION

Many, perhaps all, stars are born in a stellar disc. Ma-
jor mergers destroyed some discs quite early in the his-
tory of the Universe, but many others have survived to
the present day, including the disc of which the Sun is
a part. Hence an understanding of the dynamics and
evolution of stellar discs is an essential ingredient of cos-
mology. Conversely, cosmology provides the framework
within which disc dynamics should be studied because
dark-matter halos make large contributions to the gravi-
tational fields in which discs move, and dark-matter sub-
structures are major contributors to the gravitational
noise to which discs are exposed.
Serious study of disc dynamics got underway in the

1960s with seminal works by Lin, Shu, Goldreich, Toomre
and Lynden-Bell. Although some important insights
were gained at that stage, fundamental questions were
left open. While the earliest work was almost entirely
analytic in nature, numerical simulations of stellar discs
became more important over time, and revealed impor-
tant aspects of disc dynamics that were hard to under-
stand analytically. In particular it emerged that discs
that are completely stable at a linear level nevertheless
develop spiral structure that eventually grows to ampli-
tudes of order unity, so the disc becomes something like
a barred spiral galaxy (Sellwood 2012, hereafter S12).
Sellwood & Carlberg (2014) recently offered a convinc-
ing explanation of this phenomenon that hinges on the
fact that resonances localise the impact that a fluctua-
tion has on a disc. This localisation is the major focus
of this paper.
Self-gravitating discs are responsive dynamical sys-
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tems, in which (a) rotation provides an abundant sup-
ply of free energy, and (b) resonances play a key role.
The ready availability of free energy leads to some stim-
uli being powerfully amplified, while resonances localise
the dissipation of free energy with the result that even
a very small stimulus can result in a disc evolving to an
equilibrium that is materially different from the one from
which it started.
The stimuli to which discs respond are various sources

of gravitational noise. They include, Poisson noise aris-
ing from the finite number of stars in a disc, Poisson
noise arising from the finite number of giant molecular
clouds in the interstellar medium, and Poisson noise aris-
ing from the finite number of massive sub-halos around
a galaxy. Spiral arms in the distribution of gas provide
another source of gravitational noise, while the rotating
gravitational field of a central bar constitutes a source of
stimulus that is more systematic than noisy. The history
of a real stellar disc will largely comprise responses to all
these stimuli.
In the solar neighbourhood at least three distinct man-

ifestations of such responses are evident:

(i) The random velocity of each coeval cohort of
stars increases with the cohort’s age (Wielen 1977;
Aumer & Binney 2009).

(ii) The velocity distribution at the Sun contains sev-
eral “streams” of stars (Dehnen 1998). Each
such stream contains stars of various ages and
chemistries that are all responding to some stim-
ulus in a similar way (Famaey et al. 2005).

(iii) In the two-dimensional space in which one coordi-
nate is angular momentum Jφ and the other is a
measure of a star’s radial excursions, such as the
radial action Jr, the density of stars shows elon-
gated features. The density of stars is depressed
near Jr = 0 but enhanced at larger Jr in such
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a way that the whole region of disturbed stellar
density forms a curve that is consistent with be-
ing a curve on which a resonant condition such as
2Ωφ−Ωr = constant holds (Sellwood 2010; McMil-
lan 2013). We shall call a feature of this type a res-
onance ridge. Sellwood & Carlberg (2014) have
argued that resonance ridges play a crucial role in
the long-term dynamics of stellar discs.

Numerical simulations of stellar discs are extremely
challenging because the near two-dimensional geometry
of discs combined with their responsive nature causes dis-
creteness noise to be dynamically important unless the
number of particles employed exceeds ∼ 200 000. Hence
only recently has it become straightforward to simulate a
disc with a sufficient number of particles for discreteness
noise to be dynamically unimportant for many dynamical
times (S12). It is particularly hard to simulate accurately
a disc that is embedded in a cosmological simulation and
thus exposed to cosmic noise. Moreover, the utility of
a simulation is greatly increased if one understands an-
alytically why it evolves the way it does. A goal of this
paper is to show the extent to which perturbation theory
explains a phenomenon – resonance ridges – that is seen
in both numerical simulations and surveys of the solar
neighbourhood.
Perturbation theory is much more than a device for

computing approximate solutions to equations: through-
out physics it provides the conceptual framework we
use to understand phenomena. Examples include the
concepts of a free particle and an interaction in parti-
cle physics, a phonon and a gravity wave in condensed-
matter physics, semi-major axis and eccentricity in plan-
etary dynamics, and so on. The natural way to increase
our understanding of the dynamics of stellar discs is to
practise the application of perturbation theory to these
systems, so we may gain insight into how these fascinat-
ing systems work, and learn how one can think about
them most profitably.
Kalnajs (1971) laid the foundations of perturbation

theory for stellar discs. The theory is based on the use
of angle-action coordinates – the coordinates that were
introduced to understand the dynamics of the solar sys-
tem. These coordinates are being increasingly used to
build equilibrium models of hot and cold stellar systems
(Binney 2010, 2014; Piffl et al. 2014), and to study the
dynamics of star streams (Helmi & White 1999; Sellwood
2010; McMillan 2013; Eyre & Binney 2011; Sanders &
Binney 2013). Binney & Lacey (1988) used these coor-
dinates to derive the orbit-averaged Fokker-Planck equa-
tion for a stellar disc. However, they did not consider
the origin of the fluctuations in the gravitational poten-
tial that drive stellar diffusion. Weinberg (2001a) di-
vided the driving fluctuations into the contribution from
some external stimulus, and the self-consistent dynami-
cal response of the system itself to the stimulus. Wein-
berg’s treatment was adapted to systems that are spher-
ical when unperturbed, while here we restrict ourselves
to razor-thin discs, in which case the construction of the
angle-action coordinates is trivial.
The paper is organised as follows. Section 2 recalls

from Binney & Lacey (1988) and Weinberg (2001a)
the general principles of secular evolution, the orbit-
averaged Fokker-Planck equation, and the use of a set

of biorthonormal potential-density pairs to compute the
diffusion tensor that is jointly generated by an exter-
nal stimulus and the system’s response to this stimulus.
Section 3 specialises this formalism to a razor-thin, cool
disc by introducing a set of basis functions that comprise
localised, tightly-wound spirals. Using these basis func-
tions we are able to reduce the computation of the diffu-
sion tensor, which in principle requires a double sum over
basis functions, to a single integral over radial wavenum-
bers. In Section 4 we compute the diffusion tensor for
a tapered Mestel disc that is excited by shot noise, and
show that the resulting predictions for the disc’s evolu-
tion reproduce the main features of the N-body simula-
tions reported by S12. Finally, we conclude in Section 5.

