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ABSTRACT
The equation describing the secular diffusion of a self-gravitating collisionless system induced
by an exterior perturbation is derived while assuming that the time-scale corresponding to
secular evolution is much larger than that corresponding to the natural frequencies of the
system. Its two-dimensional formulation for a tepid galactic disc is also derived using the
epicyclic approximation. Its Wentzel-Kramers-Brillouin (WKB) limit is found while assuming
that only tightly wound transient spirals are sustained by the disc. It yields a simple quadrature
for the diffusion coefficients which provides a straightforward understanding of the loci of
maximal diffusion within the disc.

Key words: diffusion – gravitation – galaxies: evolution – galaxies: kinematics and dynam-
ics – galaxies: spiral.

1 IN T RO D U C T I O N

Understanding the secular dynamical evolution of galaxies over
cosmic time has been a long standing subject of interest. Indeed,
self-gravitating collisionless systems such as galaxies may, over
cosmic times, change their kinematical structure as they respond
secularly to their evolving environment, in a manner which depends
both on their internal orbital structure, but also on how this structure
resonates with its environment or with itself. It is therefore critical
to distinguish in the physical properties of galaxies the contributions
from the cosmic environment (nurture) and its induced perturbations
from the ones coming from the intrinsic properties of the galaxies
(nature). For thermodynamically improbable cold systems such as
galactic discs, their gravitational susceptibility should also play a
specific role which must be taken into account when studying their
long-term evolution.

To tackle this question, one can rely on numerical N-body simu-
lations of higher resolutions to take into account non-linear physical
processes (e.g. Dubois et al. 2014) or perform idealized well-crafted
numerical experiments (Sellwood & Athanassoula 1986; Earn &
Sellwood 1995; Sellwood 2012). With such statistical investiga-
tions, one can assess the importance and the role of the orbital
structure of a galactic disc to drive its secular evolution. Angle-
action variables (Goldstein 1950; Born 1960; Binney & Tremaine
2008) and the matrix method (Kalnajs 1976) also allow us to take
into account the self-gravitating amplification of such collisionless
systems. From this analytical framework, one should therefore be
able to derive flexible qualitative and quantitative equations describ-
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ing the secular dynamics of discs, without relying on the implemen-
tation of the corresponding demanding numerical models.

This topic of secular evolution has been addressed via the dressed
Fokker–Planck equation, where the source of secular evolution for
a self-gravitating system is taken to be potential fluctuations from
an external bath, e.g. corresponding to the cosmic environment.
Binney & Lacey (1988) computed the first- and second-order dif-
fusion coefficients describing the orbits deviation induced by fluc-
tuations in the gravitational potential. Weinberg (1993) showed the
importance of self-gravity on the non-local and collective relax-
ation of stellar systems. Weinberg (2001a,b) considered the dressed
gravitational amplification of Poisson shot noise in stellar systems
and the impact of the properties of the noise processes. Ma &
Bertschinger (2004) used a quasi-linear approach to investigate
dark matter diffusion induced by cosmological fluctuations. Pichon
& Aubert (2006) sketched a time-decoupling approach to solve
the collisionless Boltzmann equation and applied it to the statisti-
cal study of dynamical flows through dark matter haloes. Chavanis
(2012a) considered the evolution of homogeneous collisionless sys-
tems forced by an external perturbation. Nardini et al. (2012) also
considered the evolution of such long-range interacting systems
when driven by external stochastic forces.

Using an argument based on time-scale decoupling inspired from
Pichon & Aubert (2006), we present here a careful and detailed
derivation of the secular resonant dressed orbital diffusion equation
for a general collisionless self-gravitating system undergoing exter-
nal perturbations1. We then develop this formalism for the secular

1 We also recover a missing 1/2 factor absent from this previous work, due
to an error in temporal integration bounds.
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evolution of an infinitely thin galactic disc. In order to circum-
vent the complex direct or analytical calculation of the modes of a
galactic disc carried only for a small number of disc models (Zang
1976; Kalnajs 1977; Goodman 1988; Weinberg 1991; Vauterin &
Dejonghe 1996; Pichon & Cannon 1997; Evans & Read 1998;
Jalali & Hunter 2005), we then rely on the Wentzel-Kramers-
Brillouin (WKB) approximation (Liouville 1837; Toomre 1964;
Kalnajs 1965; Lin & Shu 1966) to obtain a tractable algebraic ex-
pression for both the gravitational susceptibility of the system and
the associated diffusion coefficients. Within the realm of this ap-
proximation, which should apply to cold enough discs, the diffusion
coefficient reduce to simple quadratures.

The paper is organized as follows. Section 2 presents a deriva-
tion of the general dressed Fokker–Planck equation for a perturbed
self-gravitating collisionless system. Appendix A provides a com-
plementary derivation based on Hamilton’s equation, extending
Binney & Lacey (1988) to self-gravitating systems. Section 3 fo-
cuses on razor thin axisymmetric galactic discs within the WKB
approximation. Some of the underlying calculations are postponed
to Appendices B and C. Finally, Section 4 wraps up.

2 SE C U L A R D I F F U S I O N E QUAT I O N

The secular diffusion equation aims at describing the long-term ape-
riodic evolution of a self-gravitating collisionless system, perturbed
by exterior potential fluctuations. A typical application for this for-
malism is the study of a galactic disc undergoing (cosmic) perturba-
tions from its surrounding dark matter halo or the secular diffusion
of accretion streams within the Galactic halo. We will suppose that
the background gravitational potential of the system is stationary
and integrable, so that we may always remap the usual phase-space
coordinates (x, v) to the angle-action coordinates (θ , J). This is a
strong assumption, as one could imagine situations where the secu-
lar evolution breaks symmetry warranting integrability. The angles
θ are 2π-periodic, whereas the actions J are conserved for a few
dynamical times and secularly drift with cosmic time.

2.1 Evolution equations

We consider a stationary Hamiltonian H0( J), associated with a sta-
tionary background gravitational potential ψ0. We also consider a
quasi-stationary distribution function F0( J, t), which, at fixed secu-
lar time, only depends on the actions thanks to Jeans theorem (Jeans
1915). Finally, we suppose that an exterior source is perturbing this
stationary system, so that we can expand the distribution function
and the Hamiltonian of the system as{

F ( J, θ , t) = F0( J, t) + f ( J, θ , t),

H ( J, θ , t) = H0( J) + ψe( J, θ , t) + ψs( J, θ , t),
(1)

where f is the perturbation of the distribution function, ψe is the
perturbing exterior potential generated by the exterior source, and
ψ s is the self-response from the system induced by its self-gravity.
This decomposition now involves two main temporal scales. The
shortest scale is the fluctuation time-scale, during which F0( J)
may be considered constant. The longest time-scale corresponds
to the secular evolution time-scale. The perturbations are supposed
to be small so that f � F0 and ψe, ψ s � ψ0. The evolution of
the collisionless system is then driven by Boltzmann collisionless
equation which reads

dF

dt
= ∂F

∂t
+ {H,F } = 0, (2)

where {H, F} is the Poisson bracket. Injecting the decomposition
from equation (1) in Boltzmann’s equation (2), we obtain

0 = ∂F0

∂t
+ ∂f

∂t
−
[

∂ψe

∂θ
+ ∂ψ s

∂θ

]
· ∂F0

∂ J
−
[

∂ψe

∂θ
+ ∂ψ s

∂θ

]
· ∂f

∂ J

+ � · ∂f

∂θ
+
[

∂ψe

∂ J
+ ∂ψ s

∂ J

]
· ∂f

∂θ
, (3)

where we have defined the frequencies of the motion on the action-
torii as

θ̇ = � = ∂H0

∂ J
. (4)

In order to derive the corresponding secular equation, we perform
an angle-average on θ of equation (3). All terms involving a single
derivation ∂/∂θ are equal to 0, since the angles θ are 2π-periodic.
Moreover, we have

∫
θ

dθ f = 0, because all the variations indepen-
dent of θ are included in F0( J, t). As F0 is independent of θ , we
obtain

∂F0

∂t
= 1

(2π)d

∫
dθ

[
∂ψe

∂θ
+ ∂ψ s

∂θ

]
· ∂f

∂ J

− 1

(2π)d

∫
dθ

[
∂ψe

∂ J
+ ∂ψ s

∂ J

]
· ∂f

∂θ
, (5)

where d is the dimension of the physical space. Using Schwartz
theorem, this secular diffusion equation can be written under the
shorter form

∂F0

∂t
= 1

(2π)d

∂

∂ J
·
[∫

dθ f
∂[ψe + ψ s]

∂θ

]
. (6)

Equation (6), written as the divergence of a flux, emphasizes the
fact that during orbital diffusion the total number of stars is strictly
conserved. Recalling that f � F0 and ψe, ψ s � ψ0, the secular
evolution equation (6) shows that ∂F0/∂t is in fact a second-order
term.

Correspondingly, keeping only first-order terms in equation (3),
we obtain the second diffusion equation for the short time-scale,
which reads

∂f

∂t
+ � · ∂f

∂θ
− ∂F0

∂ J
· ∂[ψe + ψ s]

∂θ
= 0. (7)

This equation describes the evolution of the perturbation distribution
function f on the fast fluctuating time-scale. On such time-scales,
∂F0/∂ J will be considered as independent of t. The next step is to
study the fast fluctuating equation (7), whose solutions will allow us
to estimate the diffusion coefficients for the secular evolution given
by equation (6) and describe the diffusion of the quasi-stationary
distribution function F0 in action-space.

2.2 Fourier expansion

One of the many assets of the angle-action variables is that the
angles θ are 2π-periodic allowing us to perform discrete Fourier
expansions with respect to these variables. We define the Fourier
transform in angles of a function X(θ , J) as⎧⎪⎪⎨⎪⎪⎩

X(θ , J) =
∑
m∈Zd

Xm( J) eim·θ ,

Xm( J) = 1

(2π)d

∫
dθ X(θ , J) e−im·θ .

