
HAL Id: insu-03645231
https://insu.hal.science/insu-03645231

Submitted on 25 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spacetime approach to force-free magnetospheres
Samuel E. Gralla, Ted Jacobson

To cite this version:
Samuel E. Gralla, Ted Jacobson. Spacetime approach to force-free magnetospheres. Monthly Notices
of the Royal Astronomical Society, 2014, 445, pp.2500-2534. �10.1093/mnras/stu1690�. �insu-03645231�

https://insu.hal.science/insu-03645231
https://hal.archives-ouvertes.fr


MNRAS 445, 2500–2534 (2014) doi:10.1093/mnras/stu1690

Spacetime approach to force-free magnetospheres

Samuel E. Gralla1‹ and Ted Jacobson1,2

1Maryland Center for Fundamental Physics & Joint Space-Science Institute, Department of Physics, University of Maryland, College Park, MD 20742, USA
2Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris, France

Accepted 2014 August 18. Received 2014 July 29; in original form 2014 April 14

ABSTRACT
Force-free electrodynamics (FFE) describes magnetically dominated relativistic plasma via
non-linear equations for the electromagnetic field alone. Such plasma is thought to play a key
role in the physics of pulsars and active black holes. Despite its simple covariant formulation,
FFE has primarily been studied in 3+1 frameworks, where spacetime is split into space and
time. In this paper, we systematically develop the theory of force-free magnetospheres taking
a spacetime perspective. Using a suite of spacetime tools and techniques (notably exterior
calculus), we cover (1) the basics of the theory, (2) exact solutions that demonstrate the
extraction and transport of the rotational energy of a compact object (in the case of a black
hole, the Blandford–Znajek mechanism), (3) the behaviour of current sheets, (4) the general
theory of stationary, axisymmetric magnetospheres, and (5) general properties of pulsar and
black hole magnetospheres. We thereby synthesize, clarify, and generalize known aspects of
the physics of force-free magnetospheres, while also introducing several new results.

Key words: black hole physics – MHD – plasmas – methods: analytical – pulsars: general.

1 IN T RO D U C T I O N

Soon after the discovery of pulsars (Hewish et al. 1968) it became
clear that they must be rapidly rotating, highly magnetized neu-
tron stars (Gold 1968; Pacini 1968) whose magnetosphere is filled
with plasma (Goldreich & Julian 1969). The plasma mass density
is many orders of magnitude lower than the electromagnetic field
energy density, so one may neglect the plasma four-momentum and
set the Lorentz four-force density to zero. The resulting autonomous
dynamics for the electromagnetic field, known as force-free
electrodynamics (FFE), forms a foundation for studies of the pulsar
magnetosphere.

Quasars were discovered several years before pulsars (Schmidt
1963), and while supermassive black holes were soon suspected as
the energy source, more than a decade passed before the discovery
of a viable mechanism for extracting the energy. The breakthrough
was the seminal work of Blandford & Znajek (1977, BZ), who
argued that black holes immersed in magnetic fields could have a
force-free plasma. BZ showed that the presence of plasma enables
a magnetic Penrose process in which even stationary fields can
efficiently extract energy from a spinning black hole.

Despite this important progress, little further was done on the
subject for several years. MacDonald & Thorne (1982) diagnosed
the difficulty as a problem of language. In addition to significantly
extending the theory, they recast the work of BZ in a 3 + 1 decompo-
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sition designed to render the equations and concepts more familiar
to astrophysicists. The efficacy of their cure is well supported by
the significant progress on the problem that has been made since
then, nearly all of it using the 3 + 1 approach.

But even the best medicines can have side effects. From the
relativist’s point of view, the use of 3 + 1 methods obscures in-
trinsic structures and creates unnecessary complications by intro-
ducing artificial ones. For a subject in which curved spacetime and
highly relativistic phenomena play central roles, one might expect
that the impressive arsenal of spacetime techniques developed over
the last century could be profitably exploited. However, very few
general relativity theorists have become involved, and little work
of this nature has been pursued. It may be that the unfamiliar lan-
guage and phenomena of plasma physics, together with their casting
in 3 + 1 language, have made the subject largely inaccessible to
relativists.

The beginnings of the field were in fact rather relativistic in
flavour, with Znajek’s (1977) use of a null tetrad formalism and
BZ’s tensor component calculations. Since then however there has
been little use of spacetime techniques on black hole and pulsar
force-free magnetospheres, notable exceptions being the work of
Carter (1979) and Uchida (1997a,b,c,d, 1998). Our own involve-
ment began recently when we noticed that some apparently dis-
parate exact solutions shared the property of having four-current
along a geodesic, shear-free null congruence (Brennan, Gralla &
Jacobson 2013). We made a null current ansatz and immediately
found a large class of non-stationary, non-axisymmetric exact solu-
tions in the Kerr spacetime, which can also be used in flat spacetime
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in modelling pulsar magnetospheres. This rapid progress suggested
to us that translation of magnetospheric physics into spacetime lan-
guage may be more than a matter of words, and that a geometrical
perspective on FFE could lead to powerful insights and significant
new results.

This paper has a number of distinct purposes. One is to present the
theory of force-free magnetospheres with a spacetime perspective
from the ground up. In this way we hope both to introduce relativists
to the subject and to introduce plasma astrophysicists to potentially
powerful new techniques. We focus on intrinsic properties, avoiding
the introduction of arbitrary structures – such as a time function or
a reference frame – that have no intrinsic relation to either the
spacetime geometry or the particular electromagnetic field being
discussed. The other purposes of our paper are to present new
insights, techniques, and results, as well as the convenient methods
of exterior calculus we have made use of.

The paper is organized into nine sections and five appendices:

1. Introduction
2. Astrophysical setting
3. Force-free electrodynamics
4. Poynting flux solutions
5. Monopole magnetospheres
6. Current sheets and split monopoles
7. Stationary, axisymmetric magnetospheres
8. Pulsar magnetosphere
9. Black hole magnetosphere
A. Differential forms
B. Poynting flux examples
C. Kerr metric
D. Euler potentials with symmetry
E. Conserved Noether current associated with a symmetry.

We now provide a detailed description of the contents of each sec-
tion.

In Section 2, we sketch the relevant astrophysical settings and dis-
cuss the basic reasoning that accounts for the validity of the force-
free approximation. We then present the basic features and math-
ematical structure of FFE and degenerate electromagnetic fields
(Section 3). This section is primarily a review and synthesis of
previous research, focusing on the spacetime approaches of Carter
and especially Uchida, who formulated the theory in terms of two
scalar Euler potentials. We have found that the use of differential
forms (with wedge product and exterior derivative) together with
Euler potentials provides an elegant and computationally efficient
method to handle the mathematics, and we focus on this approach
throughout the paper. Appendix A covers the properties of differ-
ential forms needed in the paper. We emphasize the geometrical
role of certain timelike 2-surfaces that, for degenerate magnetically
dominated fields, extend the notion of field line to a spacetime ob-
ject. These are called ‘flux surfaces’ in the literature, but we adopt
here the more suggestive name ‘field sheets’. In particular, we ob-
serve that the induced metric on these sheets governs the dynamics
for particles and Alfvén waves moving in the magnetosphere, and
explain how field sheet Killing fields give rise to conserved quan-
tities. We also note that the field equations of FFE amount to the
conservation of two ‘Euler currents’, which have not been explicitly
discussed before.

Section 4 is devoted to presenting several exact solutions to
FFE involving outgoing electromagnetic energy flux (Poynting
flux) in flat, Schwarzschild, and Kerr spacetimes. These include
a solution in Kerr recently found by Menon & Dermer (2007),
a time-dependent and non-axisymmetric generalization of that

(Brennan et al. 2013), as well as a solution sourced from an
arbitrary accelerated world line in flat spacetime (Brennan & Gralla
2014). We showcase the remarkably simple expression of these
solutions in the language of differential forms, as well as the effi-
cient computational techniques we can use to check that they are
force free. The solutions illustrate how force-free fields can trans-
port energy via Poynting flux in ways that are unfamiliar in (but not
completely absent from) ordinary electrodynamics. Appendix B is
devoted to examples that further develop insight into the physical
nature of this energy transport.

Turning next to the physics of magnetospheres, Section 5 builds
on the Poynting flux solutions to present several exact solution
models with a monopolar central rotating source. (The more re-
alistic case of a split monopole is deferred for clarity to the next
section.) We begin with a discussion of the classic Michel solution,
which illustrates the basic mechanism of electromagnetic extraction
and transport of the rotational energy of a conducting magnetized
star. We obtain this solution as a superposition of a monopole and
an outgoing Poynting flux solution satisfying the perfect conduc-
tor boundary condition, and use it to illustrate the nature of field
sheet geometry. We next show how our time-dependent generaliza-
tions can be used to model dynamical pulsar magnetospheres. In
particular, we debut the ‘whirling monopole’, which is the exact
monopolar magnetosphere of a conducting star undergoing arbi-
trary time-dependent rigid body motion with a fixed centre. Finally,
we discuss the monopolar approximate solution of BZ for a rotating
black hole. We obtain their solution to first order in the spin by
promoting the Michel solution to Kerr in a simple way. The result
is an exceptionally simple expression for the BZ field in terms of
differential forms, from which its force-free nature as well as basic
properties (such as its ‘rotation frequency’ of one half the horizon
frequency) are easily seen.

