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The linear perturbation theory of inhomogeneous reionization (LPTR) has been developed as an
analytical tool for predicting the global ionized fraction and large-scale power spectrum of ionized density
fluctuations during reionization. In the original formulation of the LPTR, the ionization balance and
radiative transfer equations are linearized and solved in Fourier space. However, the LPTR’s approximation
to the full solution of the radiative transfer equation is not straightforward to interpret, since the latter is
most intuitively conceptualized in position space. To bridge the gap between the LPTR and the language of
numerical radiative transfer, we present a new, equivalent, position-space formulation of the LPTR that
clarifies the approximations it makes and facilitates its interpretation. We offer a comparison between the
LPTR and the excursion-set model of reionization (ESMR), and demonstrate the built-in capability of the
LPTR to explore a wide range of reionization scenarios, and to go beyond the ESMR in exploring scenarios
involving X-rays.

DOI: 10.1103/PhysRevD.91.083015 PACS numbers: 95.30.Jx, 98.58.Ge

I. INTRODUCTION

The epoch of reionization (EOR) is at the frontier of
observational cosmology. Analytical models of the EOR
have played an important role in our theoretical under-
standing of reionization because they provide a readily
accessible and computationally inexpensive (albeit
approximate) method of exploring salient features of the
EOR. An interesting example is the linear perturbation
theory of inhomogeneous reionization (LPTR), originally
formulated in Ref. [1], in which the equations of radiative
transfer and ionization balance are expanded to first order
in perturbations to the ionizing radiation and H I density
fields. Reference [1] showed that there is an exact solution
to the linearized radiative transfer equation in Fourier
space, and developed analytical machinery for calculating
the global ionized fraction and large-scale clustering of
ionized hydrogen density during the EOR.
The LPTR has since shown its applicability to a variety

of problems. For example, using the LPTR, Ref. [2]
computed the cosmic microwave background bispectrum
due to inhomogeneous reionization; Ref. [3] investigated
the effect of primordial non-Gaussianity on the clustering
of ionized density during the EOR, and their results were
then applied in Ref. [4] to forecast the detectability of
primordial non-Gaussianity using the EOR 21 cm power

spectrum. Reference [5] performed an independent calcu-
lation in a similar spirit to the LPTR to study neutral
density fluctuations of the intergalactic medium (IGM) in
the post-reionization epoch.
Formulating the LPTR in Fourier space is a matter of

mathematical convenience. However, the full solution of
the radiative transfer equation is most intuitively expressed
in position space. This disparity between the LPTR and the
language of numerical radiative transfer makes the inter-
pretation of the former, as well as the approximations it
entails, difficult. Bridging this gap requires a reformulation
of the LPTR in which approximations to full radiative
transfer are made explicitly in position space. In this paper,
we present such a position-space reformulation in order to
lay a clearer theoretical foundation for the LPTR, which
may help enlarge its regime of application.
Another useful analytical model of reionization—the

excursion-set model of reionization (ESMR)—was origi-
nally proposed in Ref. [6] and subsequently developed
as the basis of several “seminumerical” simulation codes
[7–10]. These ESMR-based seminumerical algorithms
have been shown to agree well with full radiative transfer
simulations for the simplest models of reionization [11,12].
We shall borrow the analytical ESMR that inspired these
algorithms (i.e not the seminumerical algorithms them-
selves) as a reference for comparison with the LPTR, not
only to cross-check their consistency under similar assump-
tions, but also to identify the scenarios that the LPTR can
explore beyond the limits of the ESMR.*mao@iap.fr
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The rest of this paper is organized as follows. In Sec. II,
we summarize and reexpress the LPTR in terms of the
conventional variables and language of radiative transfer. In
Sec. III, we reformulate the LPTR in position space. With
the insights provided by our reformulation, we discuss the
qualitative differences between the LPTR and ESMR in
Sec. IV, and we present numerical results for a range of
simple reionization models in Sec. V. Finally, we offer
concluding remarks in Sec. VI.

II. THE LPTR REEXPRESSED

The original LPTR formalism in Ref. [1] was expressed
using some nonstandard notation and variables. We begin
here by reexpressing the LPTR in the standard language of
radiative transfer in order to facilitate the LPTR’s physical
interpretation.
Consider a ray with the comoving specific intensity

Iνðη;x; ν;nÞ at the conformal time η on comoving coor-
dinates x with the proper frequency ν, which is the flux of
energy received by an observer in the comoving frame,
ahplνdN (where a is the cosmic scale factor, hpl is the
Planck constant, and dN is the number of photons), per unit
conformal time dη ¼ dt=a, per unit comoving receiving
area dA⊥=a2, per unit comoving frequency interval adν,
from unit solid angle dn about the transport direction n
(unit vector). The comoving specific intensity is related to
the proper one by Iν ¼ a3Iν;proper. The radiative transfer
equation in the Eulerian scheme is

∂Iν
c∂ηþ n ·∇Iν −

aHν

c
∂Iν
∂ν ¼ Sν − ΓνIν: ð1Þ

Here Sνðη;x; ν;nÞ is the comoving source emissivity,
Γνðη;x; νÞ is the comoving absorption coefficient, and
HðaÞ is the Hubble parameter. The comoving quantities
are related to their proper counterparts by Sν ¼ a4jν,
and Γν ¼ aκν, respectively. In the case of photoioniza-
tion of hydrogen atoms, for example, Γνðη;x; νÞ ¼
σHIðνÞnHIðη;xÞ=a2, where σHIðνÞ is the cross section of
hydrogen photoionization at the proper frequency ν and
nHI ¼ nHI; propera3 is the comoving number density of H
I atoms.
Now we develop a trick that was introduced in

Ref. [1], which can formally remove the partial differ-
entiation with respect to frequency. We define the new
time and frequency variables ξ ¼ ln a and ζ ¼ lnðν=νHÞ
(where νH is the hydrogen Lyman-limit frequency). So,
dξ ¼ aHdη and dζ ¼ dν=ν. We further define another new
set of mixed time-frequency variables u ¼ 1

2
ðξþ ζÞ and

v ¼ 1
2
ðξ − ζÞ, or ξ ¼ uþ v and ζ ¼ u − v, so ð∂=∂vÞju ¼

ð∂=∂ξÞjζ − ð∂=∂ζÞjξ. It is straightforward to show that
Eq. (1) can be rewritten as ðaH=cÞð∂Iν=∂vÞju þ n ·∇Iν ¼
Sν − ΓνIν.

