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Certain scalar-tensor theories have the property of endowing stars with scalar hair, sourced either by the
star’s own compactness (spontaneous scalarization) or, for binary systems, by the companion’s scalar hair
(induced scalarization) or by the orbital binding energy (dynamical scalarization). Scalarized stars in
binaries present different conservative dynamics than in general relativity, and can also excite a scalar mode
in the metric perturbation that carries away dipolar radiation. As a result, the binary orbit shrinks faster than
predicted in general relativity, modifying the rate of decay of the orbital period. In spite of this, scalar-tensor
theories can pass existing binary pulsar tests, because observed pulsars may not be compact enough or
sufficiently orbitally bound to activate scalarization. Gravitational waves emitted during the last stages of
compact binary inspirals are thus ideal probes of scalarization effects. For the standard projected sensitivity
of advanced LIGO, we here show that, if the neutron star equation of state is such that the stars can be
sufficiently compact that they enter the detector’s sensitivity band already scalarized, then gravitational
waves could place constraints at least comparable to binary pulsars. If the stars dynamically scalarize while
inspiraling in band, then constraints are still possible provided the equation of state leads to scalarization
that occurs sufficiently early in the inspiral, roughly below an orbital frequency of 50 Hz. In performing
these studies, we rederive an easy-to-calculate data analysis measure, an integrated phase difference
between a general-relativistic and a modified signal, and connect it directly to the Bayes factor, showing
that it can be used to determine whether a modified gravity effect is detectable. Finally, we find that custom-
made templates are equally effective as model-independent, parametrized post-Einsteinian waveforms
at detecting such modified gravity effects at realistic signal-to-noise ratios.

DOI: 10.1103/PhysRevD.90.124091 PACS numbers: 04.30.-w, 04.50.Kd, 04.25.-g, 97.60.Jd

I. INTRODUCTION

When gravitational waves (GWs) are detected by sec-
ond-generation detectors [such as advanced LIGO (aLIGO)
[1–3], advanced Virgo (aVirgo) [4,5], and KAGRA [6]]
some time in the next few years, one of the most exciting
prospects is using these signals to test general relativity
(GR) in the very strong-field, dynamical, and nonlinear
regime [7]. There has been much work done on con-
straining departures from GR dynamics with Solar System
and binary pulsar observations, and quite strong bounds
have been placed on deviations from Einstein’s theory in
certain regimes. In particular, the strength of dipole
radiation from some types of scalar-tensor (ST) theories
is already tightly constrained by observations of the rate of
decay of the orbital period of binary pulsars [8–12].
There remains, however, a class of ST theories that can

escape these constraints. For theories in this class, initially

proposed by Refs. [13,14], the scalar charge of a compact
object is dependent upon thegravitational binding energy (or
compactness) of theobject itself (spontaneous scalarization)
[13,14], and, if the object is in a binary, upon the orbital
binding energy of the binary system (dynamical scalariza-
tion), a phenomenon discovered in Ref. [15]. Additionally,
once a star acquires a scalar charge, it can scalarize its binary
companion (induced scalarization) [13–17].
These three types of scalarization can be understood in

analogy with magnetization [16]. Induced scalarization
[13–17] is similar to what occurs in paramagnetism, where
the individual magnetic moments of a large collection of
atoms align themselves in the presence of a strong, external
magnetic field. This alignment induces an overall mag-
netization of the collection of atoms. In the case of a
neutron star (NS) in the presence of an external scalar field,
e.g., one supported by its binary companion, the star can
develop a scalar field of its own.
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Similarly, spontaneous [13,14,16] and dynamical [15,17]
scalarization can both be understood in the context of
spontaneous magnetization. In this phenomenon, a collec-
tion of unaligned magnetic moments will spontaneously
align themselves in some direction as the temperature is
lowered past a critical point, even in the absence of an
external field. This occurs because, when the temperature is
low enough, a new energy minimum appears—a broken
symmetry state that is associated with a nonzero net
magnetization. A similar second-order phase transition
occurs as either the compactness of an individual body
or the absolute magnitude of the binding energy of a binary
system reaches a large enough value. When this happens,
the effective potential of the scalar field changes and a new,
spontaneously broken minimum appears. This forces the
scalar field to “roll down” to a nonzero expectation value.
The compactness or binding energy at which this phase

transition occurs is a function of the coupling constants of
the ST theory. However, the compactness (or the binding
energy) of a system, be it an individual NS or a binary, is
also a function of the NS’s equation of state (EoS). As a
result, whether a systems scalarizes or not also depends on
the EoS. We will discuss these theories in more detail in
Sec. II, but it suffices here to say that scalarization (sponta-
neous, induced, or dynamical) only occurs in these theories
when a particular coupling constant, βST, is sufficiently large
and negative (for a fixed EoS, NS compactness, and orbital
separation). More negative values of this parameter result in
scalarization for systems with smaller compactnesses and
larger orbital separations [13,15,17].
A little-appreciated problemexists for these theories if one

wishes βST to be negative, such that scalarization can occur.
References [16,18,19] showed that in a cosmological evo-
lution, βST > 0 forces the ST theory to approach GR
exponentially; i.e., GR is an attractor in the theory phase
space, and thus the parametrized post-Newtonian (ppN)
parameters are exponentially close to their GR values.
However, by this same argument, we show in Appendix A
that a cosmological evolution with βST < 0 makes GR a
repeller, forcing ppN parameters in this theory to deviate
from their GR values. A more rigorous, nonlinear analysis
linking cosmological scales to galactic and eventually Solar
System oneswould be useful to draw definitive conclusions,
but based on these results, the requirement βST < 0, which
would enable scalarization, seems incompatible with Solar
System experiments. Regardless, these problems might be
avoidable if an external potential (see, e.g., Ref. [20]) is
included, with a minimum at small values of the scalar field.
Neglecting the above problems, as done regularly in

the literature [11–15,17,21], we can study the effects of
scalarization on astrophysical observations of binary
systems, such as binary pulsars, and then use these
observations to constrain ST theories. If the binary com-
ponents support a scalar field, then an unequal-mass binary
will decay faster than in GR due to the emission of dipolar

radiation by the scalar field [13,14]. Such a decay is
stringently constrained by binary pulsar observations
[11,12], which can place strong bounds on the existence
of dipole radiation, scalarization, and the magnitude of
βST. Using observations of a pulsar-white dwarf binary
(J1738þ 0333) and a single-polytrope EoS with polytropic
index Γ ¼ 2.34, Ref. [12] has constrained βST ≳ −4.75.
Using an APR4 (soft) and an H4 (stiff) EoS, Ref. [21] used
the binary pulsar observations of Ref. [12] to constrain
βST ≳ −4.5 and βST ≳ −5 respectively.
Clearly, constraints on βST depend on the NS EoS. For a

given EoS, only certain sufficiently large, negative values
of βST produce spontaneous scalarization. The bounds
quoted above are roughly the least negative values of
βST that allow for scalarization, given a particular EoS. For
example, Ref. [21] showed that for the pulsar in Ref. [12]
with mass ≈1.46M⊙, an APR4 EoS requires βST < −4.5
for scalarization to occur, while an H4 EoS requires
βST < −5, precisely the constraints quoted in Ref. [21].
Thus, binary pulsar observations constrain a region in the
βST-EoS space, which means that bounds on βST can be
weakened if one considers stiffer EoSs that lead to less
compact stars (larger radius given a fixed mass).
Additionally, binary pulsars that have been observed thus
far are very widely separated (typical separation larger than
105 km), and so their orbital binding energy is not large
enough to activate dynamical scalarization.
The GWs emitted during the late inspiral of NS binaries

may also allow for constraints on scalarization, as these
waves are produced when the orbital binding energy is very
large and, like binary pulsars, GW observations are
extremely sensitive to the orbital decay rate. In this paper,
we investigate such an idea by

(i) constructing an analytical model of the GWs emitted
during late NS inspirals in ST theories,

(ii) calculating the response function of interferometric de-
tectors to suchwaves in the time and frequency domains
through the stationary phase approximation (SPA), and

(iii) carrying out a detailed, Bayesian parameter estima-
tion and model-selection study, assuming a GW
detection with second-generation detectors (in the
currently planned configuration).

One of our main results is the following.

GWs emitted in the late inspiral of NS binaries can be
used to place constraints on ST theories that are
comparable to binary pulsar ones, provided at least
one binary component is sufficiently compact to be
already spontaneously scalarized by the time the
emitted GWs enter the detectors’ sensitivity band.

Second-generation detectors, like aLIGO, aVirgo, and
KAGRA, will be sensitive to GWs emitted by binaries with
orbital frequencies above ∼5 Hz. If a NS in a binary is
sufficiently compact, for a given EoS and value of βST, to
be already spontaneously scalarized by the time the binary
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crosses this frequency threshold, then a GW observation
consistent with GR can be used to rule out the existence of
dipole radiation and constrain the magnitude of βST. For
example, given a polytropic EoS and a NS binary with
(gravitational) masses ð1.4074; 1.7415ÞM⊙, a single GW
observation consistent with GR at a signal-to-noise ratio
(SNR) of 15 would allow us to place the constraint
βST ≳ −4.5. This constraint is similar in strength to that
obtained with current binary pulsar observations and poly-
tropicEoSs [12], but it is complementary in that it derives from
sampling the dynamical and nonlinear regime of the gravita-
tional interaction.
Another main result of this paper is the following.

Dynamical scalarization in the late inspiral of NS
binaries will be difficult to constrain with GWs,
unless the system scalarizes at a low enough orbital
frequency (i.e., large enough orbital separation) that a
sufficient amount of SNR is accumulated while the
ST modifications are active.

Reference [22] proved that an abrupt activation of dipolar
radiation can only be observed with GWs emitted by binaries
if it occurs at an orbital frequency well below 50 Hz,
assuming an aLIGO-type detector and a SNR of 10. Such a
threshold frequency corresponds to an orbital separation
larger than roughly 35m, wherem is the total mass of the NS
binary, or alternatively,≈150 km for a binary with total mass
3M⊙. Dynamical scalarization at such large separations only
happens for quite specific, finely tuned binary systems given
realistic NS EoSs and values of βST not already ruled out by
binary pulsar observations [12]. In this analysis, only three
systems, out of a total of 80 examined, underwent dynamical
scalarization at orbital frequencies below 100 Hz. Of these
three, only one exhibited ST effects that were strong enough
to detect with aLIGO at a SNR of 15.
We additionally analyze whether another signature of

dynamical scalarization—an early plunge once the scalar
field activates—is detectable with aLIGO-like detectors.
We find the following:

Early plunge and merger due to dynamical scalariza-
tion is detectable for certain frequency ranges using
model-independent templates.

We modeled the early plunge through a toy model, a
Heaviside truncation of the GW Fourier amplitude. For this
truncation to be detectable, we find that it must occur
between orbital frequencies of roughly 45 and 150 Hz,
assuming a SNR 15 if no truncation was present. For
plunges that occur at lower frequencies, not enough signal
would be present in the detector’s sensitivity band to lead to
a detection in the first place. For plunges that occur at
higher frequencies, the detector’s noise is already large
enough that such a plunge is difficult to detect.
The analysis described above required a Markov-chain

Monte Carlo (MCMC) mapping of the likelihood surface

to obtain posteriors and Bayes factors (BFs) between a
GR and a non-GR model, given a scalarized GW injection,
all of which is computationally expensive. Thus, another
important result of this paper is the following.

We rederive a computationally inexpensive, data
analysis measure to determine whether modified
gravity effects are detectable, which we call the
effective cycles of phase. For the first time, we
connect this quantity directly to the Bayes factor.
We find that roughly 4 cycles are needed for a
modified gravity effect to be detectable at SNR 15.

First derived in [23], the effective cycles are defined as a
certain noise-weighted integral of the GW amplitude and
the phase difference between a GR and a non-GR inspiral.
This measure is inspired by the useful cycles of phase,
introduced in Ref. [24], but it differs from this quantity in
that the BF can be estimated analytically in terms of
effective cycles. Therefore, the effective cycles are directly
connected to an important data analysis measure of
detectability in model hypothesis testing.
The effective cycles are a noise-weighted dephasing

measure that is ideal for studying the distinguishability
between models. A non-noise-weighted dephasing is not a
good measure, in spite of being often used in theoretical
studies, e.g., [25–27]. The effective cycles take into account
the fact that, for departures from GR to be detectable, they
must occur in a frequency range in which sufficient SNR is
accumulated. This is particularly difficult for GR depar-
tures that only become significant at kHz frequencies.
Another question that arose while we carried out this

analysis was whether custom-madewaveforms are necessary
to detect the effects of ST gravity, or whether model-
independent templates are sufficient. This question, of course,
is SNR dependent, and as explained above, dynamical
scalarization is not easilymeasurablewith the SNRs expected
in advanced detectors, except in a few cases. Moreover, it is
very difficult to develop analytical templates that accurately
model the effects of dynamical scalarization. We therefore
consider the detectability of spontaneous/induced scalariza-
tion effects with custom-made versus model-independent
templates, and obtain the following result.

More complicated, model-dependent templates are
found to be comparably efficient at detecting GR
deviations as the simplest, model-independent wave-
forms one can construct.

