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ABSTRACT
This paper is the second in a series in which we perform an extensive comparison of various
galaxy-based cluster mass estimation techniques that utilize the positions, velocities and
colours of galaxies. Our aim is to quantify the scatter, systematic bias and completeness of
cluster masses derived from a diverse set of 25 galaxy-based methods using two contrasting
mock galaxy catalogues based on a sophisticated halo occupation model and a semi-analytic
model. Analysing 968 clusters, we find a wide range in the rms errors in log M200c delivered by
the different methods (0.18–1.08 dex, i.e. a factor of ∼1.5–12), with abundance-matching and
richness methods providing the best results, irrespective of the input model assumptions. In
addition, certain methods produce a significant number of catastrophic cases where the mass is
under- or overestimated by a factor greater than 10. Given the steeply falling high-mass end of
the cluster mass function, we recommend that richness- or abundance-matching-based methods
are used in conjunction with these methods as a sanity check for studies selecting high-mass
clusters. We see a stronger correlation of the recovered to input number of galaxies for both
catalogues in comparison with the group/cluster mass, however, this does not guarantee that
the correct member galaxies are being selected. We do not observe significantly higher scatter
for either mock galaxy catalogues. Our results have implications for cosmological analyses
that utilize the masses, richnesses, or abundances of clusters, which have different uncertainties
when different methods are used.

Key words: methods: numerical – methods: statistical – galaxies: haloes – galaxies:
kinematics and dynamics – cosmology: observations.
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1 IN T RO D U C T I O N

Statistical studies of the galaxy cluster population, in particular the
cluster mass function, provide indispensable knowledge of cosmo-
logical model parameters (see Allen, Evrard & Mantz 2011 for a
review, Tinker et al. 2012), large-scale structure (e.g. Bahcall 1988;
Einasto et al. 2001; Yang et al. 2005b; Papovich 2008; Willis et al.
2013) and galaxy evolution (e.g. Goto et al. 2003; Postman et al.
2005; Martı́nez, Coenda & Muriel 2008). However, deducing ac-
curate masses of these gravitationally bound structures remains a
fundamental challenge for current and future cosmological studies.

A variety of techniques exist to detect galaxy clusters, and from
this their masses can be estimated in a number of different ways.
However, cluster masses cannot be directly measured, but only in-
directly inferred from observed properties that are correlated with
mass. To maximize the constraining power of clusters for future
cosmological surveys, it is essential to characterize the level of
scatter and systematic bias associated with these mass proxies. The
Galaxy Cluster Mass Reconstruction Project was created in order
to ascertain how accurately we can measure cluster masses using
techniques that rely upon the positions, velocities, colours and mag-
nitudes of galaxies. Our goals are to quantify the systematic bias,
intrinsic scatter and completeness that these methods produce and
try to enhance their performance by deducing which type of method
(or combination of methods) is best for any given observational
set-up.

There are three general steps that galaxy-based techniques follow.
The first is to locate the cluster overdensity and determine the cluster
centre, the second is to choose which galaxies are members of the
cluster and the final step is to use the properties of this membership
to estimate a cluster mass. Popular cluster finding techniques include
using red sequence filtering techniques (e.g. Gladders & Yee 2000;
Murphy, Geach & Bower 2012; Rykoff et al. 2014) and brightest
cluster galaxy searches (e.g. Yang et al. 2005a; Koester et al. 2007).
Friends-Of-Friends (FOF) group-finding algorithm-based methods
are also widely used (e.g. Berlind et al. 2006; Li & Yee 2008; Jian
et al. 2014; Tempel et al. 2014, see FOF optimization study of
Duarte & Mamon 2014), along with methods based upon Voronoi
tessellation (e.g. Marinoni et al. 2002; Lopes et al. 2004; van
Breukelen & Clewley 2009; Soares-Santos et al. 2011). Finally,
the magnitudes and positions of galaxies are also used to search for
overdensities via the matched filter algorithm (e.g. Postman et al.
1996; Kepner et al. 1999; Olsen et al. 1999; Menanteau et al. 2009).

The second procedure of galaxy-based mass estimation is to de-
duce accurate galaxy membership. Initial membership can be cho-
sen in a variety of ways. Some methods use the galaxies obtained
during the first step of the cluster overdensity search via the FOF al-
gorithm (e.g. Yang et al. 2005b; Yang et al. 2007; Muñoz-Cuartas &
Müller 2012; Tempel et al. 2014; Pearson et al. in preparation). Other
commonly used methods are to select galaxies within a specified
region of the colour–magnitude space (e.g. Saro et al. 2013) or in
projected phase space (e.g. von der Linden et al. 2007; Wojtak et al.
2009; Gifford & Miller 2013; Mamon, Biviano & Boué 2013; Sifón
et al. 2013; Pearson et al. in preparation). Though these techniques
generate an impression of which galaxies are associated with a clus-
ter, deducing which galaxies are true members of the cluster is often
problematic due to interloping galaxies. These interlopers are close
to but not gravitationally bound to the cluster and their inclusion can
lead to strong bias in velocity-dispersion-based mass estimates (e.g.
Lucey 1983; Borgani et al. 1997; Cen 1997; Biviano et al. 2006;
Wojtak et al. 2007; Mamon, Biviano & Murante 2010). To avoid the
inclusion of these interloper galaxies, often methods use a variety

of techniques such as iterative clipping (Yahil & Vidal 1977) or
the gapper technique (Beers, Flynn & Gebhardt 1990; Girardi et al.
1993) to reach convergence on cluster properties. Alternatively, this
interloper contamination can be modelled when performing density
fitting (e.g. Wojtak et al. 2007).

The final and often deemed most important step of galaxy-based
techniques is to use properties of the refined membership to estimate
the cluster mass. One of more traditional methods is to apply the
virial theorem to the projected phase-space distribution of member
galaxies (e.g. Zwicky 1937; Yahil & Vidal 1977; Evrard et al. 2008),
maintaining the assumption that the cluster is in virial equilibrium
(and sometimes including the surface term; see The & White 1986).
Perhaps the simplest of approaches to measure the mass is to use
richness: the number of galaxies associated with the cluster above
a certain magnitude limit (e.g. Yee & Ellingson 2003). The distri-
bution of galaxies in projected phase space is also used to estimate
cluster mass, assuming that the cluster follows a Navarro, Frenk
and White (NFW) density profile (Navarro, Frenk & White 1996,
1997). Finally, in the caustic technique, the escape velocity profile
is identified in projected phase space through an abrupt decrease in
phase-space density at higher velocities, delivering a cluster mass
(e.g. Diaferio & Geller 1997; Diaferio 1999; Gifford & Miller 2013).

In our first study (Old et al. 2014, hereafter Paper I), we set out to
determine the simplest case baseline by using a clean well-defined
data set based on a halo occupation distribution (HOD), hereafter
referred to as ‘HOD1’. This simple model delivers spherically sym-
metric clusters, idealized substructure, a strong richness correlation
and isotropic, isothermal Maxwellian velocities. For this straightfor-
ward test, we found that, above 1014 M�, recovered cluster masses
are correlated with the true underlying cluster mass with scatter of
typically a factor of 2. However, below 1014 M�, the scatter rises
and rapidly approaches an order of magnitude. We also found that
richness-based approaches produced the lowest scatter, though it is
not clear if this is due to the simplicity of the HOD1 model used.

Paper I raised important questions: would a more complex and
realistic input galaxy catalogue change the performance of the dif-
ferent classes of methods in extracting accurate cluster masses? Is
the success of the richness-based methods caused by the simplicity
of the HOD model used to generate the input galaxy catalogue?
To address these questions, we test the performance of 25 differ-
ent galaxy-based methods by using two mock galaxy catalogues
that are produced using more sophisticated, observationally realis-
tic and, most importantly, contrasting models. Using two distinct
mock catalogues for this test not only allows us to evaluate how,
or if, our results vary as a result of the model we use, but also al-
lows us to explore how different prescriptions of populating galax-
ies impacts the efficacy of mock galaxy catalogues. The ultimate
goal of this project is not only to rank cluster mass methods but
to gain insight into how we can improve both the cluster mass
measurement techniques and generate more realistic mock galaxy
catalogues.

The paper is organized as follows. We describe the mock
galaxy catalogue in Section 2, and the mass reconstruction meth-
ods applied to this catalogue are briefly described in Section 3.
In Section 4, we provide details of our analysis and present
our results on cluster mass and membership comparisons in
Section 5. We end with a discussion of our results and conclu-
sions in Section 6. Throughout the paper, we adopt a � cold
dark matter (�CDM) cosmology with �0 = 0.27, �� = 0.73,
σ 8 = 0.82 and a Hubble constant of H0 = 100 km s−1 Mpc−1 where
h = 0.7, although none of the conclusions depend strongly on these
parameters.
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2 DATA

This paper is the second in a series in which we perform an extensive
comparison of galaxy-based techniques using two different mock
galaxy catalogues. The two catalogues are produced by populating
the underlying dark matter simulation with two sophisticated mod-
els that, importantly, are fundamentally different in nature. Both the
more sophisticated HOD, referred to as ‘HOD2’, and semi-analytic
model, referred to as ‘SAM2’, are described below along with a
description of how the light cone was constructed. To deliver a
sample containing both high-mass clusters and lower mass groups,
1000 groups/clusters are selected from the two diverse mock galaxy
catalogues by taking the 800 most massive and then the next 200
richest clusters. Any duplicate clusters present due to the way in
which the light cones are constructed as well as clusters lying close
to the edge of the cone are removed from the main analysis leaving,
968 groups/clusters.