In Section 6, we discuss the role of current sheets in force-free
magnetospheres and provide a simple invariant criterion for the
shape and time evolution of a current sheet across which the elec-
tromagnetic field flips sign. We use this criterion to efficiently re-
produce the standard aligned and inclined split-monopole solutions
and discuss generalizations, such as a glitching split-monopole pul-
sar. We also discuss a more general, reflection split construction in
which the magnetic field has a component normal to the current
sheet.

Section 7 is devoted to the general theory of stationary, ax-
isymmetric, force-free magnetospheres in stationary, axisymmetric
spacetimes. We make extensive use of the natural 2 + 2 decom-
position into ‘toroidal’ submanifolds spanned by the angular and
time-translation Killing vectors and the orthogonal ‘poloidal’ sub-
manifolds. The Uchida (1997b) method of determining the general
form of Euler potentials for fields with symmetry is presented using
differential forms in Appendix D. We explain how and why the field
is characterized by three quantities: the ‘magnetic flux function’ ψ ,
the ‘angular velocity of field lines’ �F(ψ), and the ‘polar current’
I(ψ), derive the general force-free ‘stream equation’ relating these
quantities, and discuss approaches to solving it. Expressions for
the energy and angular momentum flux are derived, using the cor-
responding Noether current 3-forms whose derivation is given in
Appendix E. We explain how the ‘light surfaces’ (where the field
rotation speed is that of light) are causal horizons for particles and
Alfvén waves, and derive the relationship between the particle and
angular momentum flow directions. We discuss general restrictions
on the topology of poloidal field lines, presenting a new result that
smooth closed loops cannot occur and clarifying the circumstances
under which field lines cannot cross a light surface twice. Finally,

MNRAS 445, 2500–2534 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/445/3/2500/1035561 by C
N

R
S - ISTO

 user on 25 April 2022



2502 S. E. Gralla and T. Jacobson

we present the stream equation for the special case where there is
no poloidal magnetic field, which has been largely overlooked in
previous work.

Section 8 discusses basic properties of the pulsar magnetosphere
in the case of aligned rotational and magnetic axes, using the station-
ary, axisymmetric formalism of the previous section. We discuss the
corotation of the field lines with the star as well as the dichotomy
between closed field lines that intersect the star twice and open field
lines that proceed from the star to infinity. We clarify the precise
circumstances under which closed field lines must remain within
the light cylinder, and discuss other circumstances in which they
may extend outside.

Section 9 addresses black hole magnetospheres, focusing on sta-
tionary, axisymmetric fields in the Kerr geometry. We derive the
so-called Znajek horizon regularity condition and identify an ad-
ditional condition required for regularity in the extremal case. We
discuss the status of energy extraction as a Penrose process and
discuss the nature of the two light surfaces. Finally, we present the
‘no-ingrown-hair’ theorem of MacDonald & Thorne (1982), show-
ing that a black hole cannot have a force-free zone of closed poloidal
field lines. We discuss the types of closed field lines that can in fact
occur.

We adopt the spacetime signature ( −, +, +, +), choose units
with the speed of light c = 1 and Newton’s constant G = 1, and use
Latin letters a, b, c, . . . for abstract tensor indices (there is no use of
coordinate indices in the paper). For Maxwell’s equations, we use
Heaviside–Lorentz units.

2 A STRO PHYSICAL SETTING

Force-free plasmas exist naturally in pulsar magnetospheres, and
possibly in several other astrophysical systems. Goldreich & Julian
(1969) pointed out that the rotation of a magnetized conducting star
in vacuum induces an electric field, with the Lorentz scalar E · B
non-zero outside the star. Undeflected acceleration of charges along
the direction of the magnetic field will thus occur. For typical pulsar
parameters, the electromagnetic force is large enough to overwhelm
gravitational force and strip charged particles off the star. Even if
strong material forces retain the particles, the large E · B outside the
star will create particles in another way (Ruderman & Sutherland
1975): any stray charged particle will be accelerated to high energy
along curved magnetic field lines, leading to curvature radiation and
a cascade of electron–positron pair production. These mechanisms
act to fill the pulsar magnetosphere with plasma.

To estimate the density of plasma, note that produced charges
act to screen the component of E along B, eventually shutting off
production when E · B becomes small enough. The number of par-
ticles created should thus roughly agree with the minimum amount
required to ensure E · B = 0. If the particles corotate with the star,
the required charge density is the so-called Goldreich–Julian charge
density ρ ∝ �B, where � is the stellar rotation frequency. The mini-
mum associated particle density occurs for complete charge separa-
tion (one sign of charge only at each point), which for typical pulsar
parameters corresponds to a plasma rest mass density that is 16–19
orders of magnitude (for protons or electrons, respectively) smaller
than the electromagnetic field energy. Even if particle production
mechanisms significantly overshoot this density, the criterion for
the force-free description is easily satisfied.1 Detailed calculations

1 While the bulk of the magnetosphere should be force free, small violating
regions of two types can exist. First, regions where particles are produced

support these simple arguments, finding an overshoot of a few orders
of magnitude (e.g. Beskin 2010).

Force-free models of the pulsar magnetosphere provide a foun-
dation on which studies of pulsar emission processes may be based.
Models of pulsed emission generally involve particles or plasma in-
stabilities streaming outwards along the magnetic field lines of the
magnetosphere (e.g. Beskin 2010). Pulsed emission is observed in
radio, optical, X-ray, and gamma-ray, with some pulsars active only
in a subset of these bands, and with a variety of pulse profiles. The
challenge of modelling these complex features remains an active
field of research.

The force-free model has also been applied to black holes, be-
ginning with the work of BZ. Following the observation of Wald
(1974) that immersing a spinning black hole in a magnetic field
gives rise to electric fields with non-zero E · B, BZ argued that a
pair-production mechanism could also operate to produce a force-
free magnetosphere near a spinning black hole with a magnetized
accretion disc. If the whole system is simulated using magnetohy-
drodynamics (MHD; e.g. McKinney, Tchekhovskoy & Blandford
2012 and references therein), it is generally found that the plasma
density is very low away from the disc (and especially in any jet
region), so that the dynamics there is effectively force free. Finally,
the last few years has seen work on force-free magnetospheres of
binary black hole and neutron star systems (e.g. Palenzuela, Lehner
& Liebling 2010; Alic et al. 2012; Palenzuela et al. 2013; Pascha-
lidis, Etienne & Shapiro 2013), motivated in part by the possibility
of observing electromagnetic counterparts to gravitational-wave ob-
servations of binary inspiral. These simulations have shown energy
extraction and jet-like features, even in the case of non-spinning
(but moving) black holes.

3 FO R C E - F R E E E L E C T RO DY NA M I C S

In this section, we introduce the essential properties of FFE in an
arbitrary curved spacetime background and its description in the
language of differential forms.

An electromagnetic field Fab normally exchanges energy and
momentum when interacting with charged matter. The energy–
momentum tensor for the field is given by

T EM
ab = FacFb

c − 1

4
FcdF

cdgab, (1)

and Maxwell’s equations imply that the exchange is expressed by
the equation ∇bT EM

ab = −Fabj
b, where jb is the electric four-current

density. Fabjb is the four-force density, describing the rate of transfer
of energy and momentum between the field and the charges. FFE
describes the electromagnetic field interacting with a plasma in a
regime in which the transfer of energy and momentum from the
field to the plasma can be neglected, not because the current is
unimportant, but because the field energy–momentum overwhelms
that of the plasma. FFE is thus governed by Maxwell’s equations
together with the force-free condition

Fabj
b = 0. (2)

may expel those particles with high velocity, so that plasma density high
enough to achieve E · B = 0 is never attained in those regions. Such regions
are called gaps, and may provide a source of the high-energy particles
observed in the pulsar wind. Secondly, as we discuss in some detail later,
force-free fields tend to produce thin sheets of current where the field is not
force free.
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Force-free magnetospheres 2503

In this regime, remarkably, the field can be evolved autonomously,
without keeping track of any plasma degrees of freedom, as we now
explain.

Maxwell’s equations take the form

∇[aFbc] = 0, (3)

∇bF
ab = ja, (4)

where the square brackets denote antisymmetrization of the indices,
∇b is the spacetime covariant derivative, and we use Heaviside–
Lorentz units. The first equation is equivalent to the statement that
Fab is (at least locally) derivable from a potential, Fab = 2∇ [aAb]. The
second equation relates the field to the electric four-current density.
In the force-free setting, this second equation is simply used to
identify the four-current, and so the equation imposes no condition
on the field. We may thus eliminate ja from the description, and
FFE becomes the pair of equations

∇[aFbc] = 0, Fab∇cF
bc = 0. (5)

Note that vacuum Maxwell fields trivially satisfy these equations. In
this paper, a ‘force-free solution’ will always mean a non-vacuum
solution of equations (5), i.e. one with ∇bFab �= 0. This is the case
of relevance to plasma magnetospheres, and it has a rich structure
distinct from that of the vacuum case.