Now we define the comoving1 frequency f ¼ νa. Note
that u ¼ 1

2
lnðf=νHÞ, so fixing u is equivalent to fixing f,

which accounts for cosmological redshifting. When f is
fixed, dv ¼ dξ ¼ aHdη, so Eq. (1) can be rewritten as

∂Iν
c∂η jf þ n ·∇Iν ¼ Sν − ΓνIν: ð2Þ

The lhs of Eq. (2) does not contain the derivative with
respect to frequency f. Hereafter we relabel the dependence
of all fields on ν by their dependence on f, e.g. Iνðη;x; f;nÞ.

A. Spatial averages

We define the spatial average of the specific intensity, the
source emissivity, and the intensity-weighted mean absorp-
tion coefficient as follows, respectively:

Īνðη; fÞ ¼
1

4πV

Z
d3x

Z
d2nIνðη;x; f;nÞ; ð3Þ

S̄νðη; fÞ ¼
1

4πV

Z
d3x

Z
d2nSνðη;x; f;nÞ; ð4Þ

Γ̄ν;Iðη; fÞ ¼ ΓνIνðη; fÞ=Iνðη; fÞ; ð5Þ

where

ΓνIνðη; fÞ ¼
1

4πV

Z
d3x

Z
d2nΓνðη;x; fÞIνðη;x; f;nÞ:

ð6Þ
Here V is the total volume.
From Eq. (2), Īν is governed by

∂ Īν
c∂η

����
f
¼ S̄ν − Γ̄ν;IĪν: ð7Þ

The exact solution to Eq. (7) is

Īνðη; fÞ ¼
Z

η

η0

cdηs exp½−τ̄Iðη; ηs; fÞ�S̄νðηs; fÞ: ð8Þ

Throughout this paper, the initial time η0 is chosen to be
early enough that there is no ionizing radiation. We define
the intensity-weighted mean optical depth for the time
interval between η and ηs

τ̄Iðη; ηs; fÞ≡
Z

η

ηs

cdη0Γ̄ν;Iðη0; fÞ: ð9Þ

Equation (8) was derived earlier in Refs. [13,14], and is
equivalent to the original LPTR expression, Eq. (17) in

1The idea of using the comoving frequency to simplify the
radiative transfer equation was applied earlier in Ref. [13].
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Ref. [1]. Note that the use of the radiation-H I clumping

factorCð2Þ
γH in Ref. [1] is implicitly included in our definition

of the intensity-weighted mean absorption coefficient
herein.

B. The linear perturbations

Now we write the perturbations in the fields

ΔIνðη;x; f;nÞ ¼ Iνðη;x; f;nÞ − Īνðη; fÞ; ð10Þ

ΔSνðη;x; f;nÞ ¼ Sνðη;x; f;nÞ − S̄νðη; fÞ; ð11Þ

ΔΓν;Iðη;x; fÞ ¼ Γνðη;x; fÞ − Γ̄ν;Iðη; fÞ; ð12Þ

ΔΓνðη;x; fÞ ¼ Γνðη;x; fÞ − Γ̄νðη; fÞ; ð13Þ

where Γ̄ν is the volume-weighted mean absorption
coefficient,

Γ̄νðη; fÞ ¼
1

V

Z
d3xΓνðη;x; fÞ: ð14Þ

From Eq. (2), the perturbations at a given f and n are
governed by

∂ΔIν
c∂η

����
f
þ n · ∇ðΔIνÞ ¼ ΔSν;eff − Γ̄νΔIν − ΔΓνΔIν;

ð15Þ

where the effective perturbation in source emissivity is
defined as

ΔSν;eff ¼ ΔSν − ĪνΔΓν;I: ð16Þ

The effective perturbation in source emissivity is the
perturbation in source emissivity minus the perturbation
in the photoionization rate in the mean radiation field.
Now, the radiative transfer equation is linearized, i.e. to

first order in perturbations, so the ΔΓνΔIν term is dropped
from the rhs of Eq. (15). Then we Fourier transform2 the
linearized radiative transfer equation,

∂gΔIνðkÞ
c∂η

����
f
¼ fΔSν;effðkÞ − ðin · kþ Γ̄νÞgΔIνðkÞ; ð17Þ

where the dependencies on η, f and n are implicit. The
exact solution is

gΔIνðη;k; f;nÞ ¼
Z

η

η0

cdηs exp½−τ̄ðη;ηs;fÞ�

× exp
�
−in ·kχðη;ηsÞ

�fΔSν;effðηs;k; f;nÞ;
ð18Þ

where χðη; ηsÞ≡
R
η
ηs
cdη0 is the comoving line-of-sight

distance for a time interval, and we define τ̄ as the
volume-weighted mean optical depth,

