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ABSTRACT
We present a method for obtaining the likelihood function of distance and extinction to a
star given its photometry. The other properties of the star (its mass, age, metallicity and so
on) are marginalized assuming a simple Galaxy model. We demonstrate that the resulting
marginalized likelihood function can be described faithfully and compactly using a Gaussian
mixture model. For dust mapping applications we strongly advocate using monochromatic
over bandpass extinctions, and provide tables for converting from the former to the latter for
different stellar types.
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1 IN T RO D U C T I O N

Our present lack of knowledge of the three-dimensional (3D) dis-
tribution of interstellar dust is a significant barrier to building a
complete picture of our Galaxy. Like the Sun, most of the Galaxy’s
stars lie close to the plane, which means that their light is subject
to significant extinction before it reaches us. Therefore any attempt
to construct a complete model of the Galaxy’s stellar density distri-
bution must include a 3D model of the extincting dust distribution.
Dust is also interesting in its own right as a tracer of the densest
parts of the interstellar medium (ISM). Consequently there is now a
growing industry devoted to understanding and mapping extinction,
with a number of authors either presenting methods for mapping
extinction (e.g. Majewski, Zasowski & Nidever 2011; Sale 2012;
Green et al. 2014; Hanson & Bailer-Jones 2014) or constructing
actual maps of extinction in two or three dimensions (e.g. Marshall
et al. 2006; Lallement et al. 2014; Planck Collaboration XI 2014;
Sale et al. 2014).

A superficially attractive and straightforward way of producing
a 3D extinction map is by first using a method such as Berry et al.
(2012) and Hanson & Bailer-Jones (2014) to calculate posterior
expectations for the distances and extinctions to large numbers of
stars individually, then binning the results spatially to produce a
map. Unfortunately, this produces maps that are biased in a com-
plicated manner. There are three principal sources of bias. First,
almost any catalogue of stars will itself not be an unbiased sample
of the stars in the Galaxy. Most catalogues are magnitude limited,
which biases them towards less extinguished, and therefore brighter,
stars. Dealing effectively with such selection effects is not trivial
and is the subject of Sale (in preparation). Second, we expect that
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extinction along two nearby sightlines should be correlated: two-
dimensional (2D) projected dust maps exhibit correlations on scales
ranging from less than 1 pc (e.g. di Francesco et al. 2010) up to that
of spiral arms. Third, the posteriors distributions of the distances
and extinctions to individual stars are frequently extended and ex-
hibit complicated forms. As a result the posterior expectations of
distance and extinction will not transmit the full range of uncertain-
ties nor the complex correlations that exist between distance and
extinction.

In Sale & Magorrian (2014) we presented a new method for
mapping extinction from star counts that avoids these problems.
Building on earlier work in Vergely et al. (2001) and Sale (2012),
we used a simple physical model of Kolmogorov turbulence to
impose spatial correlations on the density map, which prevents the
formation of non-physical ‘fingers of God’ as found in the maps in
Marshall et al. (2006) and Sale et al. (2014). The method avoids
the need for spatial binning, producing (realizations of) extinction
maps whose resolution is set naturally by the available data.

Most of the 3D extinction mapping procedures mentioned above,
including that of Sale & Magorrian (2014), share the requirement
that one have some way of calculating the marginal likelihoods of
distances and extinctions to individual stars. That is, having some
observations y (photometry and/or spectroscopy and/or astrometry)
of a single star at Galactic coordinates (l, b), they need the likelihood
p( y|s, l, b, A, α, β) of the distance s and extinction A to the star, in
which the details of the star’s mass, age, metallicity and so on have
been marginalized out assuming some Galaxy model β and set of
extinction laws and isochrones α. The present paper provides one
way of calculating such marginalized likelihoods. We begin though
by considering the problem of how best to parametrize the extinc-
tion law included in α and how to calculate the effects of extinction
in a range of popular photometric passbands. This is the subject of
Section 2; tables giving the results of our calculation are available
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Marginal likelihoods of (s, A) to stars 1739

Figure 1. Fitzpatrick (2004) extinction laws for RV = 2.1 (black), 2.6 (red),
3.1 (blue), 3.6 (green), 4.1 (magenta), 4.6 (cyan) and 5.1 (yellow). All have
been normalized to 5495 Å.

online. Then in Section 3 we present a method for calculating the
marginal likelihood1 p( y|s, l, b, A, R, α, β) and constructing com-
pact, accurate fits to its dependence on (s, A). Section 4 sums up.

2 PA R A M E T R I Z I N G EX T I N C T I O N

We start by defining extinction and its relationship to the column of
dust between us and a star. Much of what we discuss in this section
has previously appeared by various authors, including Golay (1974),
McCall (2004), Sale et al. (2009), Stead & Hoare (2009), Bailer-
Jones (2011) and Casagrande & VandenBerg (2014). None the less,
we repeat it here for completeness and clarity.

Historically, extinction has usually been estimated by looking at
the broad-band colours of stars. If one has a star of known spectral
type, then by comparing, say, the measured B − V colour of the star
to its expected intrinsic colour, one obtains the colour excess

E(B − V ) ≡ (B − V )measured − (B − V )intrinsic, (1)

which is a direct estimate of the difference AB − AV between the
B- and V-band extinctions to the star. Typically (e.g. Cardelli, Clay-
ton & Mathis 1989; Fitzpatrick 2004) the shape of the extinction
law at optical and near-infrared wavelengths (see Fig. 1) is assumed
to depend on a single parameter RV, defined through

RV ≡ AV

AB − AV

= AV

E(B − V )
. (2)

Estimates of AV, AB then follow directly from E(B − V) given
an assumed RV. The procedure for other bands (X, Y) is similar:
measure a colour excess E(X − Y), then use an assumed extinction
law to obtain the broad-band extinctions AX and AY.

Such broad-band extinctions are less than ideal for mapping dust,
however. To see this, recall that the extinction in a band X to a

1 We note that ‘marginal likelihood’ can refer to a likelihood with some or
all of the parameters of the model employed marginalized out. However, this
terminology is most frequently used in the case where all parameters have
been marginalized, in which case the ‘marginal likelihood’ is sometimes
also called the ‘evidence’ and is employed in model selection applications.
Our use of the term is distinct to this case as we only marginalize some
parameters.

distance s along a single line of sight2 is given by

AX(s) = −2.5 log10

(∫ ∞
0 dλF (λ)TX(λ)e− ∫ s

0 ds′κλ(s′)ρ(s′)∫ ∞
0 dλF (λ)TX(λ)

)
, (3)

where ρ(s) is the density of dust along the line of sight, κλ(s) is its
wavelength-dependent opacity, F(λ) is the spectral energy distribu-
tion (SED) of the observed star and TX(λ) the combination of the
transmission of the filter X, the transmission of the atmosphere, the
transmission of the rest of the telescope, the detector efficiency and
a function that characterizes how the detector responds to incident
flux.3 It is obvious from this equation that passband-based mea-
surements of extinction and reddening, such as AV and E(B − V),
depend not only on the dust column between us and a star (i.e.
ρ and κ), but also on the star’s SED (see also e.g. McCall 2004;
Sale et al. 2009; Bailer-Jones 2011). Consequently it is possible
to observe two stars of different spectral types behind the exact
same dust column and obtain different measurements of e.g. AV

from each. It is perhaps less immediately obvious from equation (3)
that the relationship between column density and the broad-band
extinction AX is not linear, even when the opacity κλ is independent
of position. Therefore, although quantities such as E(B − V) and AV

are conveniently close to observation, they mix together the effects
of the dust column and stars’ SEDs in a way that is non-trivial to
disentangle: by considering passband-based measurements of ex-
tinction one obscures the true physics of the ISM behind a layer of
obfuscating variables.

