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ABSTRACT
In the context of count-in-cells statistics, the joint probability distribution of the density in
two concentric spherical shells is predicted from first principle for sigmas of the order of 1.
The agreement with simulation is found to be excellent. This statistics allows us to deduce
the conditional one dimensional probability distribution function of the slope within under
dense (resp. overdense) regions, or of the density for positive or negative slopes. The former
conditional distribution is likely to be more robust in constraining the cosmological parameters
as the underlying dynamics is less evolved in such regions. A fiducial dark energy experiment
is implemented on such counts derived from � cold dark matter simulations.

Key words: methods: numerical – cosmology: theory – large-scale structure of Universe.

1 IN T RO D U C T I O N

With the advent of large galaxy surveys [e.g. the Sloan Digital Sky
Survey and in the coming years Euclid (Laureijs et al. 2011), the
Large Synoptic Survey Telescope], astronomers have ventured into
the era of statistical cosmology and big data. Hence, there is a dire
need for them to build tools that can efficiently extract as much
information as possible from these huge data sets at high and low
redshift. In particular, this means being able to probe the non-linear
regime of structure formation. The most commonly used tools to
extract statistical information from the observed galaxy distribution
are N-point correlation functions (e.g. Scoccimarro et al. 1998)
which quantify how galaxies are clustered. In our initially Gaussian
Universe, the matter density field is fully described by its two-point
correlation function. However departure from Gaussianity occurs
when the growth of structure becomes non-linear (at later times or
smaller scales), providing information that is not captured by the
two-point correlation function but is recorded in part in the three-
point correlation function. Obviously N-point correlation functions
are increasingly difficult to measure when N increases. They are
noisy, subject to cosmic variance and highly sensitive to systematics
such as the complex geometry of surveys. It is thus essential to find
alternative estimators to extract information from the non-linear
regime of structure formation in order to complement these classical
probes. This is in particular critical if we are to understand the origin
of dark energy, which accounts for ∼70 per cent of the energy budget
of our Universe.

� E-mail: codis@iap.fr

One such method to accurately probe the non-linear regime is to
implement perturbation theory in a highly symmetric configuration
(spherical or cylindrical symmetry) for which the full joint cumulant
generating functions can be constructed. Such constructions take
advantage of the fact that non-linear solutions to the gravitational
dynamical equations (the so-called spherical collapse model) are
known exactly. Corresponding observables, such as galaxy counts
in concentric spheres or discs, then yield very accurate analytical
predictions in the mildly non-linear regime, well beyond what is
usually achievable using other estimators. The corresponding sym-
metry implies that the most likely dynamical evolution (amongst all
possible mapping between the initial and final density field) is that
corresponding to the spherical collapse for which we can write an
explicit linear to non-linear mapping. This has been demonstrated
in the limit of zero variance using direct diagram resummations
(Bernardeau 1992, 1994)1 which was later shown to correspond to
a saddle approximation (Juszkiewicz, Bouchet & Colombi 1993;
Valageas 2002; Bernardeau, Pichon & Codis 2014). The key point
on which this whole paper is based upon, is that the zero variance
limit is shown to provide a remarkably good working model for
finite variances (Bernardeau 1994; Bernardeau et al. 2014).

This formalism also allows us to weigh non-uniformly different
regions of the universe making possible to take into account the fact
that the noise structure in surveys is not homogenous. For instance,
low-density regions are probed by fewer galaxies. Conversely, on
dynamical grounds, we also expect the level of non-linearity in

1 The original derivations were actually derived from the hierarchical model
that aimed at describing the fully non-linear regime (Balian & Schaeffer
1989).
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the field to be inhomogenous: low-density regions are less non-
linear. Hence, it is of interest to build statistical estimators which
probe the mildly non-linear regime and that can be tuned to probe
subsets of the field, offering the best compromise between these
constraints. In the context of the cosmic density field, the construc-
tion of conditional distributions naturally leads to the elaboration
of joint probability distribution functions (PDF hereafter) of the
density in concentric cells.