As a proxy for model-independent templates, we use the
parametrized post-Einsteinian (ppE) approach of Ref. [28].
The simplest versionof suchwaveforms includesonly leading
post-Newtonian (PN) order modifications to GR in the
waveform; thus, they do not contain the precise PN sequence
of terms that a custom-made ST theory template (or signal)
wouldpossess.This additional structure should allowcustom-
made templates to be more effective at detecting GR
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deviations present in the signals they are designed to capture.
The enhancement leads to an increased detection efficiency at
very high SNR, but negligible effects for signals with SNRs
we expect to observe. Additionally, we find that more
complicated ppE templates, such as those that include a step
function in the phase to activate a modified gravity effect
above a certain frequency, are as effective as the simplest ppE
models at detecting ST-type GR deviations. These results are
consistent with those in Ref. [29].
The rest of this paper presents the details of the results

described above and is organized as follows. In Sec. II,
we give an introduction to the non-GR models of interest
in this paper. Next, in Sec. III, we describe in detail the
methods we used to develop the waveforms tailored to
these models. Then, in Secs. IV and V, we address the
question of detectability using effective cycles and a
Bayesian analysis respectively. In the final section of this
paper, Sec. VI, we conclude and point to future research.
Throughout this paper, latin letters refer to spatial indices,
greek letters refer to spacetime indices, and we use geo-
metric units in which G ¼ c ¼ 1. Additionally, all masses
quoted refer to gravitational mass and, unless otherwise
specified, we employ the term “spontaneously scalarized”
binary (or signal) to refer to binaries (or signals arising
from binaries) whose components undergo spontaneous or
induced scalarization. We do so because a necessary
condition for induced scalarization to happen is the
presence of at least one spontaneously scalarized star.
The term “dynamically scalarized” binary (or signal) will
denote binaries (or signals arising from binaries) that
undergo dynamical scalarization.

II. INTRODUCTION TO
SCALAR-TENSOR THEORIES

In this section, we briefly describe the theory we will
study. Initially presented in Refs. [13,14], this theory has
recently been revisited in the context of compact binary
inspirals and mergers in Refs. [15,17,21]. Here, we review
the basics of this theory, following mainly the presentation
of Ref. [17].

A. Basics

Generic ST theories are defined by the Jordan-frame
action

S ¼
Z

d4x
ffiffiffiffiffiffi−gp
2κ

�
ϕR −

ωðϕÞ
ϕ

∂μϕ∂μϕ

�
þ SM½χ; gμν�; ð1Þ

where κ ¼ 8πG, ϕ is a scalar field, R is the Ricci scalar
associated with the Jordan-frame metric, gμν, and χ are
additional matter degrees of freedom that couple directly to
the metric.
The function, ωðϕÞ, defines the particular ST theory in

play [in some cases there is also a potential function, VðϕÞ,

but here this potential is set to zero]. For example, Fierz-
Jordan-Brans-Dicke (FJBD) theory [30–32] is defined by
this action with ωðϕÞ ¼ ωBD ¼ const. In this paper, we will
consider the class of theories studied in [13,14], which are
defined by the action of Eq. (1) with

ωðϕÞ ¼ −
3

2
−

κ

4β logϕ
; ð2Þ

where β is a dimensional constant, related to the dimen-
sionless coupling constant of the theory, βST, by
β ¼ ð4πGÞβST. The asymptotic value of ϕ at spatial
infinity, together with the value of βST, controls the
magnitude of the modifications to GR.
The Jordan-frame action of Eq. (1) can be rewritten in the

“Einstein frame” via

S ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p �
RE

2κ
−
1

2
gμνE ∂μψ∂νψ

�

þ SM½χ; gEμν=ϕðψÞ�; ð3Þ
where the Einstein-frame metric is related to the Jordan-
frame one via gEμν ¼ ϕgμν. The Einstein-frame scalar field ψ
is related to its Jordan-frame counterpart via�

d logϕ
dψ

�
2

¼ 2κ

3þ 2ωðϕÞ : ð4Þ

In the theories of interest in this paper, this differential
equation can be solved to obtain

ϕ ¼ exp ð−βψ2Þ; ð5Þ

choosing ψ ¼ 0 when ϕ ¼ 1. Using this equation in
Eq. (4), one finds

ψ ½ωðϕÞ� ¼ 1

2jβj
�

2κ

3þ 2ωðϕÞ
�
1=2

: ð6Þ

In the Einstein frame, the field equations for the metric
and the equations of motion for the scalar field are

GE
μν ¼ κðTψ

μν þ TM;E
μν Þ; ð7Þ

□Eψ ¼ −βψTM;E; ð8Þ

where we have defined

Tψ
μν ¼ ∂μψ∂νψ −

1

2
gEμνg

αβ
E ∂αψ∂βψ ; ð9Þ

and TM;E is the Einstein-frame trace of TM;E
μν ¼ TM

μν=ϕ, the
matter stress-energy tensor in the Einstein frame.
Because of the field redefinition to Einstein-frame vari-

ables, the stress-energy tensor conservation ∇μT
μν
M ¼0

becomes
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∇E
μT

μν
E ¼ βψTEg

μν
E ∂μψ ; ð10Þ

which also follows from the field equations (7) and (8).
This equation implies, in particular, that test particles (i.e.,
point particles with negligible mass) do not follow geo-
desics of the Einstein-frame metric gEμν, although they do
follow geodesics of the original Jordan-frame metric gμν.
This means that the weak equivalence principle (i.e., the
universality of free fall for weakly gravitating bodies) is
satisfied in these theories. Nevertheless, as will become
clearer in the next section, the strong version of the
equivalence principle (i.e., the universality of free fall for
strongly gravitating bodies) is not satisfied in scalar-tensor
theories. This is because of the presence of “scalar
charges” for strongly gravitating bodies, whose appear-
ance can be ultimately traced to the right-hand side of
Eq. (10) having a nonzero value.
Solar System tracking of the Cassini spacecraft implies

the constraint wBD > wCassini ≡ 4 × 104 [33,34] on FJBD
theory. Because the class of ST theories that we consider
reduces to FJBD in the Solar System [with ωBD ¼ ω0

related to the asymptotic value of ψ , which we denote
by ψ0, via Eqs. (2) and (5)], this translates into the bound

ψ0 ≡ 1

2jβj
�

2κ

3þ 2ω0

�
1=2 ≲ 1.26 × 10−2

G1=2

jβj : ð11Þ

Binary pulsar observations of the orbital decay rate also
constrain the theory, since dipolar radiation would greatly
accelerate the inspiral [12,35]. These observations require
that βST ≳ −4.75 [12], but as discussed in the Introduction,
this constraint depends on which EoS is used [21].

B. Time-domain scalar charges

Given a binary system that consists of two bodies of
masses m1 and m2, the evolution of the GWs emitted by
this binary will depend on the scalar charges of the two
bodies, α1 and α2. In turn, these charges depend on
βST ≡ β=ð4πGÞ, but also on the NS compactness C and,
in a binary in quasicircular motion, on the (magnitude of
their) orbital velocity v (equivalently, their separation or
their orbital frequency). It is therefore necessary to have a
good analytic representation of these charges as a function
of βST, C, and v, in order to construct accurate SPA
templates.
The scalar charges are defined by [13]

αA ¼ −
1ffiffiffiffiffiffiffiffiffi
4πG

p ∂ lnmE
AðψÞ

∂ψ ; ð12Þ

where mAðψÞ is the mass parameter that enters the point-
particle action in the Einstein frame. A related quantity, the
sensitivity, sA, can be similarly defined by [36]

sA ¼ ∂ lnmAðϕÞ
∂ lnϕ ; ð13Þ

where mAðϕÞ is the mass parameter that enters the point-
particle action in the Jordan frame. These derivatives are
to be taken by keeping the baryonic mass fixed, and the
two masses are related via mE

A ¼ mAϕðψÞ−1=2. The sen-
sitivities and the scalar charges are then related by
[17,37,38]

αA ¼ −
2sA − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2ω0

p ; ð14Þ

where ω0 must be greater than 4 × 104 due to the Cassini
bound [33,34].
In a FJBD theory with a given ωBD, the scalar charges

(and thus the sensitivities) are parameters determined
exclusively by the compact object’s EoSs. Will and
Zaglauer [39] found that in this theory the sensitivities
are in the interval (0.1,0.3) for NSs, becoming 0.5 in the
black hole limit. Of course, the scalar charges in this theory
are much smaller than the sensitivities, as the former are
suppressed by ≈ω−1=2

0 relative to the latter. Fixing the EoS,
the sensitivities depend only on the mass of the object.
Thus, since NS masses are expected to be in the range
ð1; 2.5ÞM⊙, NS binaries have s1 ≈ s2, and dipole radiation
is suppressed [39]. Such suppression explains why it would
be difficult to observe or constrain dipole radiation from
GWs emitted during binary NS inspirals within FJBD
theory.
In the ST theories of Refs. [13,14], however, the scalar

charges can be spontaneously/dynamically generated. In
this process of scalarization, the charges can be excited
once the gravitational energy of the system exceeds a
certain threshold. In isolation, this energy is simply propor-
tional to the NS compactness, C ¼ M=R, the ratio of the
NS mass to its radius. When in a binary, this energy is not
only due to the individual compactnesses, but also to the
binding energy of the system, which scales as m1m2=r12,
with ðm1; m2Þ the NS masses, and r12 the orbital separation.
The behavior of the scalar charges during the inspiral

and plunge of a NS binary has so far only been calculated
semianalytically in Ref. [17] for a polytropic EoS with
exponent Γ ¼ 2 and maximum NS gravitational mass of
1.8M⊙, and these results have been validated by compar-
ing the binary’s orbital evolution to the fully nonlinear
simulations of Ref. [15]. Using the results of Ref. [17],
Fig. 1 shows the scalar charge for the more massive star
in a NS binary system with ðm1; m2Þ ¼ ð1.4074;
1.7415ÞM⊙ as a function of the dominant GW frequency
f (twice the orbital frequency for a quasicircular binary)
up to contact for ST theories with βST ¼ −3.0, −3.25,
−3.5, and −4.5.
As noted, the construction of a SPA waveform in ST

theories will require a parametrization of these scalar

PROJECTED CONSTRAINTS ON SCALARIZATION WITH … PHYSICAL REVIEW D 90, 124091 (2014)

124091-5



charges as a function of βST, mA, and v. We desire an
analytic expression for the scalar charges because, when
calculating the Fourier transform of the GW phase in the
SPA, we need to analytically compute indefinite integrals
of functions of these charges. Thus motivated, we will use
the following fitting function:

αA ¼
Ximax

i¼0

aðAÞi vi; ð15Þ

where v≡ ðπmfÞ1=3, with f the dominant GW frequency

(twice the orbital frequency), and the coefficients aðAÞi are
functions of ðmA;m; βSTÞ. We further expand these coef-
ficients as polynomials:

aðAÞi ¼
Xjmax

j¼0

Xkmax

k¼0

Xlmax

l¼1

ðaðAÞijklÞð−βSTÞlmj
Am

k: ð16Þ

The more terms kept in the sum, of course, the more
closely the function approximates the numerical data.
We find empirically that the choice imax ¼ lmax ¼ 2 and
jmax ¼ kmax ¼ 3 suffices for our purposes, which leads to
2 × 3 × 3 ¼ 18 fitting coefficients at each PN order.
We use the fitting function described above to fit for the

scalar charges as a function of v. First, we use the data from
Ref. [17] to numerically construct αA as a function of v,
from a GW frequency of 10 Hz (the beginning of the
aLIGO sensitivity band) up to contact, with a fine dis-
cretization, for 37 systems with different masses ðm1; m2Þ
and values of βST. Each of these data sets is slightly noisy in

the low-frequency regime due to small numerical errors, so
before proceeding, we smooth each of them with a moving
average algorithm using the nearest ten neighbors.
When carrying out the fits, we do not use the full

domain of the data (from f ¼ 10 Hz to contact), but rather
restrict attention to the low velocity regime. As found in
Refs. [40–42], when fitting numerical data to a PN
function, the high velocity regime should not be included
in the numerical data. This is because this regime would
contaminate the fitting coefficients, as they attempt to
capture both the low and high velocity behavior of the
function. Moreover, one should not use a very high PN
order fitting function, as the high PN order terms would
contaminate the low PN order ones. For these reasons,
we choose imax ¼ 2 and fit in the region (10,800) Hz, which
we found empirically to yield robust results, as we will
show below.
Finally, in doing the fits, we have neglected scalar

charges that undergo dynamical scalarization (i.e., charges
that are close to zero when the binary enters the LIGO band
at an orbital frequency of 5 Hz, and then grow very quickly
later in the inspiral) for the following reason. The SPA
calculation requires that we bivariately Taylor expand all
quantities in both v ≪ 1 and in the GR deviation parameter,
which in the ST case is αA. Although αA ≪ 1 during the
inspiral, dαA=d ln v > 1 at a certain frequency, around f ¼
300 Hz for the cases considered in Fig. 2. Thus, during
dynamical scalarization, one should not expand in deriv-
atives of αA, which makes any analytic treatment very
difficult. Third, a polynomial in velocity is ill suited for
representing scalar charges that undergo dynamical
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FIG. 2 (color online). Logarithmic derivative of the scalar
charges with respect to velocity as a function of GW frequency
for a NS binary with masses ðm1; m2Þ ¼ ð1.4074; 1.7415ÞM⊙
computed with the numerical results presented in Ref. [17].
Observe that the derivative of the charge in the βST ¼ −4.25 case
rises very rapidly around f ¼ 300 Hz, rapidly exceeding unity.
On the other hand, the derivative in the βST ¼ −4.5 case remains
smaller than unity during the entire inspiral.
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FIG. 1 (color online). The upper panel shows the scalar charges
for a 1.7415M⊙ NS with a 1.4074M⊙ companion, for various
values of βST and as a function of GW frequency. The actual data
are shown with symbols, and the fits to the data by the different
line styles. In the lower panel, we plot the percentage error
between the data and the fits. Observe that this error never
exceeds ≈7%.
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scalarization. If one insisted on using such a fitting
function, then the coefficients aðAÞi would grow by factors
of 103 with increasing i. Such a highly divergent behavior
of the fitting coefficients renders any subsequent PN
expansion useless.
Given this, we fit Eq. (15) independently to each set of

clean data corresponding to a particular value of βST rather
than fitting all the data with the same set of coefficients at
the same time. We proceed this way because the scalar
charges for larger values of jβSTj (i.e., βST ¼ −4.5) are
much larger than, for example, the charges at βST ¼ −3.5.
This, paired with our lack of data for values of jβSTj < 3.0
and the sparseness of the data in ðm1; m2Þ space, causes our
algorithm to generate poor fits for small values of βST. In
particular, the fitting function obtained by simultaneously
fitting all the data does not monotonically approach zero as
βST → 0. We therefore arrive at a set of n ¼ 18 coefficients
at each PN order for each different value of βST. Figure 1
shows the fitted function and the numerical data for several
values of βST, where we note that the error in the fit never
exceeds 7% in the frequency window ½10∶103� Hz.