An alternative to passband-based measurements of extinction is
to consider monochromatic measurements (e.g. McCall 2004; Sale
et al. 2009; Bailer-Jones 2011). The monochromatic extinction at
wavelength λ is given by

Aλ(s) = −2.5 log10

(
e− ∫ s

0 ds κλ(s′)ρ(s′)
)

(4)

= 1.086
∫ s

0
ds ′κ(s ′, λ)ρ(s ′), (5)

which follows directly from equation (3) on adopting a Dirac delta
function for the transmission filter TX(λ). It is immediately apparent
that this Aλ(s) does not depend on the SED of the observed star and
that its derivative dAλ/ds is linear in κλρ. Therefore monochromatic
extinction offers a much more direct view on the distribution of dust,
mediated only by variations in dust opacity.

It might appear that using monochromatic extinctions would be
significantly more complicated than employing band-based mea-
surements. But, if working within a Bayesian framework, or indeed
with any methodology that employs a forward model, building in
a monochromatic measure of extinction is essentially trivial: one
simply requires a model for how variations in monochromatic ex-
tinction will alter observed apparent magnitudes. We will develop
this model in Section 2.3.

2.1 The wavelength dependence of extinction

The normalized form of the opacity (κ) dependence on wave-
length is typically referred to as the reddening or extinction law,
the shape of which depends on the dust grain size distribution, with
a greater number of larger grains leading to a greyer extinction law

2 To keep this and subsequent expressions readable, we suppress the depen-
dence on the line of sight (l, b) in this and subsequent expressions.
3 For most modern detectors this is a factor proportional to λ since the
detector counts incident photons (Bessell 2005).
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1740 S. E. Sale and J. Magorrian

Figure 2. The RVs implied by column densities of R5495 = 3.056 dust
as a function of effective temperature along the main sequence defined
by Straizys & Kuriliene (1981). Different colours correspond to different
extinctions: A4000 = 0 (black), 2 (red), 4 (blue), 6 (green), 8 (magenta) and
10 (cyan).

(Weingartner & Draine 2001). There exist a number of parametriza-
tions of extinction laws, inferred from a range of sightlines within
the Galaxy (e.g. Cardelli et al. 1989; O’Donnell 1994; Fitzpatrick
2004). In Fig. 1 we show a number of those given by Fitzpatrick
(2004).

Typically (e.g. Cardelli et al. 1989; Fitzpatrick 2004) the shape
of extinction law at optical and near-infrared wavelength is as-
sumed to be a function of the single parameter RV defined in equa-
tion (2) above. This is not ideal, as the broad-band extinctions AB

and AV that define RV depend on the SED of the star being observed.
Consequently, as shown in Fig. 2 and by McCall (2004), one can
place different sources behind the same dust column and still obtain
significantly different measurements of RV. Moreover, as the broad-
band AV and AB do not depend linearly on dust column density, the
inferred RV depends also on the depth of the dust column in front
of the star.

Ideally we would like to have a dust extinction law that depends
only on the dust’s intrinsic opacity κλ. One possibility would be
to use the value of RV that one would measure if a vanishingly
small amount of the dust were placed in front of a standard star
(McCall 2004), but this is unnecessarily complicated. Instead we
follow Maiz Apellániz (2013) and adopt the more straightforward
quantity:

R5495 ≡ A5495

A4405 − A5495
, (6)

where A5495 and A4405 are the monochromatic extinctions at 5495
and 4405 Å, respectively.4 This is designed to be similar to RV, but,
as R5495 is defined using monochromatic extinctions, it does not
depend on the SED of the star observed and will vary along a line
of sight only if the grain size distribution and therefore κ varies.

With this choice of monochromatic wavelengths, the values of
R5495 for the Fitzpatrick (2004) selection of extinction laws are
similar to the RVs they quote. For example, their ‘RV = 2.1, 3.1, 4.1’
curves give R5495 = 2.097, 3.056, 4.034, respectively. In Fig. 2 we
plot the RV implied by the R5495 = 3.056 (‘RV = 3.1’) extinction law
of Fitzpatrick (2004) for a range of SEDs along the main sequence
and for various quantities of extinction. As in McCall (2004), it
is apparent that there are significant variations in RV along the
main sequence, in addition to smaller variations in response to

4 A5495 is sometimes denoted as A0 (e.g. Bailer-Jones 2011; Sale et al. 2014),
following its use in Cardelli et al. (1989).

increasing extinction. We note that this procedure typically gives
RV = 3.1 for late B-type stars, a not unexpected result given that
Fitzpatrick (2004) used a sample of O, B and A stars to determine
their extinction laws.

2.2 Selecting a wavelength for monochromatic extinctions

Now that we have defined our extinction law, we can easily trans-
form monochromatic extinction given at one wavelength to any
other wavelength. Therefore, we are free to choose the reference
wavelength at which monochromatic extinctions are defined. When
monochromatic extinctions have been used in earlier work, the
choice of wavelength has generally been made for reasons of conve-
nience. For example, Hanson & Bailer-Jones (2014) and Sale (2012)
followed Bailer-Jones (2011) in adopting ‘A0’, the monochromatic
extinction at 5495 Å, chosen to enable easy use of the Cardelli et al.
(1989) extinction laws, which are anchored at this wavelength. In
contrast, Sale et al. (2009) used A6250, the monochromatic extinction
at 6250 Å. As this wavelength lies near the centre of the INT/WFC
Photometric Hα Survey of the Northern Galactic Plane (IPHAS)
r band used in that study, the resulting measurements were less
affected by variations in R5495.