(8)
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Thanks to this transformation, the evolution equation (7) takes the
form

∂fm

∂t
+ im · � fm − im · ∂F0

∂ J

[
ψe

m + ψ s
m

] = 0. (9)

At this stage, we introduce the assumption of time-scale decou-
pling and push the secular time to infinity. As a consequence, in the
upcoming calculations, we will suppose that ∂F0/∂ J = cst. For-
getting transient terms and bringing the initial time to −∞, to focus
only on the forced regime, the equation (9) can be solved explicitly,
leading to

fm( J, t) =
∫ t

−∞
dτe−im·�(t−τ )im · ∂F0

∂ J

[
ψe

m + ψ s
m

]
( J, τ ). (10)

We define the temporal Fourier transform as⎧⎪⎪⎪⎨⎪⎪⎪⎩
f̂ (ω) =

∫ +∞

−∞
dt f (t) eiωt ,

f (t) = 1

2π

∫ +∞

−∞
dω f̂ (ω) e−iωt .

(11)

Taking the Fourier transform of equation (9) at the frequency ω,
one can write

f̂m( J, ω) = − m · ∂F0/∂ J
ω − m · �

[
ψ̂e

m( J, ω) + ψ̂ s
m( J, ω)

]
. (12)

2.3 Matrix method

An important property of this self-gravitating system is that the per-
turbed distribution function f is consistent with the self-gravitating
potential ψ s and its associated density ρs, so that we have

ρs(x, t) =
∫

dv f (x, v, t) =
∑

m

∫
dv fm( J, t) eim·θ . (13)

In order to simplify further equation (13), we follow Kalnajs matrix
method (Kalnajs 1976) and introduce a complete biorthonormal
basis of potentials and densities ψ (p)(x) and ρ(p)(x), such that⎧⎪⎨⎪⎩

∇2ψ (p) = 4πGρ(p),∫
dx [ψ (p)(x)]∗ ρ(q)(x) = −δq

p.
(14)

On such a basis, we can write the exterior and the self-potentials
as⎧⎪⎪⎪⎨⎪⎪⎪⎩

ψ s(x, t) =
∑
p∈N

ap(t) ψ (p)(x),

ψe(x, t) =
∑
p∈N

bp(t) ψ (p)(x).
(15)

The linearity of Poisson’s equation ensures that this decomposition
translates into ρs(x, t) =∑p ap(t)ρ(p)(x). Using the biorthogonal-
ity of the basis, we multiply equation (13) by [ψ (p)(x)]∗ and inte-
grate over all positions to obtain

ap(t) = −
∑

m

∫
dx dv fm( J, t) eim·θ [ψ (p)(x)]∗. (16)

2.4 Response matrix and self-consistency

As the transformation (x, v) �→ (θ , J) is canonical, we have
dx dv = dθ d J . The integration on θ in equation (16) is straightfor-

ward since only [ψ (p)(x)]∗eim·θ depends on it, so that it becomes

ap(t) = −(2π)d
∑

m

∫
d J fm( J, t) [ψ (p)

m ( J)]∗. (17)

Using the expression (12) and taking the temporal Fourier transform
of equation (17) at the frequency ω, one obtains

âp(ω) = (2π)d
∑

q

[
âq (ω) + b̂q (ω)

]
×
∑

m

∫
d J

m · ∂F0/∂ J
ω − m · �

[ψ (p)
m ( J)]∗ ψ (q)

m ( J). (18)

We define the response matrix of the system M̂ as

M̂pq (ω) = (2π)d
∑

m

∫
d J

m · ∂F0/∂ J
ω − m · �

[ψ (p)
m ( J)]∗ ψ (q)

m ( J), (19)

where one must note that the response matrix depends only on the
initial equilibrium state of the disc, since ∂F0/∂ J evolves only on
the secular scale, the perturbing and self-gravitating potentials are
absent, and the basis elements ψ (p) are chosen once for all. Finally,
in order to shorten the notations, the amplitudes of the self- and
exterior potentials are defined as a(t) = (a1(t), . . . , ap(t), . . .) and
b(t) = (b1(t), . . . , bp(t), . . .). Thanks to these notations, one can
simplify equation (18), and rewrite it under the form

â(ω) + b̂(ω) =
[
I − M̂(ω)

]−1
· b̂(ω). (20)

One should note that the matrix [I − M̂] is invertible only if the
self-gravitating system is linearly stable so that all the eigenvalues
of M̂ are assumed to be strictly smaller than 1 for all values of ω.

2.5 Diffusion coefficients

The amplification relation (20) corresponds to the short time-scale
(dynamical) response of the system, driven by the evolution equa-
tion (7). We will now describe the impact of these solutions on the
long time-scale diffusion equation given by equation (6). Starting
from equation (6), one has to evaluate an expression of the form

1

(2π)d

∫
dθ f ( J, θ , t)

∂ [ψe + ψ s]

∂θ

= 1

(2π)d

∑
m1,m2

∫
dθ fm1 im2

[
ψe

m2
+ ψ s

m2

]
ei(m1+m2)·θ . (21)

Here, only terms with m1 = −m2 are different from 0. Using equa-
tion (10) and the fact that ψ−m = ψ∗

m, we can finally rewrite the
diffusion equation (6) under the form

∂F0

∂t
=
∑

m

m · ∂

∂ J

[
Dm( J) m · ∂F0

∂ J

]
, (22)

where the anisotropic diffusion coefficients Dm( J) are given by

Dm( J, t) = [ψe ∗
m ( J, t) + ψ s ∗

m ( J, t)
]

×
∫ t

−∞
dτ e−im·�(t−τ )

[
ψe

m( J, τ ) + ψ s
m( J, τ )

]
. (23)

Note that equation (22) can be re-arranged as

∂F0

∂t
= ∂

∂ J
·
[
D( J) · ∂F0

∂ J

]
, with D( J) =

∑
m

Dm( J) m ⊗ m,

an anisotropic tensor diffusion matrix. Using the basis decompo-
sition introduced in equation (15), the diffusion coefficients from
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equation (23) take the form

Dm( J, t) =
∑
p,q

ψ (p)
m ψ (q)∗

m

[
a∗

q (t) + b∗
q (t)
]

×
∫ t

−∞
dτ e−im·�(t−τ )

[
ap(τ ) + bp(τ )

]
. (24)

Expressing the temporal coefficients ap(t) and bp(t) via their Fourier
transforms, we obtain

Dm( J, t) = 1

(2π)2

∑
p,q

ψ (p)
m ψ (q)∗

m

∫
dω
[
a∗

q + b∗
q

]
(ω) eiωt

×
∫ t

−∞
dτ e−im·�(t−τ )

∫
dω′[ap + bp](ω′) e−iω′τ .

(25)

The amplification relation (20) allows us to rewrite equation (25)
as

Dm( J, t)

= 1

(2π)2

∑
p,q

∑
p1,q1

ψ (p)
m ψ (q)∗

m

∫
dω eiωt

[[
I − M̂(ω)

]−1

qq1

]∗
b̂∗

q1
(ω)

×
∫ t

−∞
dτ e−im·�(t−τ )

∫
dω′e−iω′τ [I − M̂(ω′)]−1

pp1
b̂p1 (ω′).

(26)

2.6 Statistical expectation

The final stage of the derivation is to introduce the statistics of the
external perturbations. Indeed, our previous calculation corresponds
to the response of the system to a given particular perturbation his-
tory: t �→ b(t). Let us now denote the ensemble average operation
on such different realizations as 〈 . 〉. As the global underlying back-
ground gravitational potential is assumed to be stationary, the map-
ping (x, v) �→ (θ, J) remains the same for the different realizations,
so that the operations of derivation or integration with respect to θ

and J commute with the ensemble average. The diffusion equation
(22), when ensemble averaged, takes the form

∂〈F0〉
∂t

=
∑

m

m · ∂

∂ J

[〈
Dm( J) m · ∂F0

∂ J

〉]
. (27)

A priori, the gradient ∂F0/∂ J , cannot be taken out of the ensem-
ble average operation. However, we intend to describe the effect
of an averaged fluctuation on a given F0 representing a mean disc.
Then, one may assume that the quasi-stationary distribution func-
tion F0, its gradients and therefore the response matrix M̂ do not
change significantly from one realization to another, so that they
can be taken out of the ensemble average operation. This means
that we assume there exists a mean response for the secular distri-
bution, F0 = 〈F0〉, de-correlated from the perturbations, so that we
have 〈Dm( J) m · ∂F0/∂ J〉 = 〈Dm( J)〉 m · ∂F0/∂ J . We also sup-
pose that the time evolution of the exterior perturbing potential
is stationary and therefore introduce the corresponding temporal
autocorrelation function defined as

Ckl(t1 − t2) = 〈bk(t1) b∗
l (t2)〉, (28)

where the exterior perturbation is also assumed to be of zero mean.
The autocorrelation C connects the temporal coefficients b, whereas
the diffusion coefficients from equation (26) involve the Fourier

transformed ones b̂, so that one needs to compute
〈
b̂k(ω) b̂∗

l (ω′)
〉

.

