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In this work we investigate the existence of relativistic models for dark matter in the context of bimetric
gravity, used here to reproduce the modified Newtonian dynamics (MOND) at galactic scales. For this
purpose we consider two different species of dark matter particles that separately couple to the two metrics
of bigravity. These two sectors are linked together via an internal Uð1Þ vector field, and some effective
composite metric built out of the two metrics. Among possible models only certain classes of kinetic and
interaction terms are allowed without invoking ghost degrees of freedom. Along these lines we explore the
number of allowed kinetic terms in the theory and point out the presence of ghosts in a previous model.
Finally, we propose a promising class of ghost-free candidate theories that could provide the MOND
phenomenology at galactic scales while reproducing the standard cold dark matter model at cosmological
scales.

DOI: 10.1103/PhysRevD.91.103518 PACS numbers: 95.35.+d, 04.50.Kd

I. INTRODUCTION

General relativity (GR) successfully describes the gravi-
tational interaction in a wide range of scales and regimes,
from the solar system size to strong fields in binary pulsars
and black holes, and most likely will constitute the correct
tool for the future gravitational wave astronomy [1]. Up to
now, GR has been able to prevail against all alternative
theories, either scalar-tensor [2–7], vector-tensor [8–14] or
tensor-tensor theories, the latter comprising massive gravity
[15,16], bigravity [17,18] and multigravity [19] theories.
In spite of these successes, the extrapolation of GR to a

broader range of scales—notably, cosmological scales—
faces important challenges since it relies on the introduc-
tion of a dark sector, composed of dark matter and dark
energy. The nature of this dark sector constitutes one of the
most important mystery of contemporary physics.
The reference model of cosmology today assumes a pure

cosmological constant Λ added to the field equations of GR
to account for the dark energy, and a component of
nonbaryonic dark matter made of nonrelativistic particles
called cold dark matter (CDM). The best motivated
candidate for the dark matter particle is the weakly
interacting massive particles (WIMP) [20]. The model
ΛCDM is very well tested at cosmological scales by the
accelerated expansion of the Universe, by the observed
fluctuations of the cosmic microwave background, and by
the distribution of dark matter in large scale structures.

Unfortunately this model does not explain the presence of
a tiny cosmological constant Λ. In the prevailing view it
should be interpreted as a constant energy density of the
vacuum.However, the unnatural observed value ofΛ and the
instability against large quantum corrections put in doubt its
consistency using standard quantum field theory techniques.
Another important concern is that the model ΛCDM does

not account for many observations of dark matter at the scale
of galaxies, where it faces unexplained tight correlations
between dark and luminous matter in galaxy halos [21,22].
Primary examples are the baryonic Tully-Fisher relation
between the asymptotic rotation velocity of spiral galaxies
and their baryonic mass, and the correlation between the
mass discrepancy (i.e., the presence of dark matter) and the
acceleration scale involved [23,24]. These correlations hap-
pen to be very well explained by the MOND (modified
Newtonian dynamics) empirical formula [25–27]. The agree-
ment between MOND and all observations at galactic scales
is remarkable and calls for an explanation. On the other hand,
MOND has problems explaining the dark matter distribution
at the larger scale of galaxy clusters [28–32].
Many works have been devoted to promoting the MOND

formula into a decent relativistic theory. Most approaches
modify GR with extra fields without invoking dark matter
[33–41]. Here we shall be interested in another approach,
based on a form of dark matter à la MOND called dipolar
dark matter (DDM). This approach is motivated by the
dielectric analogy of MOND [42]. A first relativistic model
was proposed in [43,44] and shown to reproduce the model
ΛCDM at cosmological scales. Recently, a more sophis-
ticated model has been based on a bimetric extension of GR
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[45] (see also [46] for further motivation). In this model two
species of dark matter particles are coupled respectively to
the two metrics, and are linked by an internal vector field
generated by the mass of these particles. The phenomenol-
ogy of MOND then results from a mechanism of gravita-
tional polarization.
Bimetric theories have been extensively investigated in the

quest of a consistent massive gravity theory going beyond
the linear Fierz-Pauli theory. The past decade has seen the
emergence of a specific theory [15,16] that avoids the
appearance of the Boulware-Deser (BD) ghost [47] to any
order in perturbations. This de Rham-Gabadadze-Tolley
(dRGT) theory [15,16] has been extended and reformulated
as a bimetric theory with two dynamical metrics [17,18].
The theoretical and cosmological implications of these
theories are extremely rich. Notably, cosmological solutions
of massive gravity theories have drawn much attention
[48–50] (see also the references in [51]).
In the present paper we point out that the previous model