τ̄ðη; ηs; fÞ≡
Z

η

ηs

cdη0Γ̄νðη0; fÞ: ð19Þ

For atoms at a given location, the photoionization
rate only depends on the sum of radiation intensity over
all directions, i.e. the monopole intensity

R
d2nIν ¼

4πĪν þ
R
d2nΔIν. The second term on the rhs here is the

Fourier transform of
R
d2ngΔIν that can be calculated by

analytically integrating the solution for gΔIν over solid
angle. We further assume that the source emissivity is
isotropic, i.e. Sν ¼ Sνðηs;x; fÞ, which is approximately
valid for ionizing sources on large scales. In this case, the
solution for the perturbation in the monopole intensity in
Fourier space isZ

d2ngΔIνðη;k; f;nÞ ¼ 4π

Z
η

η0

cdηs exp½−τ̄ðη; ηs;fÞ�

× j0
�
χðη; ηsÞjkj

�fΔSν;effðηs;k; fÞ;
ð20Þ

where j0ðxÞ ¼ sinðxÞ=x is the spherical Bessel function of
the first kind. It is straightforward to check that Eq. (20) is
equivalent to the complicated expression in the original
LPTR, Eq. (24) in Ref. [1].
The LPTR solution [Eq. (20)] is interpreted as follows.

The effective perturbation in source emissivity propagates
in Fourier space to the perturbation in monopole intensity
along the light cone, subject to two effects: the attenuation
by the mean optical depth, and the modulation by the scale-
dependent factor j0ðχjkjÞ. While the Fourier-space formu-
lation is mathematically elegant, this interpretation is
somehow opaque, because the solution to the full radiative
transfer equation is conceptually intuitive in position space.
In particular, it is not clear what approximations made in
the LPTR result in each above effect separately. In what
follows, we reformulate the LPTR in position space to
address this question.

III. REFORMULATION IN POSITION SPACE

We start from the full radiative transfer equation for the
perturbation in specific intensity,ΔIν, in position space, i.e.

2We use an overhead tilde, e.g. ~fðkÞ, to denote the Fourier
transform of some field fðxÞ throughout this paper.
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Eq. (15) written in the Eulerian scheme. It can be rewritten
in the Lagrangian scheme as

dΔIν
ds

¼ ΔSν;eff − ΓνΔIν; ð21Þ

where d=ds is the total derivative along the (comoving)
ray path, ds ¼ cdη. The solution to the full radiative
transfer equation in the Lagrangian scheme is well
known,

ΔIνðsÞ ¼
Z

ds0ΔSν;effðs0Þ exp
�
−
Z

s

s0
ds00Γνðs00Þ

�
: ð22Þ

Here we assume again that at an early enough time, there
is no ionizing radiation. This solution to the full radiative
transfer equation can be rewritten back to the Eulerian
scheme, as

ΔIνðη;x; f;nÞ ¼
Z

η

η0

cdηsΔSν;effðηs;x− χðη;ηsÞn; f;nÞ

× exp

�
−
Z

η

ηs

cdη0Γνðη0;x− χðη;η0Þn; fÞ
�
:

ð23Þ

Note that the emission events at ðηs;x − χðη; ηsÞnÞ and
photoionization events at ðη0;x − χðη; η0ÞnÞ are on the
past light cone of the observation event at ðη;xÞ.
Now, in the spirit of linear perturbation theory,

since both ΔIν and ΔSν;eff are perturbations, we can
neglect the perturbations in the optical depth, i.e.
replace

R
η
ηs
cdη0Γνðη0;x−χðη;η0Þn;fÞ by R η

ηs
cdη0Γ̄νðη0; fÞ ¼

τ̄ðη; ηs; fÞ which is independent of position and propa-
gation direction. It is important to note that the mean
optical depth is not the same as the mean optical depth
that would be calculated through the Universe in the limit
of infinite speed of light, i.e. for which the opacity of the
Universe along the line of travel of emitted photons is
evaluated at a single cosmic time, the time at which the
local intensity is calculated. In fact, our mean optical
depth is not only integrated along the past light cone,
but also can be thought of as the average of the optical
depth

R
η
ηs
cdη0Γνðη0;x − χðη; η0Þn; fÞ of each individual

ray, over different arrival directions for photons reaching
the point of observation, and over all such observation
points.
In addition, we assume that the source emissivity is

isotropic, so the explicit dependence of ΔSν;eff on the
propagation direction n is removed. However, the source
emissivity is still implicitly dependent on n through the
explicit dependence on position. With these two assump-
tions, the solution to the radiative transfer equation is
simplified as

ΔIνðη;x; f;nÞ ¼
Z

η

η0

cdηs exp ½−τ̄ðη; ηs; fÞ�

× ΔSν;effðηs;x − χðη; ηsÞn; fÞ: ð24Þ

Integrating over n, the perturbation in monopole inten-
sity at a given location isZ

d2nΔIνðη;x;f;nÞ¼
Z

η

η0

cdηs exp ½−τ̄ðη;ηs;fÞ�

×
Z

d2nΔSν;effðηs;x−χðη;ηsÞn;fÞ:

ð25Þ

Let us focus on the second line in Eq. (25), the integration
of ΔSν;eff on a spherical surface of radius χðη; ηsÞ with
center at x. It is easy to show that this integration is equal toZ

d3x0
1

χ2ðη; ηsÞ
δðjx − x0j − χðη; ηsÞÞΔSν;effðηs;x0; fÞ:

ð26Þ
Here δðrÞ is the one-dimensional Dirac-δ function.
Equation (26) is de facto the convolution of two fields,
1

χ2ðη;ηsÞ δðjxj − χðη; ηsÞÞ, and ΔSν;effðηs;x; fÞ. The Fourier

transform of the convolution is the product of the Fourier
transform of the separate fields. Since the Fourier transform
of 1