One can straightforwardly show that〈
b̂k(ω) b̂∗

l (ω′)
〉

= 2π δD(ω − ω′) Ĉkl(ω), (29)

where Ĉ is the temporal Fourier transform of the autocorrelation of
the external potential. Using this result in the ensemble averaged
expression (26) yields

〈Dm( J, t)〉 = 1

2π

∑
p,q

ψ (p)
m ψ (q)∗

m

∫
dω

∫ 0

−∞
dτ ′ e−i(ω−m·�)τ ′

×
[
[I − M̂]−1 · Ĉ · [I − M̂]−1

]
pq

(ω), (30)

where we performed the change of variables τ ′ = τ − t. One should
note that when ensemble averaged, the diffusion coefficients are
(explicitly) independent of t.2 In order to shorten temporarily the
notations, we introduce L̂ = [I − M̂]−1 · Ĉ · [I − M̂]−1. In equation
(30), one has to evaluate an expression of the form

1

2π

∫ +∞

−∞
dω L̂(ω)

∫ 0

−∞
dτ ′e−i(ω−m·�)τ ′ = i

2π

∫ +∞

−∞
dω

L̂(ω)

ω − m · �
,

(31)

where in the integration over τ ′ we only kept the term for τ ′ = 0, by
adding an imaginary part to the frequency ω so that ω = ω + i0+,
ensuring the convergence for τ ′ → −∞. The remaining integral
over ω can be evaluated using Plemelj formula

1

x ± i0+ = P
(

1

x

)
∓ iπδD(x), (32)

where P denotes Cauchy principal value. Therefore, equation (31)
becomes

(31) ∝ i

2π
P
∫ +∞

−∞
dω

L̂(ω)

ω − m · �
+ 1

2
L̂(m · �). (33)

The final step of the derivation is to show that the principal value
term present in equation (33) has no impact on the secular diffusion.
Indeed, using the expression (23) of the diffusion coefficients, one
can show that they satisfy D−m( J) = D∗

m( J). As a consequence,
as we are summing on all the modes m, the diffusion equation (22)
may be rewritten under the form

∂F0

∂t
=
∑

m

m · ∂

∂ J

[
Re [Dm( J)] m · ∂F0

∂ J

]
. (34)

From equations (19) and (28), we know that the response matrix

and the autocorrelation matrix are hermitian so that M̂
∗ = M̂

t
and

Ĉ
∗ = Ĉ

t
. As a consequence, the matrix L̂ is also hermitian. Since

Re(Dm) = (Dm + D∗
m)/2, starting from equation (33), we immedi-

ately obtain

〈Re [Dm( J)]〉

= 1

2

∑
p,q

ψ (p)
m ψ (q)∗

m

[
[I − M̂]−1 · Ĉ · [I − M̂]−1

]
pq

(m · �), (35)

so that the full secular diffusion equation takes the form

∂F0

∂t
=
∑

m

m · ∂

∂ J

[
m · ∂F0

∂ J

∑
p,q

1

2
ψ (p)

m ( J) ψ (q)∗
m ( J)

×
[
[I − M̂]−1 · Ĉ · [I − M̂]−1

]
pq

(m · �)

]
. (36)

2 Though they depend on the secular time-scale via the variation of F in M̂.
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Equation (36) is the main result of this section. In Appendix A, we
present an alternative derivation of these diffusion coefficients based
on Hamilton’s equations from which we recover the exact same
diffusion equation. The 1/2 factor recovered via these two com-
plementary approaches was skipped in the calculation presented
in Pichon & Aubert (2006), because of an error in the bounds
of half-temporal integrations, similar to the one present in equa-
tion (31). This derivation is valid in any dimensions, provided the
underlying system is integrable. One may also note that in the ho-
mogeneous limit, equation (36) reduces to the secular diffusion
equation obtained in Chavanis (2012a, 2013). In the next section,
we will restrict ourselves to 2D configurations and make further as-
sumptions in order to simplify equation (35) into a one-dimensional
quadrature.

3 THIN TEPID DISCS AND WKB LIMIT

One difficulty for the implementation of the secular diffusion
equation (36) is to simultaneously have an explicit mapping
(x, v) �→ (θ , J) to the angle-actions coordinates, and be able to
evaluate the diffusion coefficients given by equation (35), which re-
quire to invert the response matrix [I − M̂]. In order to deal with the
non-locality of Poisson’s equation, we also have to explicitly intro-
duce potential basis elements, ψ (p), as in equation (14), to compute
the response matrix from equation (19). To ease these calculations
in a 2D axisymmetric disc, one may rely on the WKB assumption
(Liouville 1837; Toomre 1964; Kalnajs 1965; Lin & Shu 1966;
Palmer, Papaloizou & Allen 1989), which assumes that the per-
turbations and self-responses will take the form of tightly wound
spirals, which in turn allows us to write Poisson’s equation locally.
Considering only such perturbations sums up to introducing basis
elements with specific properties as detailed later on.

3.1 Epicyclic approximation and isothermal DF

In order to explicitly build up a mapping (x, v) �→ (θ , J) for an
axisymmetric disc, we assume that the disc is sufficiently cold and
therefore rely on the so-called epicyclic approximation.

The natural coordinates for an axisymmetric galactic disc are the
polar coordinates (R, φ), with their associated momenta (pR, pφ).
Within such coordinates, the stationary Hamiltonian of the system
reads

H0(R, φ, pR, pφ) = 1

2

[
p2

R + p2
φ

R2

]
+ ψ0(R), (37)

where ψ0 is the axisymmetric stationary background potential
within the disc. The first action of the system is the angular momen-
tum Jφ defined as

Jφ = Lz ≡ 1

2π

∮
dφ pφ = pφ = R2φ̇. (38)

As soon as the value of Jφ is imposed, one obtains a new equation
of motion for the R variable given by

R̈ = −∂ψeff

∂R
, (39)

where the effective potential is defined as

ψeff (R) = ψ0(R) + J 2
φ

2R2
. (40)

The main idea behind the epicyclic approximation is to approximate
the radial motion as an harmonic oscillation. For a given value of
Jφ , we define implicitly the guiding radius Rg as

0 = ∂ψeff

∂R

∣∣∣∣∣
Rg

= ∂ψ0

∂R

∣∣∣∣∣
Rg

− J 2
φ

R3
g

, (41)

so that Rg(Jφ) corresponds to the radius for which stars with an
angular momentum equal to Jφ evolve on circular orbits. For a
stationary potential, the mapping between Rg and Jφ is bijective
and unambiguous (up to the sign of Jφ). We define the azimuthal
frequency �(Rg) and the epicyclic frequency κ(Rg) as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�2(Rg) = 1

Rg

∂ψ0

∂R

∣∣∣∣∣
Rg

= J 2
φ

R4
g

,

κ2(Rg) = ∂2ψeff

∂R2

∣∣∣∣∣
Rg

= ∂2ψ0

∂R2

∣∣∣∣∣
Rg

+ 3
J 2

φ

R4
g

.

(42)

A Taylor expansion at first order near Rg of equation (39) shows
that R satisfies the differential equation R̈ = −κ2(R − Rg), which
is the evolution equation of an harmonic oscillator centred on Rg.
We introduce the amplitude A of the radial oscillations and define
the radial action Jr as

Jr ≡ 1

2π

∮
dR pR = 1

2
κA2. (43)

The case Jr = 0 corresponds to circular orbits. The larger Jr, the
wider the radial oscillations of the star. One should note that within
the epicyclic approximation, the two intrinsic frequencies � and κ

are only function of the angular momentum Jφ and do not depend on
the radial action Jr. Finally, one can show (Lynden-Bell & Kalnajs
1972; Palmer 1994; Binney & Tremaine 2008) that the mapping
between (R, φ, pR, pφ) and (θR, θφ , Jr, Jφ) takes at first order the
form⎧⎪⎨⎪⎩

R = Rg + A cos(θR),

φ = θφ − 2�

κ

A

Rg
sin(θR).

(44)

Within this approximation, one can easily parametrize plausible
stationary distribution functions for a galactic disc, defined as func-
tions of the actions (Jφ , Jr). Indeed, we suppose that the stationary
distribution F0 of the disc is a Schwarzschild distribution function
(or locally isothermal) given by

F0(Rg, Jr) = �(Rg) �(Rg)

π κ(Rg) σ 2
r (Rg)

exp

[
−κ(Rg) Jr

σ 2
r (Rg)

]
, (45)

where �(Rg) is the surface density of the disc and σ 2
r (Rg), which

depends on the position in the disc, encodes the typical radial ve-
locity dispersion of the stars at a given radius. The larger σ 2

r , the
hotter the disc and the more stable it is.

3.2 The WKB basis

In order to use a WKB approach in the secular diffusion equation
(22), one needs to introduce explicitly a basis of density potentials
from which the WKB hypothesis will follow.
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1972 J.-B. Fouvry, C. Pichon and S. Prunet

Figure 1. Two WKB basis elements. Each Gaussian is centred around a
radius R0. The typical extension of the Gaussian is given by the decoupling
scale σ , and they are modulated at the radial frequency kr.

3.2.1 Definition of the basis elements

We define on the plane the following basis of potential functions,
well suited to represent tightly wound spirals

ψ [kφ ,kr,R0](R, φ) = A ei(kφφ+krR) BR0 (R), (46)

where the functions BR0 (R) are of the form

BR0 (R) = 1

(πσ 2)1/4
exp

[
− (R − R0)2

2σ 2

]
. (47)

To our knowledge, this is the first time that such tightly wound
basis elements have been introduced in the context of discs secu-
lar dynamics. The central radius R0 is the radius around which the
Gaussian BR0 is centred, kφ is an azimuthal number representing
the angular component of the basis elements, and kr corresponds
to the radial frequency of the potential element. Here, σ is a scale-
separation parameter ensuring the biorthogonality of the basis ele-
ments (see below). The radial dependence of the basis elements is
illustrated in Fig. 1. The amplitude A is not yet defined and will be
chosen in order to guarantee the correct normalization of the basis.
The unusual normalization of BR0 will ensure that A is indepen-
dent of σ and will also allow us to naturally introduce Dirac deltas
δD(R − R0) in some of the next calculations.

3.2.2 Associated surface density elements

Equation (14) requires to have a biorthogonal potential basis. We
now determine the surface density basis elements associated with
the potentials from equation (46). For 2D razor thin discs, we are
in the presence of a discontinuity leading to a surface density
�(R, φ). In order to satisfy Poisson’s equation, we extend our
potential to the z-axis via the following Ansatz:

ψ [kφ ,kr,R0](R, φ, z) = A ei(kφφ+krR) BR0 (R) Z(z). (48)

Injecting such an expression into Poisson’s equation in vacuum
�ψ [kφ ,kr,R0] = 0, we obtain after some algebra

− Z′′

Z
= −k2

r

[
1 − i

krR
+ 2i

R − R0

σ 2

1

kr
+ R − R0

R

1

(σkr)2

+ 1

(σkr)2
+ k2

φ

(krR)2
−
[

R − R0

σ 2

1

kr

]2
]
. (49)

In order to obtain a simple expression for the surface density basis
elements, we introduce additional WKB-like assumptions, so that
the terms appearing in equation (49) are all negligible in front of 1.

