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ABSTRACT
The main orbital signatures of the secular evolution of an isolated self-gravitating stellar Mestel
disc are recovered using a dressed Fokker–Planck formalism in angle-action variables. The
shot-noise-driven formation of narrow ridges of resonant orbits is recovered in the WKB limit
of tightly wound transient spirals, for a tepid Toomre-stable tapered disc. The relative effect
of the bulge, the halo, the disc temperature and the spectral properties of the shot noise are
investigated in turn. For such galactic discs all elements seem to impact the locus and direction
of the ridge. For instance, when the halo mass is decreased, we observe a transition between
a regime of heating in the inner regions of the disc through the inner Lindblad resonance
to a regime of radial migration of quasi-circular orbits via the corotation resonance in the
outer part of the disc. The dressed secular formalism captures both the nature of collisionless
systems (via their natural frequencies and susceptibility), and their nurture via the structure
of the external perturbing power spectrum. Hence it provides the ideal framework in which to
study their long-term evolution.

Key words: diffusion – gravitation – galaxies: evolution – galaxies: kinematics and dynam-
ics – galaxies: spiral.

1 IN T RO D U C T I O N

Understanding the dynamical secular evolution of galactic discs
over cosmic times is a long-standing endeavour, which recent re-
newed interest as their cosmological environment is now more
firmly established in the context of the � cold dark matter paradigm
(Planck Collaboration XVI 2014). Indeed, disentangling the re-
spective role of the cosmic environment (nurture) and the intrinsic
structure of galaxies (nature) in explaining the observed physical
and morphological distribution of galaxies is focusing much re-
cent activities. Self-gravitating discs are cold dynamical systems,
for which rotation represents an important reservoir of free energy.
Some perturbations are strongly amplified, while resonances tend
to confine and localize their dissipation: even small stimuli can lead
to discs evolving to distinct equilibria.

Modern N-body simulations now allow for both detailed mod-
elling of intricate non-linear physical processes (such as multiscale
hydrodynamics, star formation, AGN feedback, etc., see e.g. Dubois
et al. 2014), but also well-controlled idealized numerical experi-
ments (Sellwood & Athanassoula 1986; Earn & Sellwood 1995;
Sellwood 2012). Such experiments are essential to understand how

� E-mail: fouvry@iap.fr

the orbital structure of a galactic disc may drive its secular evolution
and simply take into account their self-gravity. Yet the reliability
of numerical simulations to preserve the symplectic nature of the
underlying physical system over hundreds of orbital times is poten-
tially an issue which calls for alternative probes.

In parallel, over the past few years it has been found that the for-
malism of angle-action variables (Goldstein 1950; Born 1960) and
the so-called matrix method (Kalnajs 1976) also provided means of
accounting for the self-gravity in the secular equation driving such
systems in the limit of large number of particles. They are in par-
ticular well suited to disentangling the intricate roles of resonances
and identifying the orbital families driving their secular evolution.

Two equations for secular diffusion have recently been revisited
using these coordinates: (i) the (possibly dressed) Fokker–Planck
equation (Binney & Lacey 1988; Weinberg 1993; Pichon & Aubert
2006; Chavanis 2012a; Nardini et al. 2012; the companion paper,
Fouvry, Pichon & Prunet 2015, hereafter Paper I), when the source
of (possibly coloured) potential fluctuations is taken to be an ex-
ternal bath, e.g. corresponding to the cosmic environment; (ii) the
Balescu–Lenard non-linear equation (Balescu 1960; Lenard 1960;
Weinberg 1998, 2001; Heyvaerts 2010; Chavanis 2012b), which ac-
counts for self-driven orbital secular diffusion induced by shot noise
corresponding to the discreteness of the system. These equations are
fairly unique in providing a theoretical framework for the secular
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Secular resonant orbital diffusion 1983

evolution of stellar and dark matter dominated systems, and well
suited to explain, complement and understand the results of these
crafted numerical experiments. As an illustration of their versatil-
ity, we will implement here the (simpler) Fokker–Planck equation
in order to explain one such experiment, and postpone the imple-
mentation of the Balescu–Lenard equation to further investigation.

Indeed, Sellwood (2012) (hereafter S12) has suggested, using a
well-controlled numerical setting, that an isolated stable stellar disc
would secularly drift towards a state of marginal stability through
the spontaneous generation of transient spiral structures. In his ex-
periment, S12 evolves a set of particles, of increasing number, for
hundreds of dynamical times. These particles are distributed ac-
cording to equation (4) below which corresponds to what should be
a stable distribution. None the less, S12 identifies the noise-driven
formation of ridges in action space, along very specific resonant
directions. Indeed, discs which are fully stable at a linear level may
still on the long term develop spiral structure that can grow to impor-
tant amplitudes, eventually transforming the disc into a barred-type
spiral galaxy.

We intend to show here how the formalism of dressed secular
diffusion written in angle-action variables is able to predict the ob-
served drifting process exhibited in S12. The direct analytical or
numerical calculation of the modes of a galactic disc is a complex
task, which has only been made for a small number of disc models
(Zang 1976; Kalnajs 1977; Vauterin & Dejonghe 1996; Pichon &
Cannon 1997; Evans & Read 1998; Jalali & Hunter 2005). For the
sake of analytical simplicity, following Paper I, we will make use of
the so-called WKB approximation (Liouville 1837; Toomre 1964;
Kalnajs 1965; Lin & Shu 1966), and assume that the initial distribu-
tion is well described by a tepid Schwarzschild distribution function
(DF), which will allow us to compute the gravitational susceptibil-
ity of our disc as a simple (scalar) multiplicative factor, and express
the diffusion coefficient algebraically. This approximation provides
insight into the location of the relevant resonances. Our strategy
here is to defer to appendices as much of the technical detail as we
can while still conveying an understanding of the overall theory in
the main text (see also Paper I). The main orbital signature of the
secular evolution of the tepid Toomre-stable tapered Mestel disc
will be recovered in the WKB limit of tightly wound transient spi-
rals. The relative effect of the bulge, the halo, the disc temperature
and the spectral properties of the shot noise will be investigated in
turn.

The paper is organized as follows. Section 2 introduces briefly the
Mestel (1963) disc considered by S12 and presents its main features.
Section 3 recaps the formalism of the secular diffusion equation in
action space, which is able to capture the main observed features
when considered in the WKB limit for a tepid disc. Our results for
the Mestel disc are presented in Section 4. Finally, we conclude
in Section 5. Appendices A and B present, respectively, a rapid
derivation of the diffusion equation and its WKB limit; Paper I
presents a more systematic derivation.

2 TH E D I S C M O D E L

Stellar discs are dynamical systems, which at leading order have
reached a virialized state within an axisymmetric gravitational field
created not only by their own mass, but also by other constituents of
the galaxy, mainly the inner bulge and the surrounding dark-matter
halo. The disc considered by S12 is an infinitely thin Mestel disc
(Mestel 1963), for which the circular speed v2

φ = R ∂ψ0/∂R = V 2
0

of the stars is independent of the radius. The stationary potential

background of such a disc and its associated surface density are
given by

ψ0(R) = V 2
0 ln

[
R

Ri

]
; �(R) = V 2

0

2πGR
, (1)

where V0 and Ri are scale parameters. Let us introduce the actions of
the system, (Jr, Jφ) (Born 1960; Binney & Tremaine 2008). For an
axisymmetric two-dimensional disc, the azimuthal action Jφ = Lz

is the angular momentum, whereas the radial action is given by
Jr = 1/π

∫ Rmax

Rmin
vR dR and encodes the amount of radial energy of

a star, where vR = [2(E−ψ0(R))−J 2
φ /R2]1/2, is integrated between

the pericentre Rmin and apocentre Rmax of the trajectory. Here Jr = 0
corresponds to circular orbits. These action remain well defined
through the secular evolution of the disc as cylindrical symmetry
is preserved. For simplicity, we use the epicyclic approximation
to describe the behaviour of the DF of the system in the action-
space (Jr, Jφ). This approximation holds as long as the particles do
not have too eccentric orbits. Because the Mestel disc has constant
circular velocities, the link between the angular momentum Jφ and
the guiding radius Rg is straightforward and reads

Jφ = Rg V0 . (2)

Within the epicyclic approximation, one can obtain the expression
of the intrinsic frequencies, the azimuthal frequency �(Jφ) and the
epicyclic frequency κ(Jφ), given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�(Jφ) =
[

1

Rg

∂ψ0

∂R

∣∣∣∣∣
Rg

]1/2

= V 2
0

Jφ

,

κ(Jφ) =
[

∂2ψ0

∂R2

∣∣∣∣∣
Rg

+ 3
J 2

φ

R4
g

]1/2

=
√

2 �(Jφ) .