2.1 Underlying dark matter simulation

We begin by using the Bolshoi dissipationless cosmological sim-
ulation which follows the evolution of 20483 dark matter parti-
cles of mass 1.35 × 108 h−1 M� from z = 80 to 0 within a box
of side length 250 h−1 Mpc (Klypin, Trujillo-Gomez & Primack
2011). The force resolution of the simulation is 1 h−1 kpc and
the halo catalogues are complete for haloes with circular velocity
Vcirc > 50 km s−1 (corresponding to M360ρ ≈ 1.5 × 1010 h−1 M�).
The simulation adopts a flat �CDM cosmology with the follow-
ing parameters: �0 = 0.27, �� = 0.73, σ 8 = 0.82, n = 0.95 and
h = 0.70 and was run with the ART adaptive mesh refinement code.
Dark matter haloes, substructure and tidal features are identified
using ROCKSTAR, a 6D FOF group-finder based on adaptive hier-
archical refinement (Behroozi, Wechsler & Wu 2013). This halo
finder has been shown to recover halo properties with high accu-
racy and produces consistent results with other halo finders (Knebe
et al. 2011). The haloes and subhaloes found using ROCKSTAR are
then joined into hierarchical merging trees that describe in detail
how structures grow as the universe evolves.

2.2 Light cone construction

The light cones used in this work were produced using the Theo-
retical Astrophysical Observatory1 (Bernyk et al. 2014), an online
eResearch tool that provides access to semi-analytic galaxy forma-
tion models and N-body simulations, including tools which modify
them to produce more realistic mock catalogues. Here, we use the
light cone generation tool that remaps the original spatial and tem-
poral positions of each galaxy in the box on to an observer cone
specified by the user, which in our case subtends 60◦ by 60◦ on the
sky, covering a redshift range of 0 < z < 0.15. Note that this cone
is not flux limited. However, as in Paper I, we specify a minimum
r-band luminosity for the galaxies of Mr = −19 + 5log h for both
the HOD2 and SAM2 catalogues.

2.3 Halo occupation distribution model

For the HOD2 model, a galaxy group/cluster catalogue was con-
structed with the halo catalogue using an updated version of the
model described in Skibba et al. (2006) and Skibba & Sheth (2009).

1 https://tao.asvo.org.au/tao/

We refer the reader to these papers and Paper I for details. Briefly,
haloes are populated with galaxies whose luminosities and colours
are modelled such that they approximately reproduce the luminos-
ity function, colour–magnitude distribution, and luminosity- and
colour-dependant redshift- and real-space clustering in the Sloan
Digital Sky Survey (SDSS; York et al. 2000). An important assump-
tion in this HOD2 model is that all galaxy properties – their abun-
dances, spatial distributions, velocities, luminosities, and colours–
are determined by parent halo mass alone, using the mass (M200c)
given by the ROCKSTAR algorithm.

The relevant model updates include the following. First, the
Skibba & Sheth (2009) model is extended by allowing for a de-
pendence of the colour distribution on halo mass at fixed luminos-
ity (More et al. 2011; Hearin & Watson 2013; Rodrı́guez-Puebla,
Avila-Reese & Drory 2013), and we include colour gradients within
haloes (van den Bosch et al. 2008; Hansen et al. 2009), which results
in red galaxies having higher number density concentrations than
blue galaxies in haloes of a given mass (as measured by Collister &
Lahav 2005). We include stellar masses based on the Zibetti, Char-
lot & Rix (2009) calibration, and the resulting distributions are
approximately consistent with the Moustakas et al. (2013) stellar
mass function. Secondly, we update the concentration–mass rela-
tion and scatter by adopting those of Wojtak & Mamon (2013) and
account for the fact that galaxies and subhaloes are less concentrated
than dark matter (e.g. Hansen et al. 2005; Yang et al. 2005b, Wojtak
& Mamon 2013) by adopting concentration index cgal = cDM/1.5.
Thirdly, the updated model includes a treatment of dynamically un-
relaxed systems, including some non-central brightest halo galaxies,
central galaxy velocity bias and massive substructures, all of which
depend on host halo mass (see Skibba et al. 2011; Skibba & Macciò
2011).

With these changes, the motions of galaxies in the haloes are no
longer isothermal and isotropic, contrary to the HOD model used
in Paper I. For haloes without these effects, the velocity dispersion
profiles are isothermal and isotropic as in Paper I, with a velocity
dispersion that depends on halo mass and radius through the scaling
σ 2

200 = 1
2 GM200/R200 (but see Mamon et al. 2010; Munari et al.

2013; Old, Gray & Pearce 2013). The updated model, including a
more realistic velocity dispersion profile and an anisotropy model,
will be described in Skibba (in preparation).

2.4 Semi-analytic model

The Semi-Analytic Galaxy Evolution (SAGE) galaxy formation
model used in this work (Croton et al. in preparation) is an updated
version of that described in Croton et al. (2006). The merger trees
described in Section 2.1 form the backbone on which the model of
galaxy formation is applied. Inside each tree and at each redshift,
virialized dark matter haloes are assumed to attract pristine gas
from the surrounding environment, from which galaxies form and
evolve. The model tracks a wide range of galaxy formation physics,
including reionization of the intergalactic medium at early times,
the infall of this gas into haloes, radiative cooling of hot gas and
the formation of cooling flows, star formation in the cold disc of
galaxies and the resulting supernova feedback, black hole growth
and active galactic nuclei (AGN) feedback through the ‘quasar’ and
‘radio’ epochs of AGN evolution, metal enrichment of the inter-
galactic and intracluster medium from star formation, and galaxy
morphology shaped through secular processes, mergers and merger
induced starbursts.

Each group identified by ROCKSTAR has one ‘central’ galaxy
whose central position and velocity is determined by averaging the
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positions and velocities of the subset of halo particles. Each group
also has a number of ‘satellite’ galaxies that maintain the positions
and velocities of the subhaloes that merged with the parent halo. As
a result, galaxies retain the ‘memory’ of the dynamical history of
the underlying DM simulation (this is not the case for the HOD2
model).

The SAGE model is primarily calibrated against z = 0 obser-
vations, including the stellar mass function and SDSS-band lumi-
nosity functions, baryonic Tully–Fisher relation, black hole–bulge
relation, and metallicity–stellar mass relation. At higher redshift,
the model provides a good match to the star formation rate density
evolution and stellar mass function evolution. See Lu et al. (2014)
and Croton et al. (in preparation) for more details and focused
comparisons.

3 MA S S R E C O N S T RU C T I O N M E T H O D S

We present details of the additional cluster mass reconstruction
methods tested in the second phase of the project and we highlight
below any changes to the methods that participated in Phase I of
the project. The type of data the methods require as input and a
summary of the basic properties of all methods are listed in Table 1.
As for Phase I, we provide a more detailed overview of the methods
in Tables A1 and A2 in the appendix. Each method is identified
by an acronym and the subsection titles for each method are given
in the form (author name; initial galaxy selection technique, mass
estimation property). The initial cluster membership is performed
in three classes: projected phase space, FOF, or red sequence. The
subsequent mass estimation is performed according to five classes
of methods: richness, projected phase space, radii, velocity disper-

sions, or abundance matching. For detailed descriptions of meth-
ods that also participated in Phase I of the project, please refer to
Paper I.

3.1 NUM (Mamon; phase space, richness)

In Paper I, NUM was based on the mass derived from a robust
linear fit to mock clusters analysed by the CLE mass estima-
tion method, log

(
MCLE/M�

) = a + b log NCLE
1 Mpc,1333 km s−1 , which

yielded a = 12.02 and b = 1.38. Now NUM uses the robust bilinear
fit to log

(
MCLE/M�

) = a + b log NCLE
1 Mpc,1333 km s−1 + c log(1 + z).

The metric radius is now 1 Mpc comoving. The constants are now
a = 12.43, b = 1.22, c = −4.25 and a = 12.21, b = 1.24, c = −2.53
for the HOD2 and SAM2 catalogues, respectively. For a given rich-
ness log NCLE

1 Mpc,1333 km s−1 , the SAM2 masses are typically 0.19 dex
lower than the HOD2 masses.

3.2 RM1 (Rykoff & Rozo; red sequence, richness)

The Red Sequence Matched-filter Probabilistic Percolation
(REDMAPPER) algorithm (Rykoff et al. 2014), based on the optimized
richness estimator λ (Rykoff et al. 2012), is a photometric cluster
finder that identifies galaxy clusters as overdensities of red sequence
galaxies. It has excellent photo-z performance and λ has been found
to be a low scatter mass proxy (Rozo & Rykoff 2014; Rykoff et al.
2014). The algorithm is divided into two stages: the first is a cali-
bration stage where the red sequence model is derived directly from
the data, and the second is the cluster-finding stage. Given a list of
cluster/halo positions and estimated redshifts, it is also possible to

Table 1. Summary of the cluster mass estimation methods. Listed is an acronym identifying the method, an indication of the main property used to
undertake member galaxy selection and an indication of the method used to convert this membership list to a mass estimate. The type of observational
data required as input for each method is listed in the fourth column. Note that acronyms denoted with an asterisk indicate that the method did not
use our initial object target list but rather matched these locations at the end of their analysis. Please see Tables A1 and A2 in the appendix for more
details on each method.