2. FLUCTUATIONS AND SECULAR EVOLUTION

To zeroth order, stellar discs are systems that have
achieved statistical equilibrium within an axisymmetric
gravitational field that arises not only from their mass
but also from mass contained in other components of
the galaxy, especially the bulge and the dark halo. The
Hamiltonian associated with the field is to a good approx-
imation integrable, so all orbits may be assumed to admit
three isolating integrals, which we take to be the actions:
Jφ = Lz is the angular momentum about the field’s sym-
metry axis; Jr, which quantifies the amplitude of a star’s
radial oscillations; and Jz, which quantifies oscillations
perpendicular to the field’s equatorial plane (Born 1960;
Binney & Tremaine 2008). On account of the integra-
bility of the gravitational field and Jeans’ theorem, we
can assume that at each instant the disc’s distribution
function (DF) is a function f(J, t) of the actions only,
rather than a general function on phase space f(J, θ, t),
which has dependence on the variables that are canoni-
cally conjugate to the actions, namely the angle variables
θi.
Any fluctuation in the gravitational field causes each

star to deviate from its original orbit J and to settle
after the fluctuation has died away on another orbit
J′ = J + ∆. Hence fluctuations cause stars to diffuse
through action space. Since initially action space is pop-
ulated by stars only along the Jφ axis, this diffusion raises
the density of stars away from this axis by populating
orbits with distinctly non-zero Jr. As a consequence,
the velocity dispersion within the disc rises, so fluctu-
ations “heat” the disc. Stars also diffuse along the Jφ
axis. Since such diffusion merely transfers stars from one
nearly circular orbit to another of a different radius, this
component of diffusion is called radial migration. Radial
migration does not heat the disc, and given that the den-
sity of stars does not vary rapidly along the Jφ axis, it can
easily go unnoticed. However, chemical evolution within
the disc establishes a radial gradient in metallicity, and
radial migration is most readily detected through its in-
teraction with this gradient (Sellwood & Binney 2002):
radial migration tends to erase the correlation between
the ages and metallicities of stars near the Sun by bring-
ing to the Sun both old, metal-rich stars formed at small
radii and young metal-poor stars formed at large radii.
Fundamentally fluctuations drive the long term (“sec-

ular”) evolution of discs in much the same way that
they drive the much better understood secular evolution
of globular clusters, but resonances are unimportant in
globular clusters and dominant in discs. As indicated in
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the Introduction, resonances localise the impact of fluc-
tuations and give rise to ridges in action space that are
the primary focus of this paper. However, Sellwood &
Binney (2002) pointed out that at the corotation reso-
nance, stars are scattered at constant radial action, i.e.,
parallel to the Jφ axis. So scattering at corotation does
not give rise to a ridge and is likely to go overlooked if
one does not pay attention to the metallicities of stars.
While at corotation only Jφ changes, at a Lindblad reso-
nance both Jr and Jφ change, so radial migration is not
confined to corotation, as is often stated.

2.1. Orbit-averaged Fokker-Planck equation

Since we are imagining that stars are conserved, the
equation that governs the secular evolution of the DF
takes the form

∂f

∂t
= − ∂

∂J
·F, (1)

where F is the diffusive flux of stars in action space. If
Ṗ (J,∆) is the rate of increase with time of the probabil-
ity that a star scatters from J to J+∆, then F is given
by (Binney & Lacey 1988)

Fi = f∆i − 1
2

∂f∆2
ij

∂Jj
, (2)

where the first- and second-order diffusion coefficients are

∆i(J) =

∫
d3∆∆iṖ (J,∆)

∆2
ij(J) =

∫
d3∆∆i∆jṖ (J,∆).

(3)

Binney & Lacey (1988) showed that in the relevant cir-
cumstances the first- and second-order diffusion coeffi-
cients are related by

∆i =
1
2

∂∆2
ij

∂Jj
, (4)

so the diffusive flux can be written entirely in terms of
the second-order coefficients:

Fi = − 1
2∆

2
ij

∂f

∂Jj
. (5)

By expanding ψ(x, t), the fluctuating part of the grav-
itational potential, in angle-action variables,

ψ(x, t) = ψ(θ,J, t) =
∑

m

ψm(J, t)eim·θ, (6)

Binney & Lacey (1988) showed that the second-order dif-
fusion coefficients are related to the fluctuations in the
potential by

∆2
ij(J) =

∑

m

mimj c̃m(J,m ·Ω(J)), (7)

where an overline indicates an ensemble average and c̃m
is the Fourier transform with respect to time of the auto-
correlation of the m Fourier component of the potential

c̃m(J, ν) =

∫ ∞

−∞

dτ eiντ ψm(J, t)ψ∗
m(J, t− τ). (8)

By the Wiener–Khinchin theorem, c̃m(J, ν) is the power
spectrum of the stationary random variable ψm(J, t).
Equation (7) tells us that diffusion is driven by reso-
nances because it implies that the rate at which stars
diffuse from action J is proportional to the power that
the fluctuating field has at any of the orbit’s character-
istic frequencies m ·Ω(J). Hence, if the fluctuations are
confined to a narrow frequency range, perhaps because
they are associated with spiral arms, stars that respond
strongly to them will be located at only a few points in
action space.