From equation (5) we have that

dAλ

ds
(s) = 1.086κλ(s)ρ(s). (7)

If κ did not change along a sightline, it would be trivial to obtain the
dust column density from Aλ if R5495, and therefore κλ, were known.
In reality, however, we expect that the grain size distribution, and
consequently R5495 and κ , will vary along lines of sight as well
as between them. Instead we can look for a wavelength where κ

is approximately independent of R5495. Examination of the Draine
(2003) models indicates that κλ varies only weakly with changing
dust grain distribution at around λ = 4000 Å. Therefore we have
that

A4000(s) � 1.086κ4000

∫ s

0
ρ(s ′) ds ′, (8)

where κ4000 is the opacity at 4000 Å that Draine (2003) quotes
as 3.8 × 10−3 m2 kg−1 for his RV = 3.1 grain distribution. So,
adopting this λ = 4000 Å anchor point, we now have a measure of
extinction that – to a reasonable approximation – depends on the
column density of dust and is independent of variations in opacity.
In order to facilitate comparisons to existing results, we note that,
if R5495 = 3.056, then

AV � 0.6929A4000 + 0.0018A2
4000, (9)

RV � 3.1 (10)

for an A0V star.
Before proceeding further we pause to comment that, in the ear-

lier models of Weingartner & Draine (2001), the opacity per unit
dust mass is a stronger function of R5495 at 4000 Å, but is nearly
independent of R5495 at approximately 8000 Å. Therefore we ad-
vise that it may prove necessary to renormalize to monochromatic
extinction to a different wavelength in the future, should improved
dust models that contradict those of Draine (2003) become avail-
able. Changing this reference wavelength would have no effect on
the methods we propose below; the key point is that we choose a
wavelength that minimizes opacity variations, the actual wavelength
itself is not directly important.
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Figure 3. Examples of the dependence of c
(1)
X and c

(2)
X (equation 11) on R5495 for an approximate A0V star with Teff = 9600 K and log g = 4.07 and solar

metallicity. The values in the left-hand column are for the Johnson–Cousins V band, as defined by Bessell (1990). The centre column is for the IPHAS r band
and the right-hand column for the UKIDSS K band as defined by Hewett et al. (2006).

2.3 Variation of broad-band extinction with dust column
and stellar type

We now examine how passband extinctions AX depend on the ex-
tinction law (i.e. R5495) and stellar type. We use a method similar to
that employed in Sale et al. (2009). For stars cooler than 12 000 K
we adopt the closest match from the Phoenix library of synthetic
spectra (Husser et al. 2013) to the star’s SED. The Phoenix library
does not cover hotter stars, so, for Teff > 12 000 K we instead draw
from the Munari et al. (2005) library. As the Munari et al. (2005)
library does not cover wavelengths redder than 10 500 Å, we do not
provide results for the combination of hot stars and passbands with
measured transmission beyond this wavelength. Then we use equa-
tion (3) to calculate AX, with κλ given by the appropriate Fitzpatrick
(2004) extinction law for the assumed R5495.

Clearly one does not want to repeat this procedure every time one
seeks to determine the model colours and apparent magnitude of
some star. Casagrande & VandenBerg (2014) have suggested pre-
computing the implied passband extinctions for all combinations
of model stars and extinction laws for a range of A4000. However,
storing all these extinctions for a reasonably dense isochrone library
and for a decent range of R5495 and A4000 would be impractical. Our
approach is instead to use quadratic relations,

AX = c
(1)
X A4000 + c

(2)
X A2

4000, (11)

to fit the dependence of AX on A4000 in the range 0 ≤ A4000 < 10 for
a grid of stellar parameters (Teff, log g, [Fe/H]) and extinction laws
R5495.

As one might expect, the correction coefficients c
(1)
X and c

(2)
X

depend sensitively on the parameter R5495 that sets the shape of the
extinction law (see e.g. Fig. 3). Varying the effective temperature
of the star is also significant, a fact that is often overlooked (e.g.
Fig. 4). The extent and form of the temperature dependence varies
from band to band, and is governed by the position of the band
relative to the peak of the star’s spectrum.

Varying log g, [Fe/H] or [α/Fe] affects AX much less than vari-
ations in Teff. For example, Fig. 5 plots the dependence of c

(1)
X and

c
(2)
X on log g, showing that variations in the latter produce changes

that are more than an order of magnitude smaller than those caused
by varying Teff. The response to changes in [Fe/H] or [α/Fe] is
significantly smaller still; only in u or similar bands, where vari-
ations in [Fe/H] most strongly affect spectra, can the chemical
composition of the star measurably affect the effect of reddening
and then typically only at a level comparable to log g.

Therefore, in general we approximate c
(1)
X and c

(2)
X as functions of

R5495 and Teff only, neglecting the dependence on log g, [Fe/H] and
[α/Fe]. In Appendix A we provide tables of p and q for a variety of
different popular photometric systems for a range of Teff and R5495.
We encourage readers to adopt this calibration when considering
extinction for stars within our Galaxy, since it accounts for SED
and extinction law variation as well as the non-linear response of
extinction in any given photometric band due to increasing dust
column.

In the absence of a proper calibration, such as that in Appendix A,
many have turned to table 6 of Schlegel et al. (1998) to convert
between extinctions in different bands. We warn that this table of
relative extinctions was not intended to be used for stars within
the Galaxy, but rather to deredden photometry of galaxies behind
the relatively sparse dust columns that characterize high Galactic
latitudes. As such their table was calibrated using an elliptical galaxy
as a source in the limit of small extinctions. Therefore, the calculated
ratios are not suitable for detailed use when considering stars subject
to significant extinction.

In Fig. 6 we show the fractional errors that arise due to assuming
parametrizations of extinction given here and those that result from
assuming the AX/E(B − V) ratios given by Schlegel et al. (1998) and
Schlafly & Finkbeiner (2011). The errors due to the calibration we
propose here are extremely small, generally less than 0.1 per cent.
In contrast, the error that arises by following the Schlegel et al.
(1998) or Schlafly & Finkbeiner (2011) ratios is frequently on the
order of 5 per cent.
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1742 S. E. Sale and J. Magorrian

Figure 4. Examples of the dependence of c
(1)
X and c

(2)
X on Teff along the main sequence, as defined in (Teff, log g) by Straizys & Kuriliene (1981) for stars

having solar metallicity. The columns are the same as Fig. 3.

Figure 5. Examples of the dependence of c
(1)
X on log g. We fix Teff = 7000 K and metallicity to solar. The columns are the same as Fig. 3.

Figure 6. Comparison of responses to extinction in different SDSS bands using stars of type A0V (solid curves) and M3V (dashed) as examples. Upper row:
fractional errors in Ag (left), Ar (middle) and Az (right) obtained assuming the AX/E(B − V) ratios given by Schlegel, Finkbeiner & Davis (1998) (red), using
AX/E(B − V) ratios from Schlafly & Finkbeiner (2011) (green) and by using our fit (equation 11) (black). The solid (dashed) curves plot results for A0V
(M3V) stars. Lower row: zoomed-in views of the fractional errors produced by our fits (equation 11).
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Marginal likelihoods of (s, A) to stars 1743

3 MA R G I NA L L I K E L I H O O D O F D I S TA N C E
A N D E X T I N C T I O N

Having discussed how best to model the effects of extinction, we
now turn to the problem of estimating distances and extinctions
to individual stars in situations where we are not interested in the
details of each star’s spectral type. This problem occurs when con-
structing 3D extinction maps from stellar catalogues (e.g. Sale &
Magorrian 2014).