Method Initial galaxy selection Mass estimation Type of data required Reference

PCN Phase space Richness Spectroscopy Pearson et al. (in preparation)
PFN* FOF Richness Spectroscopy Pearson et al. (in preparation)
NUM Phase space Richness Spectroscopy Mamon et al. (in preparation)
RM1 Red sequence Richness Multiband photometry, sample of central spectra Rykoff et al. (2014)
RM2* Red sequence Richness Multiband photometry, sample of central spectra Rykoff et al. (2014)
ESC Phase space Phase space Spectroscopy Gifford & Miller (2013)
MPO Phase space Phase space Multiband photometry, spectroscopy Mamon et al. (2013)
MP1 Phase space Phase space Spectroscopy Mamon et al. (2013)
RW Phase space Phase space Spectroscopy Wojtak et al. (2009)
TAR* FOF Phase space Spectroscopy Tempel et al. (2014)
PCO Phase space Radius Spectroscopy Pearson et al. (in preparation)
PFO* FOF Radius Spectroscopy Pearson et al. (in preparation)
PCR Phase space Radius Spectroscopy Pearson et al. (in preparation)
PFR* FOF Radius Spectroscopy Pearson et al. (in preparation)
MVM* FOF Abundance matching Spectroscopy Muñoz-Cuartas & Müller (2012)
AS1 Red sequence Velocity dispersion Spectroscopy Saro et al. (2013)
AS2 Red sequence Velocity dispersion Spectroscopy Saro et al. (2013)
AvL Phase space Velocity dispersion Spectroscopy von der Linden et al. (2007)
CLE Phase space Velocity dispersion Spectroscopy Mamon et al. (2013)
CLN Phase space Velocity dispersion Spectroscopy Mamon et al. (2013)
SG1 Phase space Velocity dispersion Spectroscopy Sifón et al. (2013)
SG2 Phase space Velocity dispersion Spectroscopy Sifón et al. (2013)
SG3 Phase space Velocity dispersion Spectroscopy Lopes et al. (2009)
PCS Phase space Velocity dispersion Spectroscopy Pearson et al. (in preparation)
PFS* FOF Velocity dispersion Spectroscopy Pearson et al. (in preparation)
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directly compute the richness and photo-z given the red sequence
calibration.

As REDMAPPER works entirely in observed magnitude space, all
absolute magnitudes from the input catalogue are de-k-corrected to
observed g and r magnitudes using sdss_kcorrect (Blanton &
Roweis 2007). Although REDMAPPER can be run using multiband
data, the current data set comprised only two bands. We use a ran-
dom sample of halo centres as the ‘seed’ spectroscopic galaxies used
to calibrate the red sequence over the redshift range 0.05 < z < 0.15.
Only the Phase 2, HOD2 galaxy sample could be used with REDMAP-
PER, as the colour model in the Phase 2 SAM2 does not result in a
prominent enough red sequence.

Two separate runs of REDMAPPER are performed, with both us-
ing the same calibration as described above. The first run, denoted
RM1, directly computed the richness and photo-z at the location
of each halo (using the true redshift as a starting point). Mass
estimates are made using the abundance-matching estimate for
λ–M200c, calibrated by Rykoff et al. (2012), which follows a power
law (see appendix of Rykoff et al. 2012).

3.3 RM2 (Rykoff & Rozo; red sequence, richness)

This method is similar to RM1, but is a full cluster finding run using
the algorithm of Rykoff et al. (2014). After detection, the clusters
are sorted by descending richness, and each cluster is matched to
the nearest halo within 3σ z. Mass estimates are performed as for
RM1. We note that only for the RM2 run will there be any offsets
between the REDMAPPER cluster centres and the halo centres.

3.4 SG3 (de Carvalho; phase space, velocity dispersion)

SG3 is a method for the rejection of velocity interlopers to produce
a final list of cluster members, making no hypotheses about the dy-
namical status of the cluster (e.g. Wojtak et al. 2007). The algorithm
is similar to the one proposed by Fadda et al. (1996) and used by
SG1 and SG2. It applies the gapper technique in radial bins with
sizes of 0.42 h−1Mpc or larger, to guarantee at least 15 galaxies per
bin. The procedure is repeated until there are no more interlopers
and the list of members is used to estimate cluster properties. We
perform virial analysis in an analogous way to Girardi et al. (1998),
Popesso et al. (2005), Biviano et al. (2006) and Popesso et al. (2007).
First, we compute the robust aperture velocity dispersion (σ ap) of
the cluster depending on the number of members available: gapper
(<15) or bi-weight (≥15; Beers et al. 1990). Then, σ ap is corrected
for redshift errors (Danese, de Zotti & di Tullio 1980) and an es-
timate of virial radius is obtained following Girardi et al. (1998).
These steps lead us to an initial virial mass estimate (equation 5 of
Girardi et al. 1998), which is then corrected for the surface pressure
term (The & White 1986).

After applying such a correction, R200c is estimated considering
the virial mass density. If MV is the virial mass in a volume of radius
RA, then R200c = RA{ρV/[200ρc(z)]}1/2.4, where ρV= 3MV/(4πR3

A)
and ρc(z) is the critical density at redshift z. Finally, assuming an
NFW profile, we obtain M200c from the interpolation (most cases) or
extrapolation of the virial mass MV from RA to R200c. This procedure
is analogous to what is done by Biviano et al. (2006) and Popesso
et al. (2007).

3.5 MVM (Müller; FOF, ABUNDANCE MATCHING)

The member galaxy selection stage of MVM has been modified. In
Phase I, an ellipsoidal boundary was used to define group/cluster

membership. Now membership is determined by including all
galaxies within a joint line-of-sight and plane-of-sky distance from
the group centres until the background galaxy density is reached.

3.6 CLE and CLN (Mamon; phase space, velocity dispersion)

CLE and CLN are as in Paper I, except that when the group is split
by the gapper technique, the subsample containing the mean halo
velocity is kept (instead of the largest one, as in Paper I).

4 A NA LY SIS

We employ various statistics to examine the performance of the
mass reconstruction methods including the root-mean-square (rms)
difference between the recovered and input log mass, the scatter
in the recovered mass, σMRec , the scatter about the true mass σMTrue

and the bias. For the latter three statistics, we assume a model where
there is a linear relationship between the recovered and true log mass
and residual offsets in the recovered mass are drawn from a nor-
mal distribution. Instead of clipping outliers, we try the preferable
approach of modelling the uncertainties in the data as justified in
Hogg, Bovy & Lang (2010). We take a Bayesian approach, com-
puting a likelihood that is a sum of the probability of obtaining the
data point assuming it is drawn from a ‘good’ distribution and the
probability of obtaining the data point assuming it is drawn from a
‘bad’ outlier distribution. This ensures that the measured scatter is
not affected by a very small number of extreme outliers. For exam-
ple, in the case of a method that produces very low scatter in general
but has, say, one or two extreme outliers, the measured scatter will
not be falsely inflated.

Each component of this likelihood is weighted by the probability
that any given point belongs to either of these distributions:

L=
∏

i=1,N

pi

pi = [
(1 − Pb)P (log MRec,i | log MTrue,i , σlog MRec,i , m, c)

+ PbP (log MRec,i | log MTrue,i , σoutlier,m, c)
]
. (1)

Here, Pb is the posterior fraction of objects belonging to the ‘bad’
outlier distribution, σMRec,i is the variance of the ‘good’ distribution
and m, c are the slope and intercept of the fit, respectively, which
together give the bias at any true or recovered mass. The variance of
the ‘bad’ outlier distribution is fixed to be a very large number with
the prior that the variance of the ‘good’ distribution must always
be smaller than variance of the ‘bad’ distribution. Flat priors are
adopted for the variance of the ‘good’ distribution, the slope, the
intercept, while the probability that N data points belong to a ‘bad’
outlier distribution must be between zero and one.

To efficiently sample our parameter space, we utilize Markov
chain Monte Carlo (MCMC) techniques that produce posterior
probability distributions for these parameters. In particular, we use
the parallel-tempered MCMC sampler EMCEE (Foreman-Mackey
et al. 2013). This sampler uses several ensembles of walkers at
different temperatures to explore the parameter space. A walker
represents a point in the parameter space and at each iteration of the
MCMC, the walkers explore by taking a randomly sized step to-
wards another (randomly chosen) walker i.e. towards another point
in parameter space.

Each ensemble of walkers works at a certain ‘temperature’ where
the likelihood is modified, enabling walkers to easily explore differ-
ent local maxima i.e. preventing walkers becoming stuck at regions
of local instead of global maxima in the case of a multimodal
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1902 L. Old et al.

Figure 1. Example of the marginalized probability distributions produced
by our MCMC analysis of the PCN method using the HOD2 catalogue for
the parameters: the slope (m), the intercept (c), the scatter in the recovered
mass (σMRec ) and the posterior fraction of data points belong to the ‘bad’
outlier distribution (Pb).

likelihood. We employ 50 walkers at five temperatures and perform
2800 iterations, including a ‘burn-in’ of 1500 iterations that are
discarded. In total, 50 × 5 × 2800 = 700 000 points in parameter
space are sampled for each method and input catalogue. We use the
autocorrelation length, which is a measure of the number of eval-
uations of the posterior required to produce independent samples
to verify that convergence has been reached. An example of the
marginalized probability distributions of the parameters produced
by this parallel-tempered MCMC can be found in Fig. 1. Figures
of the marginalized probability distributions of parameters for all
methods are available upon request.