Following Bernardeau, Pichon & Codis 2014 (hereafter BPC),
we propose in Section 2 to extend one-point statistics of density
profiles and to the full joint PDF of the density in two concentric
spheres of different radii. This is obtained using perturbation the-
ory core results on the cumulant generating function, the double
inverse Laplace transform of which is then computed from brute
force numerical integration. From that PDF, we will also present
the statistics of density profiles restricted to underdense (resp. over-
dense) regions, and the statistics of density restricted to positive
(resp. negative) slopes (Section 3). Theoretical predictions will be
shown to be in very good agreement with simulations in the mildly
non-linear regime. Dependence with redshift will also be discussed.
Finally, Section 4 presents a simple fiducial dark energy experiment,
while Section 5 wraps up.

2 THE TWO-CELL DENSITY STATISTICS

For the sake of clarity, let us present and briefly comment the
formalism. We consider two spheres S i of radius Ri (i = 1, 2)
centred on a given location of space x0. Our goal is to derive the
joint PDF of the density in S1 and S2 denoted ρ̂i and rescaled so
that 〈ρ̂i〉 = 1.

2.1 The cumulant generating function

In the cases we are interested in, the joint statistical properties of ρ̂1

and ρ̂2 are fully encoded in their moment generating function

MR1R2 (λ1, λ2) =
∞∑

p,q=0

〈ρ̂p
1 ρ̂

q
2 〉λ

p
1 λ

q
2

p! q!
, (1)

= 〈exp(λ1ρ̂1 + λ2ρ̂2)〉 , (2)

that can be related to the cumulant generating function,
ϕR1R2 (λ1, λ2), through MR1R2 (λ1, λ2) = exp

[
ϕR1R2 (λ1, λ2)

]
, so

that

exp
[
ϕR1R2

] =
∫

dρ̂1dρ̂2PR1R2 exp(λ1ρ̂1 + λ2ρ̂2), (3)

where PR1R2 (ρ̂1, ρ̂2) is the joint PDF of having density ρ̂1 in S1 and
ρ̂2 in S2. We will now exploit a theoretical construction that permits
the explicit calculation of PR1R2 (ρ̂1, ρ̂2).

2.1.1 Upshot

As we will sketch in the following, this theoretical construction
yields the explicit time dependence of the Legendre transform of
ϕR1R2 (λ1, λ2) in the quasi-linear regime. Such a Legendre transform
is defined as

�R1R2 (ρ1, ρ2) = λ1ρ1 + λ2ρ2 − ϕR1R2 (λ1, λ2), (4)

where ρ i are determined implicitly by the stationary conditions

λi = ∂

∂ρi

�R1R2 (ρ1, ρ2) , i = 1, 2 . (5)

The fundamental relation is then that, in the limit of zero variance,
this Legendre transforms taken at two different times, �(ρ1, ρ2; η)
and � ′(ρ1, ρ2; η′), take the same value

�R1R2 (ρ1, ρ2; η) = �R′
1R′

2
(ρ ′

1, ρ
′
2; η′) , (6)

provided that ρiR
3
i = ρ ′

iR
′
i
3, and that ρ ′

i and ρ i are linked together
through the non-linear dynamics of spherical collapse. The origin
of this equation will be sketched in the following Section 2.1.2.

Equation (6), when applied to an arbitrarily early time η′, yields
a relation between �(ρ1, ρ2; η) and the statistical properties of
the initial density fluctuations. In particular, for Gaussian initial
conditions, �(ρ1, ρ2; ηi) can easily be calculated and expressed in
terms of elements of covariance matrices,

�R1R2 (ρ1, ρ2; ηi) = 1

2

∑
i,j≤2

	ij (ρi − 1)(ρj − 1) , (7)

where 	ij is the inverse of the matrix of covariances, 
ij = 〈τ iτ j〉,
between the initial density contrasts τ i in the two concentric spheres
of radii Ri. One can then write the cumulant generating function at
any time through the spherical collapse mapping between one final
density at time η in a sphere of radius Ri and one initial contrast in
a sphere centred on the same point and with radius R′

i = Riρ
1/3
i (so

as to encompass the same total mass); it can be written formally as

ρi = ζSC(η, τi) ≈ 1

(1 − D+(η)τ/ν)ν
, (8)

where, for the sake of simplicity, we use here a simple prescription,
with D+(η) the linear growth factor and ν = 21/13 to reproduce the
high-z skewness.