(3)

Two remarks should be made on these frequencies. First, within the
epicyclic approximation, the two frequencies are only function of
the angular momentum Jφ and do not depend on the radial action
Jr. Moreover, one should note that we have κ/� = √

2, so that the
Mestel disc is an intermediate case between the Keplerian case for
which κ/� = 1, and the harmonic case for which κ/� = 2. The ratio
between the intrinsic frequencies is an important parameter for the
dynamical behaviour of the system, since it determines the location
of the resonances and a constant ratio may introduce degeneracies.
Using the epicyclic approximation, the DF considered by S12, takes
the form of a locally isothermal-DF or Schwarschild-DF, which
reads

F0(Jr, Jφ) = �(Jφ) �t(Jφ)

π κ(Jφ) σ 2
r

exp

[
−κ(Jφ)

σ 2
r

Jr

]
, (4)

where the intrinsic frequencies are given by equation (3), σ r is a
constant dispersion describing the spread in radial velocity of the
DF, and the taped surface density �t in analogy with equation (1)
is given by

�t(Jφ) = V 3
0

2πGJφ

Tinner(Jφ) Touter(Jφ) . (5)

In equation (5), Tinner and Touter are tapering functions used to damp
out the contributions from the inner and outer regions, which read⎧⎪⎪⎨⎪⎪⎩

Tinner(Jφ) = J ν
φ

(RiV0)ν + J ν
φ

,

Touter(Jφ) =
[

1 +
[

Jφ

R0V0

]μ]−1

,

(6)
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1984 J.-B. Fouvry and C. Pichon

where ν and μ control the sharpness of the two tapers. The inner
tapering function at the scale Ri induces an important DF gradient
at this scale, which is indeed responsible for the position of the peak
of diffusion and reflects the presence of a bulge. The outer tapering
function reflects the finite size of the disc. For the numerical simula-
tions, we used the same constants as in S12. We place ourselves in a
unit system such that: V0 = G = Ri = 1. The other numerical factors
are given by σ r = 0.284, ν = 4, μ = 5 and R0 = 11.5. The shape
of the damped surface density �t is shown in Fig. 1. For effect, the
tapering functions have to reduce and turn off the self-gravity of
the disc in the inner and outer regions. As such, it provides a fairly
general class of models for more realistic discs. One can now look
at the initial level contours of the DF represented in Fig. 2.

Figure 1. Surface density �t of the tapered Mestel disc. The unit system
has been chosen so that V0 = G = Ri = 1.

Figure 2. Contours of the initial DF in the action-space (Jφ , Jr), within the
epicyclic approximation. The contours are spaced linearly between 95 and
5 per cent of the DF maximum.

Figure 3. Variation of the local Q Toomre parameter with the angular
momentum Jφ . It is scale invariant except in the inner/outer regions because
of the presence of the tapering functions Tinner and Touter. The unit system
has been chosen so that V0 = G = Ri = 1.

One of the consequences of such a scale-invariant disc is that its
local Toomre parameter Q (Toomre 1964) is almost independent of
the radius for the intermediate regions. Indeed, one defines Q as

Q = σr κ(Jφ)

3.36 G ξ �t(Jφ)
, (7)

where in order to reduce the susceptibility of the disc, we suppose
that only a fraction, ξ , of the disc is self-gravitating, with 0 ≤ ξ ≤ 1,
so that the rest of the gravitational field is provided by the halo.
For the S12 simulation, the fraction of active surface density was
ξ = 0.5. The dependence of Q with radius is represented in Fig. 3.
The scale invariance of this stability parameter leads as expected to
a constant Q � 1.5 throughout most of the disc. It is only broken
by the presence of the tapering functions which damp the surface
density �t for the most inner and outer regions.

3 T H E S E C U L A R D I F F U S I O N E QUAT I O N

The figure 7 of S12 exhibits a ridge best seen in the contours of
the DF in (Jφ , Jr)-space. This irreversible diffusion feature of the
DF was obtained through transient spiral features, while evolving a
stationary Mestel disc sampled by pointwise particles. The formal-
ism of secular diffusion should allow us to predict and explain its
appearance. Let us first recall the main equations governing secular
diffusion. The secular dynamics intends to describe the long-term
aperiodic evolution of a self-gravitating system, during which small
resonant and cumulative effects can add up in a coherent way. These
small effects, amplified through the self-gravity of the system, can
be seeded in two manners. As argued earlier, a possible first ap-
proach to describe such seeds is the secular diffusion equation which
describes the long-term evolution of a collisionless self-gravitating
system undergoing external perturbations. The second approach is
the Balescu–Lenard equation for inhomogeneous system which de-
scribes the evolution of closed self-gravitating system undergoing
perturbations arising from its own discreteness. In the first case, the
perturbations are exterior and the system responds to it, whereas in
the second case the perturbations are intrinsic and self-induced. Real
discs respond to stimuli corresponding to a combination of these
two formalisms. The finite number of stars in the disc, the pres-
ence of giant molecular clouds and of massive sub-haloes around
the disc all induce Poisson shot noise. Spiral arms in the gas dis-
tribution constitute another source of gravitational noise. Finally,
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Secular resonant orbital diffusion 1985

the presence of a bar drives an additional coherent perturbation.
The complex dynamical history of a real stellar disc encompasses
responses to all these stimuli.

The context of the evolution of the Mestel disc studied nu-
merically by S12 corresponds to the Balescu–Lenard formalism.
The perturbations originate both from the discrete sampling of the
smooth DF, which is only represented by a finite number of par-
ticles, but also from numerical noise which can induce long-term
and irreversible diffusion. The formalism of the Balescu–Lenard
equation is much more involved than that of the external secular
diffusion and will be the topic of future work. One can still however
extract approximate yet interesting qualitative information for the
long-term dynamics from the approach relying on external pertur-
bation. In order to take into account the fact that the perturbations
undergone by the system are created by the galactic disc itself, we
will assume, as detailed later on, that the amount of noise at a given
location is generically proportional to the square-root of the local
surface density, assuming that these intrinsic perturbations behave
like a Poisson shot noise.

3.1 The dressed secular equation in action space

The DF introduced in equation (4) is a stationary DF, since it de-
pends only on the actions coordinates J = (Jφ, Jr). The long-term
evolution of the distribution in action space is given by the secular
diffusion equation, derived briefly in Appendix A (see also Paper I
for details), which takes the form

∂F0

∂t
=
∑

m

m· ∂

∂ J

[
Dm( J) m· ∂F0

∂ J

]
, (8)

where the diffusion coefficients Dm( J) are given by

Dm( J) = 1

2

∑
p,q

ψ (p)
m ψ (q)∗

m

[
[I−M̂]−1 · Ĉ·[I−M̂]−1

]
pq

. (9)

In this expression the response matrix, M̂, and the cross-power spec-
tra Ĉ (see below) are functions of ω which should be evaluated at
the resonant frequencies m·�, where the index m = (mr, mφ) ∈ Z

2

corresponds to the Fourier coefficients associated with the Fourier
transform with respect to the angles (θ r, θφ) of the actions (Jr, Jφ).
To one specific m is associated one specific resonance. Throughout
our calculation, we will restrict ourselves to only three different
resonances which are: the inner Lindblad resonance (ILR) corre-
sponding to (mILR

r , mILR
φ ) = (−1, 2), the outer Lindblad resonance

(OLR) for which (mOLR
r , mOLR

φ ) = (1, 2), and finally the corotation
resonance (COR) associated with circular motion which satisfies
(mCOR

r , mCOR
φ ) = (0, 2). Indeed, S12 restricted disturbing forces to

mφ = 2, so that we may impose the same restriction on the con-
sidered azimuthal number mφ . Moreover, all the estimations pre-
sented in the upcoming sections have also been performed while
considering resonances with mr = ±2, which were checked to be
subdominant, so as to justify our resonances restriction to the ILR,
COR and OLR. Equation (9) for the diffusion coefficients also in-
volves potential basis elements given by ψ (p), as introduced in the
Kalnajs matrix method (Kalnajs 1976). Here ψ (p)

m ( J) corresponds
to the Fourier transform of index m with respect to the angles θ . An-
other key element of equation (9) is the response matrix M̂, which
indicates how the system amplifies a given perturbation. It is given
by

M̂pq (ω)= (2π)2
∑

m

∫
d2J

m·∂F0/∂ J
ω−m·�

[
ψ (p)

m ( J)
]∗

ψ (q)
m ( J) , (10)

where one can see that the pole at the intrinsic frequency ω = m·�
plays a crucial role for the amplification.