3.1 Determinism

The FFE equations determine the evolution of the field given
initial data, provided the field is magnetically dominated i.e.
FabFab = 2(B2 − E2) > 0. To see how this could be, one can make a
3+1 decomposition in flat spacetime. The force-free condition (2)
then takes the form

E · j = 0, ρ E + j × B = 0, (6)

stating that the work done on the charges and the momentum transfer
to the charges both vanish. These equations imply the (Lorentz
invariant) condition

E · B = 0, (7)

unless both the charge and three-current densities vanish. Provided
|B| �= 0 (which holds in all frames if the field is magnetically dom-
inated), equation (6) determines j⊥ = |B|−2ρ E × B, the compo-
nent of the three-current perpendicular to the magnetic field. More-
over, Gauss’ law ∇ · E = ρ determines the charge density in terms
of spatial derivatives at one time. To determine the component of
j parallel to the magnetic field, consider Maxwell’s time evolution
equations

∂t B = −∇ × E (8)

∂t E = ∇ × B − j . (9)

The time derivative of the orthogonality condition (7) implies that
E · (equation 8) + B · (equation 9) vanishes, which determines j ·
B. Thus the force-free condition implies

j = 1

B2
[(∇ · E)E × B + (B · ∇ × B − E · ∇ × E)B] . (10)

With this substitution, equations (8) and (9) determine the time
derivatives of the fields in terms of the field values at one time,
and the initial value constraints ∇ · B = 0 and E · B = 0 are pre-
served by the time evolution. The equations are therefore potentially

deterministic. It turns out that they are indeed deterministic (i.e. hy-
perbolic), provided the (Lorentz invariant) scalar B2 − E2 is positive
(Komissarov 2002; Palenzuela et al. 2011; Pfeiffer & MacFadyen
2013). That restriction is not surprising, since when this scalar is
negative, there exists at each point a Lorentz frame in which B = 0.
In such a frame, one cannot solve for j at that point in terms of
the fields and their spatial derivatives only. This shows that the
character of the equations is different in the electrically dominated
case.

There is no a priori reason to expect that the condition B2 > E2 is
preserved under time evolution. In fact, it is seen numerically that
the condition is not preserved. When the condition is violated, some
other physics must determine the evolution, which is modelled via
various prescriptions in numerical codes. It is generally found that
violation occurs only in regions that are stable under the associated
prescriptions, and that these regions tend to be compressed and of
high current density: they are the current sheets discussed below in
Section 6.

3.2 Degenerate electromagnetic fields

In this subsection, we discuss electromagnetic fields satisfying
F[abFcd] = 0 (equivalently E · B = 0 in flat spacetime), which are
called degenerate. All force-free fields are degenerate, but degener-
acy can occur more generally, as explained below.

3.2.1 Field tensor

The force-free condition (2) implies that F[abFcd]jd = 0. Since every
totally antisymmetric four-index tensor (in four dimensions) is pro-
portional to the volume element εabcd, this implies the degeneracy
condition

F[abFcd] = 0, (11)

which is equivalent to equation (7) in flat spacetime. This in turn
implies that Fab itself can be written as the antisymmetrized product
of two rank-1 covectors2

Fab = 2α[aβb]. (12)

To see this, consider the contraction F[abFcd]v
bwd with two vector

fields va and wa such that Fabv
awb �= 0. Expanding out the antisym-

metrization produces an expression for Fab of the form (12), where
the factors αa and βa are proportional to Fabv

b and Fabw
b.

An electromagnetic field can be degenerate without being force
free. Degeneracy occurs any time there is some vector field vb such
that Fabv

b = 0. For instance, in the presence of a ‘perfect’ conductor
(like a metal or a suitable plasma), the electric field in the local rest
frame of the conductor vanishes:

FabU
b = 0, (13)

where Ua is the unit timelike four-velocity of the conductor’s rest
frame. Thus fields in perfect conductors are degenerate. For an ionic
plasma described by ideal MHD, Ua might be the four-velocity
of the ion ‘fluid’, but degeneracy does not require a unique rest
frame to be singled out. As long as there is enough free charge
to screen the component of the electric field in the direction of

2 This factorization property holds at each point, but it can happen that there
is no pair of smooth tensor fields αa and βb such that equation (12) holds
everywhere (for an example, see the end of section 3.5 of Penrose & Rindler
1984).
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2504 S. E. Gralla and T. Jacobson

the magnetic field, E · B will vanish and hence the field will
be degenerate.

Conversely, a degenerate field Fab = 2α[aβb] always admits at
each point a two-dimensional space of vectors that annihilate it (in
the sense that Fabv

a = 0). This space, called the kernel of Fab,
consists of the intersection of the three-dimensional kernels of αa

and βa. The covectors αa and βa themselves span a (co)plane,
and any two linearly independent, suitably scaled covectors in the
coplane may be chosen. Taking αa and βa to be orthogonal, the
square of the field tensor is then

F 2 = FabF
ab = 2(B2 − E2) = 2α2β2. (14)

The sign of this Lorentz scalar determines whether the field is
magnetically dominated, electrically dominated, or null. Since there
do not exist two orthogonal timelike vectors, this is positive if and
only if both α and β are spacelike.

For a magnetically dominated field, the α–β plane is thus space-
like and the kernel, which is orthogonal to α and β, is timelike.
There is a one-parameter family of four-velocities Ua lying in this
timelike kernel, each of which defines a Lorentz frame in which
the electric field vanishes (equation 13). The orthogonal projection
of a preferred frame ta into the kernel of F selects one of these,
Ua

t , whose velocity relative to ta is known as the drift velocity. This
relative velocity is the minimum for all Ua in the kernel of F, and
is given by E × B/B2 in the frame ta.

For a field with E2 = B2, either α or β must be null, so the α–β

plane is null and so is the kernel (with the same null direction). For
an electrically dominated field, the α–β plane is timelike, so the
kernel is spacelike, and there is always a Lorentz frame in which
the magnetic field vanishes (since the kernel of ∗F is timelike).

3.2.2 Stress tensor

For a non-null degenerate field, one can decompose the spacetime
metric into a metric hab on the kernel of Fab that vanishes on vectors
orthogonal to the kernel (so habα

a = habβ
b = 0) and a metric h⊥

ab

that vanishes on vectors in the kernel, gab = hab + h⊥
ab. Using these,

the stress tensor (equation 1) can be expressed as

Tab = 1

4
F 2(h⊥

ab − hab). (15)

This can be quickly verified by noting that the right-hand side
is the only symmetric tensor built from the available ingredients
that is traceless and satisfies Tabh

ab = − 1
2 F 2, which holds because

Fbchab = 0.
In the magnetic case and in a 3 + 1 decomposition, equation

(15) may be interpreted in terms of the standard concepts magnetic
pressure and magnetic tension. Choose any frame in which there is
no electric field i.e. any unit timelike Ua in the kernel of F. Let sa

be the unit orthogonal spacelike vector in the kernel. The magnetic
field in this frame is directed along sa, and we denote its magnitude
by B. If γ ab is the spatial metric orthogonal to Ua, then the stress ten-
sor (equation 15) may be written Tab = 1

2 B2(UaUb + γab − 2sasb).
From each term, respectively, we identify the energy density of 1

2 B2,
an isotropic magnetic pressure of 1

2 B2, and a magnetic tension of
B2 along the magnetic field lines.

3.2.3 Field sheets

When a degenerate field Fab satisfies the Maxwell equation
∇ [cFab] = 0 (3), the kernels of Fab are integrable, i.e. tangent to
two-dimensional submanifolds. (A proof of this will be given in the

next subsection.) In the magnetic case (F2 > 0), these submanifolds
are timelike, and their intersection with a spacelike hypersurface
gives the magnetic field lines defined by the observers orthogonal
to the hypersurface.3 Each submanifold can thus be thought of as the
spacetime evolution of a field line, which we will call a field sheet.4

While the field lines depend on the arbitrary choice of spacelike
hypersurface or observers, the field sheets are an intrinsic aspect of
the degenerate structure of the field. The force-free condition (2)
amounts to the statement that the current four-vector ja is tangent
to the field sheets. This generalizes to dynamical fields in curved
spacetime the statement that, in a force-free plasma with zero elec-
tric field in flat spacetime, the current is tangent to the magnetic
field lines.

The field sheets can be used to understand and describe particle
and wave motion in the underlying plasma in a manner that does
not require choosing an arbitrary frame. In that application the field
sheet metric, induced by the spacetime metric, plays a central role.
We now discuss two examples of this viewpoint: the propagation of
charged particles and Alfvén waves.