for DDM in a bimetric context [45], despite the important
phenomenology it is able to reproduce, is plagued by ghosts
and cannot be considered as a viable theory. Nevertheless,
this phenomenology (especially at galactic scales, i.e.
MOND) definitely calls for a more fundamental theory.
We look for a consistent coupling of the dark matter fields to
bigravity, closely following the restrictions made in [52–54].
We thus propose a new model, whose dark matter sector is
identical to the one in the previous model [45], but whose
gravitational sector is now based on ghost-free massive
bigravity theory. As bigravity theory represents essentially
a unique consistent deformation ofGR,we think that the new
model will represent an important step toward a more
fundamental theory of dark matter à la MOND in galactic
scales. In a separate paper [55] we work out in more details
the newmodel and investigate whether it reproduces also the
cosmological ΛCDM model at large scales.

II. DIPOLAR DARK MATTER

A new relativistic model for dipolar dark matter was
constructed in [45] via a bimetric extension of GR, which
recovers successfully the phenomenology of MOND. It
relies on the existence of two species for dark matter that
couple to two different metrics and an additional internal
field in form of a vector field,

L¼ ffiffiffiffiffiffi
−g

p �
M2

g

2
Rg−ρb−ρg

�
þ

ffiffiffiffiffiffi
−f

p �
M2

f

2
Rf−ρf

�

þ
ffiffiffiffiffiffiffiffiffiffiffi
−Geff

p �
M2

eff

�
Reff

2
−2Λeff

�
þAμðjμg − jμfÞþWðXÞ

�
;

ð1Þ

where ρb, ρg, ρf are the scalar energy densities of
pressureless ordinary matter (baryons) and the two species
of dark matter respectively, and jμg , j

μ
f denote the conserved

currents of the dark matter. On top of the two Einstein-
Hilbert terms for the g and f metrics, there is an additional
kinetic term for the effective metric Geff and a cosmological
constant Λeff associated to it (here we neglect possible
cosmological constants in the g and f sectors). The Uð1Þ
vector field Aμ is introduced to link together the two
species of dark matter particles and has a noncanonical
kinetic term WðXÞ, with

X ¼ Gμρ
effG

νσ
effF μνF ρσ; ð2Þ

and F μν ¼ ∂μAν − ∂νAμ. The rich phenomenology and
physical consequences of this model were studied with
great detail in [45]. For a particular choice of the function
W it recovers the desirable features of MOND and passes
the constraints of the solar system. Furthermore it agrees
with the cosmological model ΛCDM at first order cosmo-
logical perturbation and is thus consistent with the fluctua-
tions of the cosmic microwave background.
The effective composite metric Geff was computed

perturbatively in [45] and here we show the exact non-
perturbative solution for this metric. Furthermore, we
investigate the number of gravitational propagating modes
and the presence of ghost instabilities. The metric Geff

μν was
defined in [45] by the implicit relations

Geff
μν ¼ Gρσ

effgρμfνσ ¼ Gρσ
effgρνfμσ: ð3Þ

After introducing the matrices Gν
μ ¼ Gνρ

effgμρ and Fν
μ ¼

Gνρ
efffμρ the above relations simply become

GF ¼ FG ¼ 1; ð4Þ

thus G and F are the inverse of each other. Using this fact
the form of Geff can be computed. This was done pertur-
batively in [45] with result given by (A8) there. Actually
the solution of (3)–(4) can be obtained exactly. For this, we
note that the following relations are true:

g−1f ¼ ðGeffGÞ−1GeffF ¼ G−1F ¼ F2: ð5Þ

This means that we can identify

F ¼
ffiffiffiffiffiffiffiffiffiffi
g−1f

q
: ð6Þ

Thus the exact solution for the effective metric fulfilling the
relations (3) is suggestively

Geff
μν ¼ gμρ

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
ρ

ν

: ð7Þ

Here we will first pay special attention to the consequences
coming from the kinetic term and a cosmological constant
for this effective metric Geff in the action (1).
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III. MORE ON EFFECTIVE METRICS