In order to underline the physical meaning of these diffusion
coefficients, one can rewrite them under the shortened form

Dm( J) ∼ 〈|ψext
m (ω)|2〉

|ε(m, ω)|2 (ω = m·�) , (11)

where qualitatively (see Chavanis 2012a for the homogeneous case)
we have the following scalings:⎧⎪⎨⎪⎩
〈∣∣ψext

m (ω)
∣∣2〉 ∼ Ĉ ∼ 〈b̂ · b̂

∗ t 〉 ,

1

|ε(m, ω)|2 ∼ ([I − M̂]−1)2 ,
(12)

where the coefficients b̂ correspond to the basis decomposition of the
exterior perturbation so that ψext =∑pbp(t)ψ (p). These coefficients
are then Fourier transformed with respect to time and one only
needs to study their statistical ensemble-averaged cross-correlation
defined in detail in equation (A11). The diffusion coefficients are
given by the ratio of the power spectrum of the external perturbations
〈∣∣ψext

m (ω)
∣∣2〉 divided by the gravitational susceptibility |ε(m, ω)|2

of the disc. We will suppose that the exterior perturbation, which
represents the intrinsic noise of the system has a particular spectrum,
since it originates from the galactic disc itself, so that

〈|ψext(Jφ, ω)|2〉 � �t(Jφ) . (13)

This assumption on the perturbations is relatively crude since we
have only included a spatial dependence of the noise with Jφ . For a
system perturbed by a more realistic exterior source, the spectrum
of perturbations is more coloured and depends on the full statistical
properties of the exterior perturbers. Here, the lack of dependence
with the temporal frequency ω implies that the three resonances
ILR, OLR and COR undergo the same perturbations at each posi-
tion, even if they are not associated with the same frequencies of
resonances m·�. As a consequence, there is no distinction between
the perturbations felt at the inner and outer Lindblad resonances.
From the shape of the surface density in Fig. 1, one may see that the
region of the inner tapering (Jφ � 1.5) will be the most perturbed.
With this assumption, expression (9) for the diffusion coefficients
may be rewritten under the much simpler form

Dm( J) ∼ �t(Jφ)

|ε(m, m·�)|2 . (14)

Equation (14) implies that the secular response of the system is the
result of an arbitration between the system intrinsic noise and its
local susceptibility.

The diffusion equation (8) can be rewritten as the divergence of
a flux in order to underline the exact conservation of total mass as

∂F0

∂t
=
∑

m

∂

∂ J
·
[

m Dm( J)

(
m· ∂F0

∂ J

)]
. (15)

We define as M(t) the mass contained in a volume V of the action
space at time t, so that

M(t) =
∫
V

d2J F0( J, t) . (16)

Using the divergence theorem, the variation of mass due to secular
diffusion can be seen as a flux of particles through the boundary
S of this volume, with n being the corresponding exterior pointing
normal vector, so that

dM

dt
=
∑

m

∫
S

dS (m·n) Dm( J) m· ∂F0

∂ J
. (17)
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In equation (17), the contribution from a given resonance m corre-
sponds to a preferential diffusion in the direction m. This diffusion
is anisotropic in the sense that it is maximum for n ∝ ±m, and
equal to 0, for n·m = 0. Two quantities influence the strength of
the diffusion. On the one hand, the diffusion coefficient Dm( J)
describes how sensitive the system is at a given location in action
space. On the other hand, the gradient m · ∂F0/∂ J describes how
structured and inhomogeneous the system is at the same location.
Such a formulation is of interest. First of all, it allows us to identify
in each position (Jφ , Jr) what is the dominant resonance. It also
permits us to identify the position of the peak of maximum flux,
where the total flux, F tot, is defined as

F tot =
∑

m

m
(

m· ∂F0

∂ J

)
Dm( J) . (18)

In this expression, the sum of the resonances m will be restricted to
the ILR, OLR and COR. From the contours maps of F tot, we are
able to explain the ridge observed in S12 experiment.

One may rewrite the diffusion flux from equation (18) using
the slow and fast actions (Lynden-Bell 1979; Earn & Lynden-Bell
1996). We consider a given resonance m and introduce the change
of coordinates

J s
m = J ·m

|m| , J f
m = J ·m⊥

|m| , (19)

where J s
m and J f

m are respectively the slow and fast actions as-
sociated with the resonance m = (mr, mφ), m⊥ = (mφ, −mr) cor-
responds to the direction perpendicular to the resonance and
|m| = √

m·m. Using the chain rule, for any function X(Jφ , Jr),
one has

m· ∂X

∂ J
= |m| ∂X

∂J s
m

∣∣∣∣∣
J f

m=cst.

. (20)

We also naturally introduce the vector basis elements
(es

m = m/|m|, ef
m = m⊥/|m|) associated with this change of coor-

dinates. In order to ease our qualitative description, we will assume
that in the flux, equation (18), only one specific resonance m dom-
inates. The diffusion flux Fm, associated with the resonance m,
expressed within this rotated basis (J s

m, J f
m), can now be rewritten

under the form

Fm
(
J s

m, J f
m

) = |m|2Dm( J)
∂F0

∂J s
m

es
m . (21)

This rewriting shows that as soon as only one resonance dominates
the secular dynamics, the diffusion flux will be aligned with this
resonance, causing a narrow mono-dimensional diffusion in the
preferential J s

m-direction. During this secular diffusion, particles
conserve their fast action J f

m, which can henceforth be considered
as adiabatically invariant, whereas their slow action J s

m gets to
change. We will show that such a mono-dimensional diffusion is
indeed responsible for the ridge observed in S12 simulation.

The evolution of a real disc is a combination of such reso-
nant diffusions. Because stars are born on circular orbits, action
space is at first mostly populated close to the Jφ-axis. Diffusion
in the Jr-direction tends to increase the velocity dispersion within
the disc and heats it. Diffusion in the Jφ-direction brings stars from
one nearly circular orbit to another of different radius and is called
radial migration. This mechanism does not heat the disc, and be-
cause the density of stars does not change rapidly along the Jφ-axis,
it can go unnoticed. However, chemical evolution within the disc
induces a radial gradient in metallicity with which radial migration
can interact (Sellwood & Binney 2002). Indeed, near the Sun, it

tends to wipe out the correlation between the ages and metallicities
of stars, by bringing to the Sun both old metal-rich stars formed at
smaller radii and young metal-poor stars formed at larger radii.