It is convenient to replace the distance s by the distance modulus,

μ ≡ 5 log10(s/10 pc), (12)

and the extinction A4000 by its logarithm,

a4000 ≡ ln A4000. (13)

As s > 0 and we assume that A4000 > 0, it is sensible to consider
the logarithms of both values, since both μ and a4000 span the entire
real line. In addition, the use of the distance modulus is sensible, as
uncertainties on it are often approximately Gaussian. Meanwhile,
the use of a4000 is largely motivated by the fact that in Sale &
Magorrian (2014) we place a Gaussian random field prior on it to
create an extinction map.

The particular problem we address is the following. Given a set of
observations y of some star, we would like to compute the marginal
likelihood,

p( y|μ, a4000, R5495, α, β) =
∫

[p( y|μ, a4000, R5495, x, α)

× p(x|μ, β) dx], (14)

of the distance modulus μ and log extinction a4000 to the star
by marginalizing the star’s intrinsic parameters x, which include
its mass, age, metallicity and so on. We assume a mix of stellar
populations β, which specifies the (possibly position dependent)
prior p(x|μ, β) on x.5 When the observations y = yphot are lim-
ited to the star’s photometric apparent magnitudes the likelihood
p( yphot|μ, a4000, R5495, x, α) is straightforward to calculate using
the extinction model α described in Section 2. If one has indepen-
dent additional data yother, such as a spectroscopic metallicity or a
trigonometric parallax, then the likelihood becomes

p( y|μ, a4000, R5495, α, β)

= p( yphot|μ, a4000, R5495, α, β)p( yother|μ, β), (15)

in which p( yother|μ, β) is (usually) independent of extinction and
is relatively easy to treat. In the following we ignore p( yother|μ, β)
and assume that y = yphot only.

The dependence of the marginalized likelihood
p( yphot|μ, a4000, R5495, α, β) on (μ, a4000, R5495) is usually
difficult to predict directly from the observed yphot. We might
reasonably expect that it will typically have two maxima – one
that corresponds to the star being on the main sequence, the other
to the giant branch – but the locations (μ, a4000, R5495) and extent
of these maxima cannot be found without some exploration of
the (μ, a4000, R5495) space. We use a Markov chain Monte Carlo
(MCMC) algorithm to carry out this exploration, and then fit a
simple mixture model to the (μ, a4000, R5495) dependence of the
likelihood function.

5 Recall that p(x|μ, β) is actually p(x|μ, l, b, β), as we have suppressed the
dependence on the line of sight (l, b).

The marginal likelihood depends on a calibration α that includes
the extinction calibration discussed in Section 2 in addition to a set of
isochrones rendered in the appropriate filter system. In this paper we
employ Padova isochrones (Bressan et al. 2012) that use bolometric
corrections calculated from ATLAS9 (Castelli & Kurucz 2003) model
spectra. To investigate the extent of the systematic error stemming
from the use of ATLAS9 derived bolometric corrections, we have
repeated the tests of Section 3.2 but with bolometric corrections
derived from Phoenix model spectra. We found that the posterior
expectations of distance modulus and extinction typically change
by �0.02. We caution that, although this uncertainty may appear
small, as it is systematic it will potentially have a measurable impact
on extinction maps.

3.1 Sampling the likelihood function

Although the marginalized likelihood (equation 14) is a function of
(μ, a4000, R5495), it is not a probability density in these parameters
and therefore cannot directly be sampled using MCMC methods.
So, we begin by using Bayes’ theorem to express it as

p( y|μ, a4000, R5495, α, β)

= p( y|α, β)

∫
p(μ, a4000, R5495, x| y, α, β) dx

p(μ, a4000, R5495|β)
, (16)

in which the prior on (μ, a4000, R5495) that appears in the denominator
is given by

p(μ, a4000, R5495|β) =
∫

p(μ, a4000, R5495, x|β) dx, (17)

which is completely determined by our choice of Galaxy model β.
Now the posterior

p(μ, a4000, R5495, x| y, α, β)

= p( y|μ, a4000, R5495, x, α, β)p(μ, a4000, R5495, x|β)

p( y|α, β)
(18)

that appears within the integral in the numerator of equation (16) can
be sampled using any convenient MCMC method. The likelihood
p( y|μ, a4000, R5495, x, α, β) is easy to calculate and the normalizing
factor p( y|α, β) is important only if we want to compare models
with different population mixes β or dust properties α.

3.1.1 The prior p(s, A4000, R5495, x|β)

In the examples that follow we adopt a prior p(x|μ, β) on the stellar
parameters that comes from an intentionally simple Galactic model
β. We include in β a Salpeter initial mass function (IMF) and a
constant star formation history. We model metallicity variations as
being Gaussian with a standard deviation of 0.2 dex and a mean that
declines by 0.06 dex kpc−1 with Galactocentric radius, following
Luck & Lambert (2011), normalized to solar metallicity at the solar
circle. We could also impose a vertical metallicity gradient, but opt
not to do so here since the stars we use as examples later in this
section lie very close to the Galactic mid-plane.

In the light of equation (16), we are free to use any convenient
prior on the parameters μ, a4000 and R5495 provided only that it is
sufficiently broad to cover plausible regions of parameter space. We
adopt a flat prior in all three parameters, but with R5495 limited to
the range 2.1 � R5495 � 5.5 over which the Fitzpatrick (2004)

MNRAS 448, 1738–1750 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/448/2/1738/1055811 by C
N

R
S - ISTO

 user on 25 April 2022



1744 S. E. Sale and J. Magorrian

Figure 7. Colour–colour diagrams in the IPHAS and UKIDSS-GPS systems of our sample catalogue. The three stars studied in detail are marked
with red crosses, labelled with their corresponding letter, where A is IPHAS2 J211210.70+482106.8, B is IPHAS2 J211225.40+481927.6 and C is
IPHAS2 J211223.10+481656.4. Solid lines show unreddened main sequences. Only stars that appear in all six bands and are flagged as stellar in both
surveys are shown.

reddening laws are available. When written out, the prior in
equation (18) is

p(μ, a4000, R5495, x|β) ∝ p(x|μ, β)p(μ, a4000, R5495),

p(x|μ, β) ∝ M−2.35N ([M/H]|0.06(R	 − R), 0.2),

p(μ, a4000, R5495) ∝
{

1, if 2.097 ≤ R5495 < 5.402,

0, otherwise,
(19)

where M is the initial mass of the star, [M/H] its metallicity, R the
Galactocentric radius of the star implied by the distance modulus
μ and Galactic coordinates (l, b), R	 the Galactocentric radius of
the Sun and N (·|·, ·) denotes a normal distribution.