Employing various statistics allows us to examine different as-
pects of the performance of the mass reconstruction methods. The
rms encompasses both scatter and bias and, hence, delivers the over-
all uncertainty we can expect for our ensemble of mock clusters.
The scatter in the recovered mass, σMRec , delivers a measure of the
intrinsic scatter, i.e. in the case of no bias (a slope of unity) and no
normalization/offset. The scatter about the true mass, σMTrue , pro-
vides a measure of how well a method performs assuming there is
no normalization/offset in the relationship between recovered and
true log mass. Both the scatter in the recovered mass and scatter
about the true mass are useful quantities to measure when compar-
ing methods, assuming one could accurately calibrate both the bias
and normalization/offset. The bias at the pivot mass is also calcu-
lated, where the pivot mass is taken as the median log mass of the
input groups/clusters sample (log M200c,true = 14.05).

5 R ESULTS AND DISCUSSION

Now that we have described our analysis procedure, we move on
to present the results of the cluster mass estimation comparison.
We consider an effective method to be one that minimizes scatter,
has no bias in the amplitude and the slope of the relation between

recovered to true mass and minimizes catastrophic outliers and
missing groups/clusters (whose masses cannot be determined). We
therefore examine several aspects of method performance in the
following subsections.

5.1 Scatter in group/cluster mass recovery

Fig. 2 shows the recovered versus input log mass for the case of
the HOD2 model. The colour scheme reflects the approach imple-
mented by each method to deliver a cluster mass from a chosen
galaxy membership, as introduced in Section 3. These colours are
magenta (richness), black (phase space), blue (radial), green (abun-
dance matching) and red (velocity dispersion). Methods which se-
lect an initial cluster membership via the FOF linking method have
square-shaped markers, phase-space-based methods have circle-
shaped markers and red sequence-based methods have diamond-
shaped markers.

Fig. 2 clearly shows that most methods produce significant scatter
for this HOD2 mock galaxy catalogue. In the case of radial-based
methods, we find an rms of at least 0.39 dex up to 1.10 dex, which
translates to a factor of 2.5 and 12.6, respectively. We see a better
performance of phase-space- and velocity-dispersion-based meth-
ods for the HOD2 model where scatter is in the range of 0.26 dex
up to 0.47 dex, a factor of ∼1.8–3.0. More traditional richness
methods based on simply counting the number of galaxies outper-
form almost all other methods based on galaxy properties using the
HOD2 model.

Methods PCN, PFN, NUM, RM1 and RM2 generate much
lower scatter of ∼0.18–0.26 dex and the abundance-matching-based
method, MVM, also performs slightly better than the best richness
method (NUM), producing a scatter of 0.17 dex. Note that according
to Poisson statistics and the median number of galaxies in both cat-
alogues (31), richness-based methods should produce a minimum
of scatter of 1/(

√
31 ln 10) = 0.08 dex. This can also be compared

to the intrinsic scatter of both the HOD2 and SAM2 number of
galaxies versus mass, shown in Fig. B1. The rms scatter in this
relation is 0.09 and 0.12 dex, respectively. The recovered log mass
distributions for all methods can be seen in Fig. E3 along with the
true log mass distributions. Fig. 2 also highlights the importance
of the initial galaxy selection stage of mass estimation. PCR, a
method which deduces cluster mass by calculating the rms radius
of galaxies within a 1 Mpc aperture and velocity range, performs
poorly without any interloper removal implemented. However, PFR,
a method also based on the rms radius, is far less affected by the
presence of interloping galaxies as it uses galaxies selected via FOF
linking.

As expected, for the majority of methods, the rms is higher than
for Paper I, as shown Fig. 3, where a catalogue based on a simple
HOD model was used (HOD1). Interestingly, there are some meth-
ods (abundance-matching method MVM, shifting gapper method
SG2, and phase-space-based methods RW and TAR) that actually
have lower rms values for the more complex HOD2 model. When
we examine the residual recovered mass versus true mass for the
HOD2 catalogue, shown in Fig. E1, it becomes evident that the
scatter is substantially higher at lower true masses, although this
effect appears less severe for richness- and abundance-matching-
based methods. In addition to the rms, the scatter in the recovered
mass, σMRec , the scatter about the true mass, σMTrue , the slope and
the bias at the pivot mass can be seen in Table 2 for both the HOD2
and SAM2 models. The final column of the two subtables shows the
merit, a form of ranking based on the rms. It is assigned in different
bins: an rms scatter of below 0.2 dex is assigned eight stars and
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Galaxy Cluster Mass Reconstruction 1903

Figure 2. Recovered versus true cluster mass for the 25 methods applied to the HOD2 input catalogue. The colour scheme reflects the approach implemented
by each method to deliver a cluster mass from a chosen galaxy membership: magenta (richness), black (phase space), blue (radial), green (abundance matching)
and red (velocity dispersion). The solid black line represents the fit to the recovered log mass produced by the MCMC analysis and the filled grey area presents
the 3σ boundary of this fit. The red dotted line represents the 1:1 relation. ‘NR’ in the legend represents the number of missing groups/clusters. The black ticks
that lie across the 1:1 relation represent the minimum and maximum ‘true’ halo log M200c. The vertical red bar (left) represents the mean statistical error and
the vertical blue bar (right) represents the mean systematic error delivered by methods directly.

then decreasing numbers of stars are assigned in subsequent bins
of size 0.05 dex. The final bin of methods producing an rms scatter
greater than 0.5 dex, is given one star. In Paper I of the project, the
ranking of the methods was not binned but instead, each method
was assigned a rank between 1 and 23 corresponding to the lowest
and highest rms. Here, we assign a merit according to rms bins to
highlight the similarity/disparity between the scatter produced by
different methods in a more linear fashion.

We see the same trends in the magnitude of the scatter for different
classes of methods when we look at the scatter in the recovered mass,
σMRec , and the scatter about the true mass, σMTrue . According to these
values, if we assume that the methods have no bias (slope of unity
and zero intercept) in the relation between true and recovered mass,
then they would deliver scatter as low as 0.14–0.15 dex (MVM and
NUM, respectively). Now that we have examined the results for
the sophisticated HOD2 catalogue, we move on to examine how
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1904 L. Old et al.

Figure 3. rms cluster mass accuracies with the simple HOD1 input cata-
logue versus those derived from the more sophisticated HOD2 catalogue.
The dotted black line represents a 1:1 relation. Note: PCR lies beyond the
axes of this figure with an rms of 1.07 dex for HOD2 and 0.74 dex for
HOD1.

well the cluster mass reconstruction methods perform using the
SAM2. Fig. 4 shows the recovered log mass versus input log mass
for 23 participating methods. Note that methods RM1 and RM2
did not participate as the method could not run on the catalogue
due to the less prominent red sequence produced by the SAM2
model. Immediately, we see high levels of scatter for almost all
methods with the exception of NUM. Furthermore, as we saw with
the HOD2 catalogue, this scatter appears significantly worse at
lower group/cluster masses when we look at the residual recovered
mass in Fig. E2. Exceptions are for methods NUM, MP1, TAR and
especially PFO, whose scatter is lower at the low-mass end (though
is still comparably large)! Not only does this show that the scatter
is dependent on the true group/cluster mass but it also suggests that
this mass dependence is not consistent across all methods. This is
confirmed when we examine the values of scatter produced when
the sample is split into lower and higher mass groups/clusters, as
shown in Tables C1 and C2 in the appendix. This implies that if
one had prior knowledge of whether a sample of objects contained
either groups or high-mass clusters (e.g. from other cluster mass
proxies), then more accurate masses would be obtained if a method
that performed best for that mass category were chosen, as opposed
to a method with lower scatter over the entire mass range. The
recovered log mass distributions for all methods can be seen in
Fig. E4 along with the true log mass distributions.

One can compare the scatter found for MPO and MP1 with
the scatter found by Mamon et al. (2013) when they tested this
method on mock projected phase-space distributions derived from
random sampling of the dark matter particle distribution in haloes
of hydrodynamical cosmological simulations. Indeed, Mamon et al.

Table 2. Mass recovery accuracy (rms, scatter in the recovered mass, σMRec , slope, scatter about the true mass σMTrue and the ranking based
on σMTrue ) and the bias at the pivot mass for all clusters, for both the HOD2 and SAM2 input galaxy catalogues. The merit is assigned in
different bins according to the level of scatter computed by the rms. A method producing an rms scatter of below 0.2 dex is assigned eight
stars and then decreasing numbers of stars are assigned in subsequent bins of size 0.05 dex. The final bin of methods producing an rms
scatter greater than 0.5 dex, which is given one star.