Recall that only �R1R2 (ρ1, ρ2) is easily computed. The statisti-
cally relevant cumulant generating function, ϕR1R2 (λ1, λ2), is only
accessible via equation (4) through an inverse Legendre transform
which brings its own complications. In particular, note that all values
of λi are not accessible due to the fact that the ρ i–λi relation cannot
always be inverted. This is signalled by the fact that the determinant
of the transformation vanishes, e.g. Det

[
∂ρi∂ρj�(ρ1, ρ2)

] = 0.
This condition is met both for finite values of ρ i and λi. The cor-
responding contour lines of ϕ(λ1, λ2) was investigated in BPC and
successfully compared to simulation.

2.1.2 Motivation

It is beyond the scope of this letter to re-derive equations (4)–(6) –
a somewhat detailed presentation can be found in Valageas (2002)
and in BPC – but we can give a hint of where it comes from: it
is always possible to express any ensemble average in terms of
the statistical properties of the initial density field so that we can
formally write

exp [ϕ] =
∫
Dτ1Dτ2 P(τ1, τ2) exp (λ1ρ1(τ1) + λ2ρ2(τ2)) . (9)

As the present-time densities ρ i can arise from different initial
contrasts, the above-written integration is therefore a path integral
(over all the possible paths from initial conditions to present-time
configuration) with measure Dτ1Dτ2 and known initial statistics
P(τ1, τ2). Let us assume here that the initial PDF is Gaussian so
that

P(τ1, τ2)dτ1dτ2 =
√

det 	 exp [−�(τ1, τ2)]

2π
dτ1dτ2 , (10)

with � then a quadratic form.
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In the regime where the variance of the density field is small,
equation (9) is dominated by the path corresponding to the most
likely configurations. As the constraint is spherically symmetric,
this most likely path should also respect spherical symmetry. It is
therefore bound to obey the spherical collapse dynamics. Within
this regime equation (9) becomes

exp [ϕ] �
∫

dτ1dτ2 P(τ1, τ2) exp (λ1ζSC(τ1)+λ2ζSC(τ2)) , (11)

where the most likely path, ρ i = ζ SC(η, τ i) is the one-to-one spher-
ical collapse mapping between one final density at time η and one
initial density contrast as already described. The integration on the
r.h.s. of equation (11) can now be carried by using a steepest descent
method, approximating the integral as its most likely value, where
λ1ρ1(τ 1) + λ2ρ2(τ 2) − �(τ 1, τ 2) is stationary. It eventually leads
to the fundamental relation (6) when its right-hand side is computed
at initial time (and the fact that (6) is valid for any times η and η′

is obtained when the same reasoning is applied twice, for the two
different times).

The purpose of this letter is to confront numerically computations
of the two-cell PDF derived from the expression of ϕ(λ1, λ2) with
measurements in numerical simulations.

2.2 The two-cell PDF using inverse Laplace transform

Once the cumulant generating function is known in equation (3),
the two-cell PDF, P(ρ̂1, ρ̂2), is obtained by a 2D inverse Laplace
transform of ϕ(λ1, λ2)

P=
∫ i∞

−i∞

dλ1

2πi

∫ i∞

−i∞

dλ2

2πi
exp(−

∑
i=1,2

ρ̂iλi + ϕ(λ1, λ2)) , (12)

with ϕ given by equations (4)–(6). From this equation, it is straight-
forward to deduce the joint PDF, P̂(ρ̂, ŝ), for the density, ρ̂ = ρ̂1

and the slope ŝ ≡ (ρ̂2 − ρ̂1)R1/�R, �R being R2 − R1, as

P̂ =
∫ i∞

−i∞

dλ

2πi

∫ i∞

−i∞

dμ

2πi
exp(−ρ̂λ − ŝμ + ϕ(λ,μ)) , (13)

with λ = λ1 + λ2, μ = λ2�R/R1. Following this definition, ϕ(λ,
μ) is also the Legendre transform of �(ρ̂1, ŝ = (ρ̂2 − ρ̂1) R1/�R).