3.1.2 The choice of MCMC scheme

There are many MCMC algorithms that could be used to sample the
probability density function (pdf; equation 18). We use the affine
invariant ensemble sampler of Goodman & Weare (2010) as im-
plemented in EMCEE (Foreman-Mackey et al. 2013). This algorithm
employs a collection of ‘walkers’ that explore the parameter space.
At each iteration each walker attempts to move some distance along
the vector towards another randomly chosen walker. We initialize
the sampler with an array of 100 walkers positioned along the main
sequence and red giant branch in (Teff, log g) space, with [M/H]
drawn from the prior distribution, R5495 drawn from a uniform dis-
tribution on the full range of Fitzpatrick (2004) reddening laws and
μ and a4000 chosen to be the maximum likelihood values given all
the other parameters. However, when running this algorithm it be-
came clear that groups of walkers would occasionally become stuck
in islands of low probability, with the relatively high dimensionality
making it difficult for them to transition out to higher probability
regions. We therefore adopt a similar approach to Hou et al. (2012)
and ‘prune’ the set of walkers at the end of burn-in, moving some
walkers when a disproportionally large number are stuck in islands
of low probability.

Our general schema then consists of using 100 walkers, with
a burn-in of 1000 iterations, of which the last 100, thinned by a
factor of 10, are used to facilitate the pruning. After the pruning,
we then iterate for a further 9000 iterations to obtain our final
MCMC chain, thinning the chain by a factor of 10. The thinned
chain typically has an autocorrelation length of around 1, implying
an autocorrelation length of roughly 10 for the unthinned chain,
with a total sample size of 90 000 and an effective sample size of
roughly 45 000. Although the moments of the distribution could be
found to sufficient precision with a much smaller effective sample

size, capturing some of the detail in the posterior requires such a
large sample. We can then perform the integration in equation (16)
by simply ignoring all parameters other than μ, a4000 and R5495 in
the MCMC chain. Dividing the result by our (trivial) prior gives the
desired marginal likelihood p( y|μ, a4000, R5495, α, β).

We demonstrate how we obtain the marginal likelihoods us-
ing photometry from IPHAS (Drew et al. 2005; Barentsen et al.
2014) and UKIRT Infrared Deep Sky Survey-Galactic Plane Sur-
vey (UKIDSS-GPS; Lucas et al. 2008). In particular we use
a cross-matched catalogue that covers 5 × 5 arcmin2 centred
on (l, b) = (90.04, −0.04). We use a 1 arcsec matching ra-
dius and only stars flagged as stellar in both surveys are in-
cluded. We show in Fig. 7 colour–colour plots of this cata-
logue. From this catalogue we select three stars to concentrate on
IPHAS2 J211210.70+482106.8, IPHAS2 J211225.40+481927.6
and IPHAS2 J211223.10+481656.4, which we label as stars A, B
and C, respectively. These span a range of colours and apparent
magnitudes. We add, in quadrature, to the stated photometric uncer-
tainties an additional factor of 2 per cent to account for systematic
uncertainties, such as those on the photometric zero-points. This
additional factor dominates the uncertainty budget for stars B and
C and makes an important contribution for star A.

2D histograms of the marginal likelihoods obtained for the three
stars are displayed in Fig. 8. It is apparent that, as in Green et al.
(2014), some exhibit complicated shapes, largely due to the ir-
regular shape of the stellar locus in colour–magnitude space. In
particular, star A could be either a main-sequence star or on the
red giant branch: from its photometry alone we are unable to make
a distinction. On the other hand, qualitative examination of the
colour–magnitude diagram in Fig. 7 indicates that the star should
be on the giant branch, due to its position in a redder sequence (Sale
et al. 2009). However, this qualitative analysis has been implicitly
conditioned upon the photometry of all the stars in the catalogue
– we would not have been able to identify a red sequence if we
only had the photometry of star A. In contrast, the likelihood in
Fig. 8 is conditioned upon only the photometry of star A. In order
to condition it on the entire photometric catalogue we require a
method such as that of Sale & Magorrian (2014) (see in particular
their equation 19), in which case the construction of the extinction
map would break the degeneracy between the main sequence and
red giant branch. Both stars B and C appear too hot to be on the red
giant branch.

Although we have assumed a flat prior on R5495, the combination
of optical and near-infrared photometry has enabled us to narrow the
range of possible extinction laws (see also Berry et al. 2012). If our
data had not constrained R5495 our uncertainties on both μ and a4000
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Marginal likelihoods of (s, A) to stars 1745

Figure 8. Example marginal likelihoods shown for stars A (left), B (centre) and C (right). We have binned the MCMC samples only for the purposes of
producing histograms.

would have been increased, since R5495 is covariant with both. We
note that the uncertainties on R5495 depend, to a large degree, on the
number and wavelength range of the photometric bands employed:
if, as in Berry et al. (2012), we had used Sloan Digital Sky Survey
(SDSS) data in place of IPHAS we would have eight bands instead
of six and the bluer coverage of the u and g bands and so should be
able to achieve more precise estimates of R5495.

3.2 Fitting a mixture model to the marginalized
likelihood function

Having explored the (μ, a4000, R5495, x) posterior, we carry out the
marginalization of x in the numerator of equation (16) by simply
ignoring the x values returned by the sampler and focusing only on
the distribution of the (μ, a4000, R5495) samples. These samples are
drawn from the marginal likelihood function (14) weighted by the
prior (17) of our assumed Galaxy model β.

Although it would be possible to use the full set of samples
from the MCMC chain (reweighted to account for the prior) as our
description of the marginalized likelihood, this is far from ideal.
The chains are long. Therefore the cost of storing them is high, all
the more so when one considers that, when constructing coherent
maps of extinction or stellar density, one will typically want to use
marginalized likelihoods for many stars simultaneously. The data
volumes can be reduced by thinning the MCMC chain (i.e. by re-
moving all but every nth entry). Drastic thinning would enable the
data volumes to be manageable, even with a large catalogue of stars.
The cost associated with thinning, however, is that it reduces the
ability of the chain to represent the true underlying marginalized
likelihood function, particularly in the relatively low likelihood re-
gions. This can be a key problem if the likelihood is then fed into
a hierarchical model, as in Sale & Magorrian (2014), where data
from other stars suggest that the distance or extinction to this star
may lie in such a low probability region. For example, if the range
of possible extinctions to a particular star were constrained by other
nearby stars to a region that is only sampled by a single point in the
thinned MCMC chain, the resultant marginal posterior distribution
of extinction to this star will take the form of a delta function and
the uncertainty would therefore be drastically underestimated.

At the other extreme, the most common solution to this problem
is to simply report the mean and covariance matrix of the likelihood
function. But doing this does not pass on any detailed information

about the shape of the likelihood function, which, as demonstrated
by Fig. 8, may well be somewhat irregular. In particular it will not
reveal multimodality, as might be the case if there are two peaks in
the likelihood corresponding to the observed star being on the main
sequence or on the giant branch.