3.2 The WKB tepid disc approximation

One of the main difficulty of the implementation of the secular diffu-
sion, equation (8), is to evaluate the diffusion coefficients, equation
(9). This difficulty remains even within the assumption of a simple
coloured noise, as introduced in equation (13). Indeed, it requires
to define explicitly potential basis elements ψ (p), so that one can
determine the response matrix from equation (10). The next step is
to invert this response matrix M̂, in order to compute the diffusion
coefficients Dm( J) from equation (9). To ease these calculations,
one may rely on the WKB assumption (Liouville 1837; Toomre
1964; Kalnajs 1965; Lin & Shu 1966), which assumes that the
perturbations will take the form of tightly wound spirals, which
in turn allows us to write Poisson’s equation locally. Such an ap-
proximation is well-suited to study the S12 experiment, because the
secular evolution therein is sustained by the spontaneous generation
of transient spirals. Considering only such perturbations amounts
to considering basis elements with specific properties and shapes.
As explained in Appendix B, the main consequence of the WKB
approximation is that the response matrix from equation (10) be-
comes diagonal. The expression of its eigenvalues, λkφ,kr,R0 (ω), for
a tepid disc reads

λkφ,krR0 (ω) = 2πGξ�t|kr|
κ2(1 − s2)

F (s, χ ) , (22)

where we have taken into account that only a fraction ξ of the disc
is self-gravitating. Here kr corresponds to the radial frequency of
the local spiral perturbation which is getting amplified, kφ is its
azimuthal coefficient, which verifies kφ = 2 for the ILR, OLR and
COR, and R0 is the radius at which κ , �t and χ have to be evaluated.
Here s is a dimensionless parameter reading

s = ω − kφ �φ

κ
. (23)

The dimensionless quantity χ is given by

χ = σ 2
r k2

r

κ2
. (24)

Finally, the reduction factor, F (s, χ ), (Kalnajs 1965; Lin & Shu
1966) is defined as

F (s, χ ) = 2 (1−s2)
e−χ

χ

+∞∑
mr=1

Imr [χ ]

1 −
[

s
mr

]2 . (25)

Within the WKB approximation, one can show that the diffusion
coefficients (fed by a stationary external perturbation ψe ∝ �

1/2
t

depending only on position Jφ , see equation 13) can be expressed
in terms of the response eigenvalues under the form

Dm( J) = �t(Rg)
∫

dkr J 2
mr

[√
2Jr

κ
kr

][
1

1−λkr

]2

, (26)

where Jmr is the Bessel function of the first kind of index mr and
the integration on kr corresponds to an integration on all the radial
frequencies of the tightly wound spirals, each one being amplified
by the amplification factor 1/(1−λkr ). Equation (26) is a novel result
derived in Appendices A and C (see also Paper I). The eigenvalues
λkr have to be evaluated at the resonances so that ω = m·�. At such
a resonance, one can see that for m= (mr,mφ), s is given by s = mr.
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Secular resonant orbital diffusion 1987

In order to handle the singularity of the equation (22) appearing
for s = ±1, one adds a small imaginary part to the frequency of
evaluation, so that s = mr + iη. Indeed, as long as η in modulus
is small compared to the imaginary part of the least-damped mode
of the disc, adding this complex part has a negligible contribution
on the expression of Re(λ). Finally, we notice that for the Fourier
coefficients associated with the inner/outer Lindblad resonances,
one has mILR

r =−1 and mOLR
r =1. As equation (22) only depends on

s2, these two resonances have the same response matrix eigenvalues,
and as we have assumed that they are subject to the same noise, will
therefore lead to diffusion coefficients of equal magnitude.

3.3 Properties of the WKB equation

Let us first study the behaviour of the function kr �→ λkr for a given
resonance, m, and angular momentum, Jφ . This function describes
at a given position how much a perturbation with a frequency kr

is locally amplified. Fig. 4 shows that for a given angular momen-
tum Jφ , there is a preferred frequency kmax

r (Jφ) for which λ(kr) is
maximum. One can now simplify the expression of the diffusion co-
efficients from equation (26) thanks to the behaviour of the function
kr �→ λkr . Indeed, one can see that this function is peaked around
kmax

r (Jφ) with a typical spread equal to �kλ(Jφ). Considering only
the contribution from the region where λkr is maximum, equation
(26) becomes

Dm( J)= �t(Rg) �kλ J 2
mr

[√
2Jr

κ
kmax

][
1

1−λmax

]2

. (27)

The typical width of the amplification peak �kλ is estimated
via the width at half-maximum of the function kr �→ λkr , so that
�kλ = k

sup
1/2−kinf

1/2, where k
sup
1/2 and kinf

1/2 are the two solutions of the
equation λ(kr) = λmax/2. For the specific case of a Mestel disc
considered by S12, the spread �kλ and its position kmax satisfy
an additional property. Indeed, we have supposed that throughout
the disc the radial-action spread σ 2

r was constant and we know
from equation (3) that the epicyclic frequency κ varies as 1/Jφ . As
a consequence, one has from equation (24) that χ ∝ (krJφ)2. One
may then rewrite the dependence with kr and Jφ of the eigenvalues
λ under the form: λ(kr, Jφ) = f1(Jφ) f2(krJφ), where f1 and f2 are
given functions, which depend on the resonance considered. Such
a dependence of λ with the radial frequency kr immediately im-
plies that an additional scale-invariance property is satisfied so that
�kλ(Jφ) ∝ 1/Jφ and kmax ∝ 1/Jφ . The inner regions of the disc have

Figure 4. Variations of the response matrix eigenvalues λ with the WKB-
frequency kr. Red = small Jφ , yellow = large Jφ .

Figure 5. Dependence of the amplification factor 1/(1 − λmax) with the
position Jφ for the ILR (red) and the COR (pink). Throughout the entire
disc, the COR is more amplified than the ILR and OLR.

therefore larger eigenvalues spread than the outer regions. Such a
dependence tends to enhance the susceptibility of the most inner
regions, which physically makes sense.

Another important factor in the diffusion coefficients given by
equation (27) is the local amplification factor 1/(1 − λmax)2, which
describes the strength of the amplification due to the self-gravity of
the system. As noted previously, the ILR and OLR possess the same
amplification factor. However, one can compare the strength of the
amplification for the ILR and the COR as seen in Fig. 5. One can
note that the maximum amplification 1/(1 − λmax) (∼3 for the COR
and ∼1.5 for the ILR) remain rather small so that the susceptibility
of the disc is not too important. Moreover, one can note that the
COR is more amplified than the inner/outer Lindblad resonances.
However, what really represents the strength of the diffusion in the
action diffusion map of the distribution is not the value of the diffu-
sion coefficients Dm( J) but the flux given by Dm( J)m·(∂F0/∂ J).
As the disc is tepid, one has for most of the regions |∂F0/∂Jr| �∣∣∂F0/∂Jφ

∣∣, so that the ILR and OLR for which mr �= 0 are favoured
by the inhomogeneity of the DF compared to the COR. This arbi-
tration between the inhomogeneity of the disc and its susceptibility
determines the dominant regime of secular diffusion undergone by
the disc.

4 R ESULTS

In order to explain the ridge observed in S12, one can now compute
on the plane (Jr, Jφ) the value of the diffusion coefficients Dm( J)
from equation (27) for the three main resonances and obtain a
numerical estimation of the maximum flux from equation (18),
from which the secular diffusion will start. We will then vary the
main features of the galaxy and its environment to trace its effects
on the ridge.

4.1 Reproducing the S12 experiment

The results using the numerical prefactors from S12 are presented
in Fig. 6. The thin lines represents the contours of the diffused
DF obtained by S12, which exhibits a narrow ridge of diffusion.
Superimposed on these contours are shown the contours of the norm
of the secular diffusion flux from equation (18), and the direction
associated with this flux.
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1988 J.-B. Fouvry and C. Pichon

Figure 6. Map of the norm of the total flux summed for the three resonances: ILR, COR and OLR (bold lines). The contours are spaced linearly between
95 and 5 per cent of the function maximum. The red vector gives the direction of the vector flux associated with the norm maximum (arbitrary length). The
background contours correspond to the diffused distribution from S12 (thin lines), which exhibits a narrow ridge of diffusion.