In a collisionless plasma, viewed (locally) in a frame with zero
electric field, a charged particle will spiral around a magnetic field
line, executing cyclotron motion while the centre of the transverse
circular orbit is ‘guided’ along the field line. Ignoring the cyclotron
motion and the drift away from the field line, the particle is thus
‘stuck’ on the field line (e.g. Northrop & Teller 1960). The mani-
festly frame-invariant version of this statement is that the particle’s
world line is stuck on the field sheet. That is, its possible motions
are the timelike trajectories on the sheet.

When one can furthermore neglect radiation reaction from ‘cur-
vature radiation’ due to the bending of the field sheet, then the
motion of the particle is in fact geodesic on the field sheet. This fol-
lows simply from the fact that the Lorentz force qFabUb vanishes for
a four-velocity Ua tangent to the sheet. This viewpoint makes it easy
to exploit symmetries. For example, in a stationary, axisymmetric
magnetosphere, each field sheet will have a helical symmetry under
a combined time-translation and rotation. The field sheet particle
motion, being one-dimensional, will thus be integrable using the
associated conserved quantity (see Section 7.2.6).

Field sheet geometry also governs the propagation of Alfvén
waves, which are transverse oscillations of the magnetic field lines
embedded in a plasma (Alfvén 1942). In a force-free plasma, these
are characterized by a wave four-vector whose pullback to the field
sheet is null with respect to the field sheet metric (Uchida 1997d),
which implies that their group four-velocity is null and tangent to
the field sheet. Thus wavepackets propagate at the speed of light
along the field sheets.

3.2.4 Degenerate fields and differential forms

The mathematical language of differential forms is ideally suited to
working with degenerate fields, and we shall make extensive use of

3 Curiously, for any degenerate field, the magnetic field defined by ar-
bitrary observer, Bd = 1

2 εabcdFabUc , lies in the kernel of F, since
F[abFd]e = F[abFde] = 0.
4 The submanifolds were called ‘flux surfaces’ by Carter and Uchida. We
prefer the name field sheet because of the connotation of time evolution
suggested by the similarity with the term ‘worldsheet’, which is appropriate
in the magnetic case. We note also that the term ‘flux surface’ is commonly
used in another sense, to describe a spacelike 2-surface to which the magnetic
field is everywhere tangent.
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it in this paper. The basic properties of differential forms are sum-
marized in Appendix A, to which we refer for all definitions. One of
the reasons it is so convenient is that electromagnetism in general,
and especially when fields are degenerate, has a rich differential
and algebraic structure that is in fact independent of the spacetime
metric. By using the (metric-independent) exterior derivative, and
(metric-independent) wedge products rather than covariant deriva-
tives and inner products, we avoid unnecessary appearance of the
metric and thus keep the formalism as close as possible to the struc-
ture inherent in the field itself. The metric does of course play a
role, but for the most part we can sequester that in the Hodge dual-
ity operator (which is especially simple to work with in stationary
axisymmetric spacetimes).

The field strength tensor is a 2-form, denoted simply by F, and
the source-free Maxwell equation (3) corresponds to the statement
that the 2-form F is ‘closed’, i.e.

dF = 0, (16)

where d is the exterior derivative. This equation, which we dub the
covariant Faraday law, encompasses both the absence of magnetic
monopoles and the 3+1 Faraday law (equation 8). The degener-
acy condition (11) and decomposition (12) are expressed using the
wedge product ∧ as

F ∧ F = 0 (17)

and

F = α ∧ β (18)

for some pair of 1-forms α and β. A 2-form F with this property is
sometimes called simple.

To prove that the field sheets exist, one can invoke a version of
the Frobenius theorem: it follows from dF = 0 and F = α ∧ β,
together with the antiderivation property of d and antisymmetry of
∧, that dα ∧ α ∧ β = dβ ∧ α ∧ β = 0. This guarantees complete
integrability of the Pfaff system α = β = 0 (Choquet-Bruhat &
Dewitt-Morette 1982), which means that the vectors annihilating
both α and β are tangent to submanifolds. A more intuitive argument
for integrability will be given in the next subsection.

3.2.5 Frozen flux theorem

If the electric field vanishes in the local rest frames defined by a
timelike vector field U,

U · F = 0, (19)

then the magnetic flux is ‘frozen in’ along the flow of U. [The dot in
(19) is our notation for the contraction of a vector with the first slot
of the adjacent form, here UaFab.] More precisely, the flux through
a loop is conserved if the loop is flowed along U. In ideal MHD, the
fluid four-velocity satisfies equation (19). The frozen flux theorem
(also known as the frozen-in theorem or Alfvén’s theorem) is the
source of much insight into the behaviour of such plasmas.

To prove the theorem, consider a loop flowed along U to create a
timelike tube, and form a closed 2-surface by capping the ends of the
tube with topological discs bounded by the initial and final loops.
The integral of F over any closed 2-surface vanishes since dF = 0.
The difference of the fluxes through the initial and final caps is
therefore equal to the integral of F on the tube wall, which vanishes
because the vector U that annihilates F (equation 19) is tangent to
the wall. Using the language of differential forms, Alfvén’s theorem

is thus recovered immediately, with no calculation, in an arbitrary
curved spacetime. It is interesting to contrast the simplicity of this
completely general derivation with the usual one using electric and
magnetic fields in flat spacetime.

A differential version of the statement of flux freezing may be ob-
tained from the relation between the Lie derivative and the exterior
derivative, sometimes called ‘Cartan’s magic formula’ as

Lv ω = v · dω + d(v · ω). (20)

Here v is any vector field, ω is any differential form, and L is the
Lie derivative. Applying the magic formula to LUF, the U · dF term
vanishes by the covariant Faraday law (3), and the d(U · F) term
vanishes simply by the defining property (equation 19) of U. Thus
we obtain

LUF = 0, (21)

stating that the field strength is preserved along the flow of U. In
ideal MHD, the magnetic field is thus ‘frozen into the fluid’.

The frozen flux theorem is closely related to the integrability
property that implies the existence of the field sheets. In fact we
can use it to give a simple proof of integrability as follows. Recall
that if F is degenerate, there is a two-dimensional space of vectors
annihilating F at each point. To prove these are surface forming,
let u be any vector field such that u · F = 0 everywhere. As above,
Cartan’s magic formula implies LuF = 0. Now choose a second
vector field b such that b · F = 0 on one 3-surface transverse to the
flow of u, and extend b along the flow by requiring Lub = 0, which
implies that u and b are surface forming. The Leibniz rule for Lie
derivatives implies Lu(b · F ) = 0, so also b · F = 0 everywhere.
The integral surfaces of u and b are therefore the field sheets.

3.2.6 Euler potentials

The covariant Faraday law (equation 16) is equivalent, at least lo-
cally, to the statement that F derives from a potential 1-form, i.e.
F = dA for some 1-form A. For closed, simple 2-forms (such as
degenerate EM fields), thanks to the existence of the field sheets,
a much more restrictive statement holds: a pair of scalar ‘Euler
potentials’ φ1, 2 can be introduced such that (Carter 1979; Uchida
1997a)

F = dφ1 ∧ dφ2. (22)

The field sheets are the intersections of the hypersurfaces of constant
φ1 and φ2. To establish the (local) existence of the Euler potentials,
note that coordinates (xA, yi), A, i = 1, 2 can be chosen such that
yi are constant on the field sheets, in which case we have F =
f(xA, yi) dy1 ∧ dy2, for some function f. Then dF = 0 implies that
f = f(yi). Defining a new coordinate ỹ1 = ∫

f dy1, we thus have
F = dỹ1 ∧ dy2.

The Euler potentials capture the freedom in a closed, simple 2-
form, hence in any degenerate electromagnetic field. Rather than the
four components of a (co)vector potential, there are just two scalar
fields. Even so, the potentials are not uniquely determined. F defines
an ‘area element’ on the field sheets, which is preserved under any
replacement (φ1, φ2) → (φ′

1(φ1, φ2), φ′
2(φ1, φ2)) with unit Jacobian

determinant. This is a field redefinition, not a dynamical gauge
freedom. In fact, the second time derivatives of both potentials are
determined at each point by their value and first derivatives (Uchida
1997a).
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2506 S. E. Gralla and T. Jacobson

3.3 Euler-potential formulation of FFE

Since all force-free fields are degenerate, we may formulate FFE as a
theory of two scalar fields by plugging the Euler-potential form of a
degenerate field strength (equation 22) in to the force-free condition
(2). Rather than developing this technique in tensor language, we
will instead discuss the differential forms version, which we find
very useful in calculations. We also discuss an action principle for
the equations.

