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As we showed in previous work, the dynamics and gravitational emission of binary neutron-star systems
in certain scalar-tensor theories can differ significantly from that expected from general relativity (GR) in
the coalescing stage. In this work we examine whether the characteristics of the electromagnetic
counterparts to these binaries—driven by magnetosphere interactions prior to the merger event—can
provide an independent way to test gravity in the most strongly dynamical stages of binary mergers. We
find that the electromagnetic flux emitted by binaries in these scalar-tensor theories can show deviations
from the GR prediction in particular cases. These differences are quite subtle, thus requiring delicate
measurements to differentiate between GR and the type of scalar-tensor theories considered in this work
using electromagnetic observations alone. However, if coupled with a gravitational-wave detection,
electromagnetic measurements might provide a way to increase the confidence with which GR will be
confirmed (or ruled out) by gravitational observations.
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I. INTRODUCTION

General relativity (GR) has been very successful at
describing gravity in a vast range of scales, from sub-
millimeter ones [1], to those of the Earth, the Solar System
[2], and binary pulsars [3–7]. This beautiful theory, how-
ever, is known to be incomplete in the ultraviolet regime,
where it must be replaced by a quantum theory of gravity.
Furthermore, at the infrared cosmological scales, it needs to
be supplemented with dark matter and an unnaturally
valued cosmological constant to explain observations,
which can also be interpreted as a sign of failure. These
reasons have spurred intense, and ongoing, efforts explor-
ing how to describe gravity at both classical and quantum
levels, the latter being one of the most challenging enter-
prises of modern physics.
Restricting to the classical regime—where both labo-

ratory experiments and astrophysical observations can help
constrain possible alternatives—a large number of putative
theories have already been significantly constrained or
ruled out altogether (see e.g. Refs. [8,9]). In the particular
case of astrophysical observations, binaries involving
pulsars have proved especially well suited for these studies
[3–7]. Indeed, exquisite electromagnetic observations of
the pulsar signal allow following the binary’s orbital
dynamics and comparing it with predictions from GR
and other theories. To date this task has necessarily

involved binaries at relatively large separations and, cor-
respondingly, low orbital velocities (v=c ≪ 1). Binaries
in such configurations, as a consequence, do not fully
explore possible discrepancies that might arise at relativ-
istic velocities v=c≃ 1. Such discrepancies include dipolar
emission of nontensorial gravitational waves [10–14], as
well as dynamical violations of the (strong) equivalence
principle and enhancement of the strength of the gravita-
tional attraction in the last, highly relativistic stages of the
binary inspiral and plunge [15–18].
Such status of affairs will soon be radically changed

thanks to a network of gravitational-wave detectors that
will allow analyzing compact binaries in highly relativ-
istic velocity regimes. The detection of gravitational
waves from these systems will not only allow testing
GR, but will additionally provide important clues about
the physical nature of these binaries, as well as identify
the source’s location. This knowledge may help—both
directly and indirectly—identify electromagnetic counter-
parts (e.g. Refs. [19–22]) to these systems. The synergy
of gravitational and electromagnetic observations will
permit in-depth “multimessenger” investigation of the
behavior of gravity in such highly relativistic binaries.
For this analysis to be possible, on the gravitational-wave
side it is important that possible deviations from the
predictions of GR are either understood, or suitably
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parametrized,1 so as to guide the detection and analysis
of possible signals. Activities on both these fronts have
recently been gaining significant momentum: In the
“parametrized” approach particular formalisms have been
presented, motivated by specific theories and phenom-
enological considerations. Such formalisms have been
applied to derive bounds on the relevant parameters
describing deviations from GR [24–26]. In the “direct”
approach, deviations from the gravitational waves pre-
dicted by GR are computed in specific bona fide gravity
theories (i.e. ones with a well-defined initial value
problem) [15–17,27–29], and the prospects for detecting
these deviations are analyzed [23,30]. Among these
theories, scalar-tensor (ST) theories [31–36]—where
gravity is mediated not only by a metric tensor but also
by a scalar field—have received the most attention,
because the presence of a scalar field in nature is
motivated by e.g. the low-energy limit of string theories,
the observation of the Higgs boson, and cosmological
phenomenology (i.e. inflation and dark energy).
Among the most likely sources of gravitational waves for

Earth-based detectors is the coalescence of binary neutron
stars. The study of such systems in ST theories has been
traditionally undertaken via suitable perturbation expan-
sions [11,12,14,28], and more recently via numerical
simulations [15,16] or a hybrid approach [17]. These works
have not only provided definitive predictions for the
expected signals but have also helped illustrate that strong
deviations from GR could arise, in certain classes of ST
theories, because of dynamically induced effects as the
orbit tightens [15]. A first analysis indicating how such
differences could be detected in the near future (by the
upcoming second generation of gravitational-wave inter-
ferometers) has been presented in Ref. [30] (see also [18]).
As mentioned, among the possible physical parameters that
can be obtained via gravitational-wave observations are the
time (and frequency) of the merger as well as the sky
location, both of which would aid follow-up efforts to
capture counterparts in a wide range of electromagnetic
bands. Within GR, much effort has been going into
identifying promising near-coalescence scenarios able to
yield detectable signals in the electromagnetic spectrum,
and a number of mechanisms have been proposed and
explored in recent years (e.g. in Refs. [20,37–42]). It is
therefore interesting to consider whether electromagnetic
signals (either on their own, or in combination with
gravitational-wave observations) can provide additional
clues as to whether gravity behaves as predicted by GR.
This is especially important as facilities for gravitational-
wave observations will be for years much more restricted
in the frequency window they can access in comparison to
the large spectra provided by diverse electromagnetic
observatories. To this goal, we consider here whether

electromagnetic counterparts triggered during the coales-
cence stage of neutron-star binaries can provide such
testing opportunities. In particular we here study the
electromagnetic energy flux produced as a result of
magnetosphere interactions in GR, as well as in the ST
theories that were shown in Refs. [15–17] to yield
significant deviations from the GR behavior in the late
stages of the evolution of binary neutron star systems.
We take advantage of a unipolar induction model to

account for these magnetospheric effects, enhanced to
include the stars’ own magnetization in defining the
radius at which the induction takes place [37]. The
emitted electromagnetic Poynting luminosity—studied in
Refs. [37,38,43] and related previous works [44–46]—
might be converted into potentially observable x-ray and
radio signals by several processes [37,45]. Additionally, the
binary’s dynamics needed for this model is described
through a post-Newtonian (PN)treatment of the equations
of motions within scalar-tensor theories, augmented by a
set of equations that provides a description of the scalar
charge of each binary’s component along the evolu-
tion [17].
This paper is organized as follows: in Sec. II we review

the ST theories considered, and we describe the procedure
that we use to obtain the dynamics and estimate the
electromagnetic luminosities; in Sec. III we present the
cases considered and the results obtained; and finally in
Sec. IV we discuss the implications of our work.