In the different context of massive bigravity theories,
interesting proposals for an effective composite metric were
made in [52–54]. There the form of the effective metric was
determined by the question of how the coupling of the
matter fields to the two metrics of massive bigravity behave
at the quantum level and whether they alter the specific
potential interactions of the allowed potential interactions
between the two metrics. One particularly interesting
effective composite metric has the following form:

geffμν ¼ α2gμν þ 2αβgμρ

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
ρ

ν

þ β2fμν; ð8Þ

where α and β are arbitrary constants. Defining the
quantities Xρ

ν ¼ ð
ffiffiffiffiffiffiffiffiffiffi
g−1f

p
Þρν and Yμν ¼ gμρX

ρ
ν as was done

in [52] (where Yμν is shown to be symmetric), it is
straightforward to see that the determinant of this
composite metric corresponds to the allowed potential
interactions in massive bigravity,

detðgeffμν Þ ¼ det½ðαgμρ þ βYμρÞgρσðαgνσ þ βYνσÞ�
¼ ðdet gÞ−1½detðαgμν þ βYμνÞ�2
¼ ðdet gÞ½detðα1þ βg−1YÞ�2: ð9Þ

Thus, the square root of the determinant of geffμν , say
geff ¼ detðgeffμν Þ, corresponds to

ffiffiffiffiffiffiffiffiffiffi
−geff

p ¼ ffiffiffiffiffiffi
−g

p
detðα1þ βXÞ: ð10Þ

This is the right form of the acceptable potential inter-
actions between the metrics g and f. Expanding

ffiffiffiffiffiffiffiffiffiffi−geff
p

around a flat background, defining

gμν ¼ ðημν þ hμνÞ2;
fμν ¼ ðημν þ lμνÞ2; ð11Þ

they correspond to the specific interactions of the form

ffiffiffiffiffiffiffiffiffiffi
−geff

p ¼
X4
n¼0

ðαþ βÞ4−nenðkÞ; ð12Þ

where kμν ¼ αhμν þ βlμν, and the symmetric polynomials
are defined by (with ½� � �� denoting the trace as usual)

e0ðkÞ ¼ 1;

e1ðkÞ ¼ ½k�;

e2ðkÞ ¼
1

2
ð½k�2 − ½k2�Þ;

e3ðkÞ ¼
1

6
ð½k�3 − 3½k�½k2� þ 2½k3�Þ;

e4ðkÞ ¼
1

24
ð½k�4 − 6½k�2½k2� þ 3½k2�2

þ 8½k�½k3� − 6½k4�Þ: ð13Þ

Thus,
ffiffiffiffiffiffiffiffiffiffi−geff

p
has exactly the nice structure of the potential

with the special tuning in order to remove the BD ghost at
any order [15,16].
Finally, the relation between the effective composite

metric Geff proposed in [45] and the alternative effective
metric geff proposed in [52] is given by [since Geff

μν ¼ Yμν

from (7)]

geffμν ¼ α2gμν þ 2αβGeff
μν þ β2fμν: ð14Þ

In other words, Geff ¼ g
ffiffiffiffiffiffiffiffiffiffi
g−1f

p
does not contain the linear

parts proportional to g and f in geff . Unfortunately, this will
have important consequences as we will see in the
following section.

IV. COSMOLOGICAL CONSTANT FOR THE
EFFECTIVE METRIC

We will first study the consequences of having in the
model (1) the square root of the determinant Geff ¼
detðGeff

μν Þ. Since our nonperturbative solution is Geff
μν ¼

gμρð
ffiffiffiffiffiffiffiffiffiffi
g−1f

p
Þρν, the square root of the determinant reads

ffiffiffiffiffiffiffiffiffiffiffi
−Geff

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g

p ffiffiffiffiffiffi
−f

pq
: ð15Þ

Perturbed around a flat background, it corresponds in the
notation (11) to

ffiffiffiffiffiffiffiffiffiffiffi
−Geff

p
¼ 1þ 1

2
½hþ l� þ 1

8
ð½hþ l�2 − 2½h2 þ l2�Þ

þ 1

48
ð½hþ l�3 − 6½hþ l�½h2 þ l2� þ 8½h3 þ l3�Þ

þ � � � : ð16Þ
As is immediately seen,

ffiffiffiffiffiffiffiffiffiffiffi
−Geff

p
does not have the right

potential structure, in fact it does not even contain the right
structure for the linear Fierz-Pauli mass term. Any
Lagrangian that contains this term as a possible potential
interaction between the two metrics has immediately the
BD ghost at the linear order. Thus the cosmological
constant for this effective metric or any minimal coupling
to matter fields via Geff

μν will reintroduce the dangerous
ghostly mode. The ghost would come already at a scale
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m2M2
P

ffiffiffiffiffiffiffiffiffiffiffi
−Geff

p
∼
m2M2

Pð□πÞ2
Λ6
3

¼ ð□πÞ2
m2

; ð17Þ

where Λ3
3 ¼ MPm2 and π denotes the 0-helicity mode. This

means that the ghost is a very light degree of freedom. This
immediately kills the possibility of considering any
Lagrangian (independently of all the additional terms
present in it) that contains

ffiffiffiffiffiffiffiffiffiffiffi
−Geff

p
.