First of all, we assume that the spirals are tightly wound so that we
have

krR � 1. (50)

Moreover, introducing the typical size Rsys of the system, we add
the supplementary constraint

kr σ � Rsys

σ
. (51)

In this limit, assuming that kφ remains of the order of the unity,
equation (49) becomes

Z′′

Z
= k2

r . (52)

Therefore, we conclude that within the WKB approximation, the
extended 3D potential can be written as

ψ [kφ ,kr,R0](R, φ, z) = ψ [kφ ,kr,R0](R, φ) e−kr |z|, (53)

where we added absolute value on z in order to respect the bound-
aries conditions of the potential at z = ±∞, where the potential has
to tend to 0. Such a potential introduces a discontinuity of ∂ψ/∂z

at the plane z = 0, consistent with the given surface density. Gauss
theorem for the discontinuities at a plane may be written as

�(R, φ) = 1

4πG

[
lim

z→0+
∂ψ

∂z
− lim

z→0−
∂ψ

∂z

]
. (54)

We immediately conclude that the surface density associated with
a given potential element ψ [kφ ,kr,R0] is given by

�[kφ ,kr,R0](R, φ) = − |kr|
2πG

ψ [kφ ,kr,R0](R, φ). (55)

3.2.3 Biorthogonality condition

The next step of the definition of the WKB basis is to ensure that
this basis is biorthogonal as in equation (14). Indeed, it has to satisfy
the property

δ
k
q
φ

k
p
φ

δ
k
q
r

k
p
r
δ

R
q
0

R
p
0

= −
∫

dRR dφ
[
ψ

[kp
φ ,k

p
r ,R

p
0 ](R, φ)

]∗
�

[kq
φ ,k

q
r ,R

q
0 ](R, φ).

The r.h.s. of this expression becomes

|kq
r |

2πG
Ap Aq

1√
πσ 2

∫
dφ ei(kq

φ−k
p
φ )φ

×
∫

dR R ei(kq
r −k

p
r )R exp

[
− (R − R

p
0 )2

2σ 2

]
exp

[
− (R − R

q
0 )2

2σ 2

]
.

(56)

The integration on φ is straightforward and gives a term equal to

2πδ
k
p
φ

k
q
φ

. In order to be able to integrate on R, we now need to impose

new WKB-like assumptions to justify the biorthogonality of the
basis. We introduce the spatial Fourier transform F with respect to
R, and the difference of the two radial frequencies �kr = kq

r − kp
r .

Equation (56) requires to integrate an expression of the form∫
dR ei�krR BR

p
0
(R)BR

q
0
(R)

=
∫

dk′ F [BR
p
0
](k′)F [BR

q
0
](�kr − k′)

∝
∫

dk′ exp

[
− k′2

2/σ 2

]
exp

[
− (�kr − k′)2

2/σ 2

]
e−i(Rp

0 k′+R
q
0 [�kr−k′]),

(57)
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Secular resonant dressed orbital diffusion 1973

where we used the property that the Fourier transform of a product
is given by the convolution of the Fourier transforms and that the
Fourier transform of a Gaussian of spread σ is a Gaussian of spread
1/σ . In expression (57), we note that if |k′| � 1/σ or |�kr −
k′| � 1/σ , then the product of the two terms can be considered to
be negligible. We will therefore suppose that one of the conditions

�kr � 1

σ
or �kr = 0, (58)

holds. Under this assumption, the term is non-zero only for kp
r = kq

r .
Finally, it remains to prove that non-zero terms are only obtained
when R

p
0 = R

q
0 . The peaks of the two Gaussians in equation (56) can

be considered as sharp and separated if �R0 = R
p
0 − R

q
0 satisfies

the condition

�R0 � σ or �R0 = 0. (59)

To sum up our assumptions so far, we should consider peak-radius
R0, spread σ and radial frequencies kr such that

�R0 � σ � 1

�kr
. (60)

To these conditions, one must also add the constraints obtained
in equations (50) and (51) via Poisson’s equation. With these as-
sumptions, we can ensure that we must necessarily have k

p
φ = k

q
φ ,

kp
r = kq

r and R
p
0 = R

q
0 , in order to have a non-zero term. The last

step is to explicitly calculate the amplitude A of the basis elements.
Indeed, starting from equation (56), we have the condition

− A2 |kr|
G

1√
πσ

∫
dR R exp

[
− (R − R0)2

σ 2

]
= −1, (61)

which may be rewritten as

1 = A2 |kr|
G

R0

2

[
1 + erf

[
R0

σ

]
+ 1√

π

σ

R0
e−R2

0/σ 2
]

. (62)

Using the assumptions made in equation (60), we immedi-
ately conclude that R0/σ � 1, so that erf[R0/σ ] ∼ 1 and
σ/(

√
πR0) exp[−R2

0/σ
2] � 1. We therefore finally obtain the ex-

pression of the amplitude of the basis potentials as

A =
√

G

|kr| R0
. (63)

3.2.4 Fourier development in angles

The diffusion equation involves terms of the form ψ (p)
m ( J), that

we will now evaluate for the WKB basis, equation (46). Using the
epicyclic mapping from equation (44), we need to estimate

ψ
[kφ ,kr,R0]
m ( J) = 1

(2π)2

∫
dθφ

∫
dθR e−imφθφ e−imrθR eikφθφ eikrRg

×e
i[krA cos(θR )−kφ

2�
κ

A
Rg

sin(θR )]ABR0 (Rg+A cos(θR)).

(64)

The integration on θφ is straightforward and is equal to 2πδ
mφ

kφ
.

Looking at the dependence in θR within the complex exponential,
we can write

krA cos(θR) − kφ

2�

κ

A

Rg
sin(θR) = Hkφ

(kr) sin(θR + θ0
R),

where we have defined

Hkφ
(kr) = A

√
k2

r + k2
φ

[
2�

κRg

]2

; θ0
R = tan−1

[
− κ

2�

krRg

kφ

]
. (65)

Thanks to our WKB assumptions, an approximation of the ampli-
tude term Hkφ

(kr) and the phase-shift θR
0 is possible. Indeed, both of

these terms involve an expression of the form 2kφ ×�/κ × 1/(krRg).
Yet, we made the assumption that krRg � 1. Moreover, we know
that for typical galaxies 1/2 ≤ �/κ ≤ 1 (Binney & Tremaine 2008).
Assuming that kφ is of the order of unity, we obtain the approxima-
tions

Hkφ
(kr) � A |kr| �

√
2Jr

κ
|kr|; θ0

R � −π

2
. (66)

We also supposed that the radial oscillations are small, so that the
epicyclic amplitude satisfies A � Rg. Thanks to this assumption,
we may replace BR0 (Rg + A cos(θR)) by BR0 (Rg), keeping the de-
pendence on A only in the complex exponential. This is a crucial
step to be able to integrate explicitly on θR. We also introduce the
Bessel functions of the first kind J� which satisfy the property

eiHkφ
(kr) sin(θR+θ0

R ) =
∑
�∈Z

J�[Hkφ
(kr)] ei�(θR+θ0

R ). (67)

It is then possible to perform explicitly the integration on θR in
equation (64), which is equal to 2π δ

mr
� , so that only one Bessel

function remains. We finally obtain the expression of the Fourier
transform in angles of the basis elements

ψ
[kφ ,kr,R0]
m ( J) = δ

kφ
mφ eikrRg eimrθ

0
RAJmr [Hmφ

(kr)]BR0 (Rg). (68)

3.3 Estimation of the response matrix

Using the explicit WKB potential basis introduced in equation (46),
one can now estimate the matrix response from expression (19).
The approximation obtained in equation (66) allows us to simplify
the phase-shift terms, so that equation (19) becomes

M̂[
k
p
φ ,k

p
r ,R

p
0

]
,
[
k
q
φ ,k

q
r ,R

q
0

] (ω)

= (2π)2
∑

m

∫
d2 J

m · ∂F0/∂ J
ω − m · �

δ
k
p
φ

mφ δ
k
q
φ

mφ eiRg[kq
r −k

p
r ]ApAq

×Jmr (Hmφ
(kp

r ))Jmr (Hmφ
(kq

r ))BR
p
0
(Rg)BR

q
0
(Rg). (69)

One should note that this expression is similar to equation (56).
Indeed, using the assumptions from equation (60), we are able to
ensure that only the diagonal coefficients of the response matrix
are different from 0. First of all, the azimuthal Kronecker symbols
impose that k

p
φ = k

q
φ . There is however a slight complication in the

calculation because of the presence of additional terms depending
on Rg. In order to sketch the proof of this statement, we introduce
the function

h(Rg) =
∣∣∣∣ dJφ

dRg

∣∣∣∣m · ∂F0/∂ J
ω − m · �

ApAqJmr

[√
2Jr

κ
kp

r

]
Jmr

[√
2Jr

κ
kq

r

]
.

(70)

This function captures all the additional Rg dependence appearing
in equation (69). Using the change of variables Jφ �→Rg, the integral
on Jφ which has to be evaluated in equation (69) takes the form∫

dRgh(Rg) eiRg[kq
r −k

p
r ] exp

[
− (Rg − R

p
0 )2

2σ 2
− (Rg − R

q
0 )2

2σ 2

]
.