3.3.1 Force-free condition and Euler currents

The differential forms approach to Maxwell’s theory – using
the current 3-form instead of the four-vector – is reviewed in
Appendix A3. The force-free condition (2) can be expressed di-
rectly in terms of the current 3-form as

Fa[bJcde] = 0. (23)

To see the equivalence with equation (2), contract equation (23)
with εbcde and use jb = 1

3! ε
bcdeJcde. In terms of the 1-form factors

of F (equation 18), this corresponds to the two conditions

α ∧ J = 0 = β ∧ J . (24)

The vanishing of these two 4-forms is an extremely simple and
convenient characterization of the force-free condition. Given
Maxwell’s equation d ∗ F = J , it amounts to the conditions

α ∧ d ∗ F = 0 = β ∧ d ∗ F . (25)

When the Euler potentials are used to express α, β, and F as in
equation (22), equations (25) become

dφi ∧ d ∗ F = 0, i = 1, 2 (26)

which comprises the full content of FFE.
Note that these equations are equivalent to the statement that two

currents are conserved:

d(dφi ∧ ∗F ) = 0. (27)

The currents dφi ∧ ∗F deserve a name; we propose to call them
Euler currents. That the force-free equations amount to the conser-
vation of these two Euler currents is a trivial but useful observation
which does not appear to have been made previously. In tensor no-
tation, the Euler currents are given (up to a coefficient) by Fab∇bφi.
Note that we could have alternatively defined the Euler currents to
be φiJ, which differs from the previous definition by the identically
conserved 3-form d(φi ∗F ).

3.3.2 Action

One can arrive directly at the force-free condition (27) starting from
the usual Maxwell action − 1

2

∫
F ∧ ∗F , expressed as a functional

of the potentials,

SFF = −1

2

∫
dφ1 ∧ dφ2 ∧ ∗(dφ1 ∧ dφ2). (28)

Variation of this action with respect to φ1 and φ2 yields conservation
of the Euler currents (equation 27) as a pair of Euler–Lagrange
equations.5 This action, and the Hamiltonian formulation derived

5 These Euler currents are the Noether currents associated with the global
symmetries φ1 → φ1 + f1(φ2) and φ2 → φ2 + f2(φ1) of the action (28).

from it, was given by Uchida (1997a).6 Note that the Lagrangian is
quadratic in time derivatives, so the equations of motion are second
order in time derivatives.

The action is a scalar, so the stress–energy tensor is conserved
when the equations of motion are satisfied. This is to be expected,
since our starting point was the force-free condition which implies
that the field transfers no energy or momentum to the charges.
Moreover, the dynamics share the symmetries possessed by the ∗
operator on 2-forms, namely symmetries and Weyl rescalings of the
metric. This implies, for instance, that in a stationary axisymmet-
ric spacetime there are conserved Killing energy and axial angular
momentum currents, and that FFE shares with vacuum electrody-
namics the property of depending only on the conformal structure of
the spacetime. The potentials can also be restricted by a symmetry
ansatz before variation, to directly obtain the equations governing
the symmetric solutions.

3.3.3 Complex Euler potential

Finally, it seems worth noting that the two Euler potentials can
be combined into one complex potential φ = (φ1 + iφ2)/

√
2. Then

the field 2-form is given by F = i dφ ∧ dφ̄, the force-free field
equations correspond to the single complex equation dφ ∧ d ∗
F = 0, and the action is 1

2

∫
dφ ∧ dφ̄ ∧ ∗(dφ ∧ dφ̄). Whether this

complex formulation is useful remains to be seen.

4 POY N T I N G FL U X SO L U T I O N S

In this section, we recover and discuss a number of exact solutions
to the force-free field equations (25) using the method of exterior
calculus. In addition to introducing some important properties of
force-free physics, we hope that this section will serve as a tutorial
on computing with differential forms, for readers unfamiliar with
that approach. The most unfamiliar element is perhaps the use of the
Hodge dual in place of the metric. In Appendix A2, we review this
operator and develop some computational techniques. With the aid
of these techniques, computations using forms can be remarkably
simple, as we demonstrate below. We begin by discussing the mag-
netic monopole, then cover solutions describing purely outgoing
(or ingoing) Poynting flux, and finally superpose these to obtain the
general solution used to construct monopole magnetospheres in the
following section.

4.1 Vacuum monopole

To warm up, we begin with the magnetic monopole in the
Schwarzschild background (which of course includes flat space-
time as a special case). It is a vacuum solution, and monopoles do
not exist in nature, yet it has played an important role in the analyti-
cal modelling of force-free magnetospheres since the earliest years
of the subject. The field strength 2-form is given by

F mon = q sin θ dθ ∧ dϕ. (29)

6 An alternate approach (Thompson & Blaes 1998; Buniy & Kephart
2014) is to supplement the usual Maxwell action for the vector poten-
tial with a Lagrange multiplier term enforcing the degeneracy condition,
S = − 1

2

∫
F ∧ ∗F − λF ∧ F . The resulting Euler–Lagrange equations are

d ∗ F = dλ ∧ F and F ∧ F = 0, another formulation of FFE. We learn
from this that J = dλ ∧ F = dλ ∧ dφ1 ∧ dφ2 for some scalar field λ,
which immediately implies the force-free condition (26). (Conversely, it is
possible to show that J has this directly from the force-free conditions 24
and dF = 0.)
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Force-free magnetospheres 2507

This is proportional to the area element on the sphere, and has the
same flux integral (4πq) for any radius, so it is clearly the monopole
field.7 But to illustrate the exterior calculus, let us check that the
field equations are satisfied. We have dFmon = qcos θ dθ ∧ dθ ∧ dϕ,
which vanishes because dθ ∧ dθ = 0. As for the other field equation,
according to equation (A12), the dual of the monopole 2-form is
∗F mon = qr−2dt ∧ dr, so d ∗ F mon = −2qr−3dr ∧ dt ∧ dr. This too
vanishes, because dr ∧ dr = 0. The 3 + 1 version of the magnetic
monopole field in flat spacetime is B = (q/r2)r̂, E = 0.

The 2-form (equation 29) is simple, i.e. the monopole field is
degenerate. In particular, this implies that it can be expressed in
terms of Euler potentials, which can be taken as φ1 = −qcos θ

and φ2 = ϕ. Note that the discontinuity of ϕ at 2π means that the
Euler potential is not globally smooth. This presents no problem;
moreover, were it not for this discontinuity, the field would be an
‘exact form’ dAmon, with Amon = qϕ d(cos θ ), so the total magnetic
flux through the closed surface of the two-sphere would necessarily
vanish.8

4.2 Outgoing Poynting flux

The next solution we consider is genuinely force free (ja �= 0) and
remarkably simple and general. The solution is on Schwarzschild
(and flat) spacetime and has no symmetries at all, being given in
terms of a free function of three variables as

F out = dζ ∧ du, (30)

where ζ = ζ (θ , ϕ, u) is a function of retarded time (outgoing
Eddington–Finklestein time) u, and the sphere angles (θ , ϕ). (In flat
spacetime, u = t − r.) This solution was first found in Brennan et al.
(2013) using a Newman–Penrose formalism, but here we analyse
it in the simpler language of differential forms. Comparison with
equation (22) shows that ζ and u are Euler potentials for this solu-
tion. Since du is null and orthogonal to dζ , Fout is a null 2-form. The
flat spacetime electric and magnetic fields are given below in equa-
tion (39). It is evident from equation (30) that dFout = 0. To check
the force-free condition, we use equation (A14) for the dual of a null
2-form, giving ∗F out = ∗(dζ ∧ du) ∼ � dζ ∧ du, where � indicates
dual on the sphere. The current is J = d ∗ F out ∼ dθ ∧ dϕ ∧ du,
showing that dζ ∧ J = du ∧ J = 0, i.e. the force-free equations (25)
are satisfied.

The electromagnetic stress–energy tensor T EM
ab (equation 1) as-

sociated with equation (30) is given by

T out
ab = |dζ |2(du)a(du)b, (31)

where |dζ |2 denotes gab(dζ )a(dζ )b. Thus the solution represents
a flow of electromagnetic energy along the outgoing radial null
direction (du)a. Because of this flux, we refer to Fout as the outgoing

7 Monopole charge is conventionally defined to equal the flux integral. Our
q is thus 1/4π times the usual notion; we nevertheless refer to q as the
monopole charge.
8 The discontinuity could be avoided by using instead the poten-
tial Amon = −qcos θ dϕ. However, the norm of the 1-form dϕ is
(gϕϕ )1/2 = 1/(rsin θ ), which blows up at the poles. This can be fixed at
the north pole by using instead Amon, N = −q(cos θ − 1) dϕ and at the south
pole by using Amon, S = −q(cos θ + 1) dϕ, which differs from the northern
potential by the pure gauge piece −2q dϕ. The discontinuity of ϕ implies
that this gauge transformation is not trivial however, which accounts for the
existence of a non-zero magnetic flux through the sphere.

flux solution. The net flux of Killing energy leaving the system at
retarded time u, calculated at r = ∞, is given by

Pout(u) ≡ lim
r→∞

∫
T out

ab (∂t )
a(dr)bd� =

∫
|dζ |2d�, (32)

where d� is the area element on the unit sphere. Since the Killing
energy is conserved as it propagates, this is also the Killing flux per
Killing time through a sphere at any radius.9

The energy flow in the field (30) is unlike ordinary electromag-
netic radiation in that the flux persists for stationary fields, i.e.
energy is carried away even if ζ is independent of u. In this case,
the solution has more the character of a flow than a wave, and such
flows are sometimes called ‘electromagnetic winds’ or ‘Poynting
winds’. For vacuum fields, this situation is impossible with isolated
sources, but it does occur in waveguides and in planar symmetry. In
fact, these scenarios admit vacuum solutions that are highly analo-
gous to equation (30). In Appendix B, we explore these examples
as context for understanding the outgoing flux solution.