II. METHODS

In this work we are primarily concerned with estimating
possible electromagnetic signals from the coalescence of
magnetized binary neutron stars in GR and certain ST
theories. These theories are described in Sec. II A. We here
note that such theories do suffer from the infrared problems
mentioned in our Introduction but do provide an interesting
and well motivated model to explore possible “ultraviolet”
(strong-field) deviations. Since they also have a well-
defined initial value problem and yield a well posed
physical problem, even in the nonlinear regime, they
constitute an excellent arena to study possible deviations
from general relativity. We obtain the binary’s dynamics by
solving the 2.5 PN equations of motion for ST theories as
described in Ref. [28] (enhanced with the formalism
proposed and validated in Ref. [17] to account for the
scalarization effects allowed by the theories). The electro-
magnetic radiation induced by magnetospheric interactions
of the magnetized neutron stars is estimated using a
phenomenological model based on an extension of the
unipolar inductor (we will refer to it as the “unipolar
model” throughout this work). Such a model captures
magnetospheric effects by considering the electromotive
force (emf) that is induced as an otherwise nonmagnetized
conductor moves through a magnetic field [45,46]. We
have augmented this model recently in Refs. [37,43] to1See discussion in e.g. Ref. [23].
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account for an additional “shielding effect” that arises when
both stars are magnetized, and which modifies the radius at
which the emf induction takes place.

A. Scalar-tensor theories

1. Dynamics in ST theories and equations of motion

The action for a ST theory can be written in the Jordan
frame as

S ¼
Z

d4x
ffiffiffiffiffiffi−gp
2κ

�
ϕR −

ωðϕÞ
ϕ

∂μϕ∂μϕ

�
þ SM½gμν;ψ �;

ð1Þ
where κ ¼ 8πG, R, g, and ϕ are respectively the Ricci
scalar, the metric determinant, and the scalar field, and the
theory has no potential for the scalar field, but is charac-
terized by an arbitrary function ωðϕÞ (and by the boundary
conditions for the scalar field). Note also that in this
action we have assumed that the matter degrees of freedom
ψ couple minimally to the metric (and not to the
scalar field) so as to enforce the weak equivalence principle
(i.e. the universality of free fall for weakly gravitating
bodies). The Jordan frame action can be recast in a
more convenient form by a conformal transformation
to the “Einstein frame,” i.e. by defining a new metric
gEμν and a new scalar φ such that gEμν ¼ ϕgμν and
ðd logϕ=dφÞ2 ¼ 2κ=½3þ 2ωðϕÞ�. This transformation
casts the action (1) in the form

S ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p �
RE

2κ
−
1

2
gμνE ∂μφ∂νφ

�
þ SM

�
gEμν
ϕðφÞ ;ψ

�

ð2Þ
where we note that the matter degrees of freedom still
couple only to the Jordan frame metric gμν ¼ gEμν=ϕ (i.e.
test particles follow geodesics of gμν and not ones of gEμν),
and that gEμν and φ are coupled minimally in the absence of
matter (which explains why using Einstein frame variables
is advantageous).
By varying the Einstein frame action, one obtains the

field equations

GE
μν ¼ κðTφ

μν þ TE
μνÞ; ð3Þ

□
Eφ ¼ 1

2

d logϕ
dφ

TE; ð4Þ

∇E
μT

μν
E ¼ −

1

2
TE

d logϕ
dφ

gμνE ∂μφ; ð5Þ

where we assume that indices are raised and lowered with
gEμν and define TE ≡ Tμν

E gEμν. Note that we also define the
stress-energy tensors appearing in the field equations as

Tμν
E ¼ 2ffiffiffiffiffiffiffiffi

−gE
p δSM

δgEμν
¼ Tμνϕ−3 ð6Þ

Tφ
μν ¼ ∂μφ∂νφ −

gEμν
2

gαβE ∂αφ∂βφ ð7Þ

where Tμν is the Jordan frame stress-energy tensor of all the
matter degrees of freedom.
Solutions to Eqs. (3)–(5) for binary systems of compact

objects (e.g. neutron stars or black holes) can be obtained
numerically in the late stages of the inspiral and during the
merger [15,16,47], but in order to describe more widely
separated systems such as observed binary pulsars, it is
more convenient to expand the field equations in PN
orders. In such a scheme, one approximates the two
objects as point particles with masses mi and sensitivity
parameters si [10] [or equivalently scalar charges [12]
αi ¼ −ð2si − 1Þ=ð3þ 2ω0Þ1=2, with ω0 being the value of
the function ωðϕÞ far from the binary system]. The
sensitivities can be calculated from isolated solutions for
the compact objects, and depend on the ST theory and on
the object’s compactness (e.g. si ≈ 0 for white dwarfs and
less compact stars, si ¼ 1=2 for black holes, while for
neutron stars the sensitivity depends critically on the star’s
compactness and the ST theory under consideration). The
binary’s dynamics is then expanded in orders of v=c (v
being the binary’s relative velocity), and to 2.5 PN order the
resulting equations take the schematic form [11,12,14,28]

d2x
dt2

¼ −
GeffM
r2

n

þGeffM
r2

��
APN

c2
þA2PN

c4

�
nþ

�
BPN

c2
þ B2PN

c4

�
_rv

�

þ 8

5
η
ðGeffMÞ2

r3

��
A1.5PN

c3
þA2.5PN

c5

�
_rn

−
�
B1.5PN

c3
þ B2.5PN

c5

�
v

�
ð8Þ

where x ¼ x1 − x2 is the binary separation, r ¼ jxj,
n ¼ x=r, v ¼ v1 − v2 is the relative velocity, _r ¼ dr=dt,
M ¼ m1 þm2 is the total mass of the system, and η ¼
ðm1m2Þ=M2 is the symmetric mass ratio. The “effective”
gravitational constant Geff is related to the gravitational
constant GN measured locally (e.g. by a Cavendish-type
experiment) by Geff ≈ GNð1þ α1α2Þ. Explicit expressions
for the functions fAI ;BIg are given in Ref. [28] and also
depend on the sensitivities/scalar charges of the binary
components, e.g. the presence of dissipative 1.5 PN terms
(which are absent in GR) in Eq. (8) is due to the scalar
charges, which source the emission of dipolar gravitational
radiation with energy flux
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_Edipole ≈
GN