(71)

Using the assumption from equation (59) relative to the possible
values of �R0 in the WKB basis, one can note that the product
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of the two Gaussians in Rg imposes R
p
0 = R

q
0 in order to have a

non-zero contribution. The previous expression then becomes

(71) ∝
∫

dRg h(Rg) eiRg[kq
r −k

p
r ] exp

[
− (Rg − R0)2

σ 2

]
. (72)

Using the same argument as in equation (57), we can rewrite the
Fourier transform in R as the convolution of two radial Fourier
transforms so that it becomes

(71) ∝
∫

dk′ F [h](k′) exp

[
− (�kr − k′)2

4/σ 2

]
. (73)

We now use equation (58) relative to the possible values of �kr in the
WKB basis. If we suppose that �kr �= 0, the width of the Gaussian
from equation (73) imposes that the integration will only probe the
contribution of F [h] in the neighbourhood of k′ ∼ �kr � 1/σ .
We assume that the radial Fourier transform of the function h is
such that it is mainly focused in the frequency region |k| � 1/σ ,
meaning that for a typical galactic disc, the main frequencies of
radial variations of h are inferior to 1/σ . Under this assumption
of slow radial variation within the disc, one can see that non-zero
contributions can only be obtained for �kr = kp

r − kq
r = 0. As a

consequence, we have shown that within the WKB approximation
the response matrix is diagonal. For these diagonal coefficients, it
only remains to evaluate explicitly the integrals over Jφ and Jr in
order to obtain the expression of the response matrix eigenvalues.
This calculation is presented in Appendix B. Within the assumption
that the galactic disc is tepid, the eigenvalues of the response matrix
take the form

M̂[
k
p
φ ,k

p
r ,R0

]
,
[
k
q
φ ,k

q
r ,R0

] (ω) = δ
k
q
r

k
p
r
δ

k
q
φ

k
p
φ

2πG � |kp
r |

κ2(1 − s2)
F (s, χ ), (74)

where χ and s are, respectively, defined in equations (B6) and (B10)
and F(s, χ ) is the reduction factor introduced in equation (B11). This
amplification eigenvalue is in full agreement with the seminal works
from Kalnajs (1965) and Lin & Shu (1966), which independently
derived the WKB dispersion relation for stellar discs.3

3.4 Estimation of the diffusion coefficients

The expression (35) of the diffusion coefficients shows that the
diffusion coefficients require the evaluation of [I − M̂]−1. In order
to simplify the notations, we will denote our potential basis with
only one index so that

ψ (p) = ψ
[kp

φ ,k
p
r ,R

p
0 ]

. (75)

Equation (74) shows that the response matrix is diagonal in the
WKB approximation. We therefore introduce the eigenvalues of M̂
as

λp ≡ M̂pp. (76)

The matrix [I − M̂]−1 is then diagonal and reads

[I − M̂]−1
pq = δq

p

1

1 − λp

. (77)

Thanks to these diagonal coefficients, the expression of the diffusion
coefficients from equation (35) becomes

Dm( J) = 1

2

∑
p,q

ψ (p)
m ψ (q)∗

m
1

1 − λp

1

1 − λq

Ĉpq (m · �). (78)

3 For nice introductions to the WKB dispersion relation in stellar discs, see
section 6.2.2 of Binney & Tremaine (2008) and section 1.4.2 of Binney
(2013).

At this stage, we use the property from equation (29) to rewrite Ĉpq

as a function of the basis coefficients b̂p and b̂∗
q . Remembering that

the basis elements ψ (p)
m and the matrix eigenvalues λp do not change

from one realization to another, one can rewrite equation (78) under
the form

Dm( J) =
〈

1

2π

∫
dω′ 1

2

∑
p,q

ψ (p)
m ( J) ψ (q) ∗

m ( J)

× 1

1 − λp

1

1 − λq

b̂p(m · �) b̂∗
q (ω′)

〉
. (79)

It is important here to note that the eigenvalues λp, λq and the basis
coefficient b̂p are both evaluated at the intrinsic frequency m · �,
whereas b̂∗

q has to be evaluated at the integrated frequency ω′. In
the upcoming calculations, in order to shorten the notations, when
obvious, the frequencies of evaluation will not be written. Using the
expressions of the basis elements in the WKB approximation from
equation (68), we can write

Dm( J) =
〈

1

2π

∫
dω′ ∑

k
p
r ,k

q
r ,R

p
0 ,R

q
0

1

2

G√
R

p
0 R

q
0

1√
|kp

r k
q
r |

×Jmr

[√
2Jr

κ
kp

r

]
Jmr

[√
2Jr

κ
kq

r

]
eiRg(kp

r −k
q
r ) 1

1 − λp

1

1 − λq

× 1√
πσ 2

exp

[
− (Rg − R

p
0 )2

2σ 2

]
exp

[
− (Rg − R

q
0 )2

2σ 2

]
b̂p b̂∗

q

〉
,

(80)

where we already got rid of the sum over k
p
φ and k

q
φ , since the Fourier

transform of the WKB basis elements from equation (68) imposes
to have

mφ = k
p
φ = k

q
φ. (81)

In the expression (80), we also neglected the phase terms in mrθ
R
0

and simplified the value at which the Bessel functions have to be
evaluated using the approximation introduced in equation (66).

In order to obtain an expression independent from the choice
of the basis (i.e. the precise value of σ ), we will now replace the
coefficients b̂p by their expressions in terms of the true exterior po-
tential function ψe, which is completely independent of the choice
of the basis. As the potential basis in the WKB approximation is bi-
orthogonal, the temporal Fourier transform of the basis coefficients
is given by

b̂p(ω) = −
∫

d2x
[
�(p)(x)

]∗
ψ̂e(x, ω), (82)

where the hat ·̂ corresponds to the temporal Fourier transform
defined in equation (11). Using the expression of the surface density
basis from equation (55), we obtain

b̂p =
∫

dR R

∫
dφ

|kp
r |

2πG
A e−i[kp

r R+k
p
φ φ] BR

p
0
(R) ψ̂e(R, φ).

The integration on φ is straightforward and leads to a term equal to
2π ψ̂e

k
p
φ
(R), where the presence of the index k

p
φ corresponds to the

Fourier transform with respect to the physical angle φ, using the
same conventions as in equation (8). We may now write

b̂p =
√

|kp
r |

GR
p
0

1

(πσ 2)1/4

∫
dRR exp

[
− (R − R

p
0 )2

2σ 2

]
e−iRk

p
r ψ̂e

k
p
φ
(R).

(83)
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This integration should be interpreted as the radial Fourier transform
at the frequency kp

r of the exterior potential in the region close to
R

p
0 . Since the integrand contains a Gaussian in R of spread σ , we

may take the term in R out of the integral and consider it to be equal
to R

p
0 . We now define the local Fourier transform of the exterior

potential on a restricted region of radius (Gabor 1946) as

ψ̂e
kφ ,kr

[R0] = 1

2π

∫
dR ψ̂e

kφ
(R) exp

[
− (R − R0)2

2σ 2

]
e−i(R−R0)kr .

(84)

This definition is motivated by the fact that if we consider the
case of an uniform perturbation ψe = 1, then its local Fourier
transform is independent of R0. One may note that this definition is
not independent of the decoupling scale σ , but as we will see later
on, it is the relevant quantity in order to obtain diffusion coefficients
independent of this ad hoc parameter. Thanks to this definition, the
basis coefficients from equation (83) become

b̂p =
√

|kp
r |Rp

0

G

2π

(πσ 2)1/4
e−iRp

0 k
p
r ψ̂e

k
p
φ ,k

p
r
[Rp

0 ]. (85)

We recall the notation used for the exterior potential in the previ-
ous expression. The index k

p
φ corresponds to the azimuthal Fourier

transform with respect to the physical angle φ, and the index kp
r

corresponds to the local radial Fourier transform with respect to the
physical radius R in the neighbourhood of R

p
0 , as defined in equation

(84). The diffusion coefficients from equation (80) are then given
by

Dm( J) =
〈

1

2π

∫
dω′ ∑

k
p
r ,k

q
r ,R

p
0 ,R

q
0

Jmr

[√
2Jr

κ
kp

r

]
Jmr

[√
2Jr

κ
kq

r

]

× ei(Rg−R
p
0 )kp

r e−i(Rg−R
q
0 )kq

r
1

1 − λp

1

1 − λq

× 2π

σ 2
exp

[
− (Rg − R

p
0 )2

2σ 2

]
exp

[
− (Rg − R

q
0 )2

2σ 2

]

× ψ̂e
mφ,k

p
r
[Rp

0 ] ψ̂e
∗
mφ,k

q
r
[Rq

0 ]

〉
. (86)

One can note that the gravitational constant G has disappeared,
since the dependence on the strength of the gravity is now hidden in
the units of ψe. One should also recall that the previous expression
has to be evaluated at the resonance frequency, so that ω = m · �,
except for ψ̂e

∗
mφ,k

q
r
[Rq

0 ] which has to be evaluated at the frequency
ω′. The main step of the simplification is now to replace the discrete
sums on the basis index kp

r , kq
r , R

p
0 and R

q
0 by continuous integrals.

One should indeed now recall that our potential basis elements are
made of three different index. Here, kφ is a discrete index which
must necessarily be equal to mφ , so that it is absent from the sums,
kr is a continuous index, whose value has to belong to ]1/σ ; ...[,
because of the approximations made in equation (60), and finally R0

whose values belong to ]σ ; ...]. We must also comply with the two
assumptions (58) and (59) about the distance �kr and �R0 between
two consecutive elements of the basis. In order to get rid of the sum
over the discrete index, we will use Riemann formula

∑
f(x)�x �∫

dx f(x), with �x controlling the distance between two consecutive
elements. The dependences with the two radial frequencies kp

r , kq
r

and the two radii R
p
0 , R

q
0 are such that the sums on the index p can

be completely disentangled from the sums on the index q. In order

to emphasize the gist of the calculation, the diffusion coefficients
from equation (86) may be written under the form

Dm( J) =
〈

1

2π

∫
dω′g(m · �) g∗(ω′)

〉
, (87)

where g(ω) is defined as

g(ω) = 2π
∑
k
p
r ,R

p
0

gs(k
p
r , R

p
0 , ω) ei(Rg−R

p
0 )kp

r G(Rg − R
p
0 ). (88)

In equation (88), gs(kp
r , R

p
0 , ω) encompasses all the slow depen-

dences of the diffusion coefficients with respect to the position R0

and the radial frequency kr so that

gs(k
p
r , R

p
0 , ω) = Jmr

[√
2Jr

κ
kp

r

]
1

1 − λk
p
r

ψ̂e
mφ,k

p
r
[Rp

0 , ω], (89)

and G(Rg − R
p
0 ) is a normalized Gaussian given by

G(Rg − R
p
0 ) = 1√

2πσ 2
exp

[
− (Rg − R

p
0 )2

2σ 2

]
. (90)

In the discrete sum from equation (88), the basis elements are sep-
arated by constant step distances �R0 and �kr. We suppose that
generally kp

r and R
p
0 are given by{

kp
r = nk�kr,

R
p
0 = Rg + nr�R0,

(91)

where nk is a strictly positive integer and nr is an integer that can
be both positive and negative. One can note in equation (88) the
presence of a rapidly evolving complex exponential which may
cancel out the diffusion coefficients if the basis step distances are
not chosen carefully. Injecting the dependences from equation (91)
in the complex exponential from equation (88), one can see that we
have to sum terms of the form

exp

(
i(Rg − (Rg + nr�R0)) nk�kr

)
= exp

(
−inrnk�R0�kr

)
.