III. DEVELOPING WAVEFORMS FOR
SCALAR-TENSOR THEORIES

In this section, we describe how to construct the time-
domain response of the aLIGO detectors to impinging
GWs. We use the restricted PN approximation, following
mostly the presentation in Refs. [43,44]. We then construct
the frequency-domain, SPA waveforms from these time-
domain functions, and discuss their regimes of validity.

A. Time-domain response

The response of a GW interferometer to a signal can be
computed by investigating how the metric perturbation
affects the geodesic deviation. Doing so, one finds [45,46]

hðtÞ ¼ Fþhþ þ F×h× þ Fbhb þ FLhL þ Fsehse þ Fsnhsn:

ð17Þ

The quantities ðFþ; F×; Fb; FL; Fse; FsnÞ are beam- or
angular-pattern functions that depend on the geometry of
the detector [see, e.g., Eqs. (2)–(7) in Ref. [44]]. The
quantities ðhþ; h×; hb; hL; hse; hsnÞ are the six possible GW
polarizations in a generic theory of gravity: the plus mode,
the cross mode, the scalar “breathing” mode, the scalar
“longitudinal”mode, and the two vector modes. Recall that
GR, being a massless spin-2 theory, has only two propa-
gating degrees of freedom.
The waveform polarizations can be computed from the

trace-reversed metric perturbation in the far zone (at a
distance much greater than a GW wavelength from the
center of mass of the binary) via

hþ ¼ eþij

�
Pi
mP

j
l h̄

ml −
1

2
PijPmlh̄ml

�
; ð18Þ

h× ¼ e×ij

�
Pi
mP

j
l h̄

ml −
1

2
PijPmlh̄ml

�
; ð19Þ

hb ¼
1

2
ðN̂jkh̄jk − h̄00Þ; ð20Þ

hL ¼ N̂jkh̄jk þ h̄00 − 2N̂jh̄0j; ð21Þ

hsn ¼ exk½Pk
jðN̂ih̄ij − h̄0jÞ�; ð22Þ

hse ¼ eyk½Pk
jðN̂ih̄ij − h̄0jÞ�; ð23Þ

where we use multi-index notation N̂l1…ln ¼ N̂l1 � � � N̂ln .
Here, N̂i is a unit vector pointing from the source to the
detector, Pij ¼ δij − N̂ij is a projection operator orthogonal
to N̂i, and exi and eyi are basis vectors orthogonal to N̂i.
If we choose a coordinate system defined by the triad
(îi, ĵi, k̂i), such that N̂i is given by

N̂i ¼ sin ιĵi þ cos ιk̂i; ð24Þ

then

eix ¼ −îi; ð25Þ

eiy ¼ cos ιĵi − sin ιk̂i; ð26Þ

eþij ¼
1

2
ðeyi eyj − exi e

x
jÞ; ð27Þ

eþij ¼
1

2
ðexi eyj þ eyi e

x
jÞ; ð28Þ

where ι is the inclination angle, such that L̂iN̂i ¼ cos ι, with
L̂i the unit orbital angular momentum vector.
The ST theories of Refs. [13,14] have, in principle,

three propagating GW modes: the two transverse-traceless
modes (hþ and h×) and the breathing mode (hb). In the
Eardley et al. classification [47], these modes correspond to
the excitation of the Newman-Penrose scalars Ψ4 and Φ22.
One can show [15], however, that Φ22 is proportional to ψ0

(or alternatively to ω−1=2
0 ) to leading order in a ψ0 ≪ 1

expansion; Ψ4 is, of course, independent of ψ0 to leading
order. Thus, the effect of hb in the response hðtÞ is
subleading in ψ0 relative to the effect of hþ and h×
[15]. In fact, this is exactly the same as in standard
FJBD theory [48,49]. Even if this were not the case and
the response to the breathing mode were not suppressed
as 1=

ffiffiffiffiffiffi
ω0

p
, the detectability of this mode would require a

network of detectors [44,50–53]. Given this, we will
neglect the breathing mode in the response function.
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B. Time-domain waveform and the restricted
PN approximation

As explained above, the interferometer response is
dominated by the plus- and cross-polarized metric pertur-
bations, hþðtÞ and h×ðtÞ, which must be obtained by
solving the modified field equations in the PN approxi-
mation. In the far zone, these waves can be written as the
following PN sum:

hþ;×ðtÞ ¼
2Gηm
DL

xðtÞ
Xþ∞

p¼0

xðtÞp=2Hðp=2Þ
þ;× ðtÞ; ð29Þ

whereDL is the (luminosity) distance from the source to the
detector, η ¼ m1m2=m2 is the symmetric mass ratio, and
recall that m ¼ m1 þm2 is the total mass, and xðtÞ ¼
½2πGeffmFðtÞ�2=3 is the (time-dependent) PN expansion
parameter of leading Oð1=c2Þ, with FðtÞ the orbital
frequency. Notice that x depends on Geff ≡ Gð1þ α1α2Þ,
because in these theories the Newtonian force of attraction
between two bodies, and thus, Kepler’s third law of orbital
motion, takes on the usual Newtonian expression, but with
the replacementG → Geff [13,39]. Recall that α1 and α2 are
the scalar charges of NSs, which depend on the internal
structure of the bodies and on the gravitational binding
energy of the system, as discussed in Sec. II B.

The time functionsHðp=2Þ
þ;× can always be written in terms

of an amplitude [Aðp=2;nÞ
þ;× ðtÞ or Bðp=2;nÞ

þ;× ðtÞ] and the binary’s
orbital phase ϕðtÞ:

Hðp=2Þ
þ;× ¼

X∞
n¼0

ðAðp=2;nÞ
þ;× cos nϕþ Bðp=2;nÞ

þ;× sin nϕÞ: ð30Þ

To leading PN order (keeping only the p ¼ 0 term), the
oscillating part of Eq. (29) reduces to

hþðtÞ ¼ 2AðtÞð1þ cos2ιÞ cos 2ϕðtÞ; ð31Þ

h×ðtÞ ¼ −4AðtÞ cos ι sin 2ϕðtÞ: ð32Þ

Here, we have defined the time-dependent amplitude

AðtÞ ¼ −
M
DL

½2πGmFðtÞ�2=3; ð33Þ

with M ¼ η3=5m the chirp mass, and ι is the inclination.
Notice that this is functionally exactly the same result as in
GR, because, as discussed in Sec. III A, ST corrections to
the amplitude scale as ψ0, and are thus subleading.
The restricted PN approximation consists of approxi-

mating the time-domain waveform by the leading PN order
terms in the waveform amplitudes, without restricting
the PN order in the waveform phase. That is, one keeps
only the leading, p ¼ 0 term in Eq. (29), thus obtaining

Eqs. (31) and (32), but as many PN terms as one wishes in
the orbital phase ϕðtÞ. Such an approximation is reasonable
in a first analysis because interferometric detectors are
much more sensitive to the phase of the response than the
amplitude.
The plus- and cross-polarized metric perturbations in

ST theories, and thus the time-domain interferometric
response, are different from those predicted by GR mainly
because of the temporal evolution of the orbital phase. The
phase can be obtained by integrating the expression

ϕ̈ ¼ 2π _F ¼ 2π
dEb

dt

�
dEb

dF

�
−1

ð34Þ

twice, where Eb is the gravitational binding energy. By the
balance law, dEb=dt must equal (minus) the luminosity L
of all propagating degrees of freedom in the far zone. In
GR, the only energy loss is due to the emission of GWs, but
in ST theories one must also account for dipolar radiation
induced by the propagation of the scalar mode:

L ¼ G
3
η2ðα1 − α2Þ2x4 þ

32

5
Gη2x5; ð35Þ

where the first term is due to dipole radiation and the
second due to quadrupolar radiation. We then see that ST
theories modify the evolution of the orbital phase, which is
precisely the component of the interferometric response
that detectors are most sensitive to.

C. Fourier response and the stationary
phase approximation

In GW data analysis, one uses the Fourier transform
of the response function (the Fourier response), instead of
the time-domain response. In computing the frequency- or
time-domain response, one can effectively neglect the time
dependence of the beam-pattern functions. These are
induced by the rotation and motion of the Earth, which
occurs on a time scale much longer than the duration of the
GW signal, which is typically less than 20 min for the
signals that fall in the sensitivity band of second-generation,
ground-based detectors, such as aLIGO, aVirgo, and
KAGRA. Thus, the Fourier response can be written as

~hðfÞ ¼
Z

∞

−∞
dte2πift½FþhþðtÞ þ F×h×ðtÞ�; ð36Þ

where ðFþ; F×Þ are effectively constant.
Using the restricted PN approximation [Eqs. (31) and

(32)], we can rewrite the Fourier response of Eq. (36) as

~hðfÞ ¼
Z

∞

−∞
dte2πiftAðtÞ½QC cos 2ϕðtÞ þQS sin 2ϕðtÞ�;

ð37Þ
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where we have defined the cosine- and sine-projected
beam-pattern functions

QC ¼ 2ð1þ cos2ιÞ cos 2ΨFþ − 4 cos ι sin 2ΨF×; ð38Þ

QS ¼ 2ð1þ cos2ιÞ sin 2ΨFþ þ 4 cos ι cos 2ΨF×; ð39Þ

withΨ the polarization angle. For binary systems that are in
a quasicircular orbit and whose binary components are not
spinning, the inclination angle and QC;S are all constant.
The quasicircular and nonspinning approximations are
sufficient for our analysis because most NS binaries are
expected to have circularized and spun down by the time
they enter the sensitivity band of second-generation,
ground-based detectors.
The integral in Eq. (37) that defines the Fourier response

falls in the class of generalized Fourier integrals. When
the integrands have a stationary point, namely a time t0 at
which _ϕðt0Þ ¼ πf, the integral can be approximated via the
method of steepest descent, which to leading order reduces
to the SPA [43,54]. For this approximation to hold, the
amplitude of the integrand must be slowly varying, while
the phase must be rapidly oscillating, such that the integral
is nonvanishing only in a small neighborhood around the
stationary point.
Within the SPA, the integral in Eq. (37) reduces to

~hðfÞ ¼ ~Af−7=6eiΨðfÞ; ð40Þ

where f is the Fourier or GW frequency (twice the orbital
frequency), the Fourier amplitude is a constant given by

~A≡ −
�

5

384

�
1=2

π−2=3
M5=6

DL
ðQC þ iQSÞ; ð41Þ

and the Fourier phase must be computed from [43,55]

ΨðfÞ ¼ 2π

Z
f=2

dF0
�
2 −

f
F0

�
F0

_FðF0Þ : ð42Þ

This expression makes it clear that the dominant ST
modifications to the Fourier response are due to modifi-
cations to the rate of change of the orbital frequency.

D. SPA templates in scalar-tensor theory

We now follow the analysis of the previous subsection
and provide explicit formulas for the Fourier transform in
the SPA of restricted PN waveforms in ST theories to 1 PN
order. We first focus on the binding energy and its rate of
change. The former is presented in Eq. (6.4) of Ref. [38] in
terms of the individual masses and velocities of the system.
One can transform the binding energy to relative coordi-
nates, through the mapping in Eqs. (6.9)–(6.11) of the same
paper. The rate of change of the orbital binding energy is
equal to the energy flux carried by all propagating degrees

of freedom by the balance law. This quantity is presented in
Eqs. (6.16) and (6.17) of Ref. [38] in relative coordinates.
The ST-theory-modified version of Kepler’s third law of

motion can be computed by solving jaij ¼ r12ω2 in a PN
expansion for r12, the relative orbital separation, using also
that jvi12j ¼ r12ω, where we recall that we are considering
only binaries in quasicircular orbits. The relative acceler-
ation ai is given in Eqs. (1.4) and (1.5) of Ref. [38], where
ω is the orbital angular velocity. We find that

r12 ¼
m
x

��
1þ 1

3
α1α2

�
þ x

��
η

3
− 1

�

þ 1

3
α1α2ðη − 1Þ

�
þOðx2; α4AÞ

�
; ð43Þ

where we have set ψ0 ¼ 0, as this quantity is constrained to
be less than 10−2 by current observations.
With the above modified version of Kepler’s third law,

one can rewrite the binding energy and its rate of change
as a function of the PN expansion parameter. Using the
definition of Eq. (34), the rate of change of the orbital
frequency is then

_F ¼ 1

2

η

πm2
x9=2ðα1 − α2Þ2

þ 48

5

η

πm2
x11=2

�
1þ 1

576

�
ð−15 − 35ηÞα21

þ 1

576
ð35ηþ 63Þα1α2 þ α1α

0
1

�
5

144
ν −

5

48

�

−α1α02

�
5

144
νþ 43

48

�
þ 1 → 2

��
þOðx6; α4AÞ; ð44Þ

where α0A≔dαA=d ln v. The first term in this expression
corresponds to dipolar radiation, while the second one
is the usual quadrupolar radiation term of GR. Notice
that both are corrected by terms proportional to the scalar
charges, due to the modification to Kepler’s third law.
With all of this at hand, we can now compute the

Fourier phase in the SPA through Eq. (42). In Sec. II B,
we fitted αA through Eq. (15), which can be rewritten as

αA ¼ cA þ dAvþ � � � ; ð45Þ

identifying aðAÞ0 with cA and aðAÞ1 with dA, which are
themselves functions of mA, m, and βST. Finally, we find

ΨðfÞ ¼ 2πftc − ϕc −
π

4
þ 3

128ηv5

�
−

5

168
ðc1 − c2Þ2v−2

−
8400

109489
ðc1 − c2Þðd1 − d2Þv−1 þ � � �

�
: ð46Þ

We see that the main modification to the Fourier response
in the SPA is due to the scalar charges, which induce a
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dipole correction to leading order. We have checked
that the dipole term is exactly what one obtains in
FJBD theory, when one rewrites c1;2 in terms of the
sensitivities s1;2.
The ST-modified Fourier response described above is

only valid for systems of unequal mass. In the case of
equal-mass binaries, the −1 and the −0.5 PN terms in
Eq. (46) vanish, because then s1 ¼ s2. In such a system,
the lowest PN order correction to the Fourier phase enters
at 0 PN order. Henceforth, we only use the ST-modified
SPA for analysis of binaries whose component masses are
unequal.