3c3

�
Geffm1m2

r2

�
2

ðα1 − α2Þ2: ð9Þ

2. Spontaneous, induced, and dynamical scalarization

From the dependence of the PN equations on the
sensitivities/scalar charges, which in turn depend on the
nature and compactness of the binary’s components, it is
clear that the PN evolution of a compact-object binary
depends on the nature of its components. Therefore, the
strong equivalence principle, defined as the universality of
free fall for strongly gravitating objects, is violated in ST
theories already in the PN inspiral. Recently, however,
Ref. [15] highlighted the existence of other violations of the
strong equivalence principle in the last stages of the inspiral
of binary neutron stars and for a particular class of ST
theories. More specifically, Ref. [15] considered theories
with ωðϕÞ ¼ −3=2 − κ=ð4β logϕÞ [or equivalently
ϕ ¼ expð−βφ2Þ], which are known [12,13] to give rise
to the “spontaneous scalarization” of isolated neutron stars,
i.e. allow for scalar charges α ∼ 0.1–1 for sufficiently
compact neutron stars and for marginally viable values
of the theory’s parameters ~β ¼ β=ð4πGÞ≳ −4.5 and φ0 ≲
10−2 (φ0 being the scalar’s value far from the system).2

Reference [15] showed that at sufficiently small binary
separations, a spontaneously scalarized star (thus bearing a
significant scalar charge) can excite a scalar charge in the
other star, even if that star had not spontaneously scalarized
and thus did not have a scalar charge to start with. This
“induced scalarization” was shown to be capable of
triggering earlier binary plunges and mergers relative to
GR, an effect potentially observable with advanced GW
detectors [30]. Even more strikingly, Ref. [15] showed that
significant scalar charges can be produced in the last
inspiral stages of binary systems of unscalarized neutron
stars, i.e. in binaries whose components have little or no
scalar charges at large separations. This “dynamical scala-
rization” produces a sudden buildup of the scalar charges at
small separations, quickly triggering a plunge/merger at
frequencies within the reach of advanced GW detectors
(cf. Ref. [18,30] for the detectability of this effect with GW
detectors). It is also important to note that dynamical
scalarization, being an effect that turns on at small
separations, can evade (to a certain extent) the constraints
posed by binary-pulsar observations, which only exclude
the presence of spontaneously scalarized stars in widely
separated binaries and for the specific observed values of
the NS masses. In particular, dynamical scalarization may
happen for values of ~β between −4.3 and −4.5 (or lower), a
window still allowed by binary-pulsar observations.
Remarkably, even though both induced and dynamical

scalarization are strongly nonlinear effects, they can still be
understood and reproduced in their main qualitative fea-
tures by a minimal modification of the PN expansion
scheme outline above. More precisely, Ref. [17] describes
the evolution of a neutron-star binary system by the PN
equations of motion (8), but introduces a new way of
computing the sensitivities or scalar charges that appear in
those equations. Instead of computing those parameters

TABLE I. Quasicircular cases studied in this work. The last two columns show the total electromagnetic energy radiated
(Erad ¼

R
Ldt) for binaries starting at an initial separation of 180 km apart, until a separation of 35 and 30 km respectively.

Case
Masses
(in M⊙)

Magnetic field
ratio, b≡ Bc=B� Theory

Total Erad [erg]
at 35 km at 30 km

low equal-mass M1 ¼ 1.41 0.1 1.74 × 1041 ð1.90; 1.93; 1.93Þ × 1041

(LE) M2 ¼ 1.41 0.01 ~β ¼ ð−4.5;−4.2); GR 4.02 × 1040 ð4.72; 4.83; 4.83Þ × 1040

0.001 2.31 × 1040 ð3.02; 3.12; 3.12Þ × 1040

high equal-mass M1 ¼ 1.74 0.1 ð1.27; 1.49; 1.55Þ × 1041 ð1.44; 1.66; 1.78Þ × 1041

(HE) M2 ¼ 1.74 0.01 ~β ¼ ð−4.5;−4.2Þ; GR ð3.06; 3.61; 3.87Þ × 1040 ð4.24; 4.78; 5.42Þ × 1040

0.001 ð1.74; 2.19; 2.45Þ × 1040 ð2.92; 3.37; 4.01Þ × 1040

low unequal-mass M1 ¼ 1.41 0.1 ð1.18; 1.29; 1.41Þ × 1041 ð1.27; 1.49; 1.55Þ × 1041

(LU) M2 ¼ 1.64 0.01 ~β ¼ ð−4.5;−4.2Þ; GR ð2.65; 3.16; 3.24Þ × 1040 ð3.07; 3.61; 3.87Þ × 1040

0.001 ð1.32; 1.74; 1.83Þ × 1040 ð1.73; 2.19; 2.45Þ × 1040

high unequal-mass M1 ¼ 1.52 0.1 ð0.913; 1.05; 1.18Þ × 1041 ð0.996; 1.13; 1.3Þ × 1041

(HU) M2 ¼ 1.74 0.01 ~β ¼ ð−4.5;−4.2Þ; GR ð2.07; 2.37; 2.7Þ × 1040 ð2.45; 2.75; 3.22Þ × 1040