As a consequence, since nrnk is an integer, in order to have no
contributions from the complex exponential term, one has to choose
step distances so that

�R0 �kr = 2π. (92)

This choice of step distances, imposed by the complex exponential
term, corresponds to a critical sampling (Daubechies 1990), which
allows us when performing the change to continuous expression
in equation (88) to leave out the complex exponential. This trans-
formation is a subtle stage of the calculation, since we require our
step distances �R0 and �kr to be simultaneously large to comply
with the WKB constraints from equation (60) and small to allow the
use of Riemann sum formula. As the radial Gaussian G(Rg − R

p
0 )

is sufficiently peaked and correctly normalized, one can replace it
by δD(Rg − R

p
0 ). The integration on R

p
0 can then be immediately

performed to obtain

g(ω) =
∫

dkp
r gs(k

p
r , Rg, ω). (93)

Using this result in equation (87), we finally obtain the expression
of the diffusion coefficients as

Dm( J) =
〈

1

2π

∫
dω′
∫

dkp
r Jmr

[√
2Jr

κ
kp

r

]
1

1−λk
p
r

ψ̂e
mφ,k

p
r
[Rg]

×
∫

dkq
r Jmr

[√
2Jr

κ
kq

r

]
1

1 − λk
q
r

ψ̂e
∗
mφ,k

q
r
[Rg]

〉
. (94)
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1976 J.-B. Fouvry, C. Pichon and S. Prunet

In this expression, all the radial functions have to be evaluated
at the position Rg and at the temporal frequency m · �, except for

ψ̂e
∗
mφ,k

q
r
[Rg] which is evaluated at the frequency ω′. The eigenvalues

λkr are given by equation (74) and read

λkr [Rg, m · �] = 2πG�|kr|
κ2(1 − s2)

F (s, χ ). (95)

Note that, as requested, in equation (94), all the dependences in σ

have disappeared, so that the value of these diffusion coefficients
is independent of the precise choice of the WKB basis. One can
finally introduce the autocorrelation of the external pertubation Ĉψ

as

Ĉψ [mφ,ω, kp
r , kq

r , Rg]

= 1

2π

∫
dω′
〈
ψ̂e

mφ,k
p
r
[Rg, ω] ψ̂e

∗
mφ,k

q
r
[Rg, ω

′]
〉

, (96)

so that the expression (94) of the diffusion coefficients takes the
form

Dm( J) =
∫

dkp
r Jmr

[√
2Jr

κ
kp

r

]
1

1 − λk
p
r

∫
dkq

r Jmr

[√
2Jr

κ
kq

r

]

× 1

1 − λk
q
r

Ĉψ [mφ, m · �, kp
r , kq

r , Rg]. (97)

We may finally assume that the external perturbations are spatially
quasi-stationary, so that we have〈
ψe

mφ
[R1, t1] ψe∗

mφ
[R2, t2]

〉
= C [mφ, t1 − t2, R1 − R2, (R1 + R2)/2

]
, (98)

where the dependence of C with respect to (R1 + R2)/2 is supposed
to be weak. As demonstrated in Appendix C, one can then show
that〈
ψ̂e

mφ,k1
r
[Rg, ω1] ψ̂e

∗
mφ,k2

r
[Rg, ω2]

〉
= 2π δD(ω1 − ω2) δD(k1

r − k2
r ) Ĉ [mφ,ω1, k

1
r , Rg]. (99)

Using this autocorrelation function diagonalized both in ω and kr,
the expression of the diffusion coefficients from equation (94) fi-
nally takes the form

Dm( J) =
∫

dkr

J 2
mr

[√
2Jr
κ

kr

]
[1 − λkr ]

2 Ĉ [mφ, m · �, kr, Rg]. (100)

Equation (100) is the main result of this section. The corresponding
anisotropic tensor diffusion coefficient reads

D =
∑

m

m ⊗ m
∫

dkr

J 2
mr

[√
2Jr
κ

kr

]
[1 − λkr ]

2 Ĉ [mφ, m · �, kr, Rg].

One may sometimes simplify further equation (100) when the
function kr �→ λkr is a sharp function reaching a maximum value
λmax(Rg, ω = m · �), for kr = kmax(Rg, ω), with a characteristic
spread given by �kλ. Under this assumption of so-called small de-
nominators, the previous expression of the diffusion coefficients
can be approximated as

Dm( J) = �kλ

J 2
mr

[√
2Jr
κ

kmax

]
[1 − λkmax ]2 Ĉ [mφ, m · �, kmax, Rg]. (101)

One should note here that the autocorrelation of the external pertur-
bation C, which sources the diffusion coefficients Dm( J) depends
on four different parameters: the azimuthal wavenumber mφ , the

location in the disc via Rg, the radial frequency kmax of the most
amplified tightly wound spiral at this position, and finally the local
intrinsic frequency m · �.

4 D I S C U S S I O N A N D C O N C L U S I O N

Starting from Boltzmann’s collisionless equation expressed in
angle-actions coordinates and relying on a time-scale decoupling,
we derived in equation (36) a diffusion equation describing the long-
term evolution of a perturbed self-gravitating collisionless system.4

This general formalism is appropriate to capture the nature of a
collisionless system (via its natural frequencies and susceptibility)
as well as its nurture via the structure of the power-spectrum of
the external perturbations. Hence, it yields the ideal framework in
which to study the long-term evolution of such system.

When applying this Fokker–Planck diffusion equation to an in-
finitely thin galactic disc, we used two main approximations. We
first assumed the disc to be tepid. Having orbits with small radial
oscillations justified the use of the epicyclic approximation, allow-
ing us to explicitly build up in equation (44) a mapping between
the physical coordinates (x, v) and the angle-actions coordinates
(θ , J). Another important consequence of the epicyclic develop-
ment is to allow for a direct determination of the local frequencies
of the system � and κ , as in equation (42). Being able to localize
the resonances is crucial in this formalism, since the diffusion co-
efficients from equation (36) show that both the susceptibility of
the system via [I − M̂] and the external perturbing power spectrum
via Ĉ have to be evaluated at the intrinsic frequency m · �. The
second approximation involves an explicit WKB basis introduced
in equation (46). It allowed us to obtain in equation (74) a diag-
onal response matrix, as if gravity was only local. Thanks to the
assumption of radial decoupling, the WKB approximation led to
equation (100), a simple quadrature for the diffusion coefficients,
with which it is straightforward to identify the physically relevant
modes. Such simplification provides useful insight into the physical
processes at work, e.g. the relevant resonances, their loci and their
relative strengths.

The formalism of secular resonant dressed orbital diffusion and
its WKB limit is implemented in the companion paper (Fouvry
& Pichon 2015, hereafter Paper II) to recover the formation of
resonant ridges in action-space when an isolated stellar Mestel disc
(Mestel 1963) is left evolving for hundreds of dynamical times.
The development of such ridges has been shown to originate from
a resonant mono-dimensional diffusion, specifically enhanced in
restricted locations in the disc. It captures the respective roles and
importance of various parameters of the system. Indeed, Paper II
illustrates on an example that the self-gravity of the disc (via the
amplification eigenvalues λ), its susceptibility (via the anistropic
diffusion coefficients Dm( J)), its inhomogeneity (via the gradients
∂F0/∂ J), its temperature (via σ 2

r ), its physical structure (via the
introduction of tapering functions representing, respectively, the
bulge and the outer edge of the disc), and the detail of the source of
perturbations (via the power spectrum of ψe), all contributes non-
negligibly to the appearance of resonant ridges. Such features have
been observed both in numerical experiments (Sellwood 2012) and
in the Solar neighbourhood (Wielen 1977; Dehnen 1998; Nordström
et al. 2004; Famaey et al. 2005; Aumer & Binney 2009; McMillan
2011).

The WKB assumption can also be used to study the collisional
evolution of a self-gravitating disc containing a finite number of

4 Appendix A also shows how this diffusion equation is obtained via a
different route involving Hamilton’s equations.
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Secular resonant dressed orbital diffusion 1977

substructures. Indeed, in Fouvry, Pichon & Chavanis (2015), the
same local WKB approach will be applied to the Lenard–Balescu
non-linear equation (Balescu 1960; Lenard 1960; Weinberg 1998;
Heyvaerts 2010; Chavanis 2012b), which accounts for self-driven
orbital secular diffusion of a self-gravitating system induced by an
intrinsic shot noise due to the discreteness of the system. Possible
cases of applications of this approach are the secular diffusion of
giant molecular clouds in galactic disc, the secular migration of
planetesimals in protoplanetary discs, or even the long-term evolu-
tion of population of stars within the Galactic centre.

For self-gravitating systems which do not take the form of an
infinitely thin disc, for which the epicyclic approximation and the
WKB assumption may be relevant, the formalism of secular forcing
can still be used. The diffusion equation (36) could for instance
describe the secular diffusion of dark matter cusps in galactic cen-
tres induced by perturbations from stochastic feedback processes
originating from the baryonic disc (Fouvry et al. 2015). Given a
detailed characterization of the perturbations induced by e.g. the
cosmic environment, one could also study their long-term effects
on a typical self-gravitating collisionless galactic disc. Indeed, in
the context of the upcoming GAIA mission, this externally induced
secular evolution is thought to be a compelling approach to de-
scribe the radial migration of stars and its impact on the observed
metallicity gradients (Sellwood & Binney 2002; Roškar et al. 2008;
Schönrich & Binney 2009; Solway, Sellwood & Schönrich 2012;
Minchev, Chiappini & Martig 2013). It may also be applied to de-
scribe the secular diffusion of accretion streams within the Galactic
halo. Finally, an extension of the formalism of Section 3 to discs
with a finite thickness might allow us to understand the process of
disc thickening.
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APPENDI X A : STATI STI CAL APPROACH VIA
H A M I LTO N ’ S E QUAT I O N

We now derive the statistical expression (36) of the secular dif-
fusion coefficients using a different method based on Hamilton’s
equations and inspired from Binney & Lacey (1988). We will in-
deed quantify the temporal rate of change of the actions, represented
by J̇ . The main difference between the following calculation and
that made in Binney & Lacey (1988) is that we take explicitly into
account the self-gravity of the system which leads to the appear-
ance of a self-perturbing potential ψ s triggered by ψe. Starting from
the Hamiltonian introduced in equation (1), and using the Fourier
development in angles as in equation (8), Hamilton’s equations,
θ̇ = ∂H/∂ J and J̇ = −∂H/∂θ , take the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

θ̇ = � +
∑

m

eim·θ ∂

∂ J

[
ψ s

m + ψe
m

]
,

J̇ = −i
∑

m

m eim·θ [ψ s
m + ψe

m

]
.