E. Comparison of SPA phase to numerical phase

We can now validate the SPA model of the previous
subsection by comparing it to the Fourier transform of the
time-domain numerical solutions for the GWs presented in
Ref. [17]. Before we do so, we define the measure we will
use for such a validation: the dephasing ΔΨ. This quantity
is defined as

ΔΨi ¼ mintc;ϕc
jΨGR −ΨSTj; ð47Þ

where ΨGR is the Fourier phase in GR, ΨST is the Fourier
phase in ST theories, and the subindex i labels four
different strategies we employ to evaluate ΨGR and ΨST
as described below. This measure requires minimization
over time and phase of coalescence, i.e., over a constant
time and phase shift. Such a minimization is required to
compare different template families, e.g., a time-domain
waveform to a frequency-domain one.
In order to validate the SPA model of the previous

subsection, we will evaluate the dephasing of Eq. (47) in
four different ways.
(1) Numerical: ΨGR and ΨST are given by the Fourier

transforms of the time-domain GW data of Ref. [17],
minimizing the difference over phase and time of
coalescence.

(2) −1 PN: ΨST is given by Eq. (46), keeping only the
leading PN term (the −1 PN term).

(3) −0.5 PN: ΨST is given by Eq. (46), keeping the
leading and first subleading PN terms (the −1 and
the −0.5 PN terms).

(4) 0 PN: ΨST is given by Eq. (46), keeping terms up to
Newtonian order (the −1, −0.5, and 0 PN terms).

In all N PN cases, ΨGR is the GR Fourier phase in the SPA,
for example, given in Refs. [28,56]. By comparing the
numerical dephasing to the N PN ones, we will validate the
SPA templates constructed in the previous subsection.
Such a comparison is carried out in Fig. 3. The solid line

is the numerical dephasing, while the dotted lines are the N
PN dephasings in the SPA. Observe that the SPA dephasing
at −0.5 PN order is a better approximation than keeping the
dephasing to 0 or −1 PN order, relative to the numerical
dephasing. We will therefore truncate the fit to the scalar

charges at −0.5 PN order for the rest of this paper (i.e., we
keep only two ST PN corrections) and model the ST SPA
templates by Eq. (46), without ST higher-order PN terms.

F. ppE waveforms

Before proceeding with a detailed data analysis study, we
map the SPA templates of Sec. III D to the ppE templates
constructed in Ref. [28]. The ppE family is a theory-
independent set of templates, designed to capture model-
independent deviations fromGRwith GWobservations. This
family is constructed by introducing parametrized modifica-
tions to both the binding energy and the energy balance
equations of GR. Both types of modifications lead to changes
in the GW phase, which can be described by introducing a
small number of new parameters into the GW template.
The fullGWwaveform for the coalescence of two compact

objects is typically split into three sections: inspiral, merger,
and ringdown. ppE templates have been developed for all
three phases, but in this paper we are interested only in the
inspiral portion. The latter can be defined as the part of the
waveform that is generated before the two bodies plunge into
each other. The definition of the end of inspiral is somewhat
arbitrary, but we follow typical conventions and define the
transition from inspiral to merger as occurring at the inner-
most stable circular orbit of the system in center of mass
coordinates (or alternatively at contact). In any case, the
merger of NS binaries occurs at the very high-frequency end
of aLIGO’s sensitivity band, almost outside of it altogether.
The simplest, quadrupole ppE inspiral templates have

the form

~hðfÞ¼ ~hGR ·ð1þαppEuaÞeiβppEub ; u¼ðπMfÞ1=3; ð48Þ

000100101
f [Hz]

10

100

1000

10000

ΔΨ

-1 PN Fit
-0.5 PN Fit
0 PN Fit
Numerical Data

FIG. 3 (color online). Dephasing between a GR and ST signal
as a function of GW frequency, calculated using both the
numerical Fourier phases (solid curve) and the SPA Fourier
phases (dotted curves) for a binary with masses
ð1.4074; 1.7415ÞM⊙ and βST ¼ −4.5. The ST SPA phases were
calculated to various PN orders.
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where ~hGR is the Fourier response in GR. These simple ppE
waveforms contain an additional amplitude term, αppEua,
and an additional phase term, βppEub, relative to GR. We
refer to αppE and βppE as the strength parameters of the ppE
deviations, and to a and b as the exponent parameters.
These ppE waveforms cover all known inspiral wave-

forms from specific alternative theories of gravity [57] that
are analytic in the frequency evolution of the GWs. Some
specific examples are discussed in Ref. [7]. They cannot,
however, perfectly match the signals generated by the
theories of interest in this paper. For the case of
induced/spontaneous scalarization, Sec. III E showed that
one needs two ST PN corrections to the SPA phase (i.e., a
−1 and a −0.5 PN term), while the simplest ppE model
includes only one. For the dynamically scalarized case, the
corrections to the Fourier response are very abrupt (almost
a step function), which cannot be captured with a single PN
term. In spite of this, we will see that the ppE model is quite
adequate at detecting a ST deviation, provided the deviation
is strong enough to be detectable in the first case.

IV. DETECTABILITY OF SCALAR-TENSOR
DEVIATIONS THROUGH AN EFFECTIVE

CYCLES APPROACH

In this section, we carry out the first of a two-part data
analysis investigation to determine the detectability of ST
deviations in GWs emitted during the late inspiral of NS
binaries. We first construct a new, computationally in-
expensive data analysis measure to determine when a GR
deviation is sufficiently loud for detection with aLIGO-type
detectors. We then use this measure on ST signals and ppE
signals to estimate their detectability.

A. Useful and effective cycles of phase

Model hypothesis testing, i.e., the determination of
whether model A or B is better supported by some data,
usually requires a detailed Bayesian analysis through
MCMC techniques that map the likelihood surface and
the posterior distributions of template parameters in order
to calculate BFs.1 Such studies are computationally expen-
sive, and it is therefore desirable to construct a simple and
computationally inexpensive measure for accomplishing

similar goals. The construction of this measure is the topic
of this section.
We first describe a quantity that has been used in the

literature as a stand-in for the importance of a particular
GW phase term [24]: the useful cycles,N u. This quantity is
defined in [24] as

N u ¼
�Z

Fmax

Fmin

d ln f
a2ðfÞ
SnðfÞ

dϕ
2πdf

�

×

�Z
Fmax

Fmin

d ln f
a2ðfÞ
fSnðfÞ

�−1
; ð49Þ

which is essentially a noise-weighted measure of the
total number of cycles of phase due to any particular
term in the phase evolution. In Eq. (49), aðfÞ is defined
by j ~hðfÞj2 ¼ ~A2ðfÞ ¼ NðfÞa2ðfÞ=f2, with NðfÞ ¼
ð1=2πÞðdϕ=d lnFÞ ¼ F2=ðdF=dtÞ. The expression for
N u can be reexpressed in terms of the characteristic strain
hcðfÞ ¼

ffiffiffi
f

p
~AðfÞ as

N u ¼ SNR2

�Z
Fmax

Fmin

h2cðfÞ
SnðfÞ

1

NðfÞ d ln f
�−1

: ð50Þ

Thus, the number of useful cycles is equal to the
harmonic mean of NðfÞ, with a weighting factor equal
to the SNR squared per logarithmic frequency inter-
val, ΔSNR2ðfÞ ¼ h2cðfÞ=SnðfÞ.
The difference in the number of useful cycles between

waveform models is sometimes used as a proxy for the
detectability of the difference in the models (see, e.g.,
Refs. [25–27]). One must be very careful when doing this
for two reasons. The first is made clear by rewriting
Eq. (49) in the form of Eq. (50). This recasting of the
useful cycles shows that it is not permissible to simply
replace NðfÞ with ΔNðfÞ, where ΔNðfÞ is the change that
is introduced by a particular modification to the phase. In
order to calculate N u due to a change in the phase
evolution, it is necessary to calculate both N u from the
original phase and from the changed phase, and then take
the difference. This is not a problem, per se—it is simply an
issue that must be kept in mind when calculating N u for a
particular phase term.
A larger issue with N u as a measure of detectability is

the murkiness of its connection with quantities such as the
BF, which are directly related to model selection. The
logarithm of the BF, as derived in Ref. [57], satisfies

logBF ∼
1

2
ð1 − FF2ÞSNR2 þO½ð1 − FF2Þ2�: ð51Þ

We can use the following expression for the fitting factor,
FF, given two waveforms with the same amplitude ~AðfÞ,
but with phases that differ by ΔΨðfÞ:

1The BF, assuming equal priors for the two competing
theories, is the odds that one theory is favored by the data over
another theory. For instance, a BF of 100 in favor of GR means
that there is a 100:1 “betting odds” that GR is the correct theory
given the data. In this paper, we are considering only nested
models. For example, GR is recovered from ppE templates when
the strength parameter βppE ¼ 0. In this case, the BF can be
calculated from the Savage-Dickey density ratio, which compares
the prior weight at βppE ¼ 0 to the posterior weight at that value.
The BF is then calculated via BF¼pðβppE ¼ 0jdÞ=pðβppE ¼ 0Þ. If
there is more posterior weight at this point than prior weight, the
model-selection process favors GR.
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FF ¼ SNR−2max
λa

�Z
h2cðfÞ cosðΔΨðfÞÞ

SnðfÞ
d ln f

�
; ð52Þ

where the maximization is done over all system parameters
λa. In the limit FF ∼ 1, i.e., for small deviations from GR,
these expressions can be combined to give

logBF ∼
1

2
min
λa

Z
h2cðfÞΔΨ2ðfÞ

SnðfÞ
d ln f þOðΔΨ4Þ: ð53Þ

Given the above expression for the BF, a natural
definition for a computationally inexpensive data analysis
measure presents itself, the effective cycles of phase:

N e ¼ min
Δt;Δϕ

�
1

2πSNR

�Z
h2cðfÞΔΦ2ðfÞ

SnðfÞ
d ln f

�
1=2

�
; ð54Þ

where ΔΦ≡ ΔΨðfÞ þ 2πfΔt − Δϕ, where Δt and Δϕ are
an arbitrary time and phase shift respectively. As before, the
dephasing is ΔΨ ¼ Ψ1ðfÞ −Ψ2ðfÞ, where in our case Ψ1

will be the Fourier phase of a GR signal and Ψ2 the phase
of a non-GR signal, e.g., for a ppE waveform,
ΔΨðfÞ ¼ βppEub. We define N e with a ðΔt;ΔϕÞ minimi-
zation because the non-GR terms induce a modification in
the frequency and phase evolutions that renders mean-
ingless a direct comparison between time-shift and phase-
shift parameters in waveforms living in different theories.
Notice, however, that we do not minimize over all
parameters, as would be required to relate N e to the BF.
A full minimization procedure is costly and it would
involve a MCMC analysis in general, while the minimi-
zation with respect to only ðΔt;ΔϕÞ is inexpensive.
We can now see that this quantity is directly related to

model selection through the BF:

logBF ∼ 2π2SNR2min
λa

N 2
e: ð55Þ

The effective cycles, N e, as defined in Eq. (54), i.e.,
minimized over ðΔt;ΔϕÞ only, give an upper limit to the
BF. The fully minimizedN e will in general be smaller than
Eq. (54) due to covariances between system parameters.
This means that N e is not a perfect proxy for detectability.
That is, if N e due to a particular term in the phase is large,
this may or may not mean that the term is detectable.
However, if N e due to a particular phase term is small, this
does indicate that the term will not be detectable.
The above is an alternative means of deriving

the quantity first derived in [23], which is there referred
to as the distinguishability/measurability. Up to some
rearranging of various factors, this quantity and the
effective cycles of phase are the same. The connection
between this quantity and the Bayes factor, though, is a new
result.
How are the useful and effective cycles related? From the

definitions of N u and N e, it is clear that the former gives

the difference in the harmonic mean of the number of
cycles, while the latter gives the root-mean-square
difference in the number of cycles. This is an important
difference—N e is directly related to the BF in the small
deformation limit. For certain signals, however, the differ-
ence can be shown to be a GR-modification-dependent
constant factor. To see this, consider inspiral GWs in the PN
approximation both in GR and in ppE form. The orbital
phase ϕðfÞ ¼ 2πftðfÞ −ΨðfÞ − π=4 is a power series in
v ¼ ðπMfÞ1=3, just like the Fourier phase ΨðfÞ in both GR
and ppE theory. The logarithmic derivative, dϕ=d ln f,
preserves the structure of such a power series, and so
the PN series for ΨðfÞ and for NðfÞ differ only by
b-dependent, order unity factors in each of the coefficients.
The relation between N e and N u is shown in Fig. 4 and
derived in Appendix B. Of course, the useful and effective
cycles defined here can be computed given any form of
phase evolution, and thus, they are not restricted to phases
in the PN approximation.