χ2
δðjxj − χÞ is 4πj0ðχjkjÞ, the Fourier transform of the

second line in Eq. (25) is

4πj0ðχðη; ηsÞjkjÞfΔSν;effðηs;k; fÞ: ð27Þ

With this help, Fourier transforming Eq. (25), we recover
exactly the LPTR solution of perturbations in Fourier
space [Eq. (20)].
The physical interpretation of the LPTR solution is made

clearer by this position-space reformulation. The effective
perturbation in source emissivity propagates in position
space to the perturbation in specific intensity along the light
cone, subject to two aforementioned effects: 1) the attenu-
ation by the mean optical depth, resulting from the neglect
of the inhomogeneous photoionization rate along light rays;
2) the modulation by the j0ðχjkjÞ factor, representing the
integration of the effective perturbation in isotropic source
emissivity over different photon arrival directions from a
two-dimensional spherical surface of equal look-back time
along the past light cone. Note that the LPTR formalism
takes into account the spatial fluctuations of all physical
quantities to first order. For example, the fluctuation of the
photoionization rate is included through the ĪνΔΓν;I and
ΔIνΓ̄ν term. The neglect of the fluctuations of optical depth
in LPTR, nevertheless, may underestimate the fluctuations
of photon intensity, and, hence, suppress the fluctuations of
the ionized fraction on small scales.
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This reformulation also makes clearer what contributes
to the inhomogeneity in the radiation field and H II
distributions in the LPTR. Since the attenuation is
accounted for by the mean optical depth, the inhomo-
geneity in the radiation field results from the variations in
the integrated effective perturbations in source emissivity.
However, in the extremely hard spectrum case in which
the photon mean free path is very large, the integration
on a large spherical surface smoothes out the effective
perturbations in source emissivity, regardless of the
location of the center. In this case, the radiation intensity
approaches the homogeneous case, as considered in
Refs. [13,14]. On the other hand, the inhomogeneity
in the H II distribution results from not only the
inhomogeneity in the radiation field, but also the fluc-
tuations in hydrogen recombination rate, the latter of
which depends on the local overdensity of hydro-
gen atoms.

IV. COMPARISON WITH THE ESMR

Now that we have reformulated the LPTR in a way
that makes clearer its approximations to radiative trans-
fer, we offer a comparison between the LPTR and the
ESMR of Ref. [6]. The comparison presented here is
limited to the simplest variant of the ESMR, as
originally developed by Ref. [6]. Though the ESMR
has since been extended in several ways (see e.g.
Refs. [15–20]), we focus our discussion on the origi-
nal/simplest version without loss of generality because
the underlying principles of its more sophisticated
extensions remain essentially the same.
The basic assumptions of the ESMR can be summa-

rized as follows. 1) Each galaxy of massMgal can ionize a
mass Mion ¼ ξESMRMgal, where ξESMR is an efficiency
parameter that depends on, for example, the star formation
efficiency, the number of ionizing photons produced per
stellar baryon, the escape fraction of ionizing photons,
and the mean recombination rate of the ionized IGM.
Due to the high degree of uncertainty in all of these
parameters, ξESMR is treated as a free parameter. 2) A point
x in the IGM is assumed to be part of an ionized region
once a sphere centered on it contains enough mass in
collapsed halos to ionize all of the neutral hydrogen atoms
in that sphere. Let fcollðη;Mmin; R; δRÞ be the collapsed
fraction of halos with masses above some threshold3 Mmin,
where δR is the linearly extrapolated density contrast
smoothed on the scale R. The condition for our fiducial
point to be ionized is

fcollðη;Mmin; R; δRÞ ≥ ξ−1ESMR: ð28Þ

More precisely, the point is assumed to be in an ionized
region of mass M ¼ ρ̄m4πR3=3 (where ρ̄m is the comoving
mean matter density) for the largest such sphere that satisfies
the condition in Eq. (28). If this condition is not satisfied for
any mass scale, then the point is assumed to reside in a
neutral region. Similarly to the excursion-set model of halo
statistics [21–23], the mass function of ionized bubbles can
be constructed by solving for the first-crossing distribution
of random walks with an absorbing barrier obtained
from Eq. (28).
In the ESMR, points in the IGM are assumed to be either

fully ionized or fully neutral. However, the average ionized
fraction, xHIIðη; RÞ, within a large spherical region of radius
R can be written as

xHIIðη; RÞ ¼ ξESMRfcollðη;Mmin; R; δRÞ: ð29Þ

Hence, large-scale fluctuations in the ionized fraction
simply correspond to large-scale fluctuations in the col-
lapsed fraction.
There are four aspects of radiative transfer that distin-

guish the LPTR from the ESMR.
(i) In ESMR, a collapsed object within a spherical

region contributes to the ionization status of that region
in proportion only to its mass, but not to its distance from
the center. However, if a source is near the boundary of
the sphere, not only is the flux of ionizing photons
received at the center of the sphere reduced by the
inverse square of the distance, but a large fraction of
ionizing photons from this source can leak out of the
region, contributing to the ionization of neighboring
regions. So the number of atoms in a given region that
are ionized by a source must depend on both the source
mass and its separation from the center. On the other
hand, let us recapitulate the basic principle of the LPTR;
when the perturbations in the effective source emissivity
are transferred to perturbations in the monopole radiation
intensity, the mean optical depth is used to account
approximately for the absorption of radiation along the
ray. Thus, the LPTR includes the basic elements of
radiative transfer, albeit in an approximate way.
(ii) The ESMR implicitly makes the “infinite speed of

light” approximation, in which the light crossing time for
ionizing photons is assumed to be much smaller than the
time scale over which enough sources form to completely
ionize a volume. In this approximation, a region is assumed
to be ionized instantaneously once it accumulates enough
collapsed fraction. On the other hand, as is clear from our
formulation above, the LPTR properly relates the arrival
rate of photons to the emissivity elsewhere along the past
light cone (with the correct speed of light). The infinite
speed of light approximation is reasonable for small H II
regions formed during the early stages of reionization.