Method HOD2 SAM2
rms (dex) σMRec Slope σMTrue Bias Merit rms (dex) σMRec Slope σMTrue Bias Merit

PCN 0.26 0.21 1.32 0.16 0.07 ****** 0.38 0.23 0.78 0.30 0.31 ****
PFN 0.20 0.20 0.89 0.22 −0.02 ******* 0.49 0.38 0.79 0.48 0.32 **
NUM 0.18 0.14 0.83 0.17 −0.07 ******** 0.20 0.15 0.45 0.34 −0.01 *******
RM1 0.21 0.18 0.94 0.19 0.12 *******
RM2 0.21 0.19 0.97 0.19 0.11 *******
ESC 0.36 0.35 0.98 0.36 −0.03 **** 0.40 0.33 1.05 0.32 −0.01 ***
MPO 0.35 0.34 1.20 0.29 −0.05 **** 0.27 0.27 0.90 0.30 −0.02 ******
MP1 0.37 0.29 1.08 0.27 −0.19 **** 0.31 0.24 0.72 0.32 −0.18 *****
RW 0.33 0.31 1.05 0.30 −0.11 ***** 0.30 0.29 0.92 0.32 0.05 ******
TAR 0.27 0.24 1.05 0.23 −0.12 ****** 0.31 0.31 0.91 0.34 −0.03 *****
PCO 0.39 0.34 1.42 0.24 0.10 **** 0.41 0.39 0.93 0.42 0.12 ***
PFO 0.42 0.34 1.33 0.26 0.15 *** 0.62 0.49 1.01 0.49 0.20 *
PCR 1.07 0.79 1.38 0.57 −0.73 * 0.64 0.46 0.76 0.61 0.44 *
PFR 0.51 0.38 0.58 0.66 −0.31 * 0.62 0.48 0.70 0.68 0.40 *
MVM 0.17 0.14 0.65 0.22 0.05 ******** 0.28 0.13 0.62 0.21 0.25 ******
AS1 0.44 0.43 0.98 0.44 0.10 *** 0.54 0.54 1.20 0.45 −0.06 *
AS2 0.47 0.43 0.87 0.50 0.19 ** 0.53 0.53 1.10 0.48 0.07 *
AvL 0.34 0.30 1.03 0.29 0.15 ***** 0.33 0.27 1.08 0.25 0.19 *****
CLE 0.38 0.36 0.98 0.37 −0.11 **** 0.31 0.28 1.06 0.26 −0.12 *****
CLN 0.43 0.31 1.14 0.28 −0.26 *** 0.34 0.26 0.99 0.27 −0.19 *****
SG1 0.43 0.43 0.91 0.47 0.07 *** 0.40 0.39 0.94 0.41 0.10 ****
SG2 0.39 0.31 0.94 0.33 −0.15 **** 0.31 0.28 0.96 0.29 −0.10 *****
SG3 0.26 0.25 1.10 0.23 −0.06 ****** 0.28 0.19 0.92 0.21 0.21 ******
PCS 0.34 0.29 1.04 0.28 −0.17 ***** 0.33 0.28 1.21 0.23 −0.16 *****
PFS 0.35 0.32 1.10 0.29 −0.16 **** 0.56 0.47 0.99 0.47 −0.29 *
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Galaxy Cluster Mass Reconstruction 1905

Figure 4. Recovered versus true cluster mass for the 23 methods applied to the SAM2 input catalogue. Same notation as in Fig. 2.

(2013) found a scatter of 0.040 and 0.058 dex in log R200c for
samples of 500 and 100 galaxies, which, respectively, amount to
0.12 and 0.17 dex for log M200c. In the present study, limited to
the higher mass haloes, MPO and MP1 achieve 0.28 and 0.23 dex
scatter with the HOD2 groups/clusters (Table C1), and 0.22 and
0.21 dex scatter with SAM2 groups/clusters (Table C2). Given that
the present study uses, on average, lower numbers of galaxies per
halo of 38 (HOD2) and 53 (SAM2) for the high-mass subsamples,
our values appear consistent with the scatter values of Mamon
et al. (2013). Similarly, the RW model has been tested by Wojtak

et al. (2009), to yield 0.13 dex for 300 particle haloes, while in the
present study limited to high-mass clusters, RW achieves scatter of
0.27 and 0.26 dex for HOD2 (Table C1) and SAM2 (Table C2),
respectively.

It is also useful to evaluate the effectiveness of using colours to
evaluate the virial masses. For example, the methodology used in
MP1 is identical to that of MPO, except that the former is colour
blind. Table 2 indicates that MPO and MP1 have comparable accu-
racies in mass recovery: for the HOD2 and SAM2 samples, MPO
has a scatter 0.05 and 0.01 dex higher than MP1, but an rms that
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1906 L. Old et al.

Figure 5. rms difference in recovered versus true cluster mass versus the
mean of the recovered log mass distribution, for the 25 methods applied
to the HOD2 input catalogue. The dotted black line identifies where the
mean of the true mass distribution lies. The red dashed line represents
the rms produced when assuming all clusters have the median true mass
of the sample. The number next to each methods’ marker represents the
number of groups/clusters that are not recovered because they are found to
have very low (<1010 M�) or zero mass. Note: PCR lies beyond the axes
of this figure with an rms of 1.07 dex and log M̄200c = 13.37.

is 0.03 and 0.09 dex lower. In other words, the colour information
helps to reduce the bias, but not the scatter.

5.2 Bias in group/cluster mass recovery

The methods do not collectively under- or overestimate the mean
true mass for the HOD2 groups/clusters, as shown in Fig. 5. With
the exception of radial-based techniques, the methods are clustered
around the true mean log mass. Interestingly, this agreement was
not seen in Paper I when the methods systematically underestimated
the mean log mass when tested with the more simple HOD1 model.
We do not see this underestimation with the more sophisticated
HOD2 model as the calibration of velocity dispersions as a function
of halo mass and radius is updated and the treatment galaxy dynam-
ics (which affect the spatial and redshift distributions) is slightly
modified. Fig. 5 also indicates that there is no strong correlation
between the mean recovered mass and scatter produced by the
methods.

A measure of the bias at the pivot mass, which reflects the bias in
the amplitude of the relation between recovered and true log mass, is
shown in Table 2. For the HOD2 catalogue, it is clear that low levels
of bias can be produced by many methods: PFN and ESC produce
a bias of ≤±0.03 whilst other methods MPO, MVM produce a bias
of ≤±0.05. Within method classes we see a wide range of these
bias values.

For the SAM2 catalogue, we also see that the methods do not col-
lectively under- or overestimate the mean true mass for the SAM2
groups/clusters, as shown in Fig. 6. We do however, see slightly
larger values in the bias at the pivot mass, although methods NUM,
ESC, MPO, RW and TAR produce a bias of ≤±0.05. As with the
HOD catalogue, we see a wide range of these bias values within

Figure 6. rms difference in recovered versus true cluster mass versus the
mean of the recovered log mass distribution, for the 23 methods applied
to the SAM2 input catalogue. The dotted black line identifies where the
mean of the true mass distribution lies. The red dashed line represents
the rms produced when assuming all clusters have the median true mass
of the sample. The number next to each methods’ marker represents the
number of groups/clusters that are not recovered because they are found to
have very low (<1010 M�) or zero mass.

Figure 7. Scatter in the recovered cluster mass versus the slope of the fit
to the recovered log mass, both delivered by the likelihood analysis, for
the 25 methods applied to the HOD2 input catalogue. The dotted black
line identifies a slope of unity. The number next to each methods’ marker
represents the number of groups/clusters that are not recovered because they
are found to have very low (<1010 M�) or zero mass.

method classes. Figs 7 and 8 and the result of a Spearman rank
test show that scatter is uncorrelated with slope of the recovered
and input mass relation for the HOD2 model, however, the scat-
ter is marginally correlated with the slope for the SAM2 (with a
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Galaxy Cluster Mass Reconstruction 1907

Figure 8. Scatter in the recovered cluster mass versus the slope of the fit
to the recovered log mass delivered by the likelihood analysis, for the 23
methods applied to the SAM2 input catalogue. This figure follows the same
notation as in Fig. 7.

p-value = 0.0549). Surprisingly, MVM, an abundance-matching-
based method with very low scatter in the recovered mass, has a
low slope of 0.65. This flatter slope artificially boosts the scatter
about the true mass, as we can see from the values in Table 2. The
scatter in the recovered mass is 0.14 dex as opposed to for the scat-
ter about the true mass. This suggests that if MVM were able to
produce a slope equal to unity, the scatter in for this method would
be as low as 0.14 dex.

It is important to understand how our results vary due to the
underlying model used to produce the catalogue. As touched on
above, we see some differences in the recovered masses for different
classes of methods using two very different input mock galaxy
catalogues. Though we see some differences method-to-method,
collectively, the methods do not systematically have substantially
higher scatter or more bias in the slope or amplitude for either
model.

This is especially clear in Figs 9 and 10 where histograms of the
rms and scatter about the true mass are shown for all methods and
each model. There is a surprising similarity between the rms and
scatter in the recovered mass for both the HOD2 and SAM2 models
for many methods. This is encouraging, as it suggests that either
the galaxy population produced by these two contrasting models is
analogous or the methods are insensitive to the differences between
these models.

5.3 Catastrophic outliers and missing clusters

When we examine the performance of these methods, it is clear
that there are a number of groups/clusters whose masses are either

Figure 9. Histogram of the rms of the difference between the recovered and true cluster masses (in dex) for all methods applied to the HOD2 (red) and SAM2
(blue) input catalogues. The black dashed line represents the rms produced when we assume all clusters have the same mass. This uniform mass is chosen to
be the mean input log mass. The number above each bar represents the number of missing groups/clusters.

Figure 10. Histogram of the scatter in the recovered cluster mass (in dex) for all methods using the HOD2 (red) and SAM2 (blue) input catalogues. The
number above each bar represents the number of missing groups/clusters.
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1908 L. Old et al.

Figure 11. Histogram of the percentage of groups/clusters whose recovered mass is overestimated (positive per cent) or underestimated (negative per cent) by
a factor of 10 or more relative to the true mass for all methods applied to the HOD2 (red) and SAM2 (blue) input catalogues. The white segments of each bar
represent the number of missing groups/clusters. Note that the y-axis of this plot is truncated so that detail at the low percentage range is seen more clearly.
PCR falls below this truncation with 32.1 per cent of group/cluster masses underestimated by a factor of 10.

greatly under- or overestimated. For example, in the HOD2 cata-
logue, there are three clusters with mass greater than 1015 M�, but
some methods predict many more clusters with such large masses
[e.g. PCO (39), AS1 (52), AS2 (54) and SG1 (42), see Fig. E4].
Obtaining the correct number of high-mass clusters is crucial for
studies selecting high-mass clusters – given the steeply falling mass
function at the high-mass end, even a small number of false high-
mass cluster measurements would have a large impact.