There is only one maximum peak of diffusion located in
(Jr, Jφ) � (0.01 , 1) from which the secular diffusion will unam-
biguously start. One should note that the predicted position of the
peak of diffusion is slightly offset from the one observed in S12,
which was around Jφ � 1.2. This difference may be due to our
crude model of intrinsic noise from equation (13), the fact that we
are comparing the initial diffusion direction to the final position of
the ridge (see Section 4.4 below), and/or possibly also to the limi-
tations of the WKB approach which is only approximately accurate
in a regime where the transient spirals are not sufficiently tightly
wound. However, even so, the agreement on the regime of secular
diffusion undergone by the disc remains quite good. To this maxi-
mum of the norm of the diffusion flux is also associated a direction
of diffusion. The direction of the ILR-diffusion is associated with
the vector (−2, 1) in the (Jφ , Jr)-plane, which makes an angle of
153◦ with the Jφ-axis. The direction of diffusion predicted within
our approach is of approximately 120◦. This quasi-alignment illus-
trates the fact that the ILR is the main resonance of the secular
evolution of the tapered Mestel disc. S12 had found that the dif-
fusion in action space was completely dominated by the ILR, so
that the ridge was aligned with the direction m = mILR. In our case,
the slight misalignment observed has two origins. First of all, we
considered a total secular flux, equation (18), summed on the three
resonances ILR, OLR and COR, which all have different diffusion
directions, so that it tends to slightly rotate the direction of the
dominant resonance.

Moreover, recall that our noise assumption from equation (13)
has no ω = m·� dependence, so that the ILR and OLR possess
the same susceptibility, which leads to an overrepresentation the
OLR. However, we unambiguously recover that the S12 disc was
in a ILR-dominated regime, taking place in the inner regions of the
disc. Since the ILR dominates the diffusion, let us use the analysis of

mono-dimensional diffusion. The slow and fast actions associated
with the ILR are given by J s

ILR ∝ Jφ −Jr/2 and J f
ILR ∝ Jφ/2 + Jr.

In the neighbourhood of the diffusion peak, stars can therefore
be assumed to diffuse along lines of constant J f

ILR, along which
their slow action J s

ILR changes. This leads to an mono-dimensional
diffusion causing a heating of the disc.

Also, note from Fig. 6 that the diffusion flux norm is non-
negligible only in a narrow band in J s

ILR. The size of this region will
determine the typical width of the narrow ridge in the J f

ILR-direction
observed in S12 simulations. Starting from a narrow region in J f

ILR

and diffusing predominantly in the J s
ILR-direction, one can therefore

explain the ridge of limited extent in the (Jφ , Jr)-plane observed nu-
merically in S12, and correctly captured by the WKB limit of the
secular diffusion formalism.

This secular behaviour of a typical Mestel disc dominated by
the ILR in the inner regions of the disc can be interpreted in the
following way. Recall that the intensity of the secular diffusion is
encoded by the total flux from equation (18). The use of a frac-
tion, ξ = 0.5, for the surface density reduced the susceptibility of
the disc and therefore reduced the amount by which perturbations
can be amplified through self-gravity. Consequently, the suscepti-
bility structure of the disc via Dm( J) is not the only key parameter
to determine the peaks of diffusion, but rather its inhomogeneous
structure represented by the gradients of the DF ∂F0/∂ J . This has
two implications. Since the disc is tepid, the DF gradients are more
important for the ILR and OLR than for the COR, as resonances
with a non-zero mr component are favoured. Moreover, the gradi-
ents are the highest for the inner regions, where the cut-off takes
place, because of the presence of the tapering function Tinner(Jφ).
This clarifies why it could have been expected that the secular dif-
fusion would predominantly take place through a Jr-heating in the
inner regions.
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Secular resonant orbital diffusion 1989

An additional feature of such ILR-dominated diffusion is the
typical temporal growth rate of the ridge in action space. As shown in
Appendix C, such an anisotropic and mono-dimensional diffusion,
when started from a narrow hotspot, leads to a faster diffusion than
the usual homogeneous heat equation. Indeed, the secular heating
of a galactic disc through the ILR corresponds to a superdiffusive
case, for which the diffusion of the DF does not follow the usual
growth rate in

√
t of the homogeneous heat equation: equation (C9)

states that the scattering of the ridge in the J s
ILR-direction grows

linearly with the time t.

4.2 Modifying the properties of the perturbation

The spectral properties of the noise play an important role in the
detailed properties of the diffusion. In order to qualitatively describe
this impact, one can slightly modify the assumption (13) on the noise
and consider the more general class of perturbation

〈|ψext(Jφ, ω)|2〉 � [�t(Jφ)
]np exp

[
− ω

σp �(Jφ)

]
, (28)

where np is a power index introduced in order to modify the assump-
tion on the Poisson shot noise, and σ p is a dimensionless parameter
(rescaled thanks to �(Jφ)) adding a dependence on the temporal
frequencies ω. Our initial assumption, equation (13), corresponds
to the case np = 1 and σ p → +∞. In order to illustrate the impact of
the perturbation’s power spectrum on the properties of the secular
diffusion, possible ad hoc choices of the parameters (np, σ p) are
shown in Fig. 7. Increasing the index np enhances the relative im-
portance of the surface density, and from the Fig. 1, one can see that
it will favour the region around Jφ � 1.5, where the inner tapering
takes place. The choices of the inner tapering function Tinner from
equation (6) and its cutting scale Ri are then responsible for the
location of the maximum surface density in Fig. 1 and therefore for
the position of the peak of maximum diffusion. Moreover, adding a
dependence on ω breaks the degeneracy between the ILR and OLR.
Indeed, the frequency associated with a resonance m is given by
ω = m·�. From expression (3) for the intrinsic frequencies, one
can note that the frequencies of the three resonances satisfy the
inequalities

0 < ωILR < ωCOR < ωOLR . (29)

Consequently, the addition of the decaying exponential in the noise
model (28) tends to enhance the ILR compared to the other res-
onances. In the sum in equation (18) of the total flux, the vector

contribution from the ILR dominates the other resonances, and we
recover the fact that the direction of diffusion associated with the
peak of secular diffusion is closely aligned with mILR compared
to what was observed in Fig. 6, with the simpler noise assumption
given by equation (13), for which the COR plays a more important
role. Such ad hoc experiments illustrate how the detailed properties
and dependence of the perturbations with Jφ and ω can impact the
characteristics of the secular diffusion.

One could imagine situations where matching the observed sec-
ular response of families of disc to a given model for the external
perturbation would provide means of characterizing the statistical
properties of their cosmic environment.

4.3 Modifying the tapering of the disc

The inner tapering function Tinner from equation (6), which repre-
sents the bulge of the galaxy, plays a crucial role to secularly induce
an ILR-dominated peak of diffusion in the inner regions. Here Tinner

is characterized by two parameters (ν, Ri), where ν controls the
sharpness of the tapering, whereas Ri is the scale at which it takes
place. In order to illustrate the impact of Tinner on the secular diffu-
sion, some modifications of Tinner are shown in Fig. 8. When ν is
increased, the surface density �t becomes steeper, so that the inho-
mogeneity of the system, represented by ∂F0/∂ J , becomes more
important. As a consequence, the peak of diffusion tends to migrate
to the region of higher DF gradients, which are in the vicinity of the
scale radius Ri. On the other hand, decreasing ν tends to enhance
the importance of the susceptibility coefficients Dm( J) in the de-
termination of the peak of diffusions. We noted in equation (27),
that the scale-invariance properties of the Mestel disc impose that
�kλ ∝ 1/Jφ , so that the inner regions are naturally more suscepti-
ble. As a consequence, decreasing ν tends to migrate the peak of
diffusion inwards. Finally, as expected, modifying the scale radius
Ri naturally leads to a similar displacement of the peak of diffusion.
One should note that such modifications do not have any significant
impact on the direction of diffusion.