3For simplicity, we assume that halos with virial temper-
atures Tvir ≥ 104 K, within which gas could be radiatively
cooled through collisional excitation of atomic hydrogen, were
the only sources of reionization. The minimum Tvir ≥ 104 K
criterion roughly corresponds to a minimum halo mass scale
Mmin ∼ 108 M⊙.
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However, as H II regions grow in size and the mean free
path for ionizing photons grows, accounting for the finite
speed of light becomes increasingly important. The dis-
tinction between a finite and an infinite speed of light is
always important, in fact, for hard enough photons (e.g.
X-rays), for which the mean free path is large from the
outset.
(iii) In the ESMR, the global ionized fraction, x̄HII, is the

weighted sum of xHII ¼ 1 for fully ionized regions and
xHII ¼ 0 for fully neutral regions; partially ionized regions
are not produced in this model.4 A two-phase IGM is a
reasonable approximation in scenarios where only UV
sources reionize the Universe. In that case, the mean free
path in the neutral IGM is extremely short, and the
boundaries between H II and neutral regions are sharp.
In contrast, the LPTR is not restricted to any single
ionization topology.
(iv) Unlike the ESMR, the source spectrum appears

explicitly in the LPTR formalism. Together with (ii) and
(iii), this feature makes the LPTR a better-suited analytical
tool for investigating scenarios in which X-rays contribute
significantly to reionization, and/or an earlier epoch of
partial ionization and preheating of the IGM by the first
X-ray sources.
We note that the second and third points above are

important only when the source spectrum contains signifi-
cant portions of hard photons such as X-rays. While there
has been no direct observational constraint for the spectrum
hardness, 21 cm observations [24,25] have suggested that
by z ∼ 7.7, the IGM has been warmed from its cold
primordial state. Since X-rays dominate the heating of
the IGM, this suggests that the contribution from X-rays is
likely to play a crucial, even though not dominant, role in
reionization.
The fundamental assumption of the LPTR on the

linearization of radiative transfer may be a serious short-
coming. Is dropping ΔΓνΔIν in Eq. (15) a good approxi-
mation? If the IGM is a two-phase medium with the ionized
fraction taking the value of either zero or unity, this
approximation breaks down on scales approaching the
typical bubble size (about tens of comoving Mpc).
However, on much larger scales, k≲ 0.01 Mpc−1, the
linearization scheme should be valid, at least at face value,
because the fluctuations of the ionized fraction are
smoothed on those large scales. In comparison, the
ESMR provides a nonperturbative model that is applicable
on all scales, including the regime in which the LPTR
breaks down.

V. NUMERICAL RESULTS

The strength of the LPTR lies in the fact that it can be
applied “right out of the box” to arbitrary source models
and recombination clumping factors, since it is derived
directly from the equations of radiative transfer and
ionization balance. As we described above, the LPTR
can even be applied to cases with hard source spectra
(i.e. X-rays) to explore scenarios beyond the limits of the
ESMR. In this section, we demonstrate the wide range of
models that can be readily covered by the LPTR, high-
lighting differences made by variations in the source and
clumping factor models. For reference, we also compare
the ESMR to an LPTR model constructed to approximately
match the assumptions of the ESMR. The numerical
implementation in this section employs an LPTR code
described in Refs. [1,3], which evaluates the LPTR solution
in Fourier space. We refer readers to Refs. [1,3] for details
on the Fourier-space implementation techniques.

A. Illustrative models

In the LPTR, one is free to write down a source model of
any form. In this paper we consider two, for illustrative
purposes. In source Model A, the number of photons
released during a time interval dη is proportional to the
change in the number of collapsed hydrogen atoms in that
interval. In this case, the emissivity can be written as [1,3]

Sνðη;x; fÞ ¼
hpl
4π

γAðνÞ ∂
∂η ½nHðη;x; RÞfcollðη;Mmin; R; δRÞ�

ð30Þ
where nHðη;x; RÞ is the comoving number density of
hydrogen atoms smoothed5 over a spherical region of
radius R, and γAðνÞ is the unitless source spectrum
function. In other words, in this model, photon production
is fueled only by newly collapsed hydrogen. Model A is
similar to the default assumption of the ESMR; the total
number of photons emitted from a region is proportional to
the total collapsed mass within that region. In source Model
B, the rate of photon production at a given time is
proportional to the total number of collapsed hydrogen
atoms [3],

Sνðη;x; fÞ ¼
hpl
4π

H0γ
BðνÞnHðη;x; RÞfcollðη;Mmin; R; δRÞ;

ð31Þ

where the source spectrum, γBðνÞ, corresponds to the
number of ionizing photons per collapsed hydrogen atom
per Hubble time H−1

0 per unit lnðν=νHÞ. In this model,
photon production is continuously fueled by collapsed

4Some seminumerical simulation algorithms based on
ESMR, e.g. Ref. [9], assign a partial ionization, xHII ¼
ξESMRfcollðη;Mmin; Rcell; δRcell

Þ (where Rcell is the cell size), to
cells that do not meet the excursion-set ionization criterion,
Eq. (28). This “partial” ionization accounts for small H II bubbles
that are not resolved by the simulation, but the IGM is
fundamentally modeled as a two-phase medium.