2.2. A basis-function expansion

We will find it expedient to expand the fluctuating po-
tential ψ(x, t) in a set of basis functions, the members of
which are enumerated by an index q:

ψ(x, t) =
∑

q

bq(t)ψ
(q)(x), (9)

where bq(t) is a random variable. Following Kalnajs
(1971), we require our basis potentials to be orthonor-
mal to the densities ρ(p)(x) that generate them, so we
have

∇2ψ(p) = 4πGρ(q) and

∫
d3x ρ(p)(x)[ψ(q)(x)]∗ = −δpq.

(10)
Now we have

ψm(J, t) =
1

(2π)3

∫
d3θ e−im·θψ(θ,J, t)

=
∑

p

bp(t)ψ
(p)
m

(J),
(11)

where

ψ(p)
m

(J) ≡ 1

(2π)3

∫
d3θ e−im·θψ(p)[x(θ,J)]. (12)

Hence the required power spectrum is

c̃m(J, ν) =
∑

pq

Bpq(ν)ψ
(p)
m

(J)ψ(q)
m

∗
(J), (13)

where

Bpq(ν) ≡
∫ ∞

−∞

dτ eiντ bp(t)b∗q(t− τ) (14)

is the Fourier transform of the cross-correlation of the
amplitudes of the p and q basis functions.
Below we shall require an expression for Bpq(ν) in

terms of the Fourier transform

b̃p(ν) =

∫
dt eiνtbp(t) (15)

of bp(t). If ψ(t) is a stationary random process, then it
is straightforward to show that

b̃p(ν )̃b∗q(ν
′) = 2πδ(ν − ν′)Bpq(ν). (16)

2.3. Bare and dressed stimuli

As we indicated in the Introduction, a stellar disc is ex-
posed to several sources of fluctuations. The issue that
we now have to confront is that the fluctuation ψ in the
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potential that stars experience, which is what appears
in the above formulae, differs from the original stimu-
lation, ψe, because the disc has non-negligible mass, so
through Poisson’s equation it makes a contribution ψs to
the actual gravitational potential ψ (Weinberg 2001a).
We shall refer to ψe as the “bare” stimulus and to

ψ(t) = ψe(t) + ψs(t) (17)

as the “dressed” stimulus. We now seek a relationship
between the dressed and bare stimuli.
Let ψ′ be the change in the potential that the disc

would generate if its particles moved in the sum of the
unperturbed potential and the stimulating potential ψe.
Then ψ′(x) is linearly related to ψe(x) so for each time-
lapse τ there is a linear response operator M(τ) that
connects these functions

ψ′(t) =

∫ t

−∞

dt′M(t− t′)ψe(t′). (18)

Since the mass of the disc actually contributes to the
potential in which its particles move, changes in the disc’s
potential at a early time t′ contribute alongside ψe(t′) to
the disturbance of disc particles at later times, so the
fluctuating component of the disc’s potential ψs satisfies

ψs(t) =

∫ t

−∞

dt′M(t− t′)[ψs(t′) + ψe(t′)]. (19)

Inserting this expression into equation (17), we obtain

ψ(t) = ψe(t) +

∫ t

−∞

dt′M(t− t′)ψ(t′). (20)

In this equation the potentials are functions of x as well
as t and M(t− t′) is an operator that maps one function
of space onto another. The basis functions introduced
above reduce this operator to a matrix, so when we write

ψe(x, t) =
∑

p

ap(t)ψ
(p)(x)

ψ(x, t) =
∑

p

bp(t)ψ
(p)(x),

(21)

equation (20) can be written
∑

p

bp(t)ψ
(p)(x) =

∑

q

[
aq(t)ψ

(q)(x)

+

∫ t

−∞

dt′M(t− t′)bq(t
′)ψ(q)(x)

]
.

(22)

We multiply both sides of this equation by −
∫
d3x [ρ(r)]∗

and with equation (10) obtain

br(t) = ar(t) +
∑

q

∫ t

−∞

dt′Mrq(t− t′)bq(t
′), (23)

where

Mrq(t− t′) = −
∫

d3x [ρ(r)(x)]∗M(t− t′)ψ(q)(x). (24)

The temporal convolution can be reduced to a multipli-
cation by taking a Fourier transform: multiplication of

equation (23) by
∫
dt eiνt yields

b̃r(ν) = ãr(ν) +
∑

q

M̃rq(ν )̃bq(ν). (25)

Hence
b̃(ν) = [I− M̃(ν)]−1ã(ν), (26)

where boldface implies vectors and matrices indexed with
p.
Equations (16) and (26) enable us to relate Bpq to the

basis coefficients of the stimulating field

B(ν) =
1

2π

∫
dν′ [I−M̃(ν)]−1ã(ν)⊗ ã∗(ν′)[I−M̃†(ν′)]−1.

(27)
We will show below that analogously to equation (16)

ãp(ν)ã∗q(ν
′) = 2πδ(ν − ν′)Apq(ν). (28)

Hence equation (13) can be written

c̃m(J, ν) =
∑

pq

ψ(p)
m

(J)ψ(q)
m

∗
(J)

×
{
[I− M̃(ν)]−1A(ν)[I − M̃†(ν)]−1

}
pq
.

(29)

Our derivation of the dressed secular diffusion coefficients
sketched previously is based on the master equation (Bin-
ney & Tremaine 2008) which led to the first- and second-
order diffusion coefficients from equation (3). One can
also recover these diffusion coefficients via a timescale de-
coupling of the collisionless Boltzmann equation (Wein-
berg 2001a; Pichon & Aubert 2006; Chavanis 2012; Fou-
vry et al. 2014a). Various sources of external pertur-
bations can then be considered to induce secular evolu-
tion (Weinberg 2001b; Aubert & Pichon 2007).