An alternative is to describe the likelihood function using some
mixture of simple distributions. For example, Carrasco Kind &
Brunner (2014) depict the posterior distributions of photomet-
ric redshifts to galaxies using a mixture of Gaussians and Voigt
profiles. We instead fit a mixture of trivariate Gaussians to the
marginalized posterior p(μ, a4000, R5495| y, α, β). As we assume a
flat prior on (μ, a4000, R5495), this is equivalent to fitting Gaussians
to the marginalized likelihood function p( y|μ, a4000, R5495, α, β).
So, writing θ ≡ (μ, a4000, R5495), our goal is to fit a function,

p(θ | y, β, α) ≈
K∑

k=1

wkN (θ |mk,Ck), (20)

to our MCMC sample (θ1, . . . , θN ) by adjusting the weights wk,
means mk and covariances Ck of the Gaussians on the right-hand
side, along with their number K.

Before explaining our procedure for carrying out the fitting, we
note that using Gaussians here has the key advantage that one can
often carry out further marginalization analytically. An example of
this is given in section 4.2 of Sale & Magorrian (2014), in which
the distances and extinctions to individual stars were marginal-
ized in order to obtain the pdf of the parameters describing the
large-scale extinction distribution. Similarly, having fit the trivari-
ate Gaussian mixture model above, one could later decide to take the
prior p(R5495|β) to be Gaussian with a mean and standard deviation
from e.g. Fitzpatrick & Massa (2007) and then marginalize R5495

analytically to obtain the marginal likelihood p( y|μ, a4000, α, β).
This new, 2D marginal likelihood would still be expressed as a sum
of Gaussians.

3.2.1 Fitting a Gaussian mixture model with K components

One way of addressing the problem of fitting the Gaussian mixture
model (20) to the MCMC sample would be by modelling the latter as
a Dirichlet process mixture of Gaussians. Our goal here though is not
to consider all possible Gaussian mixture descriptions of the MCMC
chain, but instead to obtain a single, compact, ‘best’ description of
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1746 S. E. Sale and J. Magorrian

the marginalized likelihood. Generally a single Gaussian will not
describe the marginalized posterior well, but a mixture of two or
more Gaussians will do better.

A simple and robust approach is to iterate of a range of possible K.
For each K we use the expectation–maximization (EM) algorithm,
as implemented in SCIKIT-LEARN (Pedregosa et al. 2011), to find the
parameters (wk, mk,Ck) of each of the K Gaussians that maximize
the likelihood

LK ≡
N∏

n=1

K∑
k=1

wkN (θn|mk,Ck), (21)

subject to the constraint that
∑

kwk = 1. The EM algorithm func-
tions by introducing N × K new latent variables {znk} that allow
the awkward product of sums in this likelihood to be rewritten as
the easier-to-handle sum of products:

LK ≡
∑
{znk }

N∏
n=1

K∏
k=1

[wkN (θn|mk,Ck)]znk . (22)

The new variables znk indicate the probability that MCMC sample
n was drawn from Gaussian k. The algorithm proceeds by alter-
nately updating the latent membership probabilities {znk} hold-
ing {wk, mk,Ck} fixed, then, for this choice of {znk}, finding the
{wk, mk,Ck} that maximize the likelihood. We initialize the EM run
with the means of the components given by the mean of the MCMC
sample and with diagonal covariance matrices with the variance for
each parameter being the corresponding variance from the MCMC
sample. The EM algorithm is then run for 100 iterations to find
optimal values of {wk, mk,Ck}.

3.2.2 How many components K?

Having obtained maximum likelihoods for K = 1, 2, 3, . . . the
question then becomes one of deciding how many Gaussians are
actually justified. For example, if we chose K ≥ N (i.e. there are as
many Gaussians as there are MCMC samples), then the likelihood
would be unbounded: simply centre one Gaussian on each point
from the MCMC sample and let its covariance shrink to zero. We
would like to avoid fitting the shot noise in our MCMC samples

like this, or, more practically, requiring such a large number of
Gaussians that they cause data volume problems.

A natural way of comparing models with different components
would be to adopt uninformative priors on {wk, mk,Ck} and to
marginalize the likelihoods Lk to obtain the marginal likelihoods
p({θ}|K) for each K. These p({θ}|K) could be estimated by a vari-
ational Bayes method (see e.g. appendix C of Magorrian 2014), but
doing so would be overkill for our present purposes. As a straight-
forward alternative, we instead employ the Bayesian information
criterion (BIC; Schwarz 1978):

BIC = −2 ln L̂K + (10 K − 1) ln N, (23)

where L̂K is the maximum likelihood of the K-component Gaussian
mixture model, as found by the EM algorithm. The second term in
this expression acts as a penalty on the number of components, with
the (10K − 1) factor accounting for the number of free parameters in
a K-component trivariate Gaussian mixture model: 3K numbers are
needed to specify the means mk , 6K for the symmetric covariance
matrices Ck and K − 1 for the weights wk. Our favoured model
is simply the one that minimizes the value of BIC. We find that
this minimum is typically achieved for mixtures having K ∼ 5
Gaussians.

Fig. 9 shows our Gaussian mixture approximations to the
MCMC-sampled marginal likelihoods of Fig. 8. As it is difficult
to compare these 2D projections by eye, in Fig. 10 we also show
one-dimensional (1D) projections of both the MCMC chain and
our Gaussian mixture fits. The Gaussian mixture model provides a
good, compact descriptions of the MCMC samples.

The one area in which we find that the mixture model fails to
perform well is when R5495 takes on values close to the cut-offs
imposed by the range covered by the Fitzpatrick (2004) extinction
curves; our marginalized likelihoods fall sharply to zero at these
extreme values, a behaviour which the Gaussian mixture has diffi-
culty reproducing. However, we note that the impact of such issues
will be dramatically reduced by the imposition of any sensible prior
on R5495. For example, one could place a simple Gaussian prior
on R5495 with a mean and variance taken from e.g. Fitzpatrick &
Massa (2007). Under such a prior the probability of the problematic
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Figure 9. Examples of the Gaussian mixture approximations, plotted in histograms to match Fig. 8. The coloured ellipses show the 2σ contours of each of
the Gaussian mixture model components, with the width of the ellipses’ curves linearly increasing with the weight of the corresponding component in the
Gaussian mixture model. As in Fig. 8 star A is in the left-hand column, B in the centre and C on the left.
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Marginal likelihoods of (s, A) to stars 1747

Figure 10. Examples of 1D marginal likelihoods for each star shown fitted with Gaussian mixtures. The black solid line shows a histogram of the MCMC
samples. As in Fig. 8 we have only performed the binning of the MCMC samples to produce the plotted histograms. The coloured lines show the contribution
of each of the components in the Gaussian mixture model, whilst the dashed black line shows the total 1D marginal likelihood implied by the Gaussian mixture
model. Once again star A is in the left-hand column, B in the centre and C on the left.

extreme values of R5495 would be very low and so the issues related
to the fit would become essentially irrelevant.