0.001 ð1.06; 1.2; 1.5Þ × 1040 ð1.43; 1.58; 2.02Þ × 1040

2We stress that the observational constraint ~β ≳ −4.5 depends
somewhat on the equation of state of NSs. Indeed, binary-pulsar
observations essentially rule out spontaneous scalarization for the
NS masses corresponding to the components of observed
binaries, placing constraints on ~β once an equation of state is
assumed. For instance, Ref. [16] shows that values of ~β as low as
−5 may be allowed with certain equations of state. Here, we
follow Refs. [15] and [17], and adopt a polytropic equation of
state with K ¼ 123G3M2⊙=c6 and Γ ¼ 2. Since this equation of
state is not realistic but just a simple toy model, our results should
be interpreted as qualitative.
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from isolated neutron-star solutions, as is done in the
“classic” PN scheme, Ref. [17] introduced a formalism that
includes the interaction between the two stars in the calcu-
lation of the scalar charges, thus accounting for both induced
and dynamical scalarization. In practice, this scheme starts
from the standard calculation of the scalar charges for the
binary components in isolation, and then uses that calculation
to define a systemof nonlinear algebraic equations,which can
be solved iteratively at each step of the PN orbital evolution to
yield the charges of both stars including nonlinear effects.
This procedure was validated by comparing it with the fully
nonlinear simulations of Ref. [15].

3. Electromagnetic coupling in ST theories

One purpose of this paper is to extend the formalism of
Ref. [17] to include the effect of an electromagnetic field.
Let us consider a binary system of magnetized neutron stars
surrounded by a plasma in ST theories. Solving the full
nonlinear problem in the Jordan frame would require
solving the curved spacetime Maxwell equations

∂ ½μFνγ� ¼ 0; ð10Þ

∇νFνμ ¼ jμ; ð11Þ

and including the stress-energy tensor of the electromag-
netic field in the source of the Einstein equations. [Note that
because of the weak equivalence principle, which is
reflected in the structure of the matter action written in
Eq. (1), the electromagnetic field only couples to the Jordan
frame metric and to the plasma’s electric charges, and not
directly to the scalar field.] Defining the Einstein frame
electromagnetic tensor FE

μν ¼ Fμν and the plasma’s current
jμE ¼ jμ=ϕ2, the Einstein frame Maxwell equations take the
same form as in the Jordan frame, i.e.

∂ ½μFE
νγ� ¼ 0; ð12Þ

∇E
νF

νμ
E ¼ jμE; ð13Þ

and the Einstein frame field equations (3)–(5) become
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FIG. 1. Separation shown as a function of tmerger − t in log scale, being tmerger the time at which the stars come into contact (i.e.
the separation equals R� þ Rc). The panels display the LE (top-left panel), HE (top-right panel), LU (bottom-left panel), and HU
(bottom-right panel) binaries, for ~β ¼ −4.5 (dotted lines), −4.2 (dashed lines), and GR (solid lines). Recall that magnetic field effects on
the binary’s motion are negligible, thus the differences in the trajectories are solely due to the underlying gravity theory. In the LE
binary, the trajectories for the three cases are almost identical, as there is almost no scalarization until very late in the inspiral. These
examples show that at any given separation, the time to merger is shorter (or equal) in ST theories than in GR.
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GE
μν ¼ κðTφ

μν þ Tem;E
μν þ Tpl;E

μν þ TE
μνÞ; ð14Þ

□Eφ ¼ 1

2

d logϕ
dφ

ðTE þ Tpl
E Þ; ð15Þ

∇E
μ ðTμν

E þ Tμν
pl;EÞ ¼ Fν

Eμj
μ
E −

1

2
ðTE þ Tpl

E Þ
d logϕ
dφ

gμνE ∂μφ;

ð16Þ

where Tμν
em;E ¼ Tμν

emϕ−3 is the Einstein frame stress-energy
tensor of the electromagnetic field,3 while Tμν

E , Tμν
pl;E and

Tμν
em;E are those of the neutron-star matter, of the matter of

the plasma and of the electromagnetic field. (Again, all
indices are raised and lowered with the Einstein-frame
metric.) As discussed below, the stress energy of the plasma
matter will be negligible for our cases of interest, but for the
moment we keep it to make our treatment general and more
clear. Note that in deriving these equations we have used

∇E
μT

μν
em;E ¼ −Fν

Eμj
μ
E ð17Þ

(which follows from the Maxwell equations), and the fact
that the trace of Tμν

em;E is zero. Note also that Eq. (15) can be
recast in the form

∇E
μT

μν
φ ¼ 1

2

d logϕ
dφ

ðTpl
E þ TEÞgμνE ∂μφ; ð18Þ

which shows that in the Einstein frame (as in the Jordan
frame) there is no direct energy or momentum transfer from
the scalar field to the electromagnetic field.
Postponing the solution to the full nonlinear problem to

future work, let us note that for astrophysically realistic
systems, the plasma and the electromagnetic field in the
magnetosphere are too small to significantly backreact on
the metric and on the binary and scalar field evolution
(“force-free approximation,” cf. discussion in the next
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FIG. 2. Orbital frequency as a function of separation (in log scale), for the same parameters shown in Fig. 1.

3We recall that the explicit form of the stress-energy tensor of
the electromagnetic field in the Jordan frame is

Tμν
em ¼ 1

4π

�
FμαFν

α −
1

4
gμνFαβFαβ

�
:

Similarly, the Einstein-frame stress energy tensor is given by

Tμν
em;E ¼ 1

4π

�
Fμα
E Fν

E α −
1

4
gμνE FE

αβF
αβ
E

�
;

which satisfies indeed Tμν
em;E ¼ Tμν

emϕ−3.
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section), i.e. to lowest order Eqs. (14)–(16) reduce to
Eqs. (3)–(5). To next order, by combining Eqs. (16) and
(5) one then obtains