4.4 Modifying the temperature of the disc

An additional way to modify the property of the disc is to change its
temperature by varying the value of σ r, which encodes the radial-
action spread of the distribution, as in equation (4). Its impact is
illustrated in Fig. 9. Decreasing σ r leads to colder discs, which tend

Figure 7. Dependence of the maximum peak of diffusion and its associated direction with the (ad hoc) properties of the perturbations of the system given by
equation (28). The various curves follow Fig. 6. From left to right: (np, σ p) = (1 , 1) , (3 , + ∞) , (3 , 1). Increasing the power index np tends to shift the peak
position to higher Jφ , whereas decreasing σ p enhances the importance of the ILR and tends to align the direction of diffusion with mILR.
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1990 J.-B. Fouvry and C. Pichon

Figure 8. Dependence of the maximum peak of diffusion and its associated direction with the inner tapering function Tinner from equation (6). The various
curves follow Fig. 6. Here Tinner is characterized by the pair (ν, Ri). The S12 case corresponds to (ν, Ri) = (4 , 1). From left to right: (ν, Ri) = (3 , 1) , (5 , 1) , (4 , 2).
Reducing ν reduces the sharpness of the tapering and therefore reduces the gradients of the DF so that the peak of diffusion migrates to the most inner regions.
The scale radius Ri is as expected a crucial parameter to determine the position of the peak maximum.

to possess a wider peak of diffusion in regions slightly more exter-
nal. A wider peak of diffusion will lead to a wider ridge when the
secular diffusion will take place. The impact of σ r on the secular
diffusion properties is in fact convolved, as it influences both the
stability of the disc via Q, but also the detailed properties of am-
plification of the disc, through the expression of the eigenvalues in
equation (22) via χ . Both the characteristics of the peak of diffusion
and its direction of diffusion are therefore influenced by σ r.

Interestingly, as the ridge effectively increases locally the tem-
perature of the disc (see Appendix C), Fig. 9 suggests that it will
in turn rotate the ridge in the ILR direction found by S12. Hence
we can expect the discrepancy found in Fig. 11 to decrease in time
through this process.

4.5 Increasing the active fraction of the disc

Let us now study one last feature of diffusion while modifying
some of the characteristics of the disc and the halo. The behaviour
of the function Jφ �→1/(1 − λmax) in Fig. 5 showed that the COR
has higher amplification factors than the ILR and OLR. In order
not to be dominated by the ILR in the inner regions, one may try
to increase the susceptibility of the disc so that the predominant
diffusion will take place through the COR. The eigenvalues of the

response matrix from equation (22) can be increased via an increase
of ξ , the active fraction of the disc. Fig. 11 illustrates such changes.
One can note in Fig. 11 that as ξ is increased, a significant COR-
dominated region around the position (Jr, Jφ) � (0 , 2) appears.
This new diffusion region ends up being more important than the
ILR peak around the position (Jr, Jφ) = (0.01 , 1), as illustrated on
Fig. 10. Indeed, as ξ increases, both λILR

max and λCOR
max increase, but

since one has λILR
max <λCOR

max <1, for λCOR
max close to 1, the COR gets

more amplified than the inner/outer Lindblad resonances. The fast
and slow actions associated with the COR, are straightforwardly
given by J s

COR ∝ Jφ and J f
COR ∝Jr. As the fast action tends to be

conserved during a secular diffusion dominated by only one reso-
nance, we can conclude that the new peak of diffusion observed in
Fig. 11 corresponds to the diffusion of nearly circular orbits, which
increase their angular momentum Jφ , while their radial energy Jr

remains small. As the active fraction ξ is increased, we observe
a transition from the ILR-dominated heating of the inner region
(Jφ � 1) to a regime of radial migration of quasi-circular orbits in
more intermediate regions (Jφ � 2) as shown in Fig. 10. With such
higher active fractions, the secular diffusion mechanism is now in
a different regime of long-term evolution, mainly determined by
the susceptibility of the disc via the diffusion coefficients Dm( J),
rather than by the inhomogeneity of the DF through ∂F0/∂ J .

Figure 9. Dependence of the maximum peak of diffusion and its associated direction on the temperature of the disc, encoded by σ r. The various curves follow
Fig. 6. The S12 case corresponds to σ r = 0.284. From left to right: σ r = 0.20 , 0.40 , 0.50 . Larger σ r corresponds to hotter disc and therefore more stable.
Colder discs have a diffusion peak with a wider Jφ -extension and therefore will lead to wider ridges.
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Secular resonant orbital diffusion 1991

Figure 10. For a given value of the active fraction ξ of the disc, one can
identify a peak of flux associated with the ILR, around (Jr, Jφ ) � (0.01 , 1),
and one to the COR, close to (Jr, Jφ ) � (0 , 2). This figure represents the
dependence of the norm of the peak flux from equation (18) for the two
different regions of resonance, ILR (in blue) and COR (in purple), as the
self-gravity of the disc is increased. For ξ ≥ 0.68, the secular evolution of
the disc becomes dominated by radial migration effects through the COR
in the intermediate regions, rather than by heating via the ILR in the inner
regions.

5 C O N C L U S I O N S

The secular diffusion equation (Binney & Lacey 1988; Weinberg
1993; Pichon & Aubert 2006) of a self-gravitating collisionless
system was rederived and implemented in the WKB limit, using
angle-action variables for tightly wound spirals in a tepid disc de-
scribed by a Schwarschild DF. In this limit, the functional form
of the diffusion coefficient allowed us to identify the ridge found
in action space by S12 for a stable Mestel disc. It originates from
a resonant mono-dimensional diffusion, which is maximum at a
specific locus in the inner regions of the disc. As the disc model
investigated by S12 was somewhat singular, its global scale invari-
ance is only broken by the addition of the inner and outer tapering
functions (representing the bulge and the edge of the disc), which,
as expected, also play an important role in the determination of the
regime of secular evolution, hence the position of the peak of diffu-
sion. The birth of a resonant ridge is therefore the result of a subtle
fine tuning between many parameters of the system. Indeed, having

for example a noise of the form ψext ∝ δD(ω − ωp), corresponding
to a perturbation peaked at a specific frequency is not a mandatory
condition to observe a resonant ridge. The self-gravity of the disc
(via ξ and λ), its susceptibility (via Dm( J)), its inhomogeneity (via
∂F0/∂ J), its temperature (via σ 2

r ), its bulge structure (via Tinner),
and the source of perturbations (via ψext), all play a non-negligible
role in the creation and the properties of the resonant ridge, as shown
in the ad hoc experiments of the Sections 4.2–4.5.

The solar neighbourhood shows at least three indications of the
secular mechanism described in this paper. (i) Groups of stars of
a given age see their random velocities increase with the age of
the group (Wielen 1977; Aumer & Binney 2009). (ii) Around the
Sun, the velocity distribution of stars is made of various streams
of stars (Dehnen 1998). Despite the fact that each stream is made
of stars with different ages and chemistries, they respond to some
perturbation in a similar way. (iii) In the (Jφ , Jr)-space, one observes
a depression of the density of stars near Jr = 0 and an enhancement
for larger Jr, so that the disturbance in stellar density follows a
curve consistent with resonant conditions (McMillan 2011). Given
a detailed characterization of the perturbations induced by e.g. the
cosmic environment, one could study their effects on a typical self-
gravitating collisionless galactic disc. In the context of the ongoing
Gaia mission, this externally induced secular evolution is thought
to be potentially a powerful approach to describe the long-term
resonant radial migration of stars and its impact on the observed
metallicity gradients (Sellwood & Binney 2002; Roškar et al. 2008;
Schönrich & Binney 2009; Solway, Sellwood & Schönrich 2012;
Minchev, Chiappini & Martig 2013).

More generally, the formalism of dressed secular diffusion fed
by an exterior perturbation can be applied to any integrable model,
and may lead to various secular diffusion scenarios depending on
the structure of the galaxy and the properties of the spectrum of
the external perturbations. The WKB formulation, when applica-
ble, is very useful to yield a multiplicative amplification of the
exterior perturbation and a tractable quadrature for the diffusion
coefficients, which under certain circumstances can be written alge-
braically (equation 27). Such simplification provides useful insight
into the physical processes at work, e.g. the relevant resonances,
their loci and their relative strengths. Note that in principle, one
could integrate the diffusion equation in time and show that secu-
lar evolution will drive the DF of the underlying disc into a state
of marginal stability. Such iteration is postponed to another pa-

Figure 11. Map of the norm of the total flux summed for the three resonances (ILR, COR, OLR), when increasing the active fraction ξ of the disc. The
contours are spaced linearly between 95 and 5 per cent of the function maximum for each case. From left to right: ξ = 0.65 , 0.68 , 0.71 . (Such values of ξ still
comply with the constraint Q(Jφ ) > 1).
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per (Fouvry et al., in preparation; but see section 4.4 for a hint
of the expected outcome). If we rid ourselves of the WKB tepid
disc approximation, such equation could also possibly describe the
secular diffusion of dark matter cusps in galactic centres via the
external stochastic feedback processes within the inner baryonic
disc.