3. APPLICATION TO A COOL, THIN DISC

The simplest non-trivial context in which the above
principles can be illustrated is the case of a cool razor-
thin disc, i.e., a disc in which every star is confined to a
plane by Jz = 0 and orbits have only moderate eccentric-
ities. In this case each unperturbed orbit is characterised
by two numbers (Jr, Jφ) or a point J in two-dimensional
action space. The angular momentum Jφ is as ever a
trivial function of (x,v), and since orbits have only mod-
erate eccentricities, the epicycle approximation provides
an adequate expression for Jr(x,v). If κ(Jφ) denotes the
radial epicycle frequency, the disc’s unperturbed DF can
be taken to be an exponential exp(−κJr/σ2

r) in Jr times
a function of Jφ that essentially controls the disc’s radial
surface-density profile. Then within the epicycle approx-
imation the velocity distribution at any point in the disc
is a biaxial Gaussian with radial dispersion σr. Because
gas tends to flow on nearly closed orbits, stars are born
on nearly circular orbits, i.e., along the Jφ axis of action
space, and diffuse from there in to the body of action
space. We shall show that on account of resonances, this
diffusion can form ridges in action space.

3.1. Choice of the basis

Since we are working in two dimensions, the basis func-
tions ψ(p)(x) become functions ψ(p)(R, φ) of plane polar
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coordinates that are orthonormal to the generating sur-
face densities Σ(p)(R, φ). Our problem is simplified if we
can choose the basis ψ(p) such that the response operator

M̃ is diagonal and we now show that this is possible.
It is well known that the potential generated via Pois-

son’s equation by a tightly wound spiral wave is itself a
spiral wave with the same wavevector k = (kr, kφ) (e.g.
Binney & Tremaine 2008, §6.2.2). Moreover, the compu-
tation of the dynamical response of particles within our
disc to a tightly-wound perturbing potential that oscil-
lates at angular frequency ν is covered by standard texts
(see, for example, Binney & Tremaine 2008 §6.2.2(d) or
Binney 2013 §4.2 for two different approaches). The re-
sult is that a spiral potential ψ(p)(x)eiνt creates a spi-
ral perturbation in the surface density of test particles,
which through Poisson’s equation creates a response po-
tential ψ′(x)eiνt that differs from the original stimulating
potential only in magnitude. In fact

ψ′(R, φ) = λkψ
(p)(R, φ), (30)

where

λk =
2πGΣ|kr|
κ2(1− s2)

F(s, χ) . (31)

Here Σ is the disc’s surface density,

s ≡ ν − kφ Ωφ

κ
(32)

is the ratio of the frequency at which a star experiences
the perturbation to the epicycle frequency, and F is the
reduction factor (Kalnajs 1965; Lin & Shu 1966)

F(s, χ) ≡ 2 (1− s2)
e−χ

χ

+∞∑

mr=1

Imr
(χ)

1− s2/m2
r

, (33)

where Imr
is a modified Bessel function and the dimen-

sionless quantity

χ ≡ σ2
r k

2
r

κ2
(34)

is a measure of how warm the disc is. In cases of interest
the reduction factor is a number slightly smaller than
unity and of little interest.
The proportionality (30) suggests that in a basis

formed of tightly-wound spiral waves the Fourier trans-

formed response operator M̃(ν) is diagonal with λk the
diagonal element associated with the given spiral wave.
Hence the natural procedure might seem to be the adop-
tion of the complete set of logarithmic spirals (e.g. Bin-
ney & Tremaine 2008, §2.6.3) as the basis ψ(p). Un-

fortunately, M̃(ν) is not, in fact, diagonal in the basis
formed by logarithmic spirals for the following reason.
The demonstration that a spiral perturbation generates
a spiral response scaled by λk is a local result: the disc
is analysed in just an annulus, and in the spirit of WKB
analysis, the wave considered is a packet of finite length.
Since the frequencies κ and Ωφ that appear in equation
(32) are functions of radius, λk is also a function of ra-

dius whereas a diagonal element of M̃(ν) should be a
constant. Hence only a short packet of spiral waves pro-

vides a good approximation to an eigenfunction of M̃(ν).

Such a packet is a non-trivial superposition of logarith-

mic spirals, so M̃(ν) cannot be diagonal in the basis pro-
vided by logarithmic spirals. Physically, the dynamics of
the disc is inherently local on account of the existence
of resonant radii, so basis functions such as logarithmic
spirals that extend from the disc’s centre to infinity can-

not make M̃(ν) diagonal. Given that we want M̃(ν) to
become diagonal, we must work with basis functions ψ(p)

that are local.
Fouvry et al. (2014a) show how to construct a biothorg-

onal basis of localised spirals. They divide the range
(Rmin, Rmax) of relevant radii into intervals of width
σ centred on R0, and then for any given wavevector
k = (kr , kφ) create a basis function for each interval.
Specifically, their basis potentials are

ψ(k,R0)(R, φ) =

√
G

|kr|R0

ei(krR+kφφ)

(πσ2)1/4
exp

[
− (R−R0)

2

2σ2

]
,

(35)
with krR0 ≫ 1. The corresponding surface densities are

Σ(k,R0) = − |kr|
2πG

ψ(k,R0). (36)

They show that two basis functions ψ(k1,R1
0) and ψ(k2,R2

0)

will be biorthogonal only when ∆R0 ≡ R1
0 −R2

0 and
∆kr = k1r − k2r satisfy





∆R0 ≫ σ , or ∆R0 = 0 ,

∆kr ≫ 1

σ
, or ∆kr = 0 .