(A1)
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As we aim to describe the wandering in action-space of the particles,
we introduce a limited development of the change in actions and
angles of the form{

θ (t) = θ0 + � t + �θ (t),

J(t) = J0 + �J(t).
(A2)

In order to solve this system of coupled differential equations, we
will proceed step-by-step, by including gradually the perturbative
terms in ψe + ψ s. First of all, one must note that the unperturbed
orbits follow the straight-line trajectories (θ, J) = (θ0 + �t, J0).
Then, the first-order term in action �J is given by

�J(T ) =
∫ T

0
dt J̇(t), (A3)

where J̇ is given by Hamilton’s equations (A1), where all the oc-
currences of θ (t) and J(t) are replaced by the expressions obtained
for the unperturbed orbits. After a time T, the shift in action at first
order is therefore given by

�J(T ) = −i
∑

m

m
∫ T

0
dt
[
ψ s

m( J0, t) + ψe
m( J0, t)

]
eim·(θ0+�t).

We introduce the operation of angle-average on the initial phase θ0

as

{F }θ0 = 1

(2π)d

∫
dθ0 F (θ0). (A4)

In order to characterize the wandering in action-space, one has to
study the behaviour of the square of the perturbation �J . From
Binney & Lacey (1988), we know the relation between the wander-
ing �J in action-space and the diffusion coefficient appearing in
the Fokker–Planck equation, which is given by

Dij ( J0) = 1

2 T
{�Ji �Jj }θ0 (T ), (A5)

where the diffusion equation has been written under the compact
form

∂F

∂t
=
∑
i,j

∂

∂Ji

[
Dij ( J)

∂F

∂Jj

]
. (A6)

Taking an average over the initial phases θ0, using the fact that
ψ

e/s
−m = [ψe/s

m ]∗ and projecting the result on the biorthogonal poten-
tial basis ψ (p), one can write

{�Ji �Jj }θ0 =
∑

m

∑
p,q

mi mjψ
(p)
m ( J0)ψ (q)∗

m ( J0)

×
∫ T

0
dt1

∫ T

0
dt2
[
ap(t1) + bp(t1)

] [
a∗

q (t2) + b∗
q (t2)
]

eim·�(t1−t2).

(A7)

In order to have an expression which only depends on the exterior
potential ψe, we use the convolution relation (20), written as an
amplification relation, to obtain

{�Ji �Jj }θ0 =
∑

m

∑
p,q

∑
k,l

mi mj ψ (p)
m ( J0) ψ (q)∗

m ( J0)

×
∫ T

0
dt1

∫ T

0
dt2

∫ t1

0
dτ1 [I − M]−1

pk (t1 − τ1) bk(τ1)

×
∫ t2

0
dτ2

[
[I − M]−1

ql

]∗
(t2 − τ2) b∗

l (τ2) eim·�(t1−t2). (A8)

This four-dimensional integral is transformed using the change of
variables

u1 = t1 − τ1 ; u2 = t2 − τ2 ; v1 = τ1 + τ2 ; v2 = τ1 − τ2. (A9)

It is straightforward to check that the Jacobian of this transformation
is 2, so that equation (A8) becomes

{�Ji �Jj }θ0 =
∑

m

∑
p,q

∑
k,l

mi mj ψ (p)
m ( J0) ψ (q)∗

m ( J0)

× 1

2

∫ T

0
du1 [I − M]−1

pk (u1) eim·� u1

×
∫ T

0
du2

[
[I − M]−1

ql

]∗
(u2) e−im·� u2

∫ T −u1

−(T −u2)
dv2

×
∫ 2T −u1−u2−|v2+u1−u2|

|v2|
dv1 bk

[
v1 + v2

2

]

× b∗
l

[
v1 − v2

2

]
eim·� v2 . (A10)

We introduce as in equation (27), the operation of ensemble aver-
age over many realizations denoted with 〈 . 〉. As in equation (28),
we assume that the exterior perturbing potential is a stationary ran-
dom process. One can then perform an ensemble average of the
expression (A10), while assuming, as in equation (30), that the re-
sponse matrix coefficients can be taken out of the ensemble average
operation. We obtain

〈{�Ji �Jj }θ0 〉 =
∑

m

∑
p,q

∑
k,l

mi mj ψ (p)
m ( J0) ψ (q)∗

m ( J0)

× 1

2

∫ T

0
du1 [I − M]−1

pk (u1) eim·� u1

×
∫ T

0
du2

[
[I − M]−1

ql

]∗
(u2) e−im·� u2

×
∫ T −u1

−(T −u2)
dv2 Ckl(v2) eim·� v2

× (2T − u1 − u2 − |v2 + u1 − u2| − |v2|).
(A11)

The next important step of the calculation is to compare T with
the various autocorrelation times of the system. The first one is
T ψ

corr describing the typical autocorrelation time of the realizations
of the external perturbations. Two values of the potential pertur-
bations separated by a time larger than T ψ

corr can be considered as
independent. The second autocorrelation time-scale is T M

corr, which
describes the typical autocorrelation time of the response matrix M
and could be called the look-back time. From the expression used
in equation (A8), one can note that the values of the self-response
coefficients are obtained via a non-Markovian mechanism, where
the past values are amplified thanks to the response matrix. How-
ever, the self-gravitating system cannot have an infinite memory, so
that only the sufficiently recent past values should play a role in this
amplification. As a consequence, during the amplification process,
only the past behaviour for a time interval of the order of T M

corr is rel-
evant and amplified, so that T M

corr represents the depth with which the
self-response mechanism can probe past values. We finally suppose
that the time T for which the wandering in phase-space is studied
satisfies the comparison relations

T � T �
corr; T � T M

corr. (A12)
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Secular resonant dressed orbital diffusion 1979

As a consequence, the integration boundaries appearing in (A11)
become

〈{�Ji �Jj }θ0 〉 =
∑

m

∑
p,q

∑
k,l

mi mj ψ (p)
m ( J0) ψ (q)∗

m ( J0)

× 1

2

∫ T M
corr

0
du1 [I − M]−1

pk (u1) eim·� u1

×
∫ T M

corr

0
du2

[
[I − M]−1

ql

]∗
(u2) e−im·� u2

×
∫ T

ψ
corr

−T
ψ
corr

dv2 Ckl(v2) eim·� v2

× (2T − u1 − u2 − |v2 + u1 − u2| − |v2|).
(A13)

Thanks to the assumptions (A12), one can see that the last term of
equation (A11) can be approximated by 2T. The remaining integra-
tions can then be seen as truncated temporal Fourier transforms, so
that equation (A11) becomes

〈{�Ji �Jj }θ0 〉 = T
∑

m

∑
p,q

∑
k,l

mi mj ψ (p)
m ( J0) ψ (q)∗

m ( J0)

× [I − M̂]−1
pk (m · �)

[
[I − M̂]−1

ql (m · �)
]∗

Ĉkl(m · �). (A14)

The last step of the simplification is to recall that equation (19)

guarantees that M̂
∗ = M̂

t
, so that using equation (A5), we finally

obtain the expression of the diffusion coefficients from equation
(A6) which read

Dij ( J0) = 1

2

∑
m

∑
p,q

mi mj ψ (p)
m ( J0) ψ (q)∗

m ( J0)

×
[
[I − M̂]−1 · Ĉ · [I − M̂]−1

]
pq

(m · �) . (A15)

With this approach, we recover the same diffusion coefficients as
the ones obtained in equation (36) via the quasi-linear approach
presented in the main text.

APPENDIX B: W KB RESPONSE MATRIX

We estimate the value of the diagonal response matrix coefficients
introduced in equation (69) within the WKB approximation. Using
the definition of h(Rg) from equation (70) and the fact that Jφ is
an increasing function of Rg, the integration on Jφ in equation (69)
takes the form∫

dRg h(Rg)
1√

2π(σ/
√

2)2

exp

[
− (Rg − R0)2

2(σ/
√

2)2

]
. (B1)

One should note that in this expression, we have a Gaussian of spread
σ/

√
2 in Rg, correctly normalized in order to have an integral over

Rg equal to 1. Assuming that this Gaussian is sufficiently peaked,
we may replace it by δD(Rg − R0), so that the integral on Jφ can be
dropped. For a Schwarzschild distribution function as in equation
(45), we then obtain

M̂[kφ ,kr,R0],[kφ ,kr,R0](ω)

= (2π)2A2

∣∣∣∣ dJφ

dRg

∣∣∣∣
R0

��

πκσ 2
r

∑
mr

1

ω − mrκ − kφ�

×
{[

−mr
κ

σ 2
r

+kφ

∂

∂Jφ

[
ln

(
��

κσ 2
r

)]] ∫
dJr e

− κJr
σ2

r J 2
mr

(Hkφ
(kr))

− kφ

∂

∂Jφ

[
κ

σ 2
r

] ∫
dJr Jr e

− κJr
σ2

r J 2
mr

(Hkφ
(kr))

}
. (B2)

In order to perform the integration on Jr, the first step is to notice
that the only dependence on Jr in the Bessel terms is in Hmφ

(kr),
through A = √

2Jr/κ . Therefore, we will use the two integration
formula (see formula 6.615.1 from Gradshteyn & Ryzhik 2007)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ +∞

0
dJre

−αJr J 2
mr

(β
√

Jr ) = e−β2/2α

α
Imr

[
β2

2α

]
,

∫ +∞

0
dJrJr e−αJrJ 2

mr
(β
√

Jr) = e−β2/2α

α2

{[
− β2

2α
+ 1 + |mr|

]
Imr[

β2

2α

]
+ β2

2α
I|mr|+1

[
β2

2α

]}
.