Furthermore, significant underestimations of mass are also very
detrimental, as cosmological constraining power increases with
lower mass clusters (as signal to noise increases with decreasing
mass). For this reason, it is important to assess the fraction of
groups/clusters for which a method under- or overestimates the mass
by a large factor. The percentage of groups/clusters whose mass is
under- or overestimated by a factor of 10 is shown for all methods
and each model in the form of histograms in Fig. 11. Groups/clusters
whose masses are overestimated by over a factor of 10 are shown as
a positive percentage and those whose are underestimated by over
a factor of 10 are shown as a negative percentage. The percentage
of groups/clusters that are missing i.e. no mass was found for these
objects, is shown in white. Encouragingly, richness-based methods
PCN, NUM, RM1, RM2 and abundance-based method MVM have
extremely low fraction of these failures.

However, some radial-based and velocity-dispersion-based meth-
ods predict masses out by over a factor of 10 for over 50
groups/clusters (i.e. 5 per cent). This result indicates that if these
velocity dispersion, radial-based or phase-space-based methods
are used, it is vital to also apply abundance-matching or certain
richness-based techniques as a sanity check to ensure there are no
catastrophic failures that would misrepresent the shape of the mass
function.

The fractions of groups/clusters whose masses are not recovered
are shown as white segments in Fig. 11. We see a large variation be-
tween methods, but no correlation of the fraction of missing clusters
with method class. Methods such as RM1, RM2, TAR, PCO, PFO
and SG2 do not recover masses for 4–8 per cent of groups/clusters,
whereas many methods recover masses for all clusters e.g. PCN,
PFN, NUM, PCR, PFR, MVM, AvL, PCS and PFS.

5.4 Group/cluster Ngal recovery

In this section, we present the results of the number of galaxies (i.e.
the richness) recovered by the cluster mass reconstruction tech-

niques using both the more sophisticated HOD2 and SAM2 input
galaxy catalogues. Figs 12 and 13 show the recovered log number
of galaxies versus input log number of galaxies for the case of the
HOD2 model and SAM2 model, respectively. The colour scheme,
lines, symbols and statistics are the same as for the mass comparison
figures.

In general, we see a stronger correlation of the recovered richness
to the input richness and lower rms values for the methods for both
the HOD2 and SAM2 catalogues in comparison with group/cluster
mass. The mean rms values produced by methods using both cat-
alogues are 0.31 dex for mass estimation and 0.21 dex for Ngal

estimation, respectively. This is also highlighted in Fig. 14, which
shows the rms difference between the recovered and input log Ngal

for the SAM2 catalogue versus the HOD2 catalogue and Table D1,
which shows this rms, as well as the scatter in the recovered rich-
ness, σNRec , the scatter about the true richness, σNTrue , the slope and
the bias at the pivot number of galaxies.

Again, we see very low rms values for NUM, MVM and radial-
based method PCO for the HOD2 catalogue. The outliers with
higher rms values for the SAM2 catalogue are PFN, PFO, PFR
and PFS, methods that select an initial galaxy membership list
via FOF. Red sequence based methods AS1 and AS2, also have a
very high rms values, though, this is mostly due to the large bias
observed at the pivot mass (−0.48 dex). It is evident from Fig. 14
that all methods have lower scatter in the true number of galaxies
for the HOD2 input catalogue in comparison with for the SAM2
input catalogue. This is not unexpected, as it is the nature of the
HOD2 model to deliver groups/clusters that have a very strong
mass–richness correlation. Interestingly though, this strong boost
in scatter for the SAM2 catalogue does not necessarily translate to
a much larger scatter in the mass, as reflected in Fig. 9.

Now that we have examined the level of scatter for the recovered
richness, we move on to look at the bias. From Table D1, we see
slopes of <1 for the SAM2 catalogue but we do not see the same
behaviour for the HOD2 model and, as in the case of the scatter, this
does not translate to a systematic shallower slope for the recovered
mass. It is important to note that the slope of the Ngal–M200c relation
is lower in the SAM2 as shown in Fig. B1. We also find that the
recovered richness versus recovered mass is as found in Paper I,
where the richness-based methods, have, as expected, very tight
relations. In contrast, many other methods have more scatter in both
recovered number and recovered mass. Note that recovering the
correct number of galaxies does not necessarily guarantee that the
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Galaxy Cluster Mass Reconstruction 1909

Figure 12. Recovered versus true cluster richness for the 25 methods run on the HOD2 input catalogue. The colour scheme reflects the approach implemented
by each method to deliver a cluster mass from a chosen galaxy membership: magenta (richness), black (phase space), blue (radial), green (abundance matching)
and red (velocity dispersion). The solid black line represents the fit to the recovered Ngal produced by the MCMC analysis and the filled grey area presents the
3σ boundary of this fit. The red dotted line represents the 1:1 relation. ‘NR’ in the legend represents the number of missing groups/clusters. The black ticks
that lie across the 1:1 relation represent the minimum and maximum ‘true’ halo Ngal.
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1910 L. Old et al.

Figure 13. Recovered versus true cluster richness for the 23 methods run on the SAM2 input catalogue. This figure follows the same notation as in Fig. 12.

correct member galaxies are being recovered. The fact that we see
substantially lower scatter in the recovered number of galaxies but
not the mass, indicates that it is not sufficient to simply obtain the
correct number of galaxies. To deliver low scatter, it is essential to
get the correct membership.

6 C O N C L U S I O N S

We have performed an extensive test of 25 different galaxy-based
cluster mass reconstruction methods by using two contrasting mock

galaxy catalogues that are produced using sophisticated, observa-
tionally realistic HOD2 and SAM2 models, run on the same halo
merger tree extracted from the same cosmological N-body simula-
tion. The aim of this work is to determine the level of scatter, the
bias and completeness that these methods produce, giving insight
into how we can improve on these techniques while generating
more realistic mock galaxy catalogues. The main results are as
follows.

(i) Phase-space- and velocity-dispersion-based methods deliver
a similar level of rms scatter within the range of a factor of ∼1.8–3,
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Galaxy Cluster Mass Reconstruction 1911

Figure 14. rms cluster richness errors from the 23 methods applied to the
SAM2 input catalogue versus those found when applied to the HOD2 input
catalogue. The dotted black line represents a 1:1 relation.

whilst radial-based methods perform significantly worse, delivering
an rms scatter of within a factor of ∼2.5–12.

(ii) Richness-based methods produce a comparably lower level
of rms scatter within the range of a factor of ∼1.5–3.1. The lower
rms scatter produced by richness-based methods for both HOD2 and
SAM2 mock catalogues (where different assumptions are employed
to populate dark matter haloes with galaxies) suggest that the good
performance of these methods is robust. The abundance matching-
based technique we tested also produces a comparably lower level
of rms scatter within the range of a factor of ∼1.5–1.9 for both
models.

(iii) For many, but not all methods, we find that the scatter is
group/cluster mass-dependent and the direction of this dependence
varies across methods.

(iv) As expected, for the majority of methods, the scatter is higher
than for Paper I, where 23 methods were tested on a catalogue
based on a simple HOD model. Though, interestingly, there are
four methods that have lower rms values for the more complex
HOD2 model.

(v) We see a large variation of bias in the slope of the recovered
and input mass relation across all methods for both the HOD2 and
SAM2 galaxy catalogues.

(vi) Many methods produce a significant number of catastrophic
failures, where group/cluster masses are over- or underestimated
by a factor of ≥10. For studies selecting high-mass clusters, these
failures can be detrimental due to the steeply falling high-mass
end of the cluster mass function. For this reason, we recommend
that richness or abundance matching-based methods are used as a
sanity check in conjunction with phase-space-, velocity-dispersion-
or radial -based methods when high cluster masses are recovered.

(vii) We see a stronger correlation of the recovered to input num-
ber of galaxies for both catalogues in comparison with recovered
to input group/cluster mass. The mean rms produced by methods
using both catalogues 0.31 dex for mass estimation and 0.21 dex for
Ngal estimation. However, this does not mean the correct member
galaxies are being selected. The boost in scatter from the number of
galaxies to mass indicates that the selection of the correct galaxies

(and not just the correct number of galaxies) is a key to delivering
lower scatter for these methods.

(viii) We see a variation of bias in the slope of the recovered
and input number of galaxies relation across all methods for the
HOD2, however, all methods produce a slope of less than unity for
the SAM2 galaxy catalogue.

(ix) Though we see some differences method-to-method, in gen-
eral, methods do not have significantly higher scatter for either the
more sophisticated HOD2 or the SAM2 galaxy catalogues. This is
encouraging, as it suggests that either the galaxy population pro-
duced by these two contrasting models is analogous or the methods
are insensitive to the differences between these models.