V. MINISUPERSPACE OF THE NEW
KINETIC TERM

In the previous section we studied the implications of
having the cosmological constant for Geff

μν and saw that it
introduces ghostly interactions between the two metrics. In
this section we will pay attention to the kinetic termffiffiffiffiffiffiffiffiffiffiffi
−Geff

p
Reff , where Reff is the Ricci scalar built from

Geff
μν . Moreover, we will investigate the allowed number

of kinetic terms. The first test that such term has to pass is
the special case of the minisuperspace. The respective
metrics in the minisuperspace are given by

ds2g ¼ gμνdxμdxν ¼ −n2gdt2 þ a2gdx2;

ds2f ¼ fμνdxμdxν ¼ −n2fdt2 þ a2fdx
2; ð18Þ

where ng, nf and ag, af are functions of the cosmic time t
only. Consider the following Lagrangian with the three
kinetic terms:

Leff
kin¼

M2
g

2

ffiffiffiffiffiffi
−g

p
Rgþ

M2
f

2

ffiffiffiffiffiffi
−f

p
Rfþ

M2
eff

2

ffiffiffiffiffiffiffiffiffiffiffi
−Geff

p
Reff ; ð19Þ

that in the minisuperspace simply becomes

Leff
kin ¼ −

3M2
gag _a2g
ng

−
3M2

faf _a
2
f

nf
−
3M2

effaeff _a
2
eff

neff
: ð20Þ

Following the prescription (3) we obtain neff ¼ ffiffiffiffiffiffiffiffiffiffingnf
p and

aeff ¼ ffiffiffiffiffiffiffiffiffiffiagaf
p . We compute the conjugate momenta for the

scale factors and get

pg¼−6M2
ga2gHg−

3

2
M2

effaf

ffiffiffiffiffiffiffiffiffiffi
agaf
ngnf

r
ðHgngþHfnfÞ;

pf ¼−6M2
fa

2
fHf−

3

2
M2

effag

ffiffiffiffiffiffiffiffiffiffi
agaf
ngnf

r
ðHgngþHfnfÞ; ð21Þ

where Hg ¼ _ag
agng

and similarly Hf are the conformal

Hubble factors. Now we can perform the Legendre trans-
formation to obtain the following Hamiltonian:

Heff
kin¼

1

Q
fa2gnfðM2

effp
2
g

ffiffiffiffiffiffiffiffiffiffi
agaf

p
ngþ4M2

gp2
faf

ffiffiffiffiffiffiffiffiffiffi
ngnf

p Þ
þ2pgagafngð−M2

effpf
ffiffiffiffiffiffiffiffiffiffi
agaf

p
nfþ2M2

fpgaf
ffiffiffiffiffiffiffiffiffiffi
ngnf

p Þ
þM2

effp
2
fa

2
f

ffiffiffiffiffiffiffiffiffiffi
agaf

p
ngnfg; ð22Þ

where we defined the shortcut notation for convenience

Q ¼ −12ðM2
effM

2
fa

3
f

ffiffiffiffiffiffiffiffiffiffi
agaf

p
ng þM2

effM
2
ga3g

ffiffiffiffiffiffiffiffiffiffi
agaf

p
nf

þ 4M2
fM

2
ga2ga2f

ffiffiffiffiffiffiffiffiffiffi
ngnf

p Þ: ð23Þ

The Hamiltonian is highly nonlinear in the lapses ng and
nf. Since there is no shift over which we have to integrate,
this is an immediate sign that these three kinetic terms have
the BD ghost degree of freedom already in the minisuper-
space (see [56] for an introduction to constrained
Hamiltonian systems). Thus, one has to avoid the two
very bad contributions in form of (i) the cosmological
constant term for Geff, and (ii) the kinetic termffiffiffiffiffiffiffiffiffiffiffi
−Geff

p
Reff—both these terms correspond to ghostly inter-

actions. Because of their very different structures there is no
hope for cancellations between these terms.
Taking the limit when Mf → 0 of the Hamiltonian (22)