(B3)

where α > 0, β > 0, and mr ∈ Z. First, let us write out explicitly
the dependence of Hkφ

(kr) with Jr. From equations (43) and (65),
we find that

Hkφ
(kr) =

√
Jr β, (B4)

where β is defined as

β =
√√√√ 2

κ

[
k2

r + k2
φ

[
2�

κRg

]2
]

�
√

2

κ
kr. (B5)

This approximate expression has been obtained using the same
approximation as in equation (66). We also introduce the notation

χ = σ 2
r

κ2

[
k2

r + k2
φ

[
2�

κRg

]2
]

� σ 2
r k2

r

κ2
. (B6)

We are now able to compute the integrals on Jr from equation (B2),
to obtain

M̂[kφ ,kr,R0],[kφ ,kr,R0](ω)

= (2π)2A2

∣∣∣∣ dJφ

dRg

∣∣∣∣
R0

��

πκσ 2
r

∑
mr

1

ω − mrκ − kφ�

×
{

e−χ σ 2
r

κ
Imr [χ ]

[
−mr

κ

σ 2
r

+ kφ

∂

∂Jφ

[
ln

(
��

κσ 2
r

)]]

− kφ

∂

∂Jφ

[
κ

σ 2
r

]
e−χ σ 4

r

κ2

[
(1 + |mr| − χ )Imr [χ ] + χI|mr|+1[χ ]

]}
.

(B7)

In order to simplify this expression, we recall that we have the
property I−mr (χ ) = Imr (χ ). Therefore, in equation (B7), we have
to study four types of sums on mr, which may be simplified as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑
mr∈Z

mr Imr [χ ]

ω′ − mrκ
= − 2

κ

+∞∑
mr=1

Imr [χ ]

1 − [ω′/mrκ]2
,

∑
mr∈Z

Imr [χ ]

ω′ − mrκ
= I0[χ ]

ω′ + 2

ω′

+∞∑
mr=1

Imr [χ ]

1 − [mrκ/ω′]2
,

(B8)
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑
mr∈Z

|mr|Imr [χ ]

ω′ − mrκ
= 2

ω′

+∞∑
mr=1

mr Imr [χ ]

1 − [mrκ/ω′]2
,

∑
mr∈Z

I|mr|+1[χ ]

ω′ − mrκ
= I1[χ ]

ω′ + 2

ω′

+∞∑
mr=1

Imr+1[χ ]

1 − [mrκ/ω′]2
,

(B9)

where we use ω′ = ω − kφ�φ . We define the dimensionless param-
eter s as

s = ω − kφ�

κ
. (B10)

We also introduce the reduction factor F (s, χ ) (Kalnajs 1965; Lin
& Shu 1966) and similar functions G(s, χ ), H(s, χ ) and I(s, χ )
defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (s, χ ) = 2 (1 − s2) e−χ

χ

+∞∑
mr=1

Imr [χ]
1−[s/mr]2 ,

G(s, χ ) = 2 (1 − s2) e−χ

χ

[
1
2
I0[χ]

s
+ 1

s

+∞∑
mr=1

Imr [χ]
1−[mr/s]2

]
,

H(s, χ ) = 2 (1 − s2) e−χ

χ
1
s

+∞∑
mr=1

mr Imr [χ]
1−[mr/s]2 ,

I(s, χ ) = 2 (1 − s2) e−χ

χ

[
1
2
I1[χ]

s
+ 1

s

+∞∑
mr=1

Imr+1[χ]
1−[mr/s]2

]
.

(B11)

Moreover, we notice that we can use the simplification
∂/∂Jφ

[
κ/σ 2

r

]
σ 4

r /κ2 = −∂/∂Jφ

[
σ 2

r /κ
]
, and that thanks to equa-

tion (42), one can also explicitly compute

∣∣∣∣∣ dJφ

dRg

∣∣∣∣∣
R0

= R3
gκ

2

2Jφ

∣∣∣∣∣
R0

= R0κ
2

2�
. (B12)

Finally, using the expression of the amplitude of the basis potentials
from equation (63), we obtain a detailed expression of the matrix
coefficients as

M̂[
k
p
φ ,k

p
r ,R0

]
,
[
k
q
φ ,k

q
r ,R0

] (ω) = δ
k
q
φ

k
p
φ

δ
k
q
r

k
p
r

2πG�|kr|
κ2(1 − s2)

×
{
F (s, χ ) + k

p
φ

σ 2
r

κ

∂

∂Jφ

[
ln

(
��

κσ 2
r

)]
G(s, χ )

+ k
p
φ

∂

∂Jφ

[
σ 2

r

κ

]
[(1 − χ )G(s, χ ) + H(s, χ ) + χI(s, χ )]

}
,

(B13)

where one must remember that within the WKB approximation,
the response matrix is diagonal. For a tepid disc, we may ne-
glect some of the terms appearing in equation (B13). A tepid
disc corresponds to a disc where the orbits possess a small ra-
dial energy, so that all the orbits are close to circular orbits. It also
implies that |∂F0/∂Jr| � |∂F0/∂Jφ |. For a Schwarzschild distri-
bution function, the typical spread in Jr is of the order of σ 2

r /κ ,
so that we may consider equation (B13) as a limited development
in σ 2

r /κ and ∂/∂Jφ

[
σ 2

r /κ
]
. Therefore, for a tepid disc the diago-

nal coefficients of the response matrix finally take the form given
in equation (74).

A P P E N D I X C : AU TO C O R R E L AT I O N
D I AG O NA L I Z ATI O N

Let us now show how the hypothesis of spatially quasi-stationarity
of the external perturbations introduced in equation (98) leads to
a diagonalization of the autocorrelation with respect to the radial
frequencies kr as shown in equation (99). In order to shorten the
notations, we do not write anymore the dependence with respect
to the azimuthal number mφ , and the exterior perturbation will be
noted as ψ = ψe. As a consequence, the assumption of temporal
and quasi-spatial stationarity from equation (98) takes the form

〈ψ[R1, t1] ψ∗[R2, t2]〉 = C[t1 − t2, R1 − R2, (R1 + R2)/2]. (C1)

Equation (94) for the diffusion coefficients requires us to study

the term
〈
ψ̂k1

r
[Rg, ω1] ψ̂ ∗

k2
r
[Rg, ω2]

〉
. Using the definition of the

temporal Fourier transform from equation (11) and the local radial
Fourier transform from equation (84), we may rewrite it as〈
ψ̂k1

r
[Rg, ω1] ψ̂ ∗

k2
r
[Rg, ω2]

〉
= 1

4π2

∫
dt1dt2dR1dR2 eiω1t1 e−iω2t2 〈ψ[R1, t1] ψ∗[R2, t2]〉

× g[Rg − R1] g[Rg − R2] e−i(R1−Rg)k1
r ei(R2−Rg)k2

r , (C2)

where g[R] is defined as

g[R] = exp
[−R2/(2σ 2)

]
. (C3)

We now use the assumption from equation (C1) relative to the radial
dependences of the perturbation autocorrelation, and the change of
variables{

ut = t1 + t2 ; vt = t1 − t2,

ur = 1
2 (R1 + R2) ; vr = R1 − R2.

(C4)

This transformation is of determinant 2, so that equation (C2) be-
comes〈
ψ̂k1

r
[Rg, ω1] ψ̂ ∗

k2
r
[Rg, ω2]

〉
= 1

8π2

∫
dut dvt dur dvr ei

ω1−ω2
2 ut ei

ω1+ω2
2 vt

× e−i(k1
r −k2

r )ur e−i k1
r +k2

r
2 vr eiRg(k1

r −k2
r )

× g[Rg − ur − vr/2] g[Rg − ur + vr/2] C[vt , vr, ur]. (C5)

The integration on ut is straightforward and is equal to
2πδD((ω1 − ω2)/2). The integration on vt is then direct and gives
Ĉ [ω1, vr, ur]. Finally, we note that the product of the two Gaus-
sians in equation (C5) can be rewritten in order to disentangle the
dependences on ur and vr to read

g[Rg − ur − vr/2]g[Rg − ur + vr/2] = g[
√

2(Rg − ur)]g[vr/
√

2],

(C6)

where the presence of
√

2 comes from the definition of the g function
introduced in equation (C3). One can then rewrite equation (C5) as〈
ψ̂k1

r
[Rg, ω1] ψ̂ ∗

k2
r
[Rg, ω2]

〉
= 1

2π
eiRg(k1

r −k2
r )δD(ω1 − ω2)

∫
dvr e−i k1

r +k2
r

2 vrg[vr/
√

2]

×
∫

dur Ĉ [ω1, vr , ur] g[
√

2(Rg − ur)]e
−i(k1

r −k2
r )ur . (C7)

As we have assumed that the function ur �→ Ĉ [ω1, vr, ur] is a slowly
varying function, we may take it out of the integration on ur and
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evaluate it as Ĉ [ω1, vr, Rg]. The remaining integration on ur can
then be computed and reads∫

dur g[
√

2(Rg − ur )]e−i(k1
r −k2

r )ur

= √
πσe−iRg(k1

r −k2
r ) exp

[
− (k1

r − k2
r )2

4/σ 2

]
= 2π δD(k1

r − k2
r ) e−iRg(k1

r −k2
r ), (C8)

where we replaced the Gaussian in k1
r − k2

r by a Dirac delta, while
paying a careful attention to the correct normalization. As a conse-
quence, equation (C7) becomes〈
ψ̂k1

r
[Rg, ω1] ψ̂ ∗

k2
r
[Rg, ω2]

〉
= δD(ω1 − ω2) δD(k1

r − k2
r )

×
∫

dvr e−ik1
r vr Ĉ [ω1, vr, Rg] g[vr/

√
2]. (C9)

Because of the definition from equation (84), the presence of
the factor 1/

√
2 corresponds to the change σ → √

2 σ so that
the remaining integral on vr may be interpreted as a local radial
Fourier transform centred around the position vr = 0. Therefore, we
straightforwardly obtain the diagonalized expression introduced in
equation (99).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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