In order to numerically compute equation (12), we simply choose
the imaginary path (λ1, λ2) = i(n1�λ, n2�λ) where n1 and n2 are
(positive or negative) integers and the step �λ has been set to 0.15.
The maximum value of λi used here is 75 resulting into a discretiza-
tion of the integrand on 10002 points. Fig. 1 compares the result
of the numerical integration of equation (12) to simulations. The
corresponding dark matter simulation (carried out with GADGET2
Springel 2005) is characterized by the following � cold dark mat-
ter (�CDM) cosmology: �m = 0.265, �� = 0.735, n = 0.958,
H0 = 70 km s−1 Mpc−1 and σ 8 = 0.8, �b = 0.045 within one stan-
dard deviation of Wilkinson Microwave Anisotropy Probe 7 results
(Komatsu et al. 2011). The box size is 500 Mpc h−1 sampled with
10243 particles, the softening length 24 kpc h−1. Initial conditions
are generated using MPGRAFIC (Prunet et al. 2008). An Octree is built
to count efficiently all particles within concentric spheres of radii
between R = 10 and 11Mpc h−1. The centre of these spheres is
sampled regularly on a grid of 10 Mpc h−1 aside, leading to 117 649
estimates of the density per snapshot. Note that the cells overlap for
radii larger than 10 Mpc h−1.

The convergence of our numerical scheme is investigated by vary-
ing the number of points. Fig. 2 shows that the numerical integration
of the slope PDF has reached 1 per cent precision for the displayed
range of slopes. Obviously, the integration is very precise for low
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Figure 1. Joint PDF of the slope (s) and the density (ρ) as given by equation
(13) for two concentric spheres of radii R1 = 10 Mpc h−1 and R2 = 11
Mpc h−1 at redshift z = 0.97. Dashed contours corresponds to log P =
0, −1/2,−1, . . . ,−3 for the theory. The corresponding measurements are
shown as a solid line.
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Figure 2. Dependence of the PDF of the slope on the number of points
used in the numerical integration in (12). The reference PDF is computed
using 10002 points (dark blue) and is compared to the result of the numerical
integration when using 3202 (blue) and 4802 (light blue) points.

values of the slope and requires a largest number of points for the
large-slope tails.

3 C O N D I T I O NA L D I S T R I BU T I O N S

3.1 Slope in subregions

Once the full two-cell PDF is known, it is straightforward to derive
predictions for density profiles restricted to underdense

P(ŝ|ρ̂ < 1) =
∫ 1

0 dρ̂ P̂(ρ̂, ŝ)∫ ∞
−∞ dŝ

∫ 1
0 dρ̂ P̂(ρ̂, ŝ)

, (14)
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Figure 3. Density profiles in underdense (solid light blue), overdense
(dashed purple) and all regions (dashed blue) for cells of radii R1 = 10
Mpc h−1 and R2 = 11 Mpc h−1 at redshift z = 0.97. Predictions are success-
fully compared to measurements in simulations (points with error bars).

and overdense regions

P(ŝ|ρ̂ > 1) =
∫ ∞

1 dρ̂ P̂(ρ̂, ŝ)∫ ∞
−∞ dŝ

∫ 1
0 dρ̂ P̂(ρ̂, ŝ)

. (15)

Fig. 3 displays these predicted density profiles in underdense and
overdense regions compared to the measurements in our simulation.
A very good agreement is found with some slight departures in the
large-slope tail of the distribution. As expected, the underdense
slope PDF peaks towards positive slope, while the overdense PDF
peaks towards negative slope. The constrained negative tails are
more sensitive to the underlying constraint, providing improved
leverage for measuring the underlying cosmological parameters.

3.2 Density in regions of given slope

Conversely, one can study the statistics of the density given con-
straints on the slope. For instance, the density PDF in regions of
negative slope reads

P(ρ̂|ŝ < 0) =
∫ 0

−∞ dŝ P̂(ρ̂, ŝ)∫ ∞
0 dρ̂

∫ 0
−∞ dŝ P̂(ρ̂, ŝ)

. (16)

Fig. 4 displays the predicted density PDF in regions of positive
or negative slope. As expected, the density is higher in regions of
negative slope. An excellent agreement with simulations is found.