results in

Heff
kinjMf→0 ¼ −

1

12a3g

�ðpgag − pfafÞ2ng
M2

g

þ 4p2
fag

ffiffiffiffiffiffiffiffiffiffiagaf
p ffiffiffiffiffiffiffiffiffiffingnf

p
M2

eff

�
: ð24Þ

As one can see, even in this limit the Hamiltonian is not
linear in the lapses, so that the variation of the Hamiltonian
with respect to the lapses gives rise to equations of motion
that depend on the lapses and hence the constraint equation
is lost. Therefore, the kinetic term

ffiffiffiffiffiffiffiffiffiffiffi
−Geff

p
Reff introduces

ghostly interactions already in the minisuperspace inde-
pendently of the number of present kinetic terms.
An interesting question to address at this stage is whether

or not the minisuperspace can be made ghost-free by
considering the kinetic term for geff that was proposed in
[52]. Since the determinant of geff corresponds to the right
ghost-free potential interactions between two metrics, the
kinetic term for geff might behave better than that for Geff.
Thus, consider as next the Lagrangian with the alternative
three kinetic terms

~Leff
kin¼

M2
g

2

ffiffiffiffiffiffi
−g

p
Rgþ

M2
f

2

ffiffiffiffiffiffi
−f

p
Rfþ

M2
eff

2

ffiffiffiffiffiffiffiffiffiffi
−geff

p
Reff ; ð25Þ

where Reff is now the Ricci scalar of the metric geffμν . In the
minisuperspace this becomes
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~Leff
kin ¼ −

3M2
gag _a2g
ng

−
3M2

faf _a
2
f

nf
−
3M2

eff ~aeff _~a
2
eff

~neff
; ð26Þ

with this time ~neff ¼ αng þ βnf and ~aeff ¼ αag þ βaf. The
conjugate momenta for the scale factors are now

~pg ¼ −6
�
M2

ga2gHg þ
αM2

eff ~aeff
~neff

ðαagHgng þ βafHfnfÞ
�
;

~pf ¼ −6
�
M2

fa
2
fHf þ

βM2
eff ~aeff
~neff

ðαagHgng þ βafHfnfÞ
�
:

ð27Þ

Thus, the Hamiltonian is given by

~Heff
kin ¼

1

~Q
fagnf½−αðM2

g ~p2
f þM2

effðα ~pf − β ~pgÞ2Þng
−M2

g ~p2
fβnf� þ afng½−M2

f ~p
2
gαng − βðM2

f ~p
2
g

þM2
effðα ~pf − β ~pgÞ2Þnf�g; ð28Þ

where ~Q stands for

~Q ¼ 12ðM2
fαaf½ðM2

g þM2
effα

2Þag þM2
effαβaf�ng

þM2
gβag½M2

faf þM2
effβ ~aeff �nfÞ: ð29Þ

Again, the Hamiltonian is highly nonlinear in the lapses.
The problem comes from the fact that we have too many
kinetic terms. Indeed we see immediately that the only way
of having linear dependence in the lapses in the minisuper-
space (and hence getting rid of the BD ghost) is if we take
either the β → 0 limit—this would simply correspond to
having only the standard kinetic terms for the g and f
metrics—or the Mf → 0 limit,

~Heff
kinjMf→0¼−

M2
effβðα ~pf−β ~pgÞ2afng
12M2

effM
2
gβ

2ag ~aeff

−
αðM2

g ~p2
fþM2

effðα ~pf−β ~pgÞ2ÞngþM2
g ~p2

fβnf
12M2

effM
2
gβ

2 ~aeff
:

ð30Þ

As we see, the Hamiltonian becomes linear in the lapses
when we remove for instance the kinetic term for the f
metric. Thus, the only way of having a healthy minisuper-
space is if we restrict the kinetic Lagrangian to be either
M2

g
ffiffiffiffiffiffi−gp

Rg þM2
f

ffiffiffiffiffiffi
−f

p
Rf which are the standard ghost-free

kinetic terms, or M2
g

ffiffiffiffiffiffi−gp
Rg þM2

eff
ffiffiffiffiffiffiffiffiffiffi−geff

p
Reff. In a sym-

metric manner we could also remove the kinetic term for g
and hence M2

f

ffiffiffiffiffiffi
−f

p
Rf þM2

eff
ffiffiffiffiffiffiffiffiffiffi−geff

p
Reff would be also

perfectly valid. In summary, one should restrict the theory
to have not more than two kinetic terms in order not to
reintroduce the BD ghost.