By itself, the outgoing flux solution is unphysical, since it de-
scribes energy emerging from the origin of coordinates in flat space-
time (where the solution is singular), or from the past horizon on the
analytic extension of the Schwarzschild spacetime.10 Additionally,
as a null field, it lies on the threshold of the electrically dominated
regime, and thus might be unstable to non-force-free processes.
However, as described below, the solution is physically realized as
part of magnetically dominated field configurations associated with
a rotating star or black hole, which sources the outflow of energy.

The current J ∼ dθ ∧ dϕ ∧ du of the outgoing flux solution is
a null 3-form. The dual of such a form is proportional to the null
factor du (see Appendix A2.4), so we have ja ∼ (du)a. That is, the
current four-vector is null and radial. If the charges all have the
same sign, they must be moving at the speed of light, but a null
current can also be composed of charges of opposite sign moving
such that the net charge density is equal to the magnitude of the
net three-current in any Lorentz frame. The force-free equations are
sensitive only to the net charge-current.

Using the standard orientation dt ∧ dr ∧ dθ ∧ dϕ, the current for
this solution is given explicitly by

J = (d � dζ ) ∧ du

= (�2ζ ) sin θ dθ ∧ dϕ ∧ du, (33)

where �2 is the Laplacian on the unit sphere. This expression reveals
two important points. First, the integral of the current over angles
vanishes, so there is no net current entering or leaving the system.
Since the current is null (equal magnitude of charge and current),
this also indicates that there is no net charge.11 Secondly, there is
no vacuum solution of this sort that is everywhere regular on the
sphere. In vacuum the current vanishes, which would require that

9 The concept of Killing time applies to an individual integral curve of the
Killing field ξa, and is given by the lapse of λ along the curve, where λ is
any function satisfying ξa∇aλ = 1 on the curve. In Schwarzschild, possible
choices for λ include the usual time coordinate t as well as the outgoing
and ingoing Eddington–Finklestein coordinates u and v. The Killing time
may equivalently be defined as the lapse of parameter along the curve, when
parametrized so that the tangent vector equals the Killing vector.
10 Note also that the solution is not regular on the future horizon unless dζ

vanishes as u → ∞.
11 The reason for this can be traced to force-free condition E · j = 0
(equation 6). Since the current is radial, this condition implies that E has
no radial component, which implies that the flux of E through a sphere
vanishes, so there can be no net charge inside the sphere.
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2508 S. E. Gralla and T. Jacobson

ζ be a harmonic function on the sphere, �2ζ = 0. Other than a
constant (which yields zero field), no such functions exist.

It is rather curious that a purely outgoing solution exists on a
Schwarzschild background. One would expect that waves would
backscatter from the effective potential caused by the spacetime
curvature. The existence of non-scattering solutions like these was
discovered by Robinson (1961). He showed that, associated with
any shear-free null geodesic congruence, there is a family of null,
non-scattering vacuum solutions to Maxwell’s equations. For the
radial outgoing null congruence in the Schwarzschild spacetime,
the Robinson solutions are exactly the fields (equation 30) with
�2ζ = 0. These are in some sense illusory solutions, since they are
not globally regular on the sphere. However, they are resurrected as
bona fide, regular solutions in the force-free context.

4.3 Outgoing flux from an arbitrary world line

In flat spacetime, the energy flux of equation (30) emerges from
the origin of coordinates, which may be identified with a stationary
world line. In fact, the solution generalizes readily to an arbitrary
timelike world line, where u is taken to be the associated retarded
time. That is, on the future light cone of any point p on the world
line, u is the proper time at p. Then precisely the same expression
(30) is a solution, if (r, θ , ϕ) are any coordinates such that dθ and dϕ

are orthogonal to du, for example, global inertial spherical angles.
This follows from the same computation used to check that equation
(30) is a solution. This solution was first found in Brennan & Gralla
(2014) using the Newman–Penrose formalism.

4.4 Outgoing flux in Kerr

We next present the generalization of the outgoing flux solution
(30) to a rotating black hole background, i.e. the Kerr spacetime.
The stationary axisymmetric version of this solution was found by
Menon & Dermer (2007, 2011), and it was generalized to the non-
stationary, non-axisymmetric case in Brennan et al. (2013) using
the Newman–Penrose formalism. Here we recover that generalized
solution using the exterior calculus.

It is simple to describe the solution using outgoing Kerr coordi-
nates (u, ϕ̄, θ, r), which are defined in Appendix C. A first guess
would be that the field (30) is a solution, with the substitution
ϕ → ϕ̄. However, that is not correct, because in Kerr the 1-form
du is timelike rather than null, and the null property of du played
a critical role in establishing that equation (30) is a solution in
Schwarzschild. To motivate a modification, and to proceed with the
calculations, we need the following properties of the Kerr metric in
these coordinates (see Appendix C): (i) the 1-form du − a sin2 θ dϕ̄

is null and orthogonal to the 1-forms du, dϕ̄, and dθ ; and (ii) dθ

and dϕ̄ are orthogonal to each other, and the ratio of their norms is
sin θ .

The analogy with the case of the Schwarzschild metric now mo-
tivates the initial ansatz

F out,Kerr = dζ ∧ (du − a sin2 θ dϕ̄), (34)

where as before ζ = ζ (θ, ϕ̄, u). However, note that dFout, Kerr will be
non-zero if ζ depends on u. Hence, let us assume that ζ = ζ (θ, ϕ̄)
is independent of u, and check the force-free equations. (We will
generalize this to non-stationary solutions momentarily.) The dual of
equation (34) is given by ∗F rad,Kerr = −�dζ ∧ (du − a sin2 θ dϕ̄),
where �dζ is an r-independent linear combination of dθ and dϕ̄. The
current is thus proportional to dθ ∧ dϕ̄ ∧ du, which has vanishing

wedge product with the two factors of equation (34), so indeed the
force-free field equations (24) hold.

Now to allow for u dependence, we must generalize the ansatz
to

F rad,Kerr = (Adθ + B dϕ̄) ∧ (du − a sin2 θ dϕ̄), (35)

where A = A(θ, ϕ̄, u) and B = B(θ, ϕ̄, u). This is not necessarily
a closed 2-form so we must impose the covariant Faraday law

dF out,Kerr = [A,ϕ̄ − B,θ + (a sin2θ )A,u] dϕ̄ ∧ dθ ∧ du = 0, (36)

which results in the differential equation

A,ϕ̄ − B,θ + (a sin2θ )A,u = 0. (37)

In the non-spinning (a = 0) or stationary cases, the last term vanishes
and we find A = ζ , θ and B = ζ,ϕ̄ for some ζ as before. In the
spinning, non-stationary case, we could for example choose any A,
and define B by integration with respect to θ (although only for
some A will the solution be smooth at the poles). Once we have
solved equation (37), all that remains is to impose the force-free
conditions, but these hold by exactly the same reasoning just used
for the stationary solutions.

Note that, like in the Schwarzschild case, this solution has the
remarkable property that the radiation has no backscattering. This is
again directly linked to Robinson’s theorem: the congruence tangent
to the null vector obtained by contraction of du − a sin2 θ dϕ̄ with
the inverse metric is geodesic and shear free. [It is the outgoing
principal null congruence of the Kerr metric (e.g. Poisson 2004).]
And again, there is no globally regular vacuum solution of this type,
but in the presence of non-zero current there are regular force-free
solutions. These solutions were first found by assuming that the
current is along the principal null congruence (Brennan et al. 2013).
That analysis also shows that there are no other solutions with such
a current.

4.5 Ingoing flux

By taking the time-reverse12 of the outgoing flux solution, one
obtains an ingoing flux solution. This solution represents energy
emerging from a distant region and converging on the origin of flat
spacetime, or entering the horizon of a black hole. In the black hole
case, the ingoing flux is regular at the future horizon and totally
absorbed by the black hole, with no backscattering.

4.6 Superposed monopole and flux

Since FFE is non-linear, in general the superposition of two solu-
tions does not yield a third solution. However, the vacuum monopole
field (29) has no current, and exerts no force on the current of the
radial flux solution (30) (i.e. F mon

ab j out a = 0), so their superposition
yields a solution,

F sup = q sin θ dθ ∧ dϕ + dζ ∧ du. (38)

The field in equation (38) is magnetically dominated when q �= 0,
and is otherwise null. It is in fact the general force-free solution with
radial, null current in Schwarzschild (and flat) spacetime (Brennan
et al. 2013).