B. Useful and effective cycles as a measure of
detectability of general non-GR effects

Now that we have introduced the concept of effective
cycles, we will use it to determine when a particular GR
deviation is detectable. In particular, we will determine the
number of useful and effective cycles that are needed for
ppE deviations to lead to a BF that favors the ppE model.
We inject ppE signals with varying strength βppE

parameters and exponent b parameters and then
(i) calculateN u andN e due to the ppE terms relative to

a GR signal (βppE ¼ 0) and
(ii) run a MCMC analysis to calculate the BF between a

ppE model and the GR model.
The second item requires the choice of a prior range for
each ppE strength parameter, which we choose to be
jβppEj ≤ 5 × 10−5 for b ¼ −7, jβppEj ≤ 5 × 10−4 for
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FIG. 4 (color online). The ratio of effective cycles to useful
cycles, calculated as a function of b, for two fixed values of βppE.

LAURA SAMPSON et al. PHYSICAL REVIEW D 90, 124091 (2014)

124091-12



b ¼ −6, and jβppEj ≤ 5 for b ¼ −5 and b ¼ −4. These
prior ranges were derived by examining the results in
Ref. [57] and requiring that the deviations be detectable
given a GW signal with SNR ≈ 10.
Every injection in this study consists of a

ð1.4074; 1.7415ÞM⊙, NS/NS, nonspinning binary, with
zero inclination angle, and with SNR ≈ 15, which corre-
sponds to a luminosity distance DL ≈ 50 Mpc. We choose
the zero-detuned, high-power spectral noise density pro-
jected for aLIGO [58], stopping all integrations at 1000 Hz.
This frequency is lower than the GW frequency at which
the NSs touch each other, which is approximately between
1250 and 2000 Hz, depending on the NS EoS.
Figure 5 shows the BF on a logarithmic scale versus the

absolute value of the number of effective (left panel) and
useful (right panel) cycles introduced by signals with
different ppE exponent parameters, starting at b ¼ −7
(a −1 PN term) and going up to b ¼ −4 (a 0.5 PN term).
Recall that ST theories lead to modifications at −1 PN
order and higher and that a BF larger than 1 indicates the
data support the non-GR model. Observe that detectability
occurs when N u is between 0.1 and 1 and when N e is
between 2 and 4 cycles of phase for most of the ppE
injections. This is not true, however, for the b ¼ −5 case,
because of the almost perfect correlation between chirp
mass M and βppE when b ¼ −5: a straight line in the two-
dimensional Mc-βppE plan similar to Fig. 6 in [29].
Because of this, a deviation from GR at the 0 PN
(Newtonian) level would have to be very large to be
detectable, as previously noted in Ref. [57].
Observe also in Fig. 5 the difference in detectability for

phase terms that accumulate either positive or negative
cycles of phase. As stated, Fig. 5 shows the absolute value
of the useful or the effective cycles of phase introduced by
each ppE term. For injections made with a positive βppE, the

actual sign of the cycles of phase is negative. We used this
type of injection for most of the lines in this figure, but for
the b ¼ −4 case, we injected both positive and negative
values of βppE. We find that the positive values are detected
more easily than the negative values.
This effect can be understood by examining the posterior

distribution of βppE at b ¼ −4, shown in Fig. 6 together
with the posterior of βppE at b ¼ −7. Observe that the
posteriors are not symmetric about βppE ¼ 0. In the case
of b ¼ −4, injecting a positive value of βppE results in no
posterior weight at βppE ¼ 0 for much smaller values of
jβppEj than injecting a negative value. The asymmetry in the
posterior distributions can again be understood by noting
that βppE is correlated with the mass parameters, which are,
of course, forced to be positive.
Figure 5 also shows that the threshold in N e for

detectability (e.g., the value of N e at which the BF equals
10) is lower for terms that are of very high PN order.
Comparing the left and right panels of this figure, we
observe that the N u threshold exhibits the opposite
behavior. The N e threshold behavior is what one would
expect because high PN order terms have small covariances
with the ppE strength parameters and the system param-
eters. It is therefore very difficult for a GR waveform to
match the phasing of these types of injections, while the
opposite is true for low PN order ppE effects. This fact
illustrates the advantage of using N e instead of N u as a
measure of detectability: the logðBFÞ as a function of N e
exhibits the expected behavior as b changes, but logðBFÞ as
a function of N u shows the opposite behavior.
So far, the discussion has assumed a fixed SNR of 15, but

clearly the detectability of a GR deviation depends on the
SNR of the signal. To understand this, we performed the
same analysis as above but with b ¼ −3 fixed and signals
of differing SNRs. The results are plotted in Fig. 7, where
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FIG. 5 (color online). BF in favor of a modification to GR versus the number of effective cycles (left) and useful (right) cycles induced
by that modification for different types of ppE corrections. For the b ¼ −4 cases, the line labeled (−) corresponds to a negative value for
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dependence of the relationship between BF and N u is the opposite of what one would expect.
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we observe that the number of effective cycles necessary
for a detection of a modification to GR scales approx-
imately as the SNR squared, as expected from Eq. (55).
That equation was derived assuming small deviations from
GR, but here we see that regardless of the value of the ppE
exponent, Eq. (55) is still approximately satisfied.

C. Useful and effective cycles as a measure of
detectability of ST effects

We now apply what we have learned about effective
cycles to ST theories. First, we must discuss exactly which
signals we will analyze in detail. We employ data from
Ref. [17], which consist of 80 GW signals from NS binaries
with constituent masses ranging from approximately
1.4M⊙ to 1.7M⊙, and with βST ranging from −4.5 to

−3.0. Within this set, and for the polytropic EoS used in
Refs. [15,17], some systems undergo spontaneous/induced
scalarization, while others dynamically scalarize. As
already mentioned, we refer to signals from systems whose
components undergo spontaneous/induced scalarization as
“spontaneously scalarized signals.” We do so because a
necessary condition for induced scalarization to happen is
the presence of at least one spontaneously scalarized star.
The term “dynamically scalarized signals” will denote
those from dynamically scalarized binaries. The strength
and type of scalarization that occurs depend sensitively on
the constituent masses and the value of βST.
We now wish to calculate the effective cycles N e

induced by the ST corrections to investigate their detect-
ability. For the spontaneously scalarized cases, we can
computeN e with the SPAwaveforms, using for ΔΨðfÞ the
terms in square brackets of Eq. (46). The integrated SPA
dephasing is then minimized over ðΔt;ΔϕÞ, as explained in
Eq. (54). For the dynamically scalarized cases, we compute
N e with the Fourier transform of the numerical time-
domain data of Ref. [17], using for ΔΨðfÞ the difference in
the Fourier phases of a GR and a ST numerical signal. We
then again introduce parameters ðΔt;ΔϕÞ and minimize the
integrated dephasing with respect to them to define N e, as
explained in Eq. (54).
The left panel of Fig. 8 shows the effective cycles as a

function of βST for both spontaneously and dynamically
scalarized cases, with the latter labeled with an upside-
down triangle. Different line styles correspond to systems
with different masses. The shaded region corresponds to the
region where one would expect BFs of between 1 and 10,
given the results of Fig. 5. Modifications that lead to
effective cycles above this shaded region may then be
detectable with an aLIGO instrument.
Several features of this figure are worth discussing in

more detail. First, observe that almost all of the detectable
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cases correspond to spontaneously scalarized systems. For
these systems, dipole radiation is the dominant GR modi-
fication, a −1 PN order effect that is proportional to the
difference of scalar charges of the two bodies [see, e.g.,
Eq. (46)]. For equal-mass binaries, this dipolar effect
vanishes identically, and the dominant modification enters
at Newtonian, 0 PN order. Such a GR modification,
however, is strongly degenerate with the chirp mass, as
shown in Fig. 5, and thus, it is difficult to detect. For this
reason, spontaneously scalarized systems with larger mass
differences lead to larger values of N e and are easier to
detect.
Another interesting feature of Fig. 8 is that, within the

cases analyzed, only a handful of dynamically scalarized
systems seem detectable: the ðm1; m2Þ ¼ ð1.6; 1.6ÞM⊙
with βST ¼ −4.5 system, the ðm1; m2Þ ¼ ð1.7; 1.7ÞM⊙
with βST ¼ −4.25 system, and the ðm1; m2Þ ¼
ð1.5; 1.6ÞM⊙ with βST ¼ −4.5 systems. One of the key
differences between these cases and all others is that they
scalarize at relatively low GW frequency. Figure 9 shows
the approximate GW frequency at which the scalar field
activates in a dynamically scalarized binary, as a function of
βST. Observe that as jβSTj becomes smaller, or as the total
mass of the binary decreases, dynamical scalarization
occurs at higher and higher frequencies. For these three
cases the scalar field activates at roughly 80, 120, and
180 Hz respectively, while in all other cases dynamical
scalarization occurs at higher GW frequency.
The reason, then, that the three dynamically scalarized

cases discussed above appear detectable is that detectability

of a sudden non-GR effect, i.e., one that turns on rapidly,
correlates strongly with the GW frequency at which this
turn-on occurs. The right panel of Fig. 8 shows this
correlation through N e as a function of the GW frequency
of dynamical scalarization. Notice that the lower the GW
frequency of activation, the larger the number of effective
cycles, and thus, the easier it would be to detect such a GR
modification.
Reference [22] first observed this phenomenon by

studying ppE-type GR modifications that turn on suddenly.
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Their conclusion was that for aLIGO to detect such non-GR
effects at SNRs of 12, the modification had to turn on at a
GW frequency lower than roughly 100 Hz (see Fig. 4 in
[22]). The ST modifications we study here are of a different
PN order and at higher SNR than the non-GR ppE signals
considered in Ref. [22], but we still see similar behavior:
dynamical scalarization is only detectable when it activates
below ≈200 Hz at SNR 15.
Summing up, if one detected a GW signal that is

consistent with GR (i.e., lacking any dynamical, induced,
or spontaneous scalarization effects), one should be able to
constrain βST ≲ −4.25, given the data that we studied in
this paper. This statement, of course, is EoS dependent, and
thus, strictly applicable only to NSs with the polytropic
EoS used here. In principle, NS binaries with a different
EoS could scalarize at a different GW frequency. With
some variability depending on the EoS, though, it remains
true that one must have βST ≲ −4.25 in order for scalariza-
tion (either spontaneous/induced or dynamical) to occur
at all.

V. DETECTABILITY OF SCALAR-TENSOR
DEVIATIONS: BAYESIAN MODEL SELECTION

In this section, we carry out the second part of our data
analysis investigation to determine the detectability of ST
deviations in GWs emitted during the inspiral of NS
binaries. We perform a full Bayesian analysis study,
separating the spontaneously scalarized cases from the
dynamically scalarized ones. Such a study will allow us to
confirm the expectations derived using effective cycles in
the previous section.
To test these expectations, we inject ST GW signals at a

SNR ≈ 15 produced by
(a) spontaneously scalarized NS binaries, with sponta-

neous/induced scalarization occurring before GWs
enter the detector’s sensitivity band and

(b) dynamically scalarized NS binaries, with dynamical
scalarization occurring during the inspiral, at GW
frequencies in the detector’s sensitivity band.

As a case study for spontaneously scalarized injections, we
consider a ð1.4074; 1.7415ÞM⊙ binary with βST ≥ −4.25.
We expect these signals to lead to the largest spontaneous
scalarization effects, as one can see in the left panel of
Fig. 8 at βST ¼ −4.5. However, for βST > −4.25, we do not
expect these effects to be detectable, since they lead to a
very small number of effective cycles. Note that for
βST → −4.25, this system is a case that exhibits dynamical
scalarization.
For dynamically scalarized injections, we consider

several different systems. First, we study a
ð1.4074; 1.7415ÞM⊙ binary at βST ¼ −4.25, since this is
the limiting case of the spontaneously scalarized
sequence discussed in the previous paragraph. We then
study a ð1.6441; 1.6441ÞM⊙ binary at βST ¼ −4.5, a
ð1.7415; 1.7415ÞM⊙ binary at βST ¼ −4.25, and a

ð1.5145; 1.6441ÞM⊙ binary at βST ¼ −4.5, as these are
the dynamically scalarized signals that look the most
detectable, given the left panel of Fig. 8.
Spontaneously and dynamically scalarized injections are

modeled differently. For the former, we use the SPA
scheme of Eq. (46). For the latter, we first compute the
discrete Fourier transform of the numerical data of
Ref. [17]. We then take the difference of the Fourier phase
between a numerical ST signal and a GR signal, and finally
add this phase difference to a GR SPA signal.
We recover these injections with four different types of

template families:
(i) simple ppE templates, constructed with a single βppE

parameter and ppE exponent b ¼ −7,
(ii) ST SPA templates, constructed from the results

presented in Sec. III D,
(iii) 2-parameter ppE templates, an augmented ppE

template family that uses two ppE terms, one with
exponent b ¼ −7 and one with b ¼ −6 [29], and

(iv) ppEθ templates, another augmented ppE template
family with a single ppE exponent b ¼ −7 but with
βST → Θðf − f�ÞβppE, where Θð·Þ is a step function
and the threshold frequency, f�, is a new ppE
parameter [29].

The simple ppE template family fixes the ppE exponent to
b ¼ −7, as this corresponds to the leading-order ST
correction to the SPA phase for unequal-mass systems
where dipolar radiation is present. The ST SPA templates,
of course, are the same templates as the model used for the
spontaneously scalarized injections, and thus, by construc-
tion, we expect these to be the best templates for extracting
ST modifications of this type. The 2-parameter ppE
template family is also able to achieve a perfect match
with spontaneously scalarized injected signals, but it
includes two free parameters, rather than one. The ppEθ

template family allows the non-GR terms in the phase to
“turn on” at a particular threshold frequency, which is well
suited to dynamically scalarized injections.
A salient feature of the semianalytical results of Ref. [17]

(and of the full general-relativistic simulations of Ref. [15])
is the binary’s early plunge due to the activation of
dynamical scalarization. Such a feature is present in the
dynamically scalarized injections we consider, but given
the limited number of data sets, we cannot study its
detectability in sufficient detail. In order to study whether
such rapid termination of the inspiral is detectable, we will
consider an additional type of injection and template:
(v) heaviside signal of the form ~hGRðfÞΘðf� − fÞ,

where we will vary f� within ð40; 103Þ Hz. Given such
injections and templates, we then study the range of f� that
leads to early terminations that can be detected as a non-GR
effect. We will explain in Sec. V B why we choose to work
with such a toy model.
All the template models considered above are nested.