(37)

That is, the centres of neighbouring bands have to be sep-
arated by more than the width of a band, and within any
band, adjacent wavenumbers have to differ by enough to
give a significant phase difference across the band.
Now that the basis potentials have been chosen, one

can use the mapping (x,v) 7→ (θ,J) provided by the
epicycle approximation (e.g. Binney 2013, eq. 82) to com-
pute their Fourier transforms with respect to the angle
variables:

ψ(k,R0)
m (J) = δ

kφ
mφ e

imrθ
0
R

√
G

|kr|R0

1

(πσ2)1/4
eikrRg

× Jmr

(√
2Jr
κ kr

)
exp

[
− (Rg −R0)

2

2σ2

]
,

(38)
where Rg(Jφ) is the radius of the circular orbit with an-
gular momentum Jφ and Jmr

is a Bessel function of the
first kind. On account of the tight-winding condition
krRg ≫ 1, the phase shift θ0R is given by

θ0R ≃ −π/2 . (39)

In this basis, the response matrix M̃ is diagonal, having
diagonal elements

M̃(k1,R1
0)(k2,R2

0)
= δ

k2
r

k1
r
δ
k2
φ

k1
φ

δ
R2

0

R1
0

λk, (40)

where λk is defined by equation (31). This expression for
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M̃ allows us to rewrite equation (29) in the form

c̃m(J, ν) =
∑

pq

ψ(p)
m

(J)ψ(q)
m

∗
(J)

Apq(ν)

(1 − λkp)(1 − λkq )
. (41)

In the chosen basis the expansion coefficients of the
stimulating field are

ap(ν) = −
∫

d2x
[
Σ(p)(x)

]∗
ψ̃e(x, ν)

=

√
|kpr |
GRp

0

1

(πσ2)1/4

∫
dRR

× exp

[
− (R−Rp

0)
2

2σ2

]
e−iRkp

r ψ̃e
kp

φ
(R, ν),

(42)

where

ψ̃e
kp

φ
(R, ν) ≡ 1

2π

∫
dφ e−ikp

φ
φψ̃e(R, φ, ν) (43)

is the Fourier transform in azimuthal angle and time of
the stimulating potential. We further define the local
radial Fourier transform of ψe within the segment centred
on Rp

0 by (Gabor 1946)

ψ̃e
kp(R

p
0, ν) ≡

1

2π

∫
dR exp

[
− (R−Rp

0)
2

2σ2

]

× e−i(R−Rp
0)k

p
r ψ̃e

kp

φ
(R, ν).

(44)

This definition is motivated by the consequence that thus
defined the local radial Fourier transform of a uniform
potential ψe = 1 is independent of Rp

0. If in equation (42)
we approximate the leading factor R in the integrand by
R0, we then have

ãp(ν) =

√
|kpr |Rp

0

G

2π

(πσ2)1/4
e−iRp

0k
p
r ψ̃e

kp(R
p
0, ν). (45)

We require the ensemble average ãp(ν)ã∗q(ν
′) (eqs. 28

and 29), which is related to the ensemble average

ψe(x, t)ψe(x′, t′). We assume that stimulating fluctua-
tions are quasi-stationary in the sense that

ψe
kφ
(R, t)ψe∗

kφ
(R′, t′) = Ckφ

(t− t′, R−R′, (R +R′)/2),

(46)
with the dependence on R + R′ being weak. With this
assumption that the process ψe

kφ
is stationary in time

and “locally stationary” in space, it follows that

ψ̃e
kp(R, ν)ψ̃e∗

kq (R′, ν′) = 2πδ(ν − ν′)δ(kpr − kqr)

× C(kp, ν, (R+R′)/2),
(47)

where C(k, ν, R) is the spatio-temporal power spectrum
of the stimulating noise in the neighbourhood of R. Now
we can write

ãp(ν)ã∗q(ν
′) =

|kpr |Rp
0

G

(2π)3

(πσ2)1/2
e−ikp

r (R
p
0−Rq

0)δ(ν − ν′)

× δ(kpr − kqr)C(k
p, ν, (Rp

0 +Rq
0)/2),

(48)

so by equation (28)

Apq(ν) =
|kpr |Rp

0

G

(2π)2

(πσ2)1/2
e−ikp

r (R
p
0−Rq

0)

× δ(kpr − kqr)C(k
p, ν, (Rp

0 +Rq
0)/2).

(49)

To obtain the diffusion coefficients from equations (7)
we substitute into equation (41) for c̃m our expressions

(38) for ψ
(p)
m (J) and the above expression for A. We have

c̃m(J, ν) =
(2π)2

πσ2

∑

pq

δ
kp

φ
mφδ

kq

φ
mφJ 2

mr

(√
2Jr
κ
kpr

)
e−ikp

r (R
p
0−Rq

0)

× exp

[
− (Rg −Rp

0)
2 + (Rg −Rq

0)
2

2σ2

]

× δ(kpr − kqr)
C(kp, ν, (Rp

0 +Rq
0)/2)

(1− λkp)2
.

(50)

The sums over p and q expand into sums over kp, kq,

Rp
0 and Rq

0. On account of the factors δ
kp

φ

mφ
and δ

kq

φ

mφ
the

sums over the φ components of the ki are trivial. The
sums over the kir and Ri

0 we approximate with integrals
by the substitutions

∑

kr

f(kr) →
1

∆kr

∫
dkr f(kr),

∑

R0

g(R0) →
1

∆R0

∫
dR0 g(R0),

(51)

where ∆kr is the difference between successive values of
kr in the sum, and similarly for ∆R0. Then the Dirac
delta function in equation (50) allows us to integrate over
kqr . We assume that σ is small enough that we can ap-

proximate each Gaussian exponential by
√
2πσδ(Rg−Ri

0)
so we can trivially integrate over the Ri

0. Finally, the
presence in equation (48) of a rapidly oscillating com-
plex exponential eikrR0 imposes that the intervals ∆kr
and ∆R0 must satisfy the critical-sampling condition
∆kir∆R

i
0 = 2π (Daubechies 1990). With this condition,

equation (50) simplifies to

c̃m(J, ν) = 2

∫
dkr

J 2
mr

(√
2Jr/κ kr

)

(1− λk)2
C(k, ν, Rg), (52)

where by hypothesis the dependence of C on Rg is weak,
and we have kφ = mφ. This is our principal result. It
enables us to compute the diffusion tensor at any point in
the action space of a thin, self-gravitating disc given the
power spectrum of the noise that excites spiral structure
in the disc.