5In the large-scale limit k ≪ 2π=R, i.e. the regime of interest
here, the results are independent of the smoothing scale R.
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mass. It is useful to compare source Models A and B, not
only because they represent different physical regimes, but
also because the latter is often employed in radiative
transfer simulations (see, e.g. Ref. [26]), whereas the
former is the typical assumption in analytical and semi-
numerical methods based on the ESMR.
Note that LPTR, in either position or Fourier space, does

not imply any particular choice of the statistical relationship
between the density field and the distribution of ionizing
sources. LPTR can be used with any sophisticated treat-
ments of the source-density relationship, ranging from a
local, linear halo bias model to something that correlates
the density field at different points in space and time
(e.g. Ref. [27]).
In both LPTR source models we consider herein, we

evaluate the collapsed fraction according to the excursion-
set approach, as in ESMR,

fcollðη;Mmin; R; δRÞ ¼ erfc

�
δc − δRðηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½SminðηÞ − SRðηÞ�
p �

; ð32Þ

where δc ≈ 1.686 is the critical extrapolated linear over-
density in the spherical collapse model in an Einstein–de
Sitter universe, SRðηÞ is the variance of density fluctuations
smoothed on the scale R, and SminðηÞ corresponds to the
variance smoothed on the scale Rmin ¼ ð3 Mmin=4πρ̄mÞ1=3.
As done in the original LPTR [1,3], we Taylor expand fcoll
and Sν to linear order in the filtered overdensity δR around
δR ¼ 0, and take the limits of SR → 0 and ~δRðkÞ ≈ ~δðkÞ,
assuming R is large enough, so that the bias of monopole
radiation intensity with respect to the underlying density
fluctuations can be analytically calculated in k space.
In both LPTR source models, we parametrize the source

spectrum with a power law in ν [1,3],

γA;BðνÞ ¼ ζA;BLPTRCsðν=νHÞð1þsÞ: ð33Þ

The power-law index s can be used to tilt the source
spectrum to a soft one, in which UV photons are dominant,
or a hard one, in which X-rays represent a larger fraction of
photons. Here, we will use s ¼ −3 and s ¼ −1 as examples
of soft and hard source spectra respectively. The normali-
zation factor Cs is defined such that integration over the
spectrum always gives the efficiency parameter ζA;BLPTR, i.e.R
∞
νH

γA;BðνÞdν=ν ¼ ζA;BLPTR. In the case with s ¼ −3, this
leads to a normalization of Cs ¼ −ð1þ sÞ. On the other
hand, the integral diverges for s ¼ −1, so we smoothly
truncate the spectrum at a cutoff frequency, νmax. In this
case, we take the cutoff at lnðνmax=νHÞ ¼ 10, or
hplνmax ¼ 300 keV. The values of the parameters ζA;BLPTR
are determined by fixing the electron elastic scattering
optical depth to τes ¼ 0.08, consistent with the Planck
one-year result [28].

Note that in the hard spectrum case, the helium
photoionization rate should be taken into account in
the radiative transfer and ionization balance equations, in
principle. While the formulation given above in Secs. II
and III is fully general for any photoionization species,
we focus on the case in which only hydrogen reionization
is considered in what follows for illustrative purposes, as
in Ref. [1]. We refer readers to Eqs. (7) and (20) in
Ref. [1] for solving the ionization balance equation for
hydrogen.
In addition to flexibility in source models, the LPTR

can naturally accommodate any model for the time
dependence of the clumping factor. In this paper, we
consider two simple models of the recombination clump-
ing factor, CHII ¼ hn2HIIi=hnHIIi2: one with constant
CHII ¼ 2 for all time, where this value was chosen to
fall within the range of plausible values suggested by
numerical simulations (see, e.g. Refs. [29,30]), and the
other in which CHII varies with redshift according to the
fitting formula [31],

CHII ¼ 26.2917 expð−0.1822zþ 0.003505z2Þ: ð34Þ

The clumping factors for photoionization, Cð1Þ
γH and Cð2Þ

γH ,
are also free parameters in the LPTR. They are defined

as Cð1Þ
γH ¼ hnHIIνκi=hnHIihIνihκi and Cð2Þ

γH ¼ hnHIIνi=
hnHIihIνi, where κðν; xHIIÞ accounts for local secondary
reionization by fast photoelectrons produced when the
energetic X-ray photons ionize hydrogen [32]. For

simplicity, we assume Cð1Þ
γH ¼ Cð2Þ

γH ¼ 1 for all time for
all of the LPTR models, which is a good approximation
as suggested by hydrodynamical/radiative transfer simu-
lations [33,34].
Note that the emission from hydrogen recombination to

the ground state can be a source of reionization, too. Since
the recombination emission is presumably isotropic at each
point, the LPTR formalism can accommodate it in the
source term, in principle. However, we neglect this
emission in our demonstration of the LPTR models for
simplicity, because it is not the driving force for
reionization.
In Table I, we summarize the different LPTR models6

considered below. As an example of the naming convention
in Table I, the model labeled LPTR-2As corresponds to
CHII ¼ 2, source Model A, and a soft spectrum with
s ¼ −3. We also consider an ESMR model with
ζESMR ¼ 50.2, the value of which is chosen to yield
τes ¼ 0.08, like all of the LPTR models. Since we consider
only the simplest variant of the ESMR, which is limited to
an effectively constant and homogenous recombination
rate (degenerate with the ζESMR parameter), and to the