This means that for a certain choice of non-GR parameters,
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the templates reduce exactly to GR. For example, when
βST ¼ 0, the ST SPA templates reduce exactly to the GR
SPA templates. When this is the case, one can use the
Savage-Dickey density ratio to calculate the BF [59].
Finding this ratio requires the calculation of the posterior
at the nested value of the non-GR parameter. The posterior
is calculated with MCMC techniques well developed in
previous studies [22,29,57,60]. We again use the zero-
detuned, high-power aLIGO noise curve, assuming a single
detector and truncating all integrals at f ¼ 1000 Hz.

A. Spontaneously scalarized signals

We first consider spontaneously scalarized signals and
compute the BFs between GR and the first two types of

templates described above [(i) and (ii)]. Figure 10 shows
the BFs as a function of the injected βST, keeping
ðm1; m2Þ ¼ ð1.4074; 1.7415ÞM⊙ fixed and varying βST
with the constraint βST ≥ −4.25, so as to consider only
spontaneously scalarized signals. Because there are no BFs
larger than one, this figure shows that spontaneously
scalarized ST deviations from GR are not detectable for
any of the cases shown. This is consistent with our
expectations from the previous subsection. The BFs for
the 2-parameter ppE templates are lower than those shown
in Fig. 10 for the simple ppE templates because of the
Occam penalty for more complicated models, which we
will discuss later on in this subsection.
The BF for the spontaneously scalarized, βST ¼ −4.5

case is not included in Fig. 10 because there is so little
posterior weight at βppE ¼ 0 that a calculation of the BF
using the Savage-Dickey density ratio is poorly defined.
That is, the Savage-Dickey density essentially diverges due
to poor exploration of the βppE ¼ 0 region. Figure 11 shows
the posterior distribution for βppE, which illustrates this
point and, as expected, indicates that the spontaneously
scalarized binary with βST ¼ −4.5 is easily detectable, for
the polytropic EoS models considered here.
One may worry that our inability to detect spontaneously

scalarized binaries when β ≥ −4.25 is somehow a conse-
quence of using ppE templates. To prove that this is not the
case, we next explore the extraction of such spontaneously
scalarized signals using both ppEθ and custom-made, SPA
templates. The ppEθ templates should have more freedom
to fit these signals, and the SPA templates can fit them
perfectly. Because of the nature of these waveforms and the
weakness of the GR deviation in the injections, the non-GR
parameters in both cases are essentially unconstrained
within their prior ranges. For the SPA templates, the
non-GR parameter is βST, and its prior range is
jβSTj < 5. This means that the BF is approximately equal
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calculated by injecting ST signals with SNR of 15, and
recovering using both simple ppE templates, and 2-parameter
ppE templates. A BF above 1 indicates the data prefer the non-GR
model. As expected, neither template is able to detect the non-GR
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to one in both cases, independent of the injected param-
eters. Figure 12 shows the prior and posterior distributions
generated using the ppEθ and the SPA templates, for a
spontaneously scalarized binary with βST ¼ −3.5. These
distributions are identical for other injected values of βST,
barring βST ≤ −4.5, which is again easily extractable as a
non-GR signal with either type of template.
We expect, though, that custom-made templates should

perform better than ppE templates at extracting non-GR
modifications when the custom-made templates match the
signal. The extent to which this is true depends on the
strength of the non-GR modification and on the loudness of
the signal. Let us first consider very strong ST modifica-
tions, which we have already shown to be detectable with
simple ppE templates, i.e., a βST ¼ −4.5, spontaneously
scalarized ST signal, with masses of ð1.4074; 1.7415ÞM⊙
and SNRs of 12, 10, 8, and 6. When the SNR is 12, 10, or 8,
there is no difference in the ability of simple ppE or SPA
templates to discern the presence of a ST effect. When the
SNR drops below 8, the signal is not detectable in the first
place, using either type of template. Thus, custom-made
templates and model-independent templates are equally
good at detecting this type of GR deviations.
But what about GR deviations that are weaker, and thus,

more difficult to detect? Surely, in this case one expects
custom-made templates to be more effective at discerning
such deviations. To explore this question, we inject a
βST ¼ −3.5, spontaneously scalarized ST signal, with
masses ð1.4074; 1.7415ÞM⊙ and very high SNRs (so that
the non-GR modifications are detectable). We then recover
these signals using both the SPA templates and the simple
ppE templates. For the former, we again use the prior range
on βST of jβSTj ≤ 5, while for the latter the prior range on
βppE is a bit tricker. We could use the same prior range on
βppE as in the previous subsection, but this was motivated
from a study of signals at SNR ≈ 20. The bounds on βppE

for the extremely high SNR signals we are studying in this
subsection should be much stronger. We estimate the latter
by relating the −1 PN coefficient from our SPA waveform
to the ppE strength parameter when b ¼ −7. This leads to a
prior range on βppE of jβppEj ≤ 1.035 × 10−10. We then
calculate the BF for the simple ppE model using both the
full and the more restricted prior range on βppE.
Figure 13 shows the BF as a function of the SNR

between GR and either the SPA or the simple ppE
templates, using both prior ranges for the ppE templates.
Notice that the SPA templates detect the modifications at a
much lower SNR than the ppE templates using the full
prior, and at an SNR approximately half the value necessary
for the ppE templates with the restricted prior. Low SNR,
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FIG. 12 (color online). Posterior distributions for βST (right) and for βppE (left), recovered from a SNR 15 injection with βST ¼ −3.5.
Also plotted in blue (dashed) lines is the prior density for both parameters. The parameters are essentially unconstrained within their
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however, is a relative term. The SPA templates detect the
GR modifications at SNRs ≈ 6 × 105, which corresponds
to a ridiculous luminosity distance of ≈103 pc (essentially
inside the Milky Way).
Although we expected that the custom-made SPA

templates would be more effective than the generic, ppE
templates at extracting signals (at sufficiently high SNR), it
is still worth studying the reason behind this expected
result. To do so, we examine the prior and posterior
distributions of the two non-GR parameters, βST and
βppE, and the Occam penalty that arises from each param-
eter. The Occam penalty is a built-in feature of Bayesian
analysis, which causes simple models to be favored over
more complicated ones. That is, models with fewer
parameters are preferred to models with extra parameters,
all else being fixed.2

This brings us to an explanation of the results in Fig. 13.
Figure 14 shows the posterior distributions for βST and
βppE, using both the full and the restricted priors, for a
signal with SNR of 6 × 105, plotted over the entire prior
range. The prior distribution is plotted in all three cases,
although it is only visible for βST and for βppE with the
restricted prior range. Notice that, where the posteriors for
βST and βppE in the restricted case have some weight over
most of their entire prior ranges, βppE for the full prior range
is hugely constrained—so constrained that its posterior
distribution looks like a delta function. This means that
there is a very large Occam penalty disfavoring this model,
and it will take a signal of extremely high SNR to overcome
this penalty. As seen from the results in this section, a
tighter prior range leads to a smaller Occam penalty, and
thus a larger BF in favor of the GR deviation.

B. Dynamically scalarized signals

Section IV C hinted that dynamical scalarization is much
more difficult to detect than spontaneous scalarization. In
fact, Fig. 8 shows that the number of effective cycles
accrued in dynamically scalarized signals is rather low
in general. An example of this is the dynamically scalar-
ized, βST ¼ −4.25 case for a binary with masses
ð1.4074; 1.7415ÞM⊙. Indeed, a Bayesian analysis of this
signal shows that such a ST effect is not detectable with
simple ppE or 2-parameter ppE templates.
One way to understand this is by considering the amount

of SNR that is accrued in the signal after scalarization has
set in. Table I lists the percentage of the total SNR2

contained in the signal before at least one of the NSs

has become scalarized, for signals with βST ¼ −4.25. The
frequency at which either NS becomes scalarized can be
easily extracted by looking at the behavior of the scalar
charges as a function of orbital frequency (see Fig. 9). From
this table, it is clear that there is very little SNR accumu-
lated over the portion of the signal in which scalarization
effects are important. Moreover, this SNR accumulation
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FIG. 14 (color online). Posterior distributions for βST (top
panel) and βppE with the full prior (middle panel) and restricted
prior (bottom panel), generated by recovering a SNR 600000
signal with βppE ¼ −3.5. Also plotted are the prior densities,
although this is not visible in the middle panel. The posterior for
βppE is so highly constrained compared to the full prior that it is
nearly impossible to use this model for the detection of a ST
modification to gravity.

TABLE I. The percentage SNR squared accrued before
dynamical scalarization has begun, for signals with βST ¼
−4.25 and SNR ≈ 15. The first column gives the mass of the
system, the second the approximate frequency at which dynami-
cal scalarization begins, and the third the percentage of the SNR2

accumulated prior to scalarization. Note that for all cases most of
the SNR2 of the signal is amassed before scalarization becomes
significant.

Mass Frequency [Hz] %SNR2

ð1.4074; 1.7415ÞM⊙ 314 98.1
ð1.5145; 1.7415ÞM⊙ 301 94.25
ð1.6441; 1.7415ÞM⊙ 286 89.6

2Consider two nested models: M1 which is parametrized by a
single parameter, θ, and M0 which is unparametrized, i.e., has
θ ¼ θ0 where θ0 is a constant. If the likelihood function forM1 is
a Gaussian, then BF1;0 ∝ ðδθÞ=Δθ, where δθ is the characteristic
width of the posterior in θ, and Δθ is the prior range of θ [60].
Thus, if the value of θ is entirely unconstrained by the data, there
is no penalty for an extra parameter. On the other hand, if θ is very
tightly constrained, there is a large penalty.
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does not occur in the frequency region in which the
instrument is most sensitive.
The reason why the βST ¼ −4.25, dynamically scalar-

ized case cannot be easily detected is precisely that the
frequency at which ST modifications become noticeable is
rather large. But this frequency is, of course, a function of
the masses of the binary and the EoS used. Recall that
dynamical scalarization sets in when the energy of the
system, roughly speaking the linear combination of the NS
compactnesses and the (absolute value of the) gravitational
binding energy, exceeds a certain threshold. Therefore, one
can imagine a NS binary whose masses and radii are such
that the NS compactnesses are very close to exceeding the
energy threshold, and thus, dynamical scalarization can set
in at very low frequencies, as shown in Fig. 9.
From the effective cycle study illustrated in Fig. 8, it

appears that the dynamically scalarized binaries that are
most easy to detect are those described at the beginning of
Sec. V: a ð1.6441; 1.6441ÞM⊙ binary at βST ¼ −4.5, a
ð1.7415; 1.7415ÞM⊙ binary at βST ¼ −4.25, and a
ð1.5145; 1.6441ÞM⊙ binary at βST ¼ −4.5. Let us first
consider a signal described by the first of these sets of
parameters and extract it with a simple ppE template. Such
a signal dynamically scalarizes at the lowest frequency of
all systems considered (at roughly 80 Hz). This system is
indeed detectable, leading to a very large BF and a βppE
posterior that is similar to that shown in the left panel of
Fig. 11 for a spontaneously scalarized, βST ¼ −4.5 binary
with masses ð1.4074; 1.7415ÞM⊙. The width of the βppE
posterior, however, is roughly one order of magnitude
larger than in the spontaneously scalarized case, with a
variance of σ1.6;1.6 ¼ 3.7 × 10−5 for the former and
σ1.4;1.7 ¼ 5 × 10−6 for the latter, indicating that the BF in
this case is smaller, as expected.
We can now repeat this analysis for the other two

binaries that we expect may be detectable given Fig. 8.
For both cases, we find that BF ≈ 3, obtained from the
Savage-Dickey ratio. This is again in accordance with
expectations from Fig. 8. For the βST ¼ −4.25 system, the
number of effective cycles indicates a marginal detection,
which is precisely what we find in this Bayesian analysis.
For the βST ¼ −4.5 system, the number of effective cycles
plotted in Fig. 8 suggests the possibility of detection;
however, recall that the numbers shown in this figure are

upper limits. In this case, our Bayesian analysis indicates
that this upper limit is higher (by a factor of ≈2) than the
actual number of effective cycles induced by dynamical
scalarization of the binary components.
As already mentioned, our analysis thus far has not

focused on one important feature of dynamically scalarized
signals: the early plunge of the NS binary. That is, once the
GW frequency has exceeded the threshold for dynamical
scalarization to set in, the NS binary inspirals for a few
more cycles, but then plunges and merges soon after. This
occurs much earlier than in GR (see, e.g., Figs. 10 and 15 in
[17]). Of course, after the NSs have merged, either a
hypermassive NS forms, with a rotating bar that emits GWs
at kHz frequencies, or a BH forms, thus cutting out GW
emission exponentially through ringdown. The precise
form of the waveform during this merger and ringdown
phase will depend strongly on the NS equation of state.
We study in an approximate fashion whether an early

plunge can be detected in a generic modified gravity theory
by considering a set of Heaviside signal injections, i.e.,
GR waveforms for which the Fourier amplitude is multi-
plied by a Heaviside function with argument f�inj − f, as
we vary the injection cutoff frequency f�inj ∈ ð40; 103Þ Hz.
In dynamically scalarized systems, however, the transi-
tion from inspiral to early plunge and then merger is
smooth, while Heaviside templates are clearly not.
Therefore, it is obvious that the latter are inappropriate
templates to extract realistic dynamical scalarization sig-
nals. However, they are good and simple toy models to
study whether an early plunge (and thus an early termi-
nation) of the signal could be detected as a non-GR effect in
data analysis. Since a smooth transition will be less
noticeable than a sharp Heaviside transition, the use of
Heaviside templates could be thought of as conservative;
i.e., if a GR deviation cannot be observed with such an
abrupt termination, it certainly will not be detectable if the
transition is smooth.
We carry out such a study in the following way. We place

all such systems at DL ¼ 30.75 Mpc such that the recov-
ered SNR is approximately 15 when f�inj ¼ 100 Hz and 30
when f�inj ¼ 1000 Hz. For that value of f�inj, the Heaviside
signal is thus similar to those we have been analyzing
throughout this paper and also those studied in Ref. [29].
We then extract such injections with templates that exactly
match the signal, but with f� included as a template
parameter to search over, as well as with simple ppE
templates with b ¼ −4. This value of the exponent param-
eter is chosen because of its strong correlation with the total
mass, which is the parameter that determines the cutoff
frequency in GR. As explored in Ref. [22], the specific
value of b that is chosen has little impact on the analysis.
One may worry that approximating the early plunge in

this abrupt way may mask the detectability of non-GR
effects, as the cycles that are effectively thrown out by this
sort of study would contain these effects. Because there is

TABLE II. Luminosity distance to the source such that the SNR
recovered (up to a threshold frequency f�inj) is equal to 8. The
third row shows the total SNR that would be recovered at the
given luminosity distances if f�inj ¼ 1000 Hz. Note how rapidly
the distance to the source has to be decreased as the threshold
frequency is decreased.

f�inj [Hz] 100 65 51 44 39

DL [Mpc] 60 30 18 12 9
SNR 15 30 50 75 100
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so little SNR contained in those final few cycles of inspiral,
however, this should not be an issue. For the systems
studied in this paper, there are thousands of orbital cycles
before scalarization is activated, and only tens of orbital
cycles afterwards. Additionally, for all but a few cases, the
orbital cycles that are affected by scalarization occur at a
frequency in which the detectors are not very sensitive.
These two effects combined mean that there is very little
information being discarded by abruptly terminating the
waveforms once scalarization has occurred.