3.3 The quality of the Gaussian mixture model approximation

One of our primary goals in this paper is to find a compact de-
scription of the marginal likelihood p( y|μ, a4000, R5495, α, β). It is
natural then to ask whether our Gaussian mixture model provides a
more compact summary of this function than, say, a thinned sample
of points from an MCMC chain. In the following we consider two
different measures of how well such fits reproduce the true marginal
likelihood.

3.3.1 Kullback–Leibler divergences

One way of quantifying the fidelity of different descriptions of the
marginal likelihood is by using the Kullback–Leibler (KL) diver-
gence. Let P be the true marginalized likelihood and Q a fit from
either the Gaussian mixture or the thinned MCMC sample. The
divergence of the fit Q from the true function P is given by

DKL(P ‖ Q) =
∫ ∞

−∞
dθ P (θ) log

(
P (θ )

Q(θ )

)
. (24)

This can be recognized as the entropy of P relative to Q, a measure
of how much more information there is in P than in the fitted Q.

One problem with applying this is that we do not know the true
marginal likelihood function P (θ ): we only have discrete samples
(θ1, . . . , θN ) of it from the MCMC chain. So, to construct our
reference P we take a very long chain of N ∼ 105 samples and

then, as a simple kernel density estimator, we replace each sample
point θn (which has density δ(θ − θn)) by a narrow Gaussian kernel
centred on θn. Then the value of the function P at any point θ is
given by the sum of the contributions from all N ∼ 105 kernels at
that point.

We set the kernel width using 10-fold cross-validation. That is,
each point from the MCMC chain is assigned at random to one of
10 subsamples. Then, for a given trial kernel width, we construct a
kernel density estimate using nine of the 10 subsamples. We use this
kernel density estimate to calculate the log-likelihood of the points
in the remaining subsample. This is then repeated for all 10 subsam-
ples and the average log-likelihood found. By considering a range
of kernel widths we can choose an optimum value by maximizing
the mean log-likelihood. Typically the kernel widths found by this
procedure are small – on the order of 0.01 in μ, for example – and
much smaller than the bin sizes adopted in Fig. 8. Consequently, if
one applies a binning to the kernel density estimate of the marginal
likelihood to match that employed in Fig. 8, one would obtain a
distribution that will closely resemble the histograms in Fig. 8.

We use a similar procedure to reconstruct Q(θ) for the thinned
MCMC chains. We do so by thinning the main MCMC chain and
reapplying the cross-validation procedure to each thinned chain.
Finally, we estimate the integral in equation (24) using Monte Carlo
integration with 10 000 samples drawn from P (θ ).

We are interested in how the KL divergences from P (θ ) of Gaus-
sian mixture fits and of the thinned MCMC chains scale with the
number of parameters needed to describe each fit. As discussed in
Section 3.2 we require (10 K − 1) parameters to describe a K com-
ponent Gaussian mixture model, whilst the number of parameters
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1748 S. E. Sale and J. Magorrian

Figure 11. Kullback–Leibler divergences as a function of the number of parameters required. Smaller divergences indicate a greater degree of similarity
between the two distributions and so a more successful approximation. In black we plot DKL for thinned MCMC chains relative to the long unthinned chain,
using kernel density estimates of both and in red we plot values the DKL between the Gaussian mixture approximation and the kernel density estimate of the
unthinned chain, with crosses indicating different values of K running from K = 1 to 20. In the left-hand plot we show values for star A, in the middle star B
and star C on the right.

needed to describe a thinned MCMC chain is the dimensionality
(i.e. three) multiplied by the number of samples in the chain.

In Fig. 11 we compare the DKL found using the Gaussian
mixture model approximation to those obtained using thinned
MCMC chains as a function of the number of parameters
required. To achieve a given DKL, the Gaussian mixture model re-
quires an order of magnitude fewer points than the thinned MCMC
chain.

We note that DKL for the Gaussian mixture does not pass be-
low ∼0.02 for any of the three stars shown. There are a number
of sources of error and noise that will prevent a perfect agreement
between Q and P, and so DKL = 0 being achieved. Most funda-
mentally, the exact marginal likelihood will not, in general, take a
form that can be fit with K ≤ 20 Gaussian components. In particular
the marginal likelihood for star A takes a more complicated form
than that of B or C (Fig. 8), which is reflected in correspondingly
large values of DKL. In addition, we do not actually know the exact
marginal likelihood. Instead we have only a noisy kernel density es-
timate of it, which limits our ability to fit smooth functions, such as
Gaussian mixtures to it. Also, we limit the EM algorithm that fits the
Gaussian mixture to a maximum number of iterations. Consequently
it will generally not achieve the absolute best fit. The resulting error
will be manifested in a small contribution to the measured DKL. De-
spite these shortcomings of our DKL tests, we nevertheless believe
that it is evident that our Gaussian mixture fits produce very good
descriptions of the marginal likelihoods. The DKL � 0.02 achieved
for stars B and C indicate that our Gaussian mixture fit differs from
the marginal likelihood by, at most, ∼2 per cent on average.

3.3.2 Kolmogorov–Smirnov tests

With 1D data it is common to compare samples and/or distributions
using the Kolmogorov–Smirnov distance,

DKS(P , Q) ≡ sup
x

|P (x) − Q(x)|, (25)

where P and Q are cumulative distributions, either derived directly
from a probability distribution, or found empirically from a sample
of points. The Kolmogorov–Smirnov distance is not immediately
applicable to our situation, as it is defined only for 1D distributions
P(x) and Q(x). In this 1D case there are only two possible cumulative
distribution functions, either p(x < X) or p(x > X), each of which
is uniquely defined by the other, because

p(x ≤ X) = 1 − p(x > X). (26)

In p ≥ 2 dimensions the notion of a cumulative distribution
function breaks down. One way of proceeding (Peacock 1983) is by
constructing cumulative distribution functions (CDFs) with respect
to the coordinate axes, such as p(x1 < X1, x2 < X2, . . . , xp < Xp)
or p(x1 > X1, x2 < X2, . . . , xp > Xp) and so on. For each of our
p = 3 variables we are free to choose either sign of the inequality
when constructing the CDF, giving 2p = 8 different possibilities. We
follow Peacock (1983) in calculating the 1D KS distance for all eight
possibilities of CDFs for P and Q, then taking the maximum such
distance as our measure of the ‘similarity’ of the two functions.6

An advantage of this scheme over the KL divergence is that it can
be applied directly to the samples from MCMC chains: it avoids
the need for kernel density estimates of either P or, in the case of
thinned MCMC chains, Q. Fig. 12 shows the results. As with the
KL divergences, for a given number of parameters the Gaussian
mixture model provides a far better approximation to the marginal
likelihood than a thinned MCMC chain can.