4. APPLICATION TO A MESTEL DISC

We apply our results to the same Mestel disc (Mes-
tel 1963) that S12 discussed. The basic properties of
this disc are given in §2.6.1(a) and §4.5.1 of Binney &
Tremaine (2008). Its circular speed is a constant V0 and
its potential is

ψ(R) = V 2
0 ln

[
R

Rin

]
, (53)
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where the value of Rin is arbitrary. The corresponding
surface density is

Σ(R) =
V 2
0

2πGR
. (54)

Toomre (1977) gives DF f(E, Jφ) that self-consistently
generates this disc. When we use the epicycle approxi-
mation to replace the energy E by the radial action Jr,
the DF becomes

f0(Jr , Jφ) = CΘ(Jφ)

(
Jφ

RinV0

)−1

exp

(
−κ(Jφ)

σ2
r

Jr

)
,

(55)
where

C =
V q+2
0 /(2πGRin)

2q/2
√
π(q/2− 1/2)!σq+2

r

exp
(
−V 2

0 /2σ
2
r

)
, (56)

and

q =
V 2
0

σ2
r

− 1 , (57)

and Θ (Jφ) is an Heaviside function removing retrograde
stars.
Since the central singularity and infinite extent of the

Mestel disc are problematic, it is customary to modify
the DF (55) by multiplying it by factors T (Jφ) that taper
the stellar distribution at very small and very large radii.
These factors are

Tin(Jφ) =
Jν
φ

(RinV0)ν + Jν
φ

,

Tout(Jφ) =

[
1 +

(
Jφ

RoutV0

)µ]−1

,

(58)

where ν and µ control the sharpness of the two tapers.
Tin models the presence of a bulge by diminishing the
DF inward of Rin. Here, Tout models the outer edge of
the disc, beyond which the gravitational field is entirely
generated by dark matter. Even after tapering the stel-
lar distribution, ψ(R) continues to be given by equation
(53) because the bulge and the dark halo are presumed
to provide the gravitational force that was originally pro-
vided by the un-tapered disc.
In our numerical work we use the same taper constants

as S12. We adopt a system of units such that: V0 =
G = Rin = 1. The other numerical factors are given by
q = 11.4, ν = 4, µ = 5, Rout = 11.5.
Within the epicyclic approximation, the azimuthal and

radial frequencies are

Ω(Jφ) =
V0
Rg

,

κ(Jφ) =
√
2Ω(Jφ) ,

(59)

and are thus independent of Jr. The ratio κ/Ω =
√
2

is a constant. This ratio determines the location of the
resonances, so it is important for the disc’s dynamical
behaviour. By taking it to be a constant we risk intro-
ducing unphysical artifacts in the dynamics.
The distribution function (55) multiplied by the taper

factors (58) takes the form of a locally isothermal -DF or

2 4 6 8 10
JΦ

0.02

0.04

0.06

0.08

St

Figure 1. Surface density Σt of the tapered Mestel disc. The
unit system has been chosen so that V0 = G = Rin = 1.

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

JΦ

J
r

Figure 2. Contours of the initial distribution function in
action-space (Jφ, Jr), within the epicyclic approximation.
The contours are spaced linearly between 95% and 5% of the
distribution function maximum.

Schwarzschild-DF with the correct normalization, which
can be rewritten as

f0(Jr, Jφ) =
Ω(Jφ)Σt(Jφ)

π κ(Jφ)σ2
r

exp

(
−κ(Jφ)

σ2
r

Jr

)
, (60)

where the intrinsic frequencies are given by equation (59)
and the taped surface density in analogy with equa-
tion (54) is given by

Σt(Jφ) =
V 3
0

2πGJφ
Θ(Jφ)Tin(Jφ)Tout(Jφ) . (61)

The shape of the damped surface density is shown in
Figure 1. Figure 2 shows the level contours of the distri-
bution function f0.
In the scale-invariant Mestel disc the local Toomre

(1964) parameter

Q =
σr κ(Jφ)

3.36GΣ(Jφ)
(62)

is independent of radius, and in the tapered disc Q is
correspondingly flat between the tapers. For realistically
small values of σr/V0, the plateau in Q can lie below
unity, making the disc unstable. To keep Q everywhere
well above unity it is conventional to suppose that only
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0 2 4 6 8 10
JΦ0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q

Figure 3. Variation of the Toomre parameter Q with the
angular momentum Jφ. It is scale invariant except in the
inner/outer regions because of the presence of the tapering
functions Tin and Tout. The unit system has been chosen so
that V0 = G = Rin = 1.

a fraction ξ < 1 of the disc is self-gravitating with the
rest of the gravitational field provided by an unresponsive
halo. In the S12 simulation, the fraction of active surface
density was ξ = 0.5. The dependence of Q with radius
with this value of ξ is shown in Figure 3 – Q ≃ 1.5
between the tapers and increases strongly in the tapered
regions.

4.1. Impact of shot noise

To proceed further we need to assume some form for
the power spectrum C(k, ν, Rg) that appears in equation
(52). An inevitable source of noise is shot noise caused
by the the finite number of stars in the disc, and mas-
sive, compact gas clouds are a source of spectrally similar
noise, so let us investigate the impact that shot noise has.
In this case the power spectrum is independent of ν and
kr, and varies with radius like

√
Σ(R). Then C ∝ Σ,

so to within a normalisation that depends on particle
number, we have

c̃m(J, ν) = Σt(Jφ)

∫
dkr

J 2
mr

(√
2Jr/κ kr

)

(1− λk)2
. (63)

The eigenvalues λk have to be evaluated at ν = m·Ω, and
then s = mr by equation (32). In order to handle the
singularity of the equation (31) when s = ±1, one adds
a small imaginary part to the frequency of evaluation,
so that s = mr + iη. As long as η in modulus is small
compared to imaginary part of the least damped mode
of the disc, adding this complex part makes a negligible
contribution on the expression of Re(λ).
In equation (63) the integral over kr should formally

be over the full range 0 to ∞. However, small values of
kr are unphysical and violate our assumption of tightly-
wound spirals. Values of kr that are larger than ∼ 2π
divided by the thickness of a galactic disc are also un-
physical, and in the case mr = 0 of the CR the integral
diverges at Jr = 0 since then the Bessel function remains
non-zero to arbitrarily high kr and (1− λk)