∇E
μT

μν
pl;E ¼ Fν

Eμj
μ
E −

1

2
Tpl
E
d logϕ
dφ

gμνE ∂μφ ≈ Fν
Eμj

μ
E ð19Þ

where we have used the fact that Tpl
E ≈ 0 for the plasma

(because the particles of which it is made typically move at
speeds close to the speed of light) and in any case
d logϕ=dφ ≈ 0 outside the neutron stars (where the plasma
moves) because φ is small there. Equation (19) regulates
the motion of the plasma, while the electromagnetic field
satisfies the Maxwell equations (12) and (13). In both
Eq. (19) and Eqs. (12) and (13), the metric is determined
by the evolution of the binary and scalar field alone [i.e. by
Eqs. (3)–(5)]. In practice, as can be seen from Eq. (7), the
scalar field stress-energy vanishes at linear order in the field’s
perturbation over a constant background, and is thus neg-
ligible outside the neutron stars (although it is not always
negligible inside the stars, where it can grow nonlinear and
give rise to scalar charges α ∼ 0.1–1 in scalarized systems).
Therefore, it is natural to approximate the metric outside the

neutron stars with the general-relativistic PN metric of two
point particles (representing the neutron stars), whose
trajectories are calculated (including the effect of the scalar
charges) with the formalism of Ref. [17]. Therefore, because
of Eqs. (12), (13), and (19), the calculation of the electro-
magnetic fluxes can proceed as in GR, except for the
modified binary trajectory. We will present a standard GR
approximate strategy to calculate such fluxes (the “unipolar
inductor” model) in the next section.

B. Magnetosphere and plasma treatment

As discussed in Ref. [48], neutron stars are surrounded
by a magnetosphere with a plasma density ρpl≃
− ~Ω · ~B=ð2πcÞ, where ~Ω represents the rotational frequency
of the plasma, ~B is the magnetic field present in the region,
and c is the speed of light. The interaction of a rotating
magnetized star with its own magnetosphere is responsible
for electromagnetic emissions in pulsars. The analysis of
such an interaction is a delicate subject, because the plasma
dynamics may be intricate, and complex simulations are
typically required to fully capture its behavior. Fortunately,
a useful approximation can be adopted that captures

500100020004000
Orb. Freq. [rad/s]

0.0001

0.001

0.01

0.1

1

sc
al

ar
 c

ha
rg

e

β~ = -4.5

β~ = -4.2

(LE)

500100020004000
Orb. Freq. [rad/s]

0.001

0.01

0.1

1

sc
al

ar
 c

ha
rg

e

β~ = -4.5

β~ = -4.2

(HE)

500100020004000
Orb. Freq. [rad/s]

0.0001

0.001

0.01

0.1

1

sc
al

ar
 c

ha
rg

e

β~ = -4.5

β~ = -4.2

(LU)

500100020004000
Orb. Freq. [rad/s]

0.001

0.01

0.1

1

sc
al

ar
 c

ha
rg

e

β~ = -4.5

β~ = -4.2

(HU)

FIG. 3. Scalar charge for the same binaries as in Fig. 1, as a function of the orbital frequency, for ~β ¼ −4.5 (dotted lines) and −4.2
(dashed lines). The top panels correspond to equal-mass binaries, and both stars have the same scalar charge for a given value of ~β. On
the other hand, the bottom panels correspond to unequal-mass binaries, and the scalar charges are different. In these cases in particular,
the upper line with the same style (i.e. the same value of ~β) refers to the more massive star.
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important aspects of the system. This approximation
relies on the observation that in the magnetosphere region
the inertia of the plasma is negligible with respect to
the electromagnetic energy density, i.e. Tpl

μν ≪ Tem
μν .

Through Eqs. (17) and (19), this in turn implies
Fν
Eμj

μ
E ≈ Fν

μjμ ≈ 0 ≈∇E
μT

μν
em;E ≈∇μT

μν
em, where in the last

passage we have exploited the fact that Eq. (17) also holds
in the Jordan frame [as it follows directly from the Maxwell
equations (10) and (11)].4 These are known as the force-
free conditions for the plasma [44,49,50], and the resulting
electrodynamics equations, while simpler to deal with as
now one only needs to consider the behavior of electro-
magnetic fields constrained by the force-free condition, still
represent a nonlinear coupled system of partial differential
equations. The electrodynamics equations are then aug-
mented by those describing the dynamical behavior of the
spacetime and the neutron-star matter, thus complex and
time-consuming simulations are typically needed to study
the system’s evolution. Nevertheless, for the scenario of

interest here—i.e. the late stages of a magnetized binary
merger—and for the purpose of our work, we can make use
of a hybrid approach, combining the formalism of Ref. [17]
described above (whereby the neutron stars are treated as
pointlike objects satisfying ordinary differential equations
of motion that incorporate the relevant gravitational and
scalarization effects) together with a unipolar model to
account for magnetospheric effects. Both these approaches
are supported by simulations of the complete problem in
the context of neutron-star mergers (for ST theories and
nonmagnetized systems [17]) and binary neutron-star and
black hole–neutron star mergers in the context of mag-
netosphere interactions in GR [37,38,43,51]. As argued in
the previous section, a reliable model accounting for
magnetosphere interactions within GR should also be
applicable to the case of ST theories of gravity. In what
follows, we therefore describe the main aspects of the
unipolar model.

1. Magnetosphere interactions and luminosity

A useful model to estimate the electromagnetic energy
radiated by a magnetized neutron-star binary is based on
the unipolar inductor [44,45]. Such a model has recently
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FIG. 4 (color online). Luminosity vs time to merger, for the same parameters shown in Fig. 1. Different lines in each panel indicate the
ratio between the secondary and primary magnetic fields (from top to bottom): b ¼ 0.1 (in red), b ¼ 0.01 (in green), b ¼ 0.001 (in
blue), and a nonmagnetized secondary (i.e. b ¼ 0, in black).