There are several outstanding questions that we hope to address in
future using our data set. What is the impact of observational limi-
tations such as fibre collisions or survey artefacts on group/cluster
membership and hence mass recovery? What is the impact of halo
shape and concentration on group/cluster mass recovery (Wojtak
et al. in preparation)? What produces the catastrophic under- or
overestimates in each of the 25 methods? These projects share the
overall goal of improving or constructing more accurate cluster
mass reconstruction techniques.
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Popesso P., Biviano A., Böhringer H., Romaniello M., 2007, A&A, 461,

397
Postman M., Lubin L. M., Gunn J. E., Oke J. B., Hoessel J. G., Schneider

D. P., Christensen J. A., 1996, AJ, 111, 615
Postman M. et al., 2005, ApJ, 623, 721
Rodrı́guez-Puebla A., Avila-Reese V., Drory N., 2013, ApJ, 767, 92
Rozo E., Rykoff E. S., 2014, ApJ, 783, 80
Rykoff E. S. et al., 2012, ApJ, 746, 178
Rykoff E. S. et al., 2014, ApJ, 785, 104
Saro A., Mohr J. J., Bazin G., Dolag K., 2013, ApJ, 772, 47
Sifón C. et al., 2013, ApJ, 772, 25
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812
Yahil A., Vidal N. V., 1977, ApJ, 214, 347
Yang X., Mo H. J., van den Bosch F. C., Jing Y. P., 2005a, MNRAS, 356,

1293
Yang X., Mo H. J., van den Bosch F. C., Jing Y. P., 2005b, MNRAS, 357,

608
Yang X., Mo H. J., van den Bosch F. C., Pasquali A., Li C., Barden M.,

2007, ApJ, 671, 153
Yee H. K. C., Ellingson E., 2003, ApJ, 585, 215
York D. G. et al., 2000, AJ, 120, 1579
Zibetti S., Charlot S., Rix H.-W., 2009, MNRAS, 400, 1181
Zwicky F., 1937, ApJ, 86, 217

MNRAS 449, 1897–1920 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/449/2/1897/1079140 by C
N

R
S - ISTO

 user on 26 April 2022

http://arxiv.org/abs/1008.4686


Galaxy Cluster Mass Reconstruction 1913

A P P E N D I X A : PRO P E RTI E S O F TH E M A S S R E C O N S T RU C T I O N M E T H O D S

Table A1. Illustration of the member galaxy selection process for all methods. The second column details how each method selects an initial member galaxy
sample, while the third column outlines the member galaxy sample refining process. Finally, the fourth column describes how methods treat interloping
galaxies that are not associated with the clusters.

Methods Member galaxy selection methodology
Initial galaxy selection Refine membership Treatment of interlopers

PCN Within 5 Mpc, 1000 km s−1 Clipping of ±3 σ , using galaxies within
1 Mpc

Use galaxies at 3−5 Mpc to find interloper
population to remove

PFN FOF No No
NUM Within 3 Mpc, 4000 km s−1 (1) Estimate R200c from the relationship

between R200c and richness deduced from
CLE; (2) Select galaxies within R200c and
with |v| < 2.7 σNFW

los (R)

No

RM1 Red sequence Red sequence Probabilistic
RM2 Red sequence Red sequence Probabilistic
ESC Within preliminary R200c estimate and

±3500 km s−1
gapper technique Removed by gapper technique

MPO Input from CLN (1) Calculate R200c, Rρ , Rred, Rblue by
MAMPOSSt method; (2) Select members
within radius according to colour

No

MP1 Input from CLN Same as MPO except colour blind No
RW Within 3 Mpc, 4000 km s−1 Within R200c, |2�(R)|1/2, where R200c

obtained iteratively
No

TAR FOF No No
PCO Input from PCN Input from PCN Include interloper contamination in density

fitting
PFO Input from PFN Input from PFN No
PCR Input from PCN Input from PCN Same as PCN
PFR Input from PFN Input from PFN No
MVM FOF (ellipsoidal search range, centre of most

luminous galaxy)
Increasing mass limits, then FOF, loops until
closure condition

No

AS1 Within 1 Mpc, 4000 km s−1, constrained by
colour–magnitude relation

Clipping of ±3 σ Removed by clipping of ±3 σ

AS2 Within 1 Mpc, 4000 km s−1, constrained by
colour–magnitude relation

Clipping of ±3 σ Removed by clipping of ±3 σ

AvL Within 2.5 σv and 0.8 R200 Obtain R200c and σv by σ -clipping No
CLE Within 3 Mpc, 4000 km s−1 (1) Estimate R200c from the aperture velocity

dispersion; (2) Select galaxies within R200c

and with |v| < 2.7 σNFW
los (R); (3) Iterate

steps 1 and 2 until convergence

Obvious interlopers are removed by velocity
gap technique, then further treated in
iteration by σ clipping

CLN Input from NUM Same as CLE Same as CLE
SG1 Within 4000 km s−1 (1) Measure σ gal, estimate M200c and R200c;

(2) Select galaxies within R200c; (3) Iterate
steps 1 and 2 until convergence

Shifting gapper with minimum bin size of
250 kpc and 15 galaxies; velocity limit
1000 km s−1 from main body

SG2 Within 4000 km s−1 (1) Measure σ gal, estimate M200c and R200c;
(2) Select galaxies within R200c; (3) Iterate
steps 1 and 2 until convergence

Shifting gapper with minimum bin size of
150 kpc and 10 galaxies; velocity limit
500 km s−1 from main body

SG3 Within 2.5 h−1 Mpc and 4000 km s−1.
Velocity distribution symmetrized

Measure σ gal, correct for velocity errors,
then estimate M200c and R200c and apply the
surface pressure term correction

Shifting gapper with minimum bin size of
420 h−1kpc and 15 galaxies

PCS Input from PCN Input from PCN Same as PCN
PFS Input from PFN Input from PFN No
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1914 L. Old et al.

Table A2. Characteristics of the mass reconstruction process of methods used in this comparison. The second, third, fourth and fifth columns illustrate
whether a method calculates/utilizes the velocities, velocity dispersion, radial distance of galaxies from cluster centre, the richness and the projected
phase-space information of galaxies, respectively. If a method assumed a mass or number density profile, it is indicated in columns six and seven.

Methods Galaxy properties used to obtain group/cluster membership and estimate mass
Velocities Velocity dispersion Radial distance Richness Projected phase space Mass density profile Number density profile

PCN Yes No No Yes No No No
PFN Yes No No Yes No No No
NUM No No No Yes Yes No No
RM1 No No Yes Yes No No NFW
RM2 No No Yes Yes No No NFW
ESC Yes Yes Yes No No Caustics No
MPO Yes No Yes No Yes NFW Yes
MP1 Yes No Yes No Yes NFW Yes
RW Yes No Yes No Yes NFW Yes
TAR Yes Yes Yes No No NFW No
PCO Yes No No No No NFW Yes
PFO Yes No No No No NFW Yes
PCR Yes No Yes No No No No
PFR Yes No Yes No No No No
MVM Yes Yes Yes No No NFW No
AS1 Yes Yes No No No No No
AS2 Yes No Yes No Yes No No
AvL Yes Yes Yes No No No No
CLE Yes Yes No No No NFW NFW
CLN Yes Yes No No No NFW NFW
SG1 Yes Yes Yes No No No No
SG2 Yes Yes Yes No No No No
SG3 Yes Yes Yes No No No No
PCS Yes Yes No No No No No
PFS Yes Yes No No No No No

APPENDIX B: R ICHNESS AND VELOCITY DI SPERSI ON – MASS R ELATI ONS

Figure B1. Upper row: richness versus mass of the 968 groups/clusters for both the HOD2 and SAM2 input catalogues. The intrinsic scatter of the richness
versus mass relation of the HOD2 and SAM2 catalogue is 0.09 and 0.12 dex, respectively. Lower row: velocity dispersion versus mass of the 968 groups/clusters
for both the HOD2 and SAM2 input catalogues. The velocity dispersion is calculated by taking the deviation of the line-of-sight velocities of all member
galaxies associated with the groups/clusters. The intrinsic scatter of the velocity dispersion versus mass relation is 0.071 and 0.066 dex for HOD2 and SAM2,
respectively. We note that this scatter is higher than other studies find e.g. Munari et al. (2013), where the 3D velocity dispersion is calculated as opposed to
the line-of-sight velocity dispersion, resulting in larger scatter.
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Galaxy Cluster Mass Reconstruction 1915

A P P E N D I X C : MA S S R E C OV E RY AC C U R AC Y F O R L OW A N D H I G H G RO U P / C L U S T E R S A M P L E S

Table C1. Mass recovery accuracy (rms, scatter in the recovered mass (σMRec ), slope, scatter about the true mass (σMTrue ) and the ranking
based on σMTrue ) for low- and high-mass clusters (split according to the median true mass in each subsample) for the HOD2 input catalogue.
A method producing an rms scatter of below 0.2 dex is assigned eight stars and then decreasing numbers of stars are assigned in subsequent
bins of size 0.05 dex. The final bin of methods producing an rms scatter greater than 0.5 dex, is given one star.