−2 is always
greater than unity. Hence we must determine appropri-
ate upper and lower limits to the integration on kr.
At any point in action space the biggest contribution to

the diffusion tensor will come from waves that yield the

0 10 20 30 40
kr0.00

0.05

0.10

0.15

0.20

0.25

0.30

Λ

Dk

Λmax

kmaxkinf ksup

Figure 4. Variation of eigenvalues λ of the response matrix
with the WKB-frequency kr for two values of Jφ. The curve
that peaks at small kr is for the larger value of Jφ.

largest value of λk. Hence we now examine the structure
of the function kr 7→ λk for given m and J. Figure 4
shows that λk has a well-defined peak at a value kmax of
kr that decreases as Jφ increases. In fact kmax ∝ 1/Jφ
because the radius of a near-circular orbit is R ∝ Jφ and
in a scale-free model we expect kmax ∝ 1/R. For the
same reason we expect the width ∆k of the peak in λk
to be proportional to 1/Jφ. In light of these observations
we adopt as lower and upper bounds on the kr integral
the wavenumbers kinf and ksup defined by

λkinf
= λksup

= 1
2λkmax

. (64)

These limiting values of kr are marked on Fig. 4.
At each point in action space there are contributions

to the diffusion coefficients from several values of m.
The contribution from mr = −1 is driven by waves
that have their inner Lindblad resonance at that point,
while that from mr = +1 is driven by waves that have
their outer Lindblad resonance there, and the contribu-
tion frommr = 0 is driven by waves locally in corotation.
Since λk depends on s2 = m2

r, the value of λk is the same
for mr = ±1. At a given point in action space different
values of the frequency ν are associated with mr = ±1,
but since we are considering shot noise, the fluctuations
have the same power at all frequencies. Hence the values
mr = ±1 contribute equally to the diffusion coefficients.
The lower curve in Fig. 5 shows the extent to which this
contribution is amplified by the disc’s self-gravity and we
see that the amplification is modest. The upper curve in
Fig. 5 shows the amplification by self-gravity in the case
mr = 0 of corotation: it is much larger.
In a cool disc, |∂f/∂Jr| ≫ |∂f/∂Jφ| so by equation (5)

a reasonable approximation to the diffusive flux, when
mr 6= 0, is

Fi = − 1
2

∑

m

mic̃mmr
∂f0
∂Jr

. (65)

It follows that waves at inner Lindblad resonance, which
couple through (mr,mφ) = (−1, 2) drive a diffusive flux

F = −(−1, 2)12 c̃(−1,2)

∣∣∣∣
∂f0
∂Jr

∣∣∣∣ , (66)

while waves at outer Lindblad resonance drive the flux

F = (1, 2)12 c̃(1,2)

∣∣∣∣
∂f0
∂Jr

∣∣∣∣ . (67)
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CR

Figure 5. Dependence of the amplification factor 1/(1 −

λmax) with the position Jφ. Throughout the disc, the am-
plification of waves at corotation is larger than that of waves
at inner Lindblad resonance.

These formulae show that waves with a Lindblad res-
onance at J drive a flux towards increasing Jr: these
waves are heating the disc by increasing the eccentrici-
ties of orbits. Wave that have their ILR at J drive stars
to lower angular momentum, while those with their OLR
at J drive stars to higher angular momentum. We shall
see below that at low Jφ waves with a local ILR domi-
nate, so on average angular momenta decrease, while at
large Jφ the waves with a local OLR dominate and angu-
lar momenta increase on average. Thus spiral structure
conveys angular momentum outwards, thus liberating en-
ergy that is used to heat the disc.
Waves at corotation couple through m = (0, 2) so (a)

they can only drive diffusion parallel to the Jφ axis, and
(b) that diffusion is proportional to the gradient’s small
component ∂f/∂Jφ. In practice this diffusion is impor-
tant only in so far as the disc has a metallicity gradient,
when the DF of stars of any particular metallicity can
have a significant derivative with respect to Jφ and the
large value of c̃m at corotation can have a big impact on
the metallicity distribution – radial migration at coro-
tation is important for chemical evolution (Sellwood &
Binney 2002; Schönrich & Binney 2009).

4.2. Reproducing the S12 simulation

In this section we examine the extent to which our
analytic results can explain the simulations of tapered
Mestel discs described by S12. We do not expect perfect
agreement between our results and the numerical experi-
ments because we have employed several approximations.
In particular we have assumed that the driving fluctua-
tions are white noise that has an amplitude squared that
is proportional to the disc’s surface density. We have
assumed, moreover, that these fluctuations drive tightly-
wound waves. S12 restricted disturbing forces tomφ = 2,
so we impose this same restriction on m.
The dark contours in Fig. 6 show the magnitude of the

diffusive flux that is generated by the two Lindblad res-
onances and corotation when one adopts the same nu-
merical pre-factors as S12. The gray arrow shows the
direction of the diffusive flux at the location of the peak
flux; the direction is similar at neighbouring points. The
thin contours in Fig. 6 show the value of the distribution
function in S12 after diffusion has taken place. Originally
the DF peaked along the Jφ axis at Jφ ≃ 1, becoming

Figure 6. Map of the norm of the total flux summed over
the three resonances (ILR, CR, OLR) (bold lines). The con-
tours are spaced linearly between 95% and 5% of the function
maximum. The gray vector gives the direction of the vector
flux associated to the norm maximum (arbitrary length). The
background contours correspond to the diffused distribution
from S12 (thin lines), which exhibits a narrow ridge of diffu-
sion.