4One can also show directly that ∇E
μT

μ
em;Eν ¼ ∇μT

μ
em ν=ϕ2,

using the conformal transformation between the Einstein and
Jordan frames.
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been further analyzed for neutron-star binaries in
Ref. [46] and confronted with fully dynamical simula-
tions including plasma effects, finding good agreement in
the obtained luminosity [37,38,43]. Similar conclusions
have been obtained in the model’s application to black
hole–neutron star binaries [51,52]. We next describe
briefly the main ingredients required by this model for
our purposes.
We assume that both stars are magnetized, their magnetic

fields are dipolar and are nonspinning.5 Further, we assume
that one star has a larger magnetization than its companion,
and study the electromagnetic radiation due to the inter-
action of their magnetospheres. As the orbit tightens, as
described in Sec. II A, ST effects will cause deviations from
the GR orbital behavior, which induce a stronger Poynting
flux. It is important to stress here that for realistic magnetic
field strengths, electromagnetic effects do not backreact on
the orbital evolution of the binary [53,54]. Under such
assumptions, one can estimate the luminosity of the binary
[46] as

L ≈ 1038
�
vrel
c

�
2
�

B�
1011 G

�
2
�

R�
10 km

�
6

×

�
Reff

10 km

�
2
�

r
100 km

�
−6
erg=s ð20Þ

where vrel is the relative velocity of the binary (obtained
with the PN expansion as discussed in [17]), B� and R� are
the magnetic field and the radius of the primary star and r
is the separation between the stars. Induction takes place on
the secondary star at a radius Reff , which is equal to the
star’s radius Rc when the secondary is unmagnetized.
Otherwise, Reff is larger, as the secondary’s field shields
a region around it. We account for this effect by defining
(see Refs. [37,38,55])

Reff ¼ max

�
r

�
Bc

B�

�
1=3

; Rc

�
; ð21Þ

where Bc is the magnetic field of the secondary. Naturally,
this effect is relevant at large separations, while for
separations r ≤ RcðBc

B�
Þ−1=3 the effective radius reduces to

the star’s radius Rc. Within GR calculations of the
quasiadiabatic regime of binary neutron-star systems (i.e.
at large separations), estimates have been obtained from
Eq. (20) by replacing vrel with its Keplerian expression and
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FIG. 5 (color online). Luminosity as a function of orbital frequency, for the same parameters shown in Fig. 4.

5Spins introduce only minor modifications—as tidal locking
can not occur—and thus will not affect the conclusions of this
work.
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Reff ¼ Rc, giving rise to a dependence L≃ r−7 (e.g.
Refs. [45,46]). When the shielding effect given by
Eq. (21) is considered, the luminosity follows a softer
dependence L≃ r−5 [37,43]. However, in ST theories,
deviations from Keplerian motion are possible, and we thus
employ both Eqs. (20) and (21) in our calculations.
It is important at this point to stress two limitations of

our model. First, some mechanism must act to convert
the obtained Poynting flux to observable radiation, and
this will involve some conversion efficiency. This work
does not address this issue, but rather focuses on
estimating the Poynting flux alone. The fact that the
system that we study shares many common features
with pulsars, where observable radiation in multiple
bands is observed, gives us some degree of confidence
that some energy conversion to observable radiation will
take place [37]. Second, this work concentrates on
possible emissions prior to the merger. As the merger
takes place, the two stars will become tidally disrupted,
merge into a hypermassive neutron star and possibly
form an accreting black hole. This rich dynamics will
naturally have strong associated luminosities, which are
not accounted for here, as we concentrate on the
premerger stage.

III. RESULTS

A. Quasicircular case

We first study binary systems in quasicircular (i.e. zero
eccentricity) orbits and consider four different sets of
masses. These configurations are chosen so that they
undergo at least one of the key scalarization processes
described in Sec. II A, while still being consistent with
available Solar System and binary-pulsar data. More
specifically, the configurations we consider are
(a) Case LE, with low- and equal-mass stars

(M1 ¼ M2 ¼ 1.41M⊙), which undergo dynamical
scalarization but do not produce dipolar radiation.

(b) Case HE, with high- and equal-mass stars
(M1 ¼ M2 ¼ 1.74M⊙), which undergo spontaneous
scalarization for ~β ¼ −4.5 and dynamical scalarization
for ~β ¼ −4.2, but do not produce dipolar radiation.

(c) Case LU, with low- and unequal-mass stars
(M1 ¼ 1.41M⊙, M2 ¼ 1.64M⊙), which undergo
dynamical as well as induced scalarization, and
produce dipolar radiation.

(d) case HU, with high- and unequal-mass stars (M1 ¼
1.52M⊙, M2 ¼ 1.74M⊙), which undergo dynamical
and induced scalarization (in the lower-mass star) and
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FIG. 6 (color online). Time derivative of the luminosity as a function of time to merger, for the same parameters shown in Fig. 4. Note
that the differences are less significative for the low-mass binaries.
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spontaneous scalarization (in the higher-mass star),
and produce dipolar radiation.

Additionally, we consider different possible magnetiza-
tions of each star, and examine the characteristics of the
resulting electromagnetic luminosity. Henceforth, we will
refer to the primary (companion) star as the more (less)
massive one and, in the case of equal-mass configurations,
as the more (less) strongly magnetized one. To adopt
realistic configurations, we recall that the standard for-
mation channel of neutron-star binaries indicates that the
most likely configurations involve a magnetically dominant
(primary) star with a significantly less magnetized
companion (secondary) [56–58]. To explore a range of
possible options, we consider three ratios of the magne-
tizations between the stars, namely b≡ Bc=B� ¼
ð0.1; 0.01; 0.001Þ. Also, for simplicity we assume that
the stars’ magnetic dipoles are aligned with the orbital
angular momentum. Notice that this is not a restrictive
assumption, as it yields reasonably good estimates for the
expected power in more general configurations [43].
Finally, we restrict our analysis to the ST theories that
yield the largest differences in the binary dynamics, while
satisfying existing experimental constraints, i.e. we take the
coupling parameter of the ST theory to be ~β ¼ −4.5 or

~β ¼ −4.2 (so as to satisfy binary-pulsar constraints6), and
we adopt a small value for the asymptotic value of the
scalar field φ0 ¼ 10−5 to pass solar system tests. For
comparison purposes, we also include the corresponding
GR results. The list of the cases considered, as well as a
summary of the main results (e.g., the total radiated
electromagnetic energy for each case), is given in Table I.
As mentioned above, the binary dynamics in the ST

theories that we study can show clear departures from the
GR behavior. In particular, the binary’s orbital frequency/
separation can increase faster than in GR for high neutron-
star masses and low values of ~β, because of the enhanced
gravitational attraction due to scalar effects and the possible
dipolar emission of scalar waves. Such behavior is illus-
trated in Fig. 1, which shows the separation for the four
binaries considered, in ST theories with ~β ¼ −4.5 and
~β ¼ −4.2, as well as in GR, as a function of the time
remaining until the merger. (The merger is defined as the
time at which the separation equals R� þ Rc). As illustrated
in this figure, in the ST theories that we consider the time to
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FIG. 7 (color online). Total energy radiated in electromagnetic waves (i.e. the time integral of the luminosity) as a function of time
elapsed from an initial separation of approximately 180 km for the same parameters shown in Fig. 4. Insets show zoom-ins of the total
energy radiated at late times, when the binary is close to the merger.