6We note that the ESMR, LPTR-2As, -tAs and -tBs models are
taken from Ref. [3].
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assumption that the total number of photons emitted in a
region is proportional to the local collapsed fraction
(consistent with source Model A in the case of UV
photons), our ESMR results are most comparable to the
LPTR-2As model. We note that Refs. [15,17,18] extended
the ESMR to account for an inhomogeneous recombination
rate and that it is, in principle, possible to modify the ESMR
to be consistent with source Model B. However, we
emphasize that the purpose of our comparison is two-fold:
1) to highlight the flexibility built into the LPTR by
exploring a wide range of reionization models; and 2) to
compare the ESMR to the LPTR in a case with similar
assumptions.
In what follows, we use a fiducial ΛCDM cosmology

with parameters Ωm ¼ 0.28, ΩΛ ¼ 0.72, Ωb ¼ 0.046,
H0 ¼ 100 h km s−1 Mpc−1 with h ¼ 0.7, ns ¼ 0.96 and
σ8 ¼ 0.82, consistent with the WMAP seven-year result
[35] and the Planck one-year result [28].

B. Results

In Fig. 1, we compare two reionization observables
across the models in Table I: (top) the global ionized
fraction x̄HIIðzÞ; (middle and bottom) the large-scale clus-
tering of intergalactic H II, quantified by the ionized density
bias, bHIIðk;zÞ≡ ~δρHIIðk;zÞ=~δρðk;zÞ, where ~δρHIIðk;zÞ is the
Fourier transform of the fractional H II mass overdensity,
δρHIIðx; zÞ≡ ρHIIðx; zÞ=ρ̄HII − 1, and δρðk; zÞ corresponds
to the fractional total matter overdensity. (For a more
detailed discussion of the ionized density bias and its
relation to other commonly used ionization bias parame-
ters, see Sec. 2.1 of Ref. [3].)
We find that the ESMR results agree, to a large extent,

with those of the LPTR-2As model. Recall that, among
the LPTR models in Table I, this model best reproduces
the underlying assumptions of the ESMR; it uses source
Model A, a soft source spectrum dominated by UV

photons, and a small, constant clumping factor, such that
the effective recombination rate is not far from the
recombination rate at the mean density of the Universe.
There is a small difference in the global ionization history
at x̄HII > 0.5, and the end of reionization differs by Δz ≈
0.3 between these two models. These differences may be
due to the fact that both the LPTR and the ESMR models

TABLE I. Illustrative models of reionization. As an example of the naming convention for the LPTR models, the model labeled as
“LPTR-2As” corresponds to CHII ¼ 2, source Model A, and a soft spectrum with s ¼ −3. The time dependence of CHII refers to the
variation with redshift according to the fitting formula in Eq. (34). In the LPTR, source Model A is the case in which the emissivity is
proportional to the time derivative of the collapse fraction [Eq. (30)], while Model B is the case in which the emissivity is proportional to
the collapse fraction [Eq. (31)]. The source spectrum is parametrized according to Eq. (33), and the cases with the index s ¼ −3 and
s ¼ −1 are representative examples of the soft and hard spectra, respectively. The simplest variant of the ESMR [6] is limited to an
effectively constant and homogeneous recombination rate, and consistent with the assumptions of source Model Awith a soft spectrum.
For each LPTR and ESMR model, the value of the efficiency parameter is determined by fixing τes ¼ 0.08.

Model CHII Cð1Þ
γH Cð2Þ

γH Emissivity model Emissivity softness s Efficiency parameter

ESMR � � � � � � � � � � � � � � � ζESMR ¼ 50.2
LPTR-2As 2 1 1 A −3 ζALPTR ¼ 54.2
LPTR-2Bs 2 1 1 B −3 ζBLPTR ¼ 9.9 × 103

LPTR-tAs Time-dependent 1 1 A −3 ζALPTR ¼ 70.3
LPTR-tBs Time-dependent 1 1 B −3 ζBLPTR ¼ 1.18 × 104

LPTR-2Ah 2 1 1 A −1 ζALPTR ¼ 62

LPTR-2Bh 2 1 1 B −1 ζBLPTR ¼ 1.16 × 104

FIG. 1 (color online). Predictions of various models on reio-
nization: (top) the global ionization fraction x̄HII as a function of
redshift z, (middle) the ionized density bias bHIIðk; zÞ at
k ¼ 0.01 Mpc−1 as a function of redshift, and (bottom)
bHIIðk; zÞ as a function of the wave number k at z ¼ 10.2 when
xHII ≈ 0.5. Shown are results of the ESMR (solid/black), LPTR-
2As (dotted/red), LPTR-2Bs (short dashed/blue), LPTR-tAs
(dot-short dashed/cyan), LPTR-tBs (short dashed-long dashed/
purple), LPTR-2Ah (dot-long dashed/green), and LPTR-2Bh
(long dashed/magenta).
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considered here possess a deficiency in how they treat the
end of reionization.7 For example, the “infinite speed of
light” assumption implicitly made in the ESMR breaks
down near the end of reionization, and the assumption of
linearized radiative transfer in LPTR becomes a bad
approximation when H II bubbles approach the large
scale of interest as they grow. On the other hand, the
middle and bottom panels show that their ionized density
biases are consistent with each other, aside from the
timing difference at the end of reionization.
Figure 1 shows that changing the clumping factor from a

small, constant to the time-dependent model in Eq. (34),
while holding the source model and τes fixed, can slightly
delay the end of reionization by Δz ∼ 0.3–0.6. In our time-
dependent clumping model, the recombination clumping
factor is significantly enhanced near the end of reionization,
CHII ≈ 6.8 at z ¼ 9, more than 3 times larger than CHII ¼ 2.
If the efficiency parameter were held fixed, then a larger
clumping factor would always delay the end of reioniza-
tion, which would yield a smaller τes. In order to match τes,
therefore, we increased the efficiency parameter (see
Table I), so that the delay at the end of reionization is
compensated by faster reionization at the beginning. Due to
the larger source efficiency, a given source can ionize a
larger volume by releasing more ionizing photons. This
significantly (≲40% fractional difference) enhances the
ionized density bias.
On the other hand, switching the type of source model