small to the left of that point on account of the inner
taper. Above the location of the peak DF, there is a
prominent horn of enhanced stellar density that extends
roughly in the direction of the diffusive flux. Thus our
analytic results are in good qualitative agreement with
the numerical experiments of S12.
In Fig. 6 waves at ILR drive diffusion parallel to vectors

that are inclined by 153◦ to the Jφ axis, whereas the net
flux makes an angle of 111◦ with the axis. That these
angles are similar attests to the dominant role of waves
that have ILR near where the DF peaks. This dominance
arises because ∂f0/∂Jr is always negative and in this
region ∂f0/∂Jφ > 0, so |m · ∂f0/∂J| is larger for the
waves at ILR, which have mr = −1, than for the waves
at OLR, while c̃m is the same for both values of mr.
Given that we have assumed that the driving fluctu-

ations are white noise, it is perhaps surprising that the
magnitude of the diffusive flux is as sharply peaked in
action space as the dark contours in Fig. 6 show it to
be. This localisation surely reflects the sharp tapering of
the DF at small radii. Just outside this taper the disc
becomes significantly self-gravitating and most effective
at amplifying the stimulating white noise. The amplified
waves tend to have their ILRs further in, where the taper
is cutting into the disc.
We have seen that self-gravity amplifies stimuli most

strongly at corotation (Fig. 5). In fact, the dominance of
corotation increases without limit as Q decreases because
the value of λmax associated with corotation approaches
unity, and the associated amplification diverges, while
the value of λmax associated with the LRs remains sig-
nificantly below unity. Fig. 7 illustrates this phenomenon
by comparing the velocity of diffusion in action space,

v =
F

f
, (68)
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for two values of ξ. For the value ξ = 0.5 assumed by S12
(left panel) the velocity vectors are significantly non-zero
only within the narrow strip at Jφ ∼ 1 associated with
the ILR and point up and to the left. For ξ = 0.73 the
velocity is also quite large at Jφ > 2 near the Jφ axis and
is there directed up and to the right.

5. CONCLUSIONS

In a star cluster or a galaxy stars move on orbits in
the system’s mean gravitational field, but the orbit each
star is on evolves slowly in response to fluctuations in
the mean field (Weinberg 2001a). In a hot stellar sys-
tem such as a star cluster, the dominant fluctuations are
pure shot noise arising from the finite number of stars in
the system. In a disc galaxy the situation is much more
complex and interesting because the system’s response is
more frequency-sensitive, and as Toomre’s Q → 1 stim-
uli are strongly amplified and distorted by the coherent
responses they induce in the disc.
The orbit-averaged Fokker-Planck equation, which de-

scribes the evolution of the distribution function as stars
diffuse through action space, provides the mathematical
device of choice to compute the long-term evolution of a
stellar system. The equation is readily solved once the
diffusion tensor has been computed.
We have laid out the general formalism for computing

the diffusion tensor in the presence of significant coherent
response to stimuli, and have implemented this formal-
ism in the case of a razor-thin, cool disc. By introduc-
ing a set of basis functions for the disc’s potential that
comprise sets of localised, tightly wound spirals, we have
derived equation (52), which reduces computation of the
diffusion tensor to execution of a one-dimensional inte-
gral over the auto-correlation function of the stimulating
noise.
We used this equation to compute the diffusion tensor

for a Mestel disc that has been trimmed at both large and
small radii by tapers and is exposed to shot noise. We
find that diffusive flux shows quite sharp peaks in action
space. When Toomre’s parameter Q is significantly big-
ger than unity, the diffusive flux is quite localised near
the inner taper, and is primarily driven by waves that
have their inner Lindblad resonances there. This result
is interesting in relation to the N-body simulations of
S12 because in these simulations, orbital diffusion led to
the formation of a horn of enhanced density in phase
space that lies close to the region in which our analytic
work predicts that the diffusive flux peaks. Moreover,
the direction along the horn is similar to the predicted
direction of the diffusive flux. Thus it appears that our
analytic work recovers quite well the main feature of the
simulations.
As Q approaches unity, the corotation resonances of

waves become more important because self-gravity am-
plifies perturbations at corotation very strongly. Waves
that are in corotation at some point in action space drive
diffusion parallel to the angular-momentum axis of ac-
tion space, i.e. they drive radial migration. By contrast,
waves that are at a Lindblad resonance heat the disc by
driving stars to higher eccentricity, while either decreas-
ing (at ILR) or increasing (at OLR) angular momentum.
Consequently, our calculations predict that the amount
of radial migration for a given level of heating increases
as Q decreases towards unity.

In our application of action-space diffusion to cool
discs, the disc’s response to stimuli has been restricted to
tightly-wound spirals. This restriction unfortunately ex-
cludes from consideration the key physics of “swing am-
plification” at corotation (Toomre 1981). As Goldreich
& Lynden-Bell (1965) originally showed in the context of
a gas disc, leading waves are amplified at corotation as
they morph into trailing waves. These waves will then
propagate to the Lindblad resonances and there heat the
disc (Toomre 1981). Shot noise will stimulate leading
waves in the same amount as trailing waves, and the
leading waves will move to corotation rather than to the
Lindblad resonances, and there morph into trailing waves
of larger amplitude. Our computation has not included
the effect of swing-amplification at corotation, and will
consequently under-estimate the extent of heating. The
under-estimation will be largest for small values of Q,
because swing amplification diverges as Q→ 1.
Another shortcoming of the present analysis is the

crude noise model which has ad-hoc dependence on the
temporal frequency ν and the radial wavenumber kr, and
is only a function of the position in the disc through
Jφ. The model aims to reproduce the Poisson shot noise
caused by the finite number of particles in the disc. In a
companion paper, we will investigate the WKB limit of
the Balescu-Lenard equation. This approach will allow
us to avoid such approximation since it naturally cap-
tures the intrinsic noise, due to finite−N effects, and its
impact on the quasi-stationnary distribution function, as
long as the evolution of the system is made through tran-
sient tightly wound spirals.
In a forthcoming paper we will use the present formal-

ism of forced diffusion to study the evolution of a stellar
disc as a result of cosmic noise: the noise generated by
satellites that orbit in a disc’s host dark halo.
Another possible application of the formalism devel-

oped here is to study the secular evolution of dark-matter
cusps at the centres of galaxies in response to stochastic
excitation by the inner baryonic disc and bulge. (Fouvry
et al. 2014b).

This paper is dedicated to the memory of Jean Heyvaerts
who was its inspiration.
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