Method HOD2 low masses HOD2 high masses
rms (dex) σMRec Slope σMTrue Bias Merit rms (dex) σMRec Slope σMTrue Bias Merit

PCN 0.23 0.23 1.21 0.19 0.03 ******* 0.29 0.18 1.28 0.14 0.14 ******
PFN 0.21 0.21 0.79 0.27 −0.01 ******* 0.19 0.18 0.94 0.19 −0.04 ********
NUM 0.17 0.16 0.72 0.22 −0.06 ******** 0.19 0.13 0.82 0.16 −0.09 ********
RM1 0.22 0.18 0.57 0.32 0.11 ******* 0.20 0.17 0.99 0.17 0.11 ********
RM2 0.23 0.20 0.55 0.37 0.09 ******* 0.20 0.17 1.00 0.17 0.11 ********
ESC 0.44 0.44 0.78 0.57 −0.02 *** 0.26 0.26 1.16 0.22 −0.05 ******
MPO 0.40 0.39 1.28 0.31 −0.07 **** 0.30 0.28 1.17 0.24 −0.01 *****
MP1 0.41 0.34 1.07 0.32 −0.20 *** 0.33 0.23 1.07 0.22 −0.17 *****
RW 0.37 0.35 1.24 0.28 −0.10 **** 0.29 0.27 1.07 0.25 −0.11 ******
TAR 0.31 0.27 1.01 0.27 −0.14 ***** 0.23 0.21 0.99 0.21 −0.10 *******
PCO 0.44 0.42 1.48 0.29 0.03 *** 0.35 0.29 1.43 0.20 0.17 *****
PFO 0.47 0.40 1.60 0.25 0.12 ** 0.37 0.27 1.31 0.21 0.20 ****
PCR 1.28 0.97 0.93 1.04 −0.84 * 0.82 0.56 0.99 0.56 −0.60 *
PFR 0.49 0.42 0.45 0.94 −0.26 ** 0.53 0.34 0.63 0.54 −0.39 *
MVM 0.19 0.16 0.59 0.26 0.08 ******** 0.16 0.13 0.61 0.20 −0.00 ********
AS1 0.50 0.49 1.10 0.45 0.11 ** 0.38 0.37 1.02 0.37 0.08 ****
AS2 0.53 0.49 0.99 0.49 0.21 * 0.40 0.38 0.92 0.41 0.15 ***
AvL 0.38 0.34 1.09 0.32 0.16 **** 0.29 0.25 1.08 0.23 0.15 ******
CLE 0.43 0.42 1.08 0.39 −0.09 *** 0.33 0.30 1.11 0.27 −0.14 *****
CLN 0.48 0.36 1.27 0.28 −0.28 ** 0.37 0.25 1.11 0.22 −0.23 ****
SG1 0.50 0.50 1.11 0.45 0.10 * 0.35 0.35 0.99 0.35 0.03 *****
SG2 0.45 0.36 0.97 0.37 −0.14 ** 0.32 0.24 1.00 0.24 −0.18 *****
SG3 0.29 0.28 1.08 0.26 −0.08 ****** 0.22 0.21 1.05 0.20 −0.04 *******
PCS 0.37 0.33 1.09 0.30 −0.16 **** 0.31 0.26 1.13 0.23 −0.18 *****
PFS 0.37 0.34 1.42 0.24 −0.15 **** 0.33 0.27 1.14 0.24 −0.15 *****

Table C2. Mass recovery accuracy for low- and high-mass groups/SAM2 clusters. Same notation as Table C1.

Method SAM2 low masses SAM2 high masses
rms (dex) σMRec Slope σMTrue Bias Merit rms (dex) σMRec Slope σMTrue Bias Merit

PCN 0.41 0.23 0.12 1.96 0.31 *** 0.35 0.22 0.90 0.25 0.27 *****
PFN 0.51 0.37 0.26 1.41 0.34 * 0.47 0.38 0.97 0.40 0.28 **
NUM 0.19 0.15 0.03 −5.41 0.03 ******** 0.22 0.15 0.50 0.30 −0.10 *******
ESC 0.42 0.41 1.13 0.36 −0.02 *** 0.38 0.26 1.08 0.24 −0.01 ****
MPO 0.31 0.31 1.01 0.30 −0.01 ***** 0.23 0.22 0.89 0.25 −0.04 *******
MP1 0.30 0.26 0.79 0.33 −0.14 ****** 0.32 0.21 0.71 0.29 −0.22 *****
RW 0.34 0.33 0.89 0.37 0.06 ***** 0.26 0.26 0.95 0.27 0.04 ******
TAR 0.30 0.30 0.37 0.79 −0.03 ***** 0.31 0.31 1.09 0.28 −0.06 *****
PCO 0.41 0.38 0.06 −6.36 0.11 *** 0.41 0.38 1.30 0.29 0.09 ***
PFO 0.60 0.46 0.13 3.53 0.20 * 0.64 0.57 1.49 0.38 0.13 *
PCR 0.71 0.54 0.70 0.77 0.45 * 0.56 0.37 0.60 0.62 0.43 *
PFR 0.67 0.50 0.37 1.35 0.42 * 0.57 0.46 0.75 0.60 0.35 *
MVM 0.33 0.14 0.74 0.19 0.29 ***** 0.22 0.12 0.55 0.22 0.19 *******
AS1 0.63 0.62 1.23 0.51 −0.08 * 0.45 0.45 1.30 0.34 −0.04 ***
AS2 0.62 0.62 1.18 0.52 0.06 * 0.44 0.44 1.20 0.36 0.07 ***
AvL 0.35 0.30 1.27 0.24 0.19 **** 0.31 0.24 1.12 0.22 0.19 *****
CLE 0.33 0.31 1.32 0.24 −0.11 ***** 0.28 0.25 1.07 0.24 −0.11 ******
CLN 0.37 0.30 1.14 0.26 −0.18 **** 0.31 0.24 1.00 0.24 −0.19 *****
SG1 0.46 0.45 0.96 0.47 0.11 ** 0.33 0.32 0.95 0.34 0.08 *****
SG2 0.33 0.32 1.26 0.25 −0.07 ***** 0.29 0.24 1.01 0.24 −0.12 ******
SG3 0.30 0.21 0.89 0.24 0.21 ***** 0.26 0.18 0.93 0.19 0.20 ******
PCS 0.36 0.31 1.23 0.25 −0.18 **** 0.28 0.25 1.27 0.20 −0.14 ******
PFS 0.56 0.49 0.78 0.63 −0.28 * 0.55 0.44 1.17 0.38 −0.31 *
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1916 L. Old et al.

APPENDIX D : R ICHNESS R ECOV ERY

Table D1. The rms, scatter in the observed richness, σNgal,obs , slope, scatter about the true richness σNgal,true and the bias
at the pivot richness (for the HOD2: log Ngal, true = 1.41 and for the SAM2: log Ngal, true = 1.54).

Method HOD2 SAM2
rms (dex) σNgal,obs Slope σNgal,true Bias rms (dex) σNgal,obs Slope σNgal,true Bias

PCN 0.12 0.09 0.86 0.10 0.00 0.15 0.12 0.62 0.19 −0.00
PFN 0.19 0.17 0.92 0.18 0.09 0.44 0.35 0.89 0.39 0.27
NUM 0.11 0.10 0.97 0.10 0.02 0.16 0.15 0.77 0.19 0.04
RM1 0.17 0.14 0.95 0.15 −0.08
RM2 0.18 0.15 0.98 0.15 −0.09
ESC 0.14 0.14 0.94 0.14 0.03 0.25 0.20 0.90 0.23 0.03
MPO 0.13 0.12 1.05 0.12 −0.04 0.20 0.19 0.89 0.21 −0.07
MP1 0.15 0.13 1.03 0.13 −0.07 0.23 0.19 0.84 0.23 −0.11
RW 0.13 0.13 0.98 0.13 0.00 0.18 0.18 0.88 0.20 0.02
TAR 0.13 0.13 0.94 0.14 0.01 0.24 0.24 0.90 0.26 0.04
PCO 0.10 0.09 0.85 0.11 0.01 0.14 0.12 0.61 0.19 0.00
PFO 0.19 0.16 0.90 0.18 0.10 0.43 0.32 0.91 0.35 0.29
PCR 0.12 0.09 0.86 0.10 0.00 0.15 0.12 0.62 0.19 −0.00
PFR 0.19 0.17 0.92 0.18 0.09 0.44 0.35 0.89 0.39 0.27
MVM 0.11 0.09 0.77 0.11 0.02 0.17 0.12 0.63 0.18 0.12
AS1 0.22 0.17 0.78 0.22 −0.13 0.54 0.15 0.56 0.27 −0.48
AS2 0.22 0.17 0.78 0.22 −0.13 0.54 0.15 0.56 0.27 −0.48
AvL 0.12 0.11 0.97 0.11 0.01 0.17 0.17 0.92 0.19 0.01
CLE 0.15 0.15 0.99 0.15 0.01 0.20 0.20 0.93 0.21 −0.02
CLN 0.14 0.13 1.07 0.12 −0.04 0.21 0.19 0.90 0.21 −0.07
SG1 0.18 0.17 0.94 0.18 0.05 0.23 0.22 0.91 0.25 0.08
SG2 0.17 0.16 0.97 0.16 −0.04 0.22 0.20 0.92 0.22 −0.08
SG3 0.21 0.18 0.99 0.18 0.12 0.39 0.16 0.69 0.22 0.37
PCS 0.12 0.09 0.86 0.10 0.00 0.15 0.12 0.62 0.19 −0.00
PFS 0.19 0.17 0.92 0.18 0.09 0.44 0.35 0.90 0.39 0.27
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Galaxy Cluster Mass Reconstruction 1917

APPENDIX E: R ESIDUA LS AND RECOVERED MASS D I STRI BUTI ONS

Figure E1. Residuals of the recovered versus true cluster mass for the 25 methods using the HOD2 input catalogue. This figure follows the same notation as
in Fig. 2.
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1918 L. Old et al.

Figure E2. Residuals of the recovered versus true cluster mass for the 23 methods applied to the SAM2 input catalogue. This figure follows the same notation
as in Fig. E1.
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Galaxy Cluster Mass Reconstruction 1919

Figure E3. Recovered cluster mass distributions for the 25 methods applied to the HOD2 input catalogue. The red dotted line represents the mean of the true
mass distribution and the grey distributions on each subplot represent the true mass distributions.
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1920 L. Old et al.

Figure E4. Recovered mass distributions for the 23 methods applied to the SAM2 input catalogue. This figure follows the same notation as in Fig. E3.
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