12 In Kerr, the time-reverse refers to sending t → −t and ϕ → −ϕ.
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Force-free magnetospheres 2509

Unfortunately, this simple construction does not generalize to
the Kerr background. Although exact monopole13 and outgoing flux
solutions on Kerr are known, the monopole field exerts a force on the
null current. [This obstruction is a special case of a general theorem:
a solution with current along a null geodesic twisting congruence
cannot be magnetically dominated (Brennan et al. 2013).]

An interesting generalization applies however to a monopole
moving along an arbitrary world line in Minkowski space: the dual
of the Lienard–Wiechert vacuum field can be superposed with the
outgoing flux solution described in Section 4.3 (Brennan & Gralla
2014). This yields a magnetically dominated solution, in which
normal radiation (in the dual Lienard–Wiechert field) coexists with
current-supported Poynting flux.

It is instructive to write the 3 + 1 version of the superposed
solution for a stationary world line in flat spacetime. The electric
and magnetic fields associated with equation (38) in flat spacetime
are given by the orthonormal frame components

Eθ̂ = Bϕ̂ = 1

r
∂θ ζ, (39a)

Eϕ̂ = −Bθ̂ = 1

r sin θ
∂ϕζ, (39b)

Br̂ = q

r2
. (39c)

The outgoing flux part of the solution (second term in equation
38) corresponds to equations (39a) and (39b), while the monopole
corresponds to equation (39c). The radial Poynting flux is carried
by orthogonal E and B fields tangent to the sphere and equal in
magnitude, while the magnetic monopole gives the magnetic field
lines a radial component and ensures magnetic domination. The
3 + 1 version of the statement that this solution has a null, radial
four-current is that the three-current density is radial and equal in
magnitude to the charge density,

ρ = −�2ζ

r2
, j = �2ζ

r2
r̂, (40)

where we remind the reader that �2 is the Laplacian on the unit
sphere. The monopole field is a vacuum solution and the charge
and current come entirely from the outgoing flux solution. The fact
that these solutions may be superposed can be understood by noting
that the magnetic monopole field is in the same (radial) direction as
the current of the outgoing flux solution, so that the addition of the
monopole yields no Lorentz force. As described below, different
choices of q and ζ give rise to different solutions relevant to the
exterior of different rotating bodies.

5 MO N O P O L E MAG N E TO S P H E R E S

In this section, we apply the solutions discussed in the previous sec-
tion to model magnetospheres external to rotating stars and black
holes with monopole charge. These models present basic physical
properties of force-free magnetospheres in a simple setting, most
importantly the conversion of rotational kinetic energy to Poynting
flux. Using the same solutions, a closer approximation to real mag-
netospheres is obtained by ‘splitting’ the monopole, as discussed in
Section 6.

13 The exact magnetic monopole solution on Kerr is obtained by taking the
dual of the solution generated by the vector potential Aa = ξa, where ξa is
the (asymptotic) time-translation Killing field.

5.1 Rotating monopole (Michel solution)

The Michel (1973) rotating monopole solution has served for
decades as a starting point for analytical modelling of pulsar and
black hole magnetospheres. Michel found his solution using an early
version of the stationary, axisymmetric framework that we treat in
Section 7. Here we instead recover the solution as a special case of
the monopole/flux solution (38). Specifically, the Michel solution is
given by specializing to flat spacetime and choosing ζ = q�cos θ

with constant �,

F Michel = −q d(cos θ ) ∧ (dϕ − � du). (41)

This solution can be terminated on the surface of a perfectly con-
ducting star rotating with angular velocity �. The 1-forms dθ and
dϕ − � du both vanish when contracted with the four-velocity
of any point comoving with the surface (which is proportional to
∂t + �∂ϕ), so that the electric field vanishes in the conductor rest
frame. The conducting boundary conditions only require the tan-
gential components to vanish; the fact that also the perpendicular
component also vanishes is a consequence of the force-free mag-
netosphere outside, and would not hold for the (non-degenerate)
exterior field of a rotating magnetized conductor in vacuum (see
discussion at the end of Section 8.1). For comparison with the more
realistic cases of higher multipoles, it is conventional for a spherical
star to rewrite the monopole charge q in terms of the magnetic field
strength B0 at the surface of radius R, q = B0R2.

The current 3-form for the Michel solution is given by equation
(33), which evaluates to J = −q�sin 2θ dθ ∧ dϕ ∧ du. Equiv-
alently, the current four-vector is equal to the radial null vector
ja = −2q�(cos θ/r2)(∂r )a .14 In the northern hemisphere, this is a
radial ingoing three-current and a negative charge density of the
same magnitude as the three-current, while in the southern hemi-
sphere, it is a radial outgoing three-current and a positive charge
density.

The energy flux away from the rotating monopole comes only
from the radiation part of the field, and is given by equation (32),
which evaluates here to

PMichel = 8π

3
q2�2 = 8π

3
B2R4�2. (42)

This outflow of energy is transferred from the rotational kinetic
energy of the conductor, which is possible because the field is not
force free in the conductor. The physics of the transfer can be
understood as follows. Free charges in the conductor are carried by
the rotational motion and hence feel a Lorentz force that drives a
current in the surface from north to south. This current in turn feels
a Lorentz force opposite to the motion, producing a reaction torque
on the conductor, which acts to slow the rotation.

The Michel monopole illustrates a key physical effect of pulsar
physics: a rotating, magnetized conductor generates an outgoing
energy flux, even when stationary.

5.1.1 Field sheet geometry of the Michel monopole

The field of a monopole rotating in vacuum would of course be
identical to that of a static monopole, but the Michel solution is in a
certain sense ‘really rotating’. The structure of this field can be elu-
cidated via the geometry of its field sheets. The Euler potentials can

14 The vector ∂r is defined in the (u, r, θ, ϕ) coordinate system, so it cor-
responds to translation of r at fixed u, θ, ϕ, and hence is a future pointing,
outgoing null vector.
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2510 S. E. Gralla and T. Jacobson

Figure 1. Two equatorial field sheets of the Michel monopole.

be taken as φ1 = −qcos θ and φ2 = ϕ − �(t − r), so the field sheets
are the surfaces where θ and ϕ − �(t − r) are constant. Lab frame
field lines (intersections of the sheets with constant t planes) form
Archimedean spirals in the equatorial plane, and conical helices for
other values of θ (see Fig. 2). At successive times t and t + �t, these
lines are rotated relative to each other by an angle ��t, so one may
think of the lines as rotating with angular velocity �. They are also
related by r → r + �t, however, so one may equivalently think of
them as expanding outwards at the speed of light. The field sheet
is independent of which way one thinks of field line evolution (and
also of the choice of frame used to define field lines). A spacetime
plot of two equatorial field sheets is given in Fig. 1.

The field sheet metric is obtained by imposing the conditions
dθ = 0 and dϕ = � du in the Minkowski metric, which yields
ds2 = −(1 − r2�2sin 2θ )du2 − 2du dr. Amusingly, this is nothing
but 1+1 dimensional de Sitter spacetime in ‘Eddington–Finkelstein’
form. The de Sitter horizon corresponds to the light cylinder
rsin θ = 1/� where a corotating observer would move with the
velocity of light. The ‘Hubble constant’ is �sin θ , which is also
the surface gravity of the horizon. This Killing horizon interpreta-
tion of the light cylinder extends to general stationary axisymmetric
magnetospheres, as we discuss in Section 7.2.5.

5.1.2 Differential rotation

Equation (41) remains a solution when � is promoted to an arbi-
trary function of θ . This corresponds to a conducting star that ro-
tates at latitude-dependent speed. This generalization of the Michel
monopole was first noted by BZ (see equation 6.4 therein). It
corresponds to choosing ζ = −q

∫
sin θ �(θ )dθ in the superposed

solution (38). On account of the θ -dependence of ζ , the power
radiated is modified from the Michel form (42).

5.1.3 Variable rotation rate

Equation (41) remains a solution when � is promoted to an arbi-
trary function of u, or more generally of u and θ . This corresponds
to a conducting star whose rotational speed changes with time. The
changes propagate outwards into the magnetosphere at the speed of
light. This generalization of the Michel monopole was first noted
by Lyutikov (2011). It corresponds to choosing ζ = −q

∫
sin θ �

(θ , u) dθ in the superposed solution (38). The flux at each retarded
time u is given by the instantaneous value of the associated station-
ary solution.