Clearly, the earlier the binary plunges (or, in our case, the
lower the injection cutoff frequency, f�inj), the fewer GW
cycles the signal will contain in the sensitivity band of the
detector. This then translates to a smaller recovered SNR.
Thus, in order to detect such a signal at all, we must either
be fortunate enough to detect systems that are sufficiently
nearby, or fortunate enough to detect enough events such
that their stacked SNR is large. Table II shows the
luminosity distance required such that the SNR recovered
equals 8 for different termination frequencies f�inj. This
table also shows what the SNR would have been at such
luminosity distances, if the signal did not terminate at f�inj,
but rather continued to 1000 Hz.
Figure 15 shows the posterior distributions for the

recovered values of f� using Heaviside templates, and
the posteriors for the recovered values of βppE using simple
ppE templates. All injections focus on a ð1.6; 1.6ÞM⊙ NS
binary, with the same polarization angle and sky position
as all other injections in this paper, and DL ¼ 30.75 Mpc.
The prior range on the search parameter f� is uniform
between 0 to 1000 Hz for the Heaviside templates, and

TABLE III. Luminosity distance to the source such that the
SNR recovered (up to a threshold frequency f�inj) is equal to 8.
The third row shows the total SNR that would be recovered at the
given luminosity distances if f�inj ¼ 1000 Hz. Note how rapidly
the distance to the source has to be decreased as the threshold
frequency is decreased.

f�inj [Hz] 100 65 51 44 39

DL [Mpc] 60 30 18 12 9
SNR 15 30 50 75 100
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FIG. 15 (color online). Left panels: posterior distributions for βppE, recovered by extracting a Heaviside template injection with
injected cutoff frequency f�inj, using simple ppE templates. The only case that shows a strong preference for the non-GR model is for
f�inj ¼ 100 Hz. Right panels: posterior distributions for the recovered f�, generated by extracting a Heaviside injection with templates of
the same family and different injected cutoff frequencies f�inj. Here, the cases with f�inj ¼ 100 Hz and f�inj ¼ 75 Hz are distinguishable
from GR.
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thus, the prior density is 1=1000 ¼ 0.001. Recall that the
prior range on the search parameter βppE is also uniform
with range −5 to 5 for the simple ppE templates, and thus,
the prior density is 1=10 ¼ 0.1 in this case.
The interpretation of the posterior distributions for the

recovered values of f� as tests of GR is somewhat subtle,
because it is not entirely clear what the “GR value” for
f� should be. In principle, the inspiral should end when
the NSs begin to plunge, and certainly by the time the
stars have come into contact. The GW frequency of the
latter, fcont, depends both on the component masses and
the EoS; for a ð1.6; 1.6ÞM⊙ binary it is between 1250
and 2050 Hz, depending on the NS radius. As a simple
and practical measure of the plunge, one could choose
the GW frequency at the innermost stable circular orbit
(ISCO) of a test particle in a Schwarzschild spacetime:
fISCO ¼ 6−3=2=ðπMÞ; for a ð1.6; 1.6ÞM⊙ NS binary,
fISCO ¼ 1354 Hz. This is a suitable measure for the begin-
ning frequency of plunge in GR, provided the NS is compact
enough such that its contact frequency is above fISCO. For
the systems we study here, fcont > fISCO > 1000 Hz, where
we recall that the latter is the highest frequency of integration
in all cross-correlations. We can therefore take the GR value
of f� to be 1000 Hz, and calculate the BF by comparing
posterior and prior densities at this point.
The right panels of Fig. 15 show that the Heaviside

templates are able to distinguish a deviation from GR
provided the injected cutoff frequency f�inj is above ≈50 Hz
and below ≈400 Hz. These panels present the posterior
distributions for the parameter f�, recovered using
Heaviside templates on injections with various values of
f�inj. The ability of Heaviside templates to distinguish GR
deviations can be established by computing the BFs for
each of these panels through the Savage-Dickey density
ratio (recall that the BF is the ratio of the posterior to the
prior density at the GR value of the search parameter, f� ¼
1000 Hz in the Heaviside template case). For instance, the
BF ≈ 1 when f�inj ¼ 50 Hz, while the BF ≈ 5 when
f�inj ¼ 400 Hz, a marginal detection of a GR deviation.
The left panels of Fig. 15 show that the ppE templates

can also distinguish Heaviside-type deviations from GR,
but this time provided f�inj is above ≈75 Hz and below
≈400 Hz. These panels present the posterior distributions
for βppE, recovered using a simple ppE template with b ¼
−4 on Heaviside injections with various values of f�inj. The
BF can still be computed through the Savage-Dickey
density ratio, except that now GR is recovered when the
value of βppE is zero, and we recall that the prior density is
0.1. For instance, the BF ≈ 1 when f�inj ¼ 75 Hz, while the
BF is clearly much larger than unity when f�inj ¼ 100 Hz.
Why is detectability of a GR deviation difficult for very

low or very large f�inj? For very low injected cutoff
frequencies (e.g., below 50 Hz for the Heaviside templates
and 75 Hz for the ppE templates), the analysis fails to detect
a signal altogether—a reasonable result, considering that

these very low injected cutoff frequencies drop the total
recovered SNR of the signal below 8. For very high injected
cutoff frequencies (e.g., above 400 Hz), the deviation from
GR occurs too far outside of the detector’s most sensitive
band to be noticeable. Put another way, not enough SNR is
accrued while the GR deviation is active.
Although the choice of a signal at DL ¼ 30.75 Mpc

leads to a recovered SNR ≈30 when f�inj ¼ 1000 Hz, a
reasonable choice for comparison to other results in this
paper, systems at such a close distance are not very likely. A
more reasonable expectation is a system at twice that
luminosity distance, DL ≈ 61.5 Mpc, such that the signal
that would have total SNR of ∼15 if f�inj ¼ 1000 Hz, but
which, if subject to the early plunges analyzed here, is in
fact a signal with lower recovered SNR. When we inject
Heaviside signals at such a DL, so that the SNR ∼15 if
f�inj ¼ 1000 Hz, we find results qualitatively similar to
those described in the previous paragraph, but with a
narrower detectable injected cutoff frequency range. The
high injected cutoff frequency for detectability drops to
≈300 Hz, and the low cutoff frequency rises to ≈90 Hz.
This result is in accordance with expectations.
The ability to detect the early plunge of a binary system

may have an important implication in terms of the detect-
ability of dynamical scalarization. As we have seen in
Fig. 9, higher-mass NS binaries can dynamically scalarize
at frequencies below 400 Hz for βST ≈ −4. This then
suggests that the inclusion of an early plunge, the merger,
and the postmerger phase in a data analysis study may
allow for constraints on ST theories at such values of βST.
Notice, in particular, that such constraints are stronger than
those obtained when including only the inspiral phase.
One must be very careful, however, when extrapolating

results and promptly concluding that the inclusion of the
plunge and merger portions of these signals will increase
their distinguishability. First, there are very few cycles in
the postplunge phase, and thus very little SNR accumulated
after the plunge. Second, and perhaps more importantly, the
postplunge phase will be strongly affected by the NS
equation of state. Degeneracies between equation-of-state
effects and non-GR effects imply that the postplunge phase
of NSs may not be as useful as a means to test GR. Of
course, a more detailed analysis is required to derive solid
conclusions.

VI. CONCLUSIONS

In this paper, we sought to answer one overarching
question: can deviations from GR in GW signals that are
caused by a certain class of ST theories be detected with
aLIGO-type instruments? We find that this is the case,
irrespective of whether the deviation arises from sponta-
neous/induced or dynamically scalarized NSs. These pro-
jected constraints will be complementary and at least
comparable to current binary pulsar ones.
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Not all spontaneous/induced and dynamical scalarization
effects, however, are easily detectable. For a spontaneous/
induced scalarization to be detectable, the scalar field
anchored on each NS must be large enough, and the
masses sufficiently dissimilar, that dipole radiation
becomes important. This occurs, for example, for values
of βST ≈ −4.5 and a NS binary with masses ð1.4; 1.7ÞM⊙,
for the simple polytropic EoS that we consider in this paper
(with a different EoS potentially changing these values).
For a dynamically scalarized effect to be detectable in
aLIGO, such scalarization must occur at a sufficiently small
GW frequency so that enough GW cycles are affected in a
frequency region that detectors are sufficiently sensitive to.
This occurs, for example, for values of βST ≈ −4.5 and a
NS binary with masses ð1.6; 1.6ÞM⊙, which scalarizes at a
GW frequency of roughly 80 Hz (again with some
variability of these values depending on the EoS).
We additionally investigated the detectability of another

effect associated with dynamical scalarization: the early
plunge that would be induced in binaries that undergo such
scalarization. We found that the sudden cutoff of a GW
signal at frequencies below those expected in signals
described by GR is detectable using both simple ppE
templates and GR templates with a Heaviside function, for
certain ranges of cutoff frequencies. Such a plunge, for
example, could occur for values of βST ¼ −4 and a NS
binary with masses ð1.7; 1.7ÞM⊙. Of course, an early
plunge cannot be accurately modeled through a
Heaviside function, and so a more careful data analysis
study that includes inspiral-merger-postmerger signals is
needed.
In the process of reaching these answers, we explored a

measure that can help estimate whether different types of
phase effects are detectable with GWs: the effective cycles
of phase. We found that for a wide variety of different non-
GR signals, the modification to the GR phase needs to lead
to roughly 4 cycles of effective phase to be detectable with
an aLIGO detector at SNR 15. We further found that such
detectability is independent of whether one uses custom-
made ST templates or model-independent templates to
search for deviations at the expected SNRs of aLIGO-type
detectors.
A final question that we considered was whether custom-

made, theory-specific templates are more useful at
detecting deviations from GR than the model-independent
ppE template family. We answered this question by looking
at both extremely high SNR signals with ST signatures that
were undetectable at low SNR, and by looking at low SNR
signals with ST signatures that were easily detectable at
reasonable SNR. In both cases, we found that ppE
templates perform almost as well as custom-made, SPA
templates at distinguishing non-GR signals from GR ones.
Future work could concentrate on extensions of the

analysis presented here. One interesting extension would be
to repeat this work for NSs with realistic EoSs. The work in