6Note however, as already mentioned, that the viable range for
β depends slightly on the equation of state adopted for the neutron
stars.
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merger from a given separation is always either shorter or
equal than in GR. As we discuss next, in the former case
differences in the electromagnetic flux of energy arise. The
complementary Fig. 2 shows how all binary evolutions
cover approximately the same frequency range, although
for higher masses and lower values of ~β, any given
frequency is achieved at a larger separation.
As discussed, these effects are caused by the scalar

charges (or equivalently the sensitivities) that each star
acquires as the orbits tightens. The behavior of the scalar
charge with respect to the orbital frequency for each case
considered is shown in Fig. 3, where the orbital frequency
is determined instantaneously (i.e. as the derivative of the
azimuthal coordinate). From this figure, it is clear that
scalarization effects are quite weak in theLE case, because
the scalar charges remain negligible for most of the
evolution and only rise to α ∼Oð1Þ at relatively short
separations (i.e. high frequencies). In particular, the
scalar charges remain ≲10−3 essentially until the final
plunge toward merger. This behavior is in contrast
with the remaining cases, where scalarization effects are

considerably stronger at the earlier stages, and therefore
have a clear impact on the dynamics, especially for
~β ¼ −4.5. Such behavior comes about because in the
HE, LU, and HU cases the more massive star either
spontaneously scalarizes already in isolation, which indu-
ces a time-dependent running of the scalar charge of the
companion (induced scalarization), or both stars scalarize
dynamically in the late inspiral (after which the scalar
charges further grow by mutual induced scalarization). As
mentioned, as the scalar charges grow, the gravitational
attraction between the stars gets stronger than in GR, and
for unequal-mass binaries the system also emits dipolar
radiation, clearly affecting the binary’s dynamics.
The dynamical behavior that we have just described has

direct consequences on the Poynting flux produced by the
system as the stars’ magnetospheres interact. As described
in Sec. II B, we estimate such flux via the enhanced
unipolar inductor model, which depends on the orbital
evolution as well as on the magnetization of the binary
components. The results for the luminosity are displayed in
Figs. 4 and 5 as a function of time and orbital frequency.
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FIG. 8 (color online). Fractional change of the luminosity, FCL≡ jLST − LGRj=LGR, for the LE (top-left panel), HE (top-right
panel),LU (bottom-left panel), andHU (bottom-right panel) binaries as a function of orbital and GW frequencies (assuming b ¼ 0.1 for
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At a broad level, since all cases cover similar frequency
ranges and separations—from ≈180 km to merger for the
cases considered—all the obtained luminosities are com-
parable and of the order of 1039–1041 erg=s (the precise
value depending on the binary’s mass and the magnetic
field ratio between the stars) for a primary with magnetic
field of 1011 G.
A closer inspection, e.g. of Fig. 4, shows that ST

effects are evident for the more massive binaries and for
lower values of ~β, especially near the merger. This
behavior is also visible in the luminosity rate of change
with time, as illustrated in Fig. 6. As can be seen, for
higher masses and lower values of ~β, the dynamics
proceeds at a faster pace in the ST theories under
consideration than in GR, thus inducing a less powerful
electromagnetic flux at a given time to merger (since for
a given tmerger − t, the binary’s separation is larger in the
ST theories that we consider than in GR, cf. Fig. 1). This
conclusion is further supported by the total radiated
electromagnetic energy, as a function of the time elapsed
from an initial separation of 180 km (Fig. 7). As time

progresses, binaries governed by the ST theories show a
clear departure from the general-relativistic behavior.
To further illustrate the differences in luminosities

obtained, Fig. 8 presents the fractional change in lumi-
nosity, FCL≡ jLST − LGRj=LGR. (For concreteness we
adopt b ¼ 0.1, as all other values of b display a similar
behavior.) As can be seen, the LE case displays at most a
5% difference, while the other ones (LU, HE, and HU)
show departures of up to 40% away from the GR
prediction. Importantly, the relative differences display a
frequency dependent behavior, growing strongly toward
higher frequencies.

B. Eccentric binaries

We now turn our attention to binaries with non-
negligible eccentricity. Such configurations are not
expected to represent a large fraction of the sources
detectable by advanced gravitational-wave detectors, as
gravitational emission tends to circularize binaries by
the time they enter the detector’s sensitive band.
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FIG. 9. Eccentric binaries: evolution of the separation for a binary governed by GR and ST with ~β ¼ −4.5 and scalar charges of the
binary’s components (for binaries governed by ST with ~β ¼ −4.5 and ~β ¼ −4.2 for comparison purposes) as a function of time to
merger, for an equal-mass binary (top panels) and an unequal-mass binary (bottom panels), for low-eccentricity orbits (left column) and
high-eccentricity orbits (right column) (see text for the details on the exact masses and eccentricities). As the orbit progresses, and scalar
charges become significant, the eccentricity is reduced more rapidly in the ST cases as illustrated by the increasingly reduced differences
between local maxima and minima of the binary’s separation.