One of the limitations of the analysis presented in this paper is
the simplified noise model introduced in equation (13), which does
not depend on the temporal frequency ω nor the radial frequency kr

and is therefore only a function of the position in the disc via Jφ .
Such approximated perturbations intend to recreate the self-induced
Poisson shot noise due to the discrete sampling of the smooth DF
of the disc. A possible improvement would then be to extract the
typical power spectrum of the perturbations from numerical exper-
iments, so as to use it as a refined seed for secular diffusion. In a
companion paper (Fouvry, Pichon & Chavanis, 2015), we will ex-
plore the same WKB limit via the Balescu–Lenard equation. This
perspective will enable us to get rid of our crude noise approx-
imation, since it will naturally encompass the self-induced shot
noise due to finite-N effects and its impact on the secular diffu-
sion of the quasi-stationary DF, as long as we assume that transient
tightly wound spirals are governing the evolution of the system.
Such an approach will allow us to discuss quantitatively the ex-
pected time-scales of secular evolution and the respective roles of
the drift and diffusion components. In spite of this shortcoming, we
have shown in this simplified experiment that the secular formal-
ism describes both the nature of the collisionless system (via its
natural frequencies and susceptibility), and its nurture via the struc-
ture of the external power spectrum. Hence it provides the natural
framework in which to study the cosmic evolution of collisionless
systems.
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A P P E N D I X A : SE C U L A R D I F F U S I O N

Let us derive briefly the secular diffusion equation introduced in
equation (8). For more details, see the companion paper Fouvry
et al. (2014). We consider a stationary DF, F0( J) (depending only
on the actions J of the system Jeans 1915), undergoing an ex-
ternal perturbation. We also suppose that the gravitational poten-
tial of the system is fixed so that the action-coordinates mapping
(x, v) �→ (θ, J), where θ are the angles canonically associated with
the actions, does not depend on time. The DF and the Hamiltonian
of the system take the form{

F ( J, θ , t) = F0( J, t) + f ( J, θ , t) ,

H ( J, θ , t) = H0( J) + ψe( J, θ , t) + ψ s( J, θ , t) ,
(A1)

where f is the perturbation of the DF, ψe is the perturbing exterior
potential generated by an external system and ψ s is the self-response
from the galactic disc generated via self-gravity. We assume that the
perturbations are small so that f � F0 and ψe, ψ s � ψ0, where ψ0

is the stationary background potential. We denote by � = ∂H0/∂ J
the intrinsic frequencies associated with the actions. Assuming that
the disc evolves according to the collisionless Boltzmann equation,

dF

dt
= ∂F

∂t
+ {H,F } = 0 , (A2)
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with { , } a Poisson bracket, one obtains from equation (A1), in
the quasi-linear limit, two equations corresponding to the two time-
scales of the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂f

∂t
+ � · ∂f

∂θ
− ∂F0

∂ J
· ∂(ψe + ψ s)

∂θ
= 0 ,

∂F0

∂t
= 1

(2π)2

∂

∂ J
·
[∫

d2θ f
∂ [ψe + ψ s]

∂θ

]
.

(A3)

The first equation in (A3) describes the evolution of the perturbative
DF f on the fast-fluctuating time-scale, whereas the second equa-
tion describes the long-term evolution of the stationary DF F0 in
action space. From the first equation, one obtains the expression
of the diffusion coefficients appearing in equation (8). We note by
m = (mr, mφ) the Fourier coefficient associated with the Fourier
transform with respect to the 2π-periodic angles θ , so that the first
equation of (A3) takes the form

∂fm

∂t
+ i m·� fm − i m· ∂F0

∂ J

[
ψe

m + ψ s
m

] = 0 . (A4)

Following the matrix method (Kalnajs 1976), we introduce a bi-
orthonormal basis of potential ψ (p) and densities ρ(p) satisfying⎧⎨⎩

∇2ψ (p) = 4πGρ(p) ,∫
d3x [ψ (p)(x)]∗ ρ(q)(x) = −δq

p .
(A5)

Given this basis, the exterior potential ψe and the self-potential ψ s

may be written under the form⎧⎪⎪⎨⎪⎪⎩
ψ s(x, t) =

∑
p

ap(t) ψ (p)(x) ,

ψe(x, t) =
∑

p

bp(t) ψ (p)(x) .
(A6)

To shorten the notations, we also define the associated vectors
a(t) = (a1(t), . . . , ap(t), . . .) and b(t) = (b1(t), . . . , bp(t), . . .).
The next steps are to solve the equation (A4) for fm, then
use the fact that the self-perturbing surface density �s veri-
fies that �s(x) = ∫ dv f (x, v) and recall that the transformation
(x, v) �→ (θ , J) is canonical so that it satisfies d2x d2v = d2θ d2 J .
Given these remarks and assuming that ∂F0/∂ J = cst. on the short
time-scale, one can show that the equation (A4) can be rewritten
under the form

â(ω) = M̂(ω)·[â(ω) + b̂(ω)] , (A7)

where the response matrix is given by equation (10). This expression
describes how the perturbations get amplified on the short time-
scale.

The next step is to use the second equation of (A3) to cap-
ture the secular evolution of the quasi-stationary DF F0 in action
space. Introducing the sum of the two gravitational perturbations
c(t) = a(t) + b(t), one can show that the second equation of (A3)
takes the form

∂F0

∂t
=
∑

m

m· ∂

∂ J

[
Dm( J, t) m· ∂F0

∂ J

]
, (A8)

where the diffusion coefficients Dm( J) are given by

Dm( J, t)=
∑
p,q

ψp
mψ (q)∗

m c∗
q (t)
∫ t

−∞
dτ e−im·�(t−τ )cp(τ ) . (A9)

Using the matrix relation (A7), one can note that ĉ = [I−M̂]−1· b̂,
so that equation (A9) can be expressed only as a function of the

external perturbation b̂. The final step to derive the expression (9)
of the diffusion coefficients is to introduce statistical averages, in
order to consider only the mean response of a typical disc. We
introduce the operation of ensemble average over many realizations
of external perturbations, noted as 〈 . 〉. When taking the ensemble
average of equation (A8), one can assume that the response matrix
M̂, the DF F0 and its gradient ∂F0/∂ J do not change significantly
from one realization to another. Indeed, we intend to describe the
effect of an averaged fluctuation on a given DF F0 representing a
mean disc. Under these assumptions, equation (A8) becomes

∂F0

∂t
=
∑

m

m· ∂

∂ J

[〈
Dm( J, t)

〉
m· ∂F0

∂ J

]
. (A10)

We finally introduce a stationarity hypothesis for the time evolution
of the exterior perturbation on short time-scales and therefore define
the temporal auto-correlation of the exterior perturbation as

Ckl(t1 − t2) = 〈bk(t1) b∗
l (t2)
〉

. (A11)

From this definition, one can compute the ensemble average of the

Fourier transformed term
〈
b̂k b̂ ∗

l

〉
, to obtain

〈b̂k(ω) b̂∗
l (ω′)〉 = 2π δD(ω−ω′) Ĉkl(ω) , (A12)

where Ĉ stands for the temporal Fourier transform of the autocor-
relation function of the exterior potential. Injecting equation (A12)
into equation (A10) and using Hermiticity arguments to show that
only the real part of the diffusion coefficients matters, one obtains
the final writing of the secular diffusion equation, which reads

∂F0

∂t
=
∑

m

m· ∂

∂ J

[
m· ∂F0

∂ J

∑
p,q

1

2
ψ (p)

m ψ (q)∗
m

[
[I−M̂]−1 · Ĉ · [I−M̂]−1

]
pq

(m·�)

]
, (A13)

which is the same expression of the diffusion equation as introduced
in equations (8) and (9).