Refs. [15,17], which we used in this paper exclusively, used
a polytropic EoS, but this is easily generalizable to more
realistic EoSs (cf. Ref. [21]). One may find EoSs and
masses that do not lead to spontaneous/induced scalariza-
tion for binary pulsars, yet lead to spontaneous/induced
scalarization for systems that can be detected with GWs.
Such systems would thus evade binary pulsar constraints
and yet potentially lead to detectable deviations with
aLIGO. Again, it is important to emphasize that stiffer/
softer EoSs will lead to qualitatively (and quantitatively)
different behavior. A very stiff EoS could perhaps support
more compact stars that spontaneously scalarize at lower
frequencies. A systematic study of these effects is left for
future consideration.
Another interesting analysis would be to study whether

one can find EoSs or masses for which dynamical scala-
rization sets in at very low frequency, e.g., close to 10 Hz.
Reference [22] estimated that for an abrupt GR modifica-
tion to be detectable with an aLIGO-like detector at SNR
10, such a modification would have to start at a GW
frequency below 100 Hz. Most cases of dynamical scala-
rization that we explored occur at ∼200 Hz or higher, but
there are some instances in which scalarization occurs at a
lower frequency, and it is possible that different mass/EoS
combinations would produce more of these scenarios.
Other extensions may include adding more complexity

to the signals and the templates, through the inclusion of the
merger and postmerger phases, as well as the inclusion of
spin [61–64] and eccentricity [43] effects. Recall that with
respect to second-generation, ground-based detectors it is
common to regard the NS merger and postmerger phases as
unimportant for testing GR as they occur at kHz frequen-
cies where such detectors are least sensitive. Dynamically
scalarized NSs, however, could plunge at much lower
frequencies, and such effects may be detectable.
References [63,64] showed that the inclusion of spin in
NS binaries can have a large effect on parameter estimation.
Similar conclusions were arrived at when including more
complexity in GW signals to test GR (see, e.g., [65–67]).
Also, Ref. [17] showed that eccentric NS binaries in ST
theories can give rise to scalarization/descalarization phe-
nomena that may affect the binary’s orbital evolution
(effectively decreasing the eccentricity faster than in GR)
at sufficiently low frequencies to be detected.
Another interesting avenue for future work would be to

repeat the analysis of this paper but with a non-template-
based search algorithm that may be more sensitive to the
postmerger phase. In our analysis, we used a template-
based search of inspiral signals, neglecting the postmerger
phase that occurs at high GW frequencies where aLIGO’s
sensitivity will be weaker. Recently, however, Ref. [68]
used a template-free burst algorithm to show that the
merger phase may be sufficiently detectable by aLIGO
to discern between a prompt collapse scenario and the
formation of a hypermassive NS, if the event occurs at
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≈10 Mpc. Dynamical scalarization will modify the post-
merger phase, also leading to either prompt collapse or
hypermassive NS formation, depending on the masses of
the binaries. Such effects, however, will probably be
somewhat degenerate with the EoS, and thus, it is unclear
whether merger modifications will be strong enough to
detect a GR deviation.
One final way to study the robustness of our conclusions

would be to consider GW detection with a network of
GW detectors, with second-generation detectors and
noise tuning, with a large number of second-generation
detections and stacking [69,70], or with future GW
detectors, such as the Einstein Telescope [71]. All of these
could lead to much lower noise at GW frequencies around
100 Hz, which would then have multiple effects. First,
better sensitivity at 100 Hz should push the threshold
frequency at which GR deviations can be detected to higher
frequencies. Second, better sensitivity overall should lead
to individual detections with higher SNR and to a higher
number of detections per year. Combining all of this, and
perhaps through the use of stacking, one may be able to
detect dynamical scalarization for lower values of jβSTj.
One should keep in mind, however, that the direct detection
of the additional breathing mode will be extremely
hard, even when detecting GWs with multiple instruments,
since in ST theories that pass Solar System tests, the
interaction of such modes with a detector is suppressed by
ψ0 [15], which is constrained to ≲10−2 because of the
Cassini bound.
Finally, let us address the relationship between our work

and that reported in Ref. [72], which appeared after the
submission of this paper. One may be led to believe that the
conclusion arrived at in this paper and those of Ref. [72] are
not in agreement, with respect to the detectability of
scalarization effects with aLIGO. Reference [72] first
calculates the total number of cycles of phase that are
accumulated in a GW signal due to the presence of
scalarization effects. They then note that this number is
larger than or comparable to the total number of cycles of
phase that will be accumulated due to EoS effects within
GR. Since the latter may be detectable with next generation
detectors [70,73,74], they then argue that scalarization
effects may also be detectable. This conclusion is in fact
in agreement with our findings because EoS effects can be
measured only provided the SNR is sufficiently high
(roughly above 30). Our analysis used SNRs in the tens,
as expected from the first few years of detection; for such
signals, non-GR effects are not detectable. Reference [72]
also finds that scalarization can be detected when it occurs
at GW frequencies larger than roughly 130 Hz, which is in
perfect agreement with our findings (once one converts
orbital to GW frequency).
Although Ref. [72] does not claim that the total cycles of

phase due to a particular effect can directly tell us about
detectability, it is possible to misread the conclusions of this

paper to indicate that they can. We therefore emphasize
again here that the total cycles of phase have no analytic
connection to the Bayes factor and, in fact, fail to account
for parameter covariances. This affects detectability in two
main ways. One is obvious—a non-GR phase term that has
large correlations with other system parameters will be easy
to fit using GR templates. This will make the effect very
difficult to discern, as illustrated in Fig. 5. The other, less
obvious consequence is that although effects that enter at
high PN order accumulate more slowly, they may be
detectable when they lead to smaller numbers of phase
cycles than those that enter at low PN order. This is again
directly due to parameter covariances. In the case of
spontaneous or dynamical scalarization, non-GR effects
that enter at low PN order will have high covariances with
system parameters, such as the chirp mass. Higher PN order
effects will have weaker covariances, but they lead to much
weaker effects, with most of the total dephasing accumu-
lating from the low PN order terms that have large
covariances. Thus, the use of total cycles of phase to claim
detectability of non-GR effects is not appropriate and one
should really either use the effective cycles discussed in this
paper or a full Bayesian analysis.
Also, Ref. [72] (at least in its first arXiv version) states

that the simulations of Ref. [15] “misread” the output of the
LORENE code used to determine the simulation initial data,
and claims that the gravitational masses given in Ref. [15]
are incorrect. This is certainly not the case and the
gravitational masses we give in Ref. [15] are exactly those
of the LORENE output. As it is well known, there is no
unambiguous way of defining individual gravitational
masses for a tight binary system within general relativity.
We provided the readers of Ref. [15] with the exact
LORENE-given gravitational masses in order to clearly
identify our initial data and ensure our results will be
reproducible by others. An alternative, which is the one
followed in Ref. [72], would have been to give the
gravitational masses of the stars in isolation, but this
may have caused unnecessary confusion, as the gravitation
masses are never used in Ref. [15] except for identifying the
initial data.
Reference [72] also raises question on the dynamics of

the most massive case presented in Ref. [15] and used here.
Their concern is related to our choice of initial data for such
an already scalarized case, and is about whether this could
cause an earlier plunge. Such a concern was already
addressed in Ref. [17], where we (i) show the results of
simulations with large initial separations (e.g., Figs. 4
and 5, where no plunge is present at large separations)
and (ii) validate our simulations with an enhanced PN
model. Moreover, we stress here that the initial data
used in Ref. [15] for the low-mass case with dynamical
scalarization are exact (because in the absence of sponta-
neous scalarization, the ST initial data are the same as
in GR).
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APPENDIX A: SCALAR-TENSOR
THEORIES WITH βST < 0

In this Appendix, we discuss how ST theories with
βST < 0 repel cosmological solutions away from their GR
counterparts. This will be done by essentially repeating the
analysis in Refs. [18,19] (see also Ref. [20]), but flipping
the sign of βST.
First, we review the work of Refs. [18,19]. Assuming a

ST theory of the type discussed in this paper, the
Friedmann-Robertson-Walker evolution of the scalar field
is described by [18,19]

2

3 − φ02 φ
00 þ ð1 − wÞφ0 ¼ −ð1 − 3wÞᾱðφÞ: ðA1Þ

Here, φ≡ ψ
ffiffiffiffiffiffiffiffiffi
4πG

p
, primes indicate dimensionless deriv-

atives with respect to a time variable τ such that
dτ ¼ HEðtEÞdtE, or simply τ ¼ ln aEðtEÞ þ const, where
aE, HE, and tE are the expansion parameter, the Hubble
expansion rate, and the cosmological time in the Einstein
frame respectively. Also, ᾱðφÞ ¼ ∂ lnð1=ϕðφÞÞ=∂φ≡
∂aðφÞ=∂φ, but in the theories of interest to us,
ᾱðφÞ ¼ βSTφ. Finally, in this equation, w ¼ p=ρ is the
usual cosmological EoS parameter, where p and ρ are the
pressure and density of the cosmic fluid respectively, i.e.,
w ¼ −1, 1=3, or 0 during the inflationary, radiation, and
matter eras respectively. Clearly, Eq. (A1) can intuitively be
understood as a particle with (velocity-dependent) mass
m ¼ 2=ð3 − φ02Þ moving in a potential, aðφÞ, with a
“friction” term ð1 − wÞφ0.

During the inflationary era (w ¼ −1), Eq. (A1) admits a
solution φ ¼ φ0 þ

ffiffiffi
3

p
τ, as can be checked explicitly3 by

replacing it into Eq. (A1) multiplied by 3 − φ02. We now
show that, during inflation, this solution is indeed an
attractor at linear order. To this purpose, let us write φ ¼ffiffiffi
3

p
τ þ δφ (where we have absorbed φ0 in δφ). At linear

order in δφ, Eq. (A1) yields

δφ00 − 6ð1þ 2βSTτÞδφ0 ¼ 0; ðA2Þ
which in turn gives

δφðτÞ¼φ1þ
ffiffi
π
2

p
e−

3
2βSTð ffiffiffi

3
p

φ2−3Þ
6

ffiffiffiffiffiffiffiffiffiffi
−βST

p

×

�
−Erf

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

−2βST

s
ð2βSTτþ1Þ

�
þErf

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

−2βST

s ��

ðA3Þ
where Erf½·� is the error function and we have chosen the
initial conditions φ1 ¼ φð0Þ and φ2 ¼ φ0ð0Þ, so as to match
respectively the value of φ ¼ ffiffiffi

3
p

τ þ δφ and that of its first
time derivative at τ ¼ 0. Because ErfðxÞ → 1 as x → ∞, it
is clear that δφ goes asymptotically to a constant; hence the
asymptotic solution becomes φ ¼ ffiffiffi

3
p

τ þ δφ ≈ φ0 þ
ffiffiffi
3

p
τ.

During the radiation era, w ¼ 1=3 and the general
solution to Eq. (A1) is [18,19]

φ ¼ φ∞ −
ffiffiffi
3

p
ln ½Ke−τ þ ð1þ K2e−2τÞ1=2� ðA4Þ

where φ∞ and K are integration constants. This shows that
a nonzero initial value of φ is damped away in the radiation
era. This can also be seen by solving Eq. (A1) under the
approximation φ0 ≈ 0, which yields φ00 þ φ0 ¼ 0 and
thus φ ≈ φ∞ − Ke−τ.
Finally, in the matter era w ¼ 0, the solution φ ¼ φ0 þffiffiffi
3

p
τ to Eq. (A1) is still an attractor. To prove that this is so,

we write φ ¼ ffiffiffi
3

p
τ þ δφ (where again we have absorbed φ0

in δφ), which together with Eq. (A1) yields

δφ00 − 3ð1þ βSTτÞδφ0 ¼ 0 ðA5Þ
at linear order in δφ. Solving this equation, one obtains

δφðτÞ¼φ1þ
ffiffi
π
2

p
e−

3
2βSTð ffiffiffi

3
p

φ2−3Þ
3

ffiffiffiffiffiffiffiffiffiffi
−βST

p

×

�
−Erf

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

−2βST

s
ðβSTτþ1Þ

�
þErf

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

−2βST

s ��
;

ðA6Þ
where φ1 ¼ φð0Þ and φ2 ¼ φ0ð0Þ are the two constants
of integration, chosen to match respectively the value of

3In fact, this is a solution for any w.
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φ ¼ ffiffiffi
3

p
τ þ δφ and that of its first time derivative at τ ¼ 0.

Again, this shows that φ ¼ φ0 þ
ffiffiffi
3

p
τ is a linear attractor

for Eq. (A1). Because in the radiation era preceding the
matter era φ is exponentially small, we can assume φ1 ¼
φð0Þ ≈ 0 and φ2 ¼ φ0ð0Þ ≈ 0 (setting τ ¼ 0 at the end of
the radiation era). Inserting these conditions into Eq. (A6),
we obtain φðτnowÞ ¼

ffiffiffi
3

p
τnow þ δφðτnowÞ ≈ 16 at the

present time τnow ≈ 10 [18,19] for βST ¼ −4.5.
With the present value of the scalar field at hand, we can

now study what effect this has on Solar System tests. First,
we relate the ppN parameter, γppN, to ᾱ via [19]

1 − γppN ¼ 2ᾱ2

1þ ᾱ2
¼ 2β2STφ

2

1þ β2STφ
2
: ðA7Þ

In GR, 1 − γppN ¼ 0 and Solar System observations have
placed stringent bounds on this quantity: j1 − γppNj < 2 ×
10−3 [19]. Evaluating 1 − γppN at the present time for βST ¼
−4.5 (i.e., φ ¼ φnow ≈ 16), we obtain 1 − γppN ≈ 2, which
is clearly in violation of Solar System experiments. In fact,
since φ will continue to linearly grow ever larger, γppN will
continue to approach 2 as

1 − γppN ≈ 2

�
1 −

1

3β2τ2
þO

�
1

τ4

��
: ðA8Þ

Note, however, that a different functional form for ᾱðφÞ
and/or the presence of a suitable potential for the scalar
field may lead to different behavior, but such issues have
not yet been fully explored (but see Ref. [20] for somework
in this direction).

APPENDIX B: RELATIONSHIP
BETWEEN N u AND N e

The useful cycles of phase, N u, and the effective cycles
of phase, N e, can be related (in the limit of small

dephasings) by a simple calculation. Via this calculation,
in this Appendix we show that the relationship between
these two quantities is dependent only on the PN order of
the difference in phase, focusing only on the inspiral phase
with the PN approximation.
Consider two GW signals whose phases differ only by a

ppE term of the form βub. That is, Φ1 ¼ ΦGR and
Φ2 ¼ ΦGR þ βub. We can then write N u as

N u ¼
SNR2R h2c

SnðfÞ
1

NðfÞ d ln f
−

SNR2R h2c
SnðfÞ

1
NðfÞþδ d ln f

; ðB1Þ

where δ ¼ Φ1 − Φ2 ¼ βub in this case. In the limit that δ is
small, we can expand this expression to get

N u ¼ −SNR2

R h2c
SnðfÞ

δ
N2

GR
d ln f

ðR h2c
SnðfÞ

1
NGR

d ln fÞ2
: ðB2Þ

Given the form of δ, it is clear that N u can be written as

N u ¼ βgðbÞ; ðB3Þ

where gðbÞ is the function defined by performing the
integrations in Eq. (B2).
Similarly, we can write the effective cycles of phase

N e ¼
ðR h2c

SnðfÞ δ
2d ln fÞ1=2

2πSNR
¼ βhðbÞ; ðB4Þ

where hðbÞ encapsulates the b dependence of the integral in
the above equation.
Taking the ratio of these two expressions, it is also clear

that all β dependence cancels exactly, and the two are related
by some complicated function in b, the exponent parameter.
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