can change the global ionization history significantly for
x̄HII > 0.5. In particular, the end of reionization in source
Model A is later than that in Model B by Δz ∼ 0.7–1,
because ionizing photons are produced from all, not just
new, collapsed masses in Model B. The ionized density
bias, however, is almost unchanged, until the end of
reionization.
Finally, let us consider the impact of a source spectrum

weighted towards X-rays—a region of parameter space that
the ESMR cannot explore. In the hard-spectrum models
(with s ¼ −1), the end of reionization is delayed by Δz ∼
0.8 relative to their soft-spectrum counterparts. The hard-
spectrum models also produce a lower overall amplitude of
bHII, a more gradual decline of bHII towards unity at the end
of reionization, and a scale dependence in bHIIðk; zÞ, as
shown in the bottom panel of Fig. 1. All of these features
can be explained in terms of the difference between the
mean free paths of hard and soft photons. In models with a
soft source spectrum, H II regions are bubble-like with
sharp boundaries, and they begin around highly biased
sources, which boosts the bias of H II fluctuations. The
mean free path of UV photons remains much shorter than
the length scales corresponding to k ¼ 10−3 − 0.1 Mpc−1

up until the very end of reionization. On scales much larger
than the mean free path, the ionized density bias traces the
source bias, which is assumed to be scale independent in
our calculations; hence, the ionized density bias is also
scale independent. The mean free path rises very rapidly at
the end of reionization as large H II bubbles merge (see
Ref. [3]), rapidly suppressing the ionized density bias as
reionization ends (see, however, footnote 7). In contrast,
since the long mean free path of hard photons results in a
more homogeneously ionized IGM, the distribution of
intergalactic H II in the hard-spectrum models is not so
highly clustered around biased sources, resulting in a lower
overall amplitude of the ionized density bias. The mean
free path of X-rays can be as high as ∼100 Mpc during
reionization, corresponding to k ∼ 0.01 Mpc−1. Since the
bias of H II fluctuations relative to the underlying density
field is suppressed on scales below the mean free path, bHII
is suppressed above k≳ 0.01 Mpc−1, as shown in the
bottom panel in Fig. 1. Lastly, in the hard-spectrum models,
the rise of the mean free path is not as rapid at the end of
reionization as in the UV case, resulting in a more gradual
suppression of bHII towards unity.
The above results demonstrate the built-in capability of

the LPTR to explore a wide range of reionization scenarios,
and to go beyond the ESMR in exploring scenarios
involving X-rays.

VI. CONCLUSIONS

We presented a new formulation of the LPTR that
elucidates its approximation to radiative transfer in position
space. The fundamental approximation of the LPTR is that
the propagation of perturbations in effective source emis-
sivity is attenuated with a mean optical depth that is not
only integrated along the past light cone, but also averaged
over all photon arrival directions and all points in space.
Our reformulation facilitates the interpretation of the LPTR
and may inform future efforts to broaden its regime of
applicability.
We contrasted the underlying principles of the LPTR

against those of another useful analytical model of
reionization—the ESMR. We also used an LPTR model
constructed to match approximately the underlying
assumptions of the ESMR to show that these two distinc-
tive analytical approaches yield consistent results in this
simple model. However, we further demonstrated that the
LPTR can readily explore a wide range of parameter space
in source models and recombination rate models. These
physically motivated assumptions in source emissivity help
bridge the gap between ionizing sources at high redshift,
which may be too faint to be directly observed in the
foreseeable future, and radio observations of the EOR.
More importantly, the LPTR is able to go beyond the limits
of the ESMR in studying scenarios involving X-rays, which
can play a leading role in partially reionizing and/or
preheating the IGM during the early phases of reionization.

7In both of these models, the mean free path rapidly diverges at
the end of reionization. In reality, the mean free path cannot
increase indefinitely due to absorption by Lyman-limit systems.
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Although the main emphasis of this paper has been the
interpretation of the LPTR in position space, we note that,
in practice, the LPTR is computationally fast and efficient
due to its unique implementation of radiative transfer
locally in Fourier space. In fact, because of this, the
LPTR can serve as the basis of a seminumerical simula-
tion algorithm,8 which can efficiently generate three-
dimensional realizations of H II distributions, in a similar
spirit to seminumerical codes [7–10] based on the
ESMR [36].
Let us complete our discussion by commenting on the

shortcomings of the LPTR. We first point out that the
ESMR can easily work out the H II bubble size
distribution [37]—an important statistic of reionization
—while the LPTR cannot. Secondly, the assumption of
linearized radiative transfer, which neglects the inhomo-
geneity of photoionization rates along light rays, breaks
down on the scale of typical H II bubbles. As will be
shown in future work, the issue of H II bubble size
distributions can be addressed by the aforementioned
seminumerical algorithm based on the principles of
LPTR. The issue of inhomogeneous photoionization
rates is a more serious deficiency of the LPTR.
Clearly, this effect is most accurately addressed with

three-dimensional radiative transfer simulations, though at
a significant computational cost. An alternative semi-
analytical approach is to introduce effective linear terms
in place of the higher-order term ΔΓνΔIν which is
missing in the LPTR, and calibrate those effective terms
by numerical simulations. We leave it to future work to
test this deficiency of the LPTR against full numerical
simulations [36], and to implement the aforementioned
effective theory approach.
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