VI. DIPOLAR DARK MATTER IN GHOST-FREE
BIMETRIC THEORY

The dark matter model proposed in [45] is therefore
nonviable, but nevertheless points toward an interesting
connection between dark matter at small galactic scales
(interpreted as DDM) and bimetric gravity. Based on our
previous analysis, we would like now to propose the
following new model for dipolar dark matter based on
ghost-free bimetric theory:

Lnew ¼ ffiffiffiffiffiffi
−g

p �
M2

g

2
Rg − ρb − ρg

�
þ

ffiffiffiffiffiffi
−f

p �
M2

f

2
Rf − ρf

�

þ ffiffiffiffiffiffiffiffiffiffi
−geff

p ½m2M2
eff þAμðjμg − jμfÞ þWðXÞ�; ð31Þ

where the ghost-free potential interactions are defined by
the metric (8) [they take the form (12)–(13) when expanded
around a flat background], and where the kinetic term of the
vector field is now constructed with the metric geffμν ,

X ¼ gμρeffg
νσ
effF μνF ρσ: ð32Þ

As was shown in [52–54], the matter fields can separately
couple to either the g metric or f metric without invoking
the BD ghost. Additionally the matter fields can couple to
the effective composite metric geff which is ghost-free in the
minisuperspace and in the decoupling limit.
Here we propose to couple the ordinary baryonic fields

with mass density ρb to the standard g metric while
coupling the two species of dark matter with densities ρg
and ρf separately to the g and f metrics respectively.
Furthermore, in order to link together the two species of
dark matter particles, we consider a vector field Aμ that
minimally couples to the effective metric geff . The vector
field plays the role of a “graviphoton” since it is generated
by the mass currents jμg and j

μ
f of the particles. The presence

of this internal field is necessary to stabilize the dipolar
medium and is expected to yield the wanted mechanism of
polarization.
The model (31) fulfils the restrictions coming from our

previous analysis, as it contains no more than two kinetic
terms (in particular the problematic kinetic term for Geff is
absent), and the potential interactions between the two
metrics coming from the square root of the determinant of
geff correspond to the ghost-free prescriptions.
However, one needs also to be careful with the assump-

tions on the dark matter fields and their currents. Indeed the
ghost could still be present in the matter sector.1 Since the
dark matter fluids that live on the g and f metrics directly
couple to Aμ that lives on the geff metric, there is a priori
the danger of having the ghost present due to the interaction
term in the matter sector. We will investigate this question

1We are grateful to Claudia de Rham for discussions on this.
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with great detail in [55] and see if for a specific choice of
the dark matter fields the ghost can be maintained absent.
For this we shall perform the decoupling limit analysis of
our new model (31) including the matter sector and study
the required amount of initial conditions.
Finally, the model (31) should share the nice properties

and phenomenology of the model proposed in [45] and
therefore provides a promising road for a relativistic dipolar
dark matter model to be investigated. The MOND phe-
nomenology, the parameterized post-Newtonian (PPN)
parameters and the cosmology of this model will be studied
in a separate paper [55].

VII. CONCLUSIONS

We explored the possible candidates for relativistic dark
matter models in bimetric extensions of general relativity,
that hopefully will provide MOND at galactic scales while
giving rise to an expansion at cosmological scales. A
promising road comes from the ghost-free constructions of
dRGT massive gravity [15,16] where the interactions
between two metrics are tuned in a way that the
Boulware-Deser ghost remains absent. Furthermore, the
important studies of possible consistent couplings to matter
fields [52–54] are beneficial to us, since for the model to
work, we have to consider two different species of dark
matter particles that couple separately to the two metrics
while an additional internal vector field couples minimally

to an effective metric built out of the two. The vector field
links together the two sectors of the dark matter particles
and plays a crucial role for gravitational polarization and
MOND [45,46].
For the ghost absence the question of allowed kinetic

interactions is mandatory. We showed that the kinetic
Lagrangian containing three kinetic terms immediately
gives rise to the introduction of the ghost and we therefore
concluded that only two kinetic terms are allowed.
In a future work [55], wewill study in detail the covariant

equations of motion of the new model, derive the non-
relativistic limit and see if the polarization mechanism for
dark matter works in the same way as in the originally
proposed model. We will investigate in detail the possible
danger of ghostly interactions in the matter sector and
constrain further the model. We intend also to check if
the PPN parameters are close to the ones of GR in the solar
system, and to investigate the cosmological solutions in
first order perturbations.
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