ELECTROMAGNETIC OUTFLOWS IN A CLASS OF … PHYSICAL REVIEW D 91, 084038 (2015)

084038-13



Nevertheless, as already illustrated e.g. in Ref. [59–61],
eccentric binaries provide an excellent laboratory to test
diverse and extreme physics. As we show here, this
is also the case for possible electromagnetic counter-
parts driven by magnetosphere interactions in non-GR
gravity theories. To illustrate this point, we here
consider the following two cases: an equal-mass binary
with low masses M1 ¼ M2 ¼ 1.52M⊙, and an unequal-
mass binary with M1 ¼ 1.52M⊙ and M2 ¼ 1.74M⊙.
Following Ref. [61], we study the dynamics and the
emitted electromagnetic flux, in two different configu-
rations: “mild-eccentricity” orbits, where the initial
apastron (periastron) are at separations of about
220 km (80 km) respectively (i.e. e ∼ 0.47); and
“high-eccentricity” orbits, where the initial apastron
(periastron) are at separations of about 220 km
(50 km) respectively (i.e. e ∼ 0.63).
These eccentric binaries reveal another interesting

phenomenon allowed in the ST theories under study,
namely a sequence of successive “scalarization/descala-
rization” cycles [17]. These produce a strong modula-
tion of the scalar charges (see Fig. 9), with a consequent
impact on the dynamics, and possibly observable sig-
natures both in the gravitational and electromagnetic

signals. For instance, the binary’s orbit circularizes more
rapidly for smaller values of ~β as illustrated in Fig. 9.
As can also be seen in that figure, except for the low-,
equal-mass binary with mild eccentricity (which shows
negligible differences between GR and ST theories), all
the other cases display increasingly marked deviations
from GR as ~β decreases and higher masses are consid-
ered. This behavior has a direct impact on the electro-
magnetic flux, as shown in Fig. 10. Of particular interest
is the fact that the orbital eccentricity induces, in all
cases, an oscillatory behavior in the flux intensity with a
frequency and amplitude modulated by a growing trend
as the orbit shrinks. Interestingly, the growth rate is
different in the cases governed by ST theories for
sufficiently low values of ~β. Note however that mis-
alignment of the stars’ dipole moments induces oscil-
lations in the resulting luminosity even in the
quasicircular case [43].
Finally, we note that the more rapid orbital evolution of

strongly scalarized binaries can cause the same total energy
to be radiated within a significantly shorter time. This is
shown in Fig. 11, where we stress that we are showing the
total radiated energy as a function of time (and not time to
merger).
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FIG. 10 (color online). Luminosity vs time to merger, for the same parameters shown in Fig. 9. For clarity’s sake we show here the two
extremal magnetic ratios considered, b ¼ 0.1 and b ¼ 0 (i.e. a nonmagnetized companion).

PONCE et al. PHYSICAL REVIEW D 91, 084038 (2015)

084038-14



IV. DISCUSSION

The results shown in this work indicate that, within
the context of electromagnetic emission induced by mag-
netosphere interactions, binary neutron-star systems could
produce signals with clear deviations from the GR expect-
ation, depending on the gravity theory. Our results open up
the possibility of exploiting compact binary systems to test
gravitational theories by combining electromagnetic
and gravitational signals. For instance, in the particular
case of the ST theories of gravity considered here,
deviations in the gravitational-wave signals away from
the GR prediction could be detected for binaries that
undergo scalarization sufficiently early in the advanced
Laser Interferometer Gravitational Wave Observatory
(LIGO) band [18,30] (naturally, how early in frequency
depends strongly on the signal-to-noise ratio of the signal).
Such binaries, as illustrated here, also show distinctive
departures in the Poynting flux luminosity emitted from
the system, when compared to the behavior within GR.
The fact that deviations could be observed with advanced

LIGO if they take place at sufficiently low frequencies in
the gravitational-wave signal is a consequence of the
detector’s sensitivity curve (i.e. sufficiently early scalari-
zation is needed to build up enough signal-to-noise ratio
in band). For this reason, scalarization effects at high
frequencies in the ST theories that we consider would be
difficult to detect by gravitational-wave signals alone,
unless the detector is tuned for higher sensitivity in the
higher frequency band. Without such tuning, however,
complementary electromagnetic signals could be exploited.
As we illustrated here, such an opportunity does indeed
appear to be possible.
In particular, our results indicate deviations in the

expected electromagnetic luminosity in ST theories for
sufficiently low values of the coupling ~β < 0. This obser-
vation is not enough (in itself) to assess the nature of the
underlying gravitational theory, unless a good estimate of
the stars’ magnetization is available. However, we find that
the luminosity’s strength and—most importantly—rate of
change with time exhibit differences from the GR behavior
in the ST theories that we study, and this could provide
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FIG. 11 (color online). Energy radiated by eccentric binaries, as a function of the time elapsed from an initial binary separation of
approximately 220 km, for the same parameters shown in Fig. 9. We show, in contiguous panels, three different magnetic ratios (from
left to right within each plot): b ¼ 0.1 (in red), 0.01 (in green), and 0.001 (in blue). Note that in the case of low-eccentricity orbits (left
column), the radiated energy has a smoother (continuous) trend, while in the case of high-eccentricity orbits (right column) the radiated
energy is more jagged; this is a consequence of the oscillatory features in the luminosity, and ultimately the effect of the different
dynamics of each binary.
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precious information that can be used to test the gravity
theory. Indeed, in many respects, the rate of change of the
luminosity would provide analog information to the “chirp-
ing” gravitational signal, though in this case not limited by
advanced LIGO’s/VIRGO’s noise curve, which in its
canonical configuration raises sharply before the kHz
frequency at which the merger takes place.
As discussed in Ref. [37], the Poynting flux from binary

systems can indeed induce high-energy signals from the
system, which can be exploited for this goal. Naturally, an
important question to consider is the distance at which
these sources could be detected in the electromagnetic
band. Such a distance estimate must take into account both
the type of expected radiation from the system, as well as
the typical sensitivities of the various observational facili-
ties. A rough estimate can be computed by using the peak
luminosities ≃1040ðB=1011 GÞ2 erg=s prior to the merger,
and assuming that a relativistically expanding electron-
positron wind (sourced by energy dissipation and magneto-
hydrodynamical waves in between the stars) produces an
x-ray signal [45], preceding or coincident with the merger.
These signals may be detectable with ISS-Lobster, by
virtue of its high sensitivity and wide field of view, and
may be seen up to distances of ∼ðB=1011GÞMpc, if one
assumes a fiducial 10% efficient conversion of Poynting
flux. However, it is important to stress that the advent of

gravitational-wave detectors would potentially allow one to
increase the accessible distances. Focused efforts by both
the gravitational and the electromagnetic signal commun-
ities are ongoing to make the most of these multimessenger
opportunities.
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