A P P E N D I X B : W K B C O E F F I C I E N T S

Let us derive briefly in this appendix the diffusion coefficients
Dm( J) in the WKB limit. The key ingredient is to introduce specific
basis elements well-suited to represent tightly wound spirals. We
consider potential elements given by

ψ [kφ ,kr,R0](R, φ)= A ei(kφφ+krR)

(πσ 2)1/4
exp

[
− (R−R0)2

2σ 2

]
, (B1)

where the basis elements are indexed by three quantities. Here R0

is the central radius around which the Gaussian is centred, kφ is an
azimuthal number representing the angular component of the basis
elements, kr corresponds to the radial frequency of the potential and
A = √

G/|kr|R0 is an amplitude tuned in order to ensure the correct
normalization of the basis as imposed by equation (A5). Finally, σ

is a scale-separation parameter ensuring the bi-orthogonality of the
basis elements. Introducing the typical radial size of the system Rsys,
one can show that under the assumptions of tight-winding krR0 � 1
and of scale-separation krσ � Rsys/σ , the associated surface density
elements �[kφ ,kr,R0], obtained via Poisson’s equation, are given by

�[kφ ,kr,R0](R, φ) = − |kr|
2πG

ψ [kφ ,kr,R0](R, φ) . (B2)
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In order to ensure the bi-orthogonality of the basis elements, one
can show that the distance between two basis elements ψ1 and ψ2,
represented by �R0 = R1

0 −R2
0 and �kr = k1

r −k2
r must satisfy{

�R0� σ or �R0 = 0 ,

�kr � 1
σ

or �kr = 0 .
(B3)

With such explicit basis elements, one can compute their Fourier
transforms with respect to the actions which read

ψ
[kφ ,kr,R0]
m ( J) = δ

kφ
mφ eimrθ

0
R

A
(πσ 2)1/4 eikrRg

Jmr (Hkr ) exp
[
− (R−R0)2

2σ 2

]
, (B4)

where Jmr is the Bessel function of the first kind of index mr.
Thanks to the WKB approximation which assumes that krRg � 1,
the amplitude Hkr and the phase shift θ0

R are given by

Hkr �
√

2Jr

κ(Jφ)
kr ; θ0

R � −π/2. (B5)

Within this framework, one can now evaluate the response matrix
elements from equation (10). Because of the assumptions of tight
winding, one can show that the response matrix is diagonal, so that
two distinct WKB basis elements cannot interact one with another.
Finally, we introduce the additional assumption that the galactic

disc considered is tepid, so that
∣∣∣∂F0/∂Jr

∣∣∣� ∣∣∣∂F0/∂Jφ

∣∣∣. Keeping

only the dominant terms, the expression of the diagonal response
matrix eigenvalues for a tepid disc reads

M̂[
k
p
φ ,k

p
r ,R0

]
,
[
k
q
φ ,k

q
r ,R0

] = δ
k
q
φ

k
p
φ

δ
k
q
r

k
p
r

2πG ξ � |kr|
κ2(1−s2)

F (s, χ ) , (B6)

which is consistent with equation (22). Using the fact that response
matrix is now diagonal, the expression (9) of the diffusion coeffi-
cients is easier to compute.

The last step of the derivation is to express the basis coefficients bp

as a function of the perturbing exterior potential ψext and to replace
the sum on the basis index kr and R0 by continuous integrals, using
Riemann formula

∑
f(x)�x � ∫ dxf(x). As we have assumed that

the exterior perturbation had the simple dependence from equation
(13), one finally obtains the expression of the diffusion coefficients
in the WKB limit given in equation (26).

A P P E N D I X C : G ROW T H R ATE O F R I D G E

Let us estimate the rate at which the ridge in action space observed
in S12 develops. As the evolution of the system is dominated by the
ILR, we introduce the associated fast and slow actions from equation
(19). In order to shorten the notations, we note the slow and fast
actions as J s

ILR = Js and J f
ILR = Jf . When considering only one

resonance, the diffusion equation (15) becomes mono-dimensional
and, for a given value of Jf, up to constant prefactor in |m|, takes
the form

∂F0

∂t
= ∂

∂Js

[
D(Js)

∂F0

∂Js

]
. (C1)

Equation (C1) corresponds to a 1D inhomogeneous heat equation.
We suppose that initially the DF is concentrated within a narrow
region in Js, and we use a method based on self-similar solutions
in order to estimate the typical growth rate of the ridge. Therefore,
we introduce a self-similar ansatz for the shape of the 1D DF of the

form (see formula 1.3.6.8 from Polyanin 2001 and equation 1.70
from Binney 2013)

F (Js, t) = 1

ta
Fsc

[
Js

ta

]
. (C2)

The coefficient a > 0 is for the moment unconstrained but will
encode the speed with which the scatter of the DF increases. In-
deed, one immediately obtains the time dependence of the standard
deviation of the DF in the Js-direction as

σJs =
√〈

J 2
s

〉 ∝ ta . (C3)

In order to be able to draw qualitative conclusions from a, we will
assume that the anisotropic diffusion coefficients satisfy a scaling
property of the form

D(k Js) = kb D(Js) , (C4)

for any k > 0 and where 0 ≤ b < 2 captures the structure of
the anisotropic diffusion. The homogeneous heat equation corre-
sponds to the case D(Js) = cst., so that one has b = 0. Start-
ing from the ansatz (C2) and using the rescaling change of vari-
ables K = Js/ta, one can show that the diffusion equation (C1)
becomes

− a

ta + 1

[
Fsc[K] + K

∂Fsc

∂K

]
= tab−3a ∂

∂K

[
D(K)

∂Fsc

∂K

]
.

In order to have an equation valid for all time, both side must
necessarily have the same time dependence, so that we obtain the
condition

ab = 2a−1 . (C5)

As a consequence, given the scaling coefficient b, one constrains
a and then predicts the rate with which the standard deviation will
increase during the diffusion. For example, for the homogeneous
heat equation, one has b = 0, so that a = 1/2. Using equation (C3),
one obtains that σJf ∝ √

t , which is the usual growth rate of the
scattering expected for an homogeneous diffusion. Moreover, one
can also obtain the shape of the scale-invariant DF Fscal through the
ordinary differential equation

∂

∂K

[
D(K)

∂Fsc

∂K

]
+ a

[
Fsc[K] + K

∂Fsc

∂K

]
= 0 . (C6)

Using an ansatz of the form Fscal(K) = exp [−Kα/β] and assum-
ing that D(Js) = D0 [Js]b, the solutions of the ordinary differential
equation (C6) take the form

Fscal(K) ∝ exp

[
− K2−b

D0(2−b)2

]
. (C7)

In the case of the homogeneous diffusion b = 0, one obtains as
expected a scale-invariant solution given by a Gaussian. We may
now restrict ourselves to the case where the ILR dominates, for
which we want to estimate the temporal growth rate of an initially
dense spot located in J 0

φ , on the Jr = 0 axis. Using the change of
variables to the fast and slow actions, we introduce J s

0 and J f
0 such

that (J 0
φ , Jr = 0) → (J s

0 , J f
0 ). As the diffusion takes place only in

the Js-direction, we need to study the variations of the diffusion
coefficients given by the function js �→ DILR(J s

0 + js, J
f
0 ). We start

from the expression of the diffusion coefficients obtained in equa-
tion (27). As the diffusion starts from Jr = 0, we may perform of
limited development of the Bessel function at the origin, recalling
that for x � 1, Jmr (x) ∝ x |mr|, so that we obtain a dependence of
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the form

DILR(J s
0 + js, J

f
0 ) ∝ js

[
(�kλ)2k2

max �t

κ (1 − λmax)2

] (
Jφ

[
J s

0 + js, J
f
0

])
,

where the term between brackets has to be evaluated at the angular
momentum Jφ corresponding to the fast and slow actions coordi-
nates (J s

0 + js, J
f
0 ). This term tends a finite non-zero value for js →

0. As a consequence, for js → 0, one finally obtains the shortened
dependence

Dm
(
J s

0 + js, J
f
0

) ∝ js . (C8)

One can immediately conclude that for an ILR-dominated diffu-
sion along its associated slow action, the scaling coefficient of the

anisotropic diffusion coefficients DILR is given by bILR = 1. Using
the relation (C5), one obtains that aILR = 1, so that the temporal
growth rate of the standard deviation along the J s

ILR-direction is
given by

σJ s
ILR

∝ t . (C9)

This is the scaling presented in the main text.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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