3.3 Redshift evolution

Fig. 5 displays the density profiles in underdense and overdense
regions as measured in the simulation for a range of redshifts. This
figure shows that the high-density subset for moderately negative
slopes is particularly sensitive to redshift evolution, which suggests
that dark energy investigations should focus on such range of slopes
and regions.

4 FI D U C I A L DA R K E N E R G Y E X P E R I M E N T

Let us conduct the following fiducial experiment. Consider a set
of 10 000 concentric spheres, and measure for each pair the
slope and the density, {ρ̂i , ŝi}. Recall that the cosmology is en-
coded in the parametrization of the spherical collapse on the

Figure 4. Density PDF in negative slope (solid light blue), positive slope
(dashed purple) and all regions (dashed blue) for cells of radii R1 = 10
Mpc h−1 and R2 = 11 Mpc h−1 at redshift z = 0.97. Predictions are success-
fully compared to measurements in simulations (points with error bars).

Figure 5. Same as Fig. 3 for a range of redshifts as labelled. Only the
underdense (ρ < 1) and the overdense (ρ > 1) PDFs are shown.

one hand (ν),2 and on the linear power spectrum, P lin
k , (via the

covariance matrix, 
ij = ∫
P lin

k (k)W (Rik)W (Rjk)d3k/(2π)3 with
W(k) = 3(sin (k)/k − cos (k))/k2) on the other hand. For scale invari-
ant power spectra with power index n, given equation (8), we have
a three parameter (n, ν, σ ) set of models where σ 2 is the variance of
the inner densities σ 2(z) = ρc(z)2

〈
ρ̂2

1

〉
, ρc being the critical density

of the Universe at redshift z. For a parametrized PDF, Pn,ν,σ (ρ̂, ŝ)
given by equation (13), we can compute the log-likelihood of the
set as L(n, ν, σ ) = ∑

i log Pn,ν,σ (ρ̂i , ŝi). Fig. 6 displays the cor-
responding likelihood contours at 1σ , 3σ , and 5σ in the simple
case in which only one parameter (σ here) varies. This experiment
mimics the precision expected from a survey of useful volume of
about (350h−1Mpc)3 which is found to be at the percent level. This
work improves the findings of BPC which relies on a low-density
approximation for the joint PDF.

5 C O N C L U S I O N

Extending the analysis of BPC, predictions for the joint PDF of
the density within two concentric spheres was straightforwardly

2 The dependence of the spherical collapse on cosmology is at the percent
level as discussed in Bernardeau et al. (2002).

MNRASL 449, L105–L109 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nrasl/article/449/1/L105/1030320 by C
N

R
S - ISTO

 user on 25 April 2022



Statistics of cosmic densities and slopes L109

5

3

1

0.220 0.225 0.230 0.235 0.240
3680

3682

3684

3686

3688

3690
log L

Figure 6. Log-likelihood for a fiducial experiment involving 10 000 con-
centric spheres of 10 and 11 Mpc h−1 measured in our simulation. The
model here only depends on the variance σ (ν and n are fixed). The contours
at 1σ , 3σ , and 5σ centred on the true value 0.23 are displayed with dark
blue dashed lines. The same experiment can be carried out when the three
parameters vary.

implemented for a given cosmology as a function of redshift in
the mildly non-linear regime. The agreement with measurements in
simulation was shown on Figs 1, 3, and 4 to be very good, includ-
ing in the quasi-linear regime where standard perturbation theory
normally fails. A fiducial dark energy experiment was implemented
on counts derived from �CDM simulations and was illustrated on
Fig. 6.

Such statistics will prove useful in upcoming surveys as they
allow us to probe differentially the slope of the density in regions
of low or high density. It can serve as a statistical indicator to test
gravity and dark energy models and/or probe key cosmological pa-

rameters in carefully chosen subsets of surveys. The theory of count
in cells could be applied to 2D cosmic shear maps so as to predict the
statistics of projected density profiles. Velocity profiles and com-
bined probes involving the density and velocity fields should also
be within reach of this formalism.
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