4 SU M M A RY

We have considered how one should measure the distance and ex-
tinction to individual stars for use in constructing extinction maps
of the whole Galaxy. We advocate the use of monochromatic ex-
tinctions, since, unlike bandpass measures such as AV and E(B − V),
monochromatic extinctions are linear functions of the dust column
density and are independent of the source SED. In particular we
suggest the use of A4000, the monochromatic extinction at 4000 Å
because of its insensitivity to the dust grain size distribution.

We have developed one way of calculating the marginal likeli-
hood p( ỹ|μ, a4000, R5495, α, β) by marginalizing the (unknown and,
for our purposes, uninteresting) fundamental parameters of the star
in order to estimate the marginal likelihood. As this integration is
not possible analytically, we suggest a scheme for doing so using
MCMC methods, specifically the affine invariant ensemble sampler
of Goodman & Weare (2010).

We find that the resulting marginal likelihood function can be
described very well using a Gaussian mixture model composed
of only K � 5 Gaussians. Using thinned MCMC chains would
require vastly more parameters to achieve the same level of fidelity.
Having such a compact description of p( ỹ|μ, a4000, R5495α, β) is

6 The multidimensional analogue of equation (26) means that any one of
these CDFs is completely determined by the other 2p − 1. So, there are
2p − 1 = 7 independent CDFs, but this redundancy does not affect Peacock’s
argument.

MNRAS 448, 1738–1750 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/448/2/1738/1055811 by C
N

R
S - ISTO

 user on 25 April 2022



Marginal likelihoods of (s, A) to stars 1749

Figure 12. Peacock (1983) distances as a function of the number of parameters required. Smaller distances indicate a greater degree of similarity between the
two distributions and so a more successful approximation. In black we plot distances for thinned MCMC chains relative to the unthinned chain and in red we
plot values the distances between the Gaussian mixture approximation and the unthinned chain. In the left-hand plot we show values for star A, in the middle
star B and star C on the right.

vital when one is constructing maps from large catalogues of stars.
Another advantage of expressing the marginal likelihood as a sum
of Gaussians is that it makes further marginalization of any or all of
the parameters (μ, a4000, R5495) straightforward. This is particularly
important if one models the dust density distribution as a Gaussian
random field (Sale & Magorrian 2014).

In common with Green et al. (2014), the approach adopted in
Sale & Magorrian (2014) is to split the production of 3D dust maps
into two distinct steps. First we estimate the marginal likelihood
p( ỹ|μ, a4000, R5495, α, β) of distance modulus μ and (log) extinc-
tion a4000 to each star in the catalogue. Then we construct maps
from these distances and extinctions. The method we present in this
paper for carrying out the first of these two steps is very similar
to the method Green et al. (2014) use for calculating their poste-
rior pdf p(μ, A| ỹ). The most important differences are that we use
monochromatic extinctions and we return the result in a compact
multi-Gaussian form. Our sample of Galactic plane stars meant that
we could reasonably use a simple prior β on stellar distances and
intrinsic parameters x: this is easy to change for more extended
samples.

The alternative to these two-step approaches would be to infer
simultaneously the distance–extinction relationship and the proper-
ties of all the stars that trace it (Sale 2012). The benefit of this is
that MCMC schemes operating in the extended space of the stars’
intrinsic parameters and their (μ, a4000, R5495) would tend to avoid
regions of (μ, a4000, R5495) that are a posteriori unlikely, reducing
the computing load. The downside is that parallelization becomes
very difficult, making it infeasible to scale up to large data sets.
In contrast, in the two-step procedure one has no way of knowing
what portions of (μ, a4000, R5495) parameter space are going to be
important, and so it has to be explored thoroughly. But this is a
small price to pay for the trivial parallelization opportunities.

The software libraries used to obtain the results in this paper are
available online, including a library for manipulating isochrones7

and the code used to sample the marginal likelihood and fit it with
a Gaussian mixture model.8
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APPENDIX A : TABULATED RESPONSE TO A4000 F O R A VA R I E T Y O F P H OTO M E T R I C BA N D S

We make available with this paper9 a tabulation of the coefficients c
(1)
X and c

(2)
X of equation (11) for a variety of filters and the full range

of Fitzpatrick (2004) reddening laws. We do this for SEDs along a solar metallicity main sequence, defined in (Teff, log g) by Straizys &
Kuriliene (1981). We also include a Rayleigh–Jeans spectrum to demonstrate the limiting behaviour for extremely hot stars.

In Table A1 we list the photometric systems and their constituent filters that we employ. For all the survey filter sets we also employ the
detector quantum efficiency curve and atmospheric transmission for the instrument and site used.

We include two ‘standard’ filter sets: the Bessell (1990) UBVRI set and a Strömgren filter set with the uvby transmissions taken from
Crawford & Barnes (1970) and Hβwide and Hβnarrow from Crawford & Mander (1966). We present results for these filters using the INT/WFC
CCD quantum efficiency and the Patat et al. (2011) model for atmospheric absorption at Cerro Paranal. In addition, for reference purposes,
we also provide results for the Bessell (1990) filter set with no atmospheric absorption and a 100 per cent efficient detector.

A sample of the table of values of c
(1)
X and c

(2)
X is given in Table A2.

Table A1. A list of the systems and filters for which we tabulate the response to extinction.

System Filters Source

Bessell UBVRI Bessell (1990)
Strömgren ubvyHβnarrowHβwide Crawford & Barnes (1970), Crawford & Mander (1966)

2MASS JHKs Cohen, Wheaton & Megeath (2003)
Gaia G http://www.cosmos.esa.int/web/gaia/transmissionwithoriginal
INT (IPHAS/UVEX) UgriHα http://www.ing.iac.es/astronomy/instruments/wfc/
PAN-STARRS grizy Stubbs et al. (2010)
SDSS ugriz https://www.sdss3.org/instruments/camera.php#Filters
Skymapper uvgriz Bessell et al. (2011)
UKIDSS ZYJHK Hewett et al. (2006)
VISTA ZYJHKs http://www.eso.org/sci/facilities/paranal/instruments/vircam/inst.html
VST ugriHα http://www.eso.org/sci/facilities/paranal/instruments/omegacam/tools.html, Drew et al. (2014)

S U P P O RTI N G IN F O R M AT I O N

Additional Supporting Information may be found in the online version of this article:

Table A2. An extract from the compilation of the coefficients c
(1)
X and c

(2)
X of equation (11) for the filters listed in Table A1 and the Fitzpatrick

(2004) reddening laws (http://mnras.oxfordjournals.org/lookup/suppl/doi:10.1093/mnras/stv068/-/DC1).

Please note: Oxford University Press is not responsible for the content or functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to the corresponding author for the article.

This paper has been typeset from a TEX/LATEX file prepared by the author.

9 https://github.com/stuartsale/A4000_coeffs
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