5.2 Whirling monopole

As a final generalization of the Michel monopole equation (41)
terminated on a conducting star, we take the star to be a sphere,
and allow it to undergo arbitrary time-dependent rigid rotation
with fixed centre. The Michel solution corresponds to the choice
ζ (θ , ϕ, u) = q�cos θ in the superposed solution (38). To produce
the whirling monopole, we replace the constant � by �(u), and we
replace θ , the angle between the field point and the fixed rotation
axis of the rotating monopole, by � = �(θ , ϕ, u), the angle between
the field point and the rotation axis at the retarded time. In terms of
the angular velocity vector �(t) and the radial unit vector r̂(θ, ϕ),
we have �(u) cos � = �(u) · r̂(θ, ϕ). This defines a suitable
ζ (θ , ϕ, u) for the monopole/flux solution (38), and yields the
whirling solution

F whirl = q sin θ dθ ∧ dϕ + q d[�(u) · r̂(θ, ϕ)] ∧ du. (43)

At any retarded time, this agrees with the Michel solution cor-
responding to the instantaneous angular velocity vector; hence, it
satisfies the conducting boundary condition on the surface of the
whirling sphere. Furthermore, the flux of the whirling monopole
at retarded time u agrees with the flux (42) of the corresponding
Michel solution. Thus even if a pulsar undergoes a dramatic whirl
(as could occur during a glitch), then the monopole model predicts
no additional associated energy losses.

5.3 Black hole monopole (BZ solution)

As described in Section 4.6, the procedure of superposing monopole
and outgoing flux solutions fails to produce a solution in Kerr.
However, long ago BZ found a perturbative monopolar solution
describing a stationary, axisymmetric outgoing flux of energy from
a Kerr black hole to second order in the black hole spin parameter
a. This solution may be recovered to first order in a simply by
promoting the Michel monopole solution to Kerr, as we now explain.
Recovering the second-order perturbations is also straightforward,
though more involved. We focus on the first-order piece, which
provides the leading outgoing energy flux.

Although we explicitly considered flat spacetime when dis-
cussing the Michel monopole (41), it is also a valid solution in
Schwarzschild, with u the Schwarzschild retarded time (outgoing
Eddington–Finklestein time). (Both follow from equation 38 with
ζ = q�cos θ .) Through first order in a, the BZ solution is just the
Michel monopole, exported from Schwarzschild to Kerr by identi-
fying the Schwarzschild coordinates with the Boyer–Lindquist (BL)
coordinates. Thus the ansatz for the solution is

F BZ
ansatz = q sin θ dθ ∧ (dϕ − �du). (44)

Expecting � to be controlled by the spin of the black hole, we regard
this quantity as O(a). Note that the background solution for this per-
turbation analysis is then the vacuum monopole in Schwarzschild,
equation (29).15 We may take u to be the outgoing Kerr coordinate

15 When perturbing a vacuum solution F (0) to a force-free solution
F (0) + F (1), the first-order force-free condition is simply F(0) · j(1) = 0. Thus
one may choose any conserved current j(1) transverse to the background field
and then construct an associated Maxwell field d ∗ F (1) = ∗j (1). BZ elim-
inated this freedom by demanding that perturbative solutions approach a
genuine non-linear force-free solution (in this case the Michel monopole) at
large r. Here we simply promote the Michel solution to Kerr and note that
the field equations hold to O(a).

MNRAS 445, 2500–2534 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/445/3/2500/1035561 by C
N

R
S - ISTO

 user on 25 April 2022



Force-free magnetospheres 2511

(C13), since that differs from the Schwarzschild one only at O(a2)
when expressed in terms of t and r. This ansatz obviously satisfies
dF = 0, so it remains only to check the force-free conditions.

Since there is no current in the monopole solution, the second
factor in the force-free conditions (24) vanishes at O(a0); hence,
in the O(a) equation, the first factor (α or β) may be taken to be
the zeroth-order parts d(−qcos θ ) and dϕ. Thus up through O(a),
the force-free conditions amount to dθ ∧ J = dϕ ∧ J = 0, i.e.
the statement that both dθ and dϕ are factors in the current 3-form
d ∗ F . The O(a) terms in d ∗ F have two origins: the � term in
equation (44) and the O(a) part of the action of ∗ on the zeroth-order
(monopole) solution. The contribution of the � term to the current
is �d ∗ (sin θ dθ ∧ du) = �d(sin 2θ dϕ ∧ du) ∼ dθ ∧ dϕ ∧ du,
which has both dθ and dϕ as factors. The O(a) part of
∗(dθ ∧ dϕ)μν = 2εθϕrtgr[μgν]t comes from gϕt, the only O(a) part of
the Kerr metric in BL coordinates. Since grμ ∝ δr

μ, this O(a) contri-
bution has the form C(r, θ )dr ∧ dϕ for some function C. It therefore
contributes to the current d ∗ F , a 3-form ∼dθ ∧ dr ∧ dϕ, which
also has both dθ and dϕ as factors. Hence, the force-free condition
is satisfied at O(a).

Up to this point, the derivation would have also worked be-
ginning with general superposed solution (38), provided the out-
going flux part is treated as O(a). However, there is one more,
crucial, consideration regarding this rotating black hole solution: it
should be regular on the future event horizon. It is easy to see that
this requirement can be met within this class only by the Michel
monopole solution, with a specific value of �. The 1-forms dϕ

and du are singular on the Kerr horizon, but there is a value of �

for which their singularities cancel in dϕ − �du. To see this, we
use ingoing Kerr coordinates v and ϕ̃, which are related to u and
ϕ by equations (C8), (C9), and (C13). Using a = �H(r2

+ + a2), it
follows that

dϕ − �du = dϕ̃ − �dv + 2�(r2 + a2) − �H(r2
+ + a2)

�
dr. (45)

Thus the singularity at the horizon is avoided if and only if � is
one-half the horizon angular velocity,

� = 1

2
�H. (46)

Since �H ∼ a, it was indeed consistent to treat � as an O(a) quantity
when verifying that the force-free conditions are met. We may thus
write the BZ solution, to O(a), in the exceptionally simple form

F BZ = q sin θ dθ ∧
(

dϕ − 1

2
�Hdu

)
. (47)

This may of course also be written in a way that is manifestly regular
on the horizon. Using equation (45), the second factor in equation
(47) may be replaced by dϕ̃ − 1

2 �Hdv + �H(1 + 2M/r)dr , drop-
ping terms of O(a2).

The net energy flux can be computed far from the black hole
where the metric is flat, hence the flux associated with equation
(47) is given by the same expression (equation 42) as for the Michel
monopole,

PBZ = 8π

3
q2

(
1

2
�H

)2

≈ π

24
q2 a2

M4
= 1

24π
B2

0 a2. (48)

(Here B0 = 4πq/(2M)2 is defined as the magnetic flux through
the horizon, divided by the horizon area.) The energy–momentum
tensor (equation 1) contains cross-terms between the monopole
and the O(a2) part of F, which we have not computed. However,

since the monopole field has only a θϕ component, no Tr
t compo-

nent of the stress tensor arises in this way, so equation (48) is the
full flux at this order. Note that, unlike with the rotating monopole
terminated on a star, the energy carried by this flux does not ap-
pear in the field by violation of the force-free condition. Rather, the
conserved Killing energy on the rotating black hole background is
locally momentum in the ergosphere, hence can be negative there.
A flux of negative Killing energy crosses the horizon, balancing the
outward positive flux. The nature of this process is discussed more
fully at the beginning of Section 9.

Rotating stars

To first order in the spin, the exterior metric of a rotating star is
given by the Kerr metric linearized in a (Hartle & Thorne 1968). We
may thus also use equation (44) to model stellar magnetospheres,
including the leading gravitational effects of spin. As in the previous
subsection, imposition of conducting boundary conditions at the star
will fix � to equal the rotational velocity of the star. It is interesting
to compare this with the black hole case (46), where there is an
additional factor of one-half. As will be seen in Section 9, the energy
flux from any axisymmetric black hole magnetosphere would vanish
if the angular velocity of the field were equal to that of the black
hole horizon.

6 C U R R E N T S H E E T S A N D S P L I T
M O N O P O L E S

We have seen that the superposition of monopole and outgoing
radiation solutions provides a simple analytic solution describing
energy flux from rotating stars and black holes. The catch, of course,
is that real stars and black holes do not have monopoles inside them!
A cheap trick for addressing this last point is to artificially split the
monopole in two or more parts, reversing the sign of the monopole
charge (and perhaps also rescaling the charge) when passing from
one region to the next. A crude model of a dipole can be constructed
in this way, for example, while still using only the monopole solu-
tion. However, this splitting of the field has a dramatic consequence
that must be confronted: since the field changes direction discon-
tinuously across the splitting surface, Maxwell’s equations imply
the presence of a surface current and surface charge. Fortuitously,
rather than being an unphysical embarrassment, this current sheet
actually enhances the correspondence of the solution with a pulsar
magnetosphere. We discuss the general necessity of such current
sheets in Section 8.

6.1 Split monopole

To illustrate the basic idea of a split monopole, consider first the field
of a point magnetic monopole in vacuum, B = (q/r2)r̂, and modify
it by reversing the sign of the charge across the equatorial plane,
yielding Bsplit = sgn(cos θ )(q/r2)r̂. In order for this to remain a
solution to Maxwell’s equations, there must be a surface layer of
azimuthal current on the equatorial plane, i.e. a current sheet. Taking
this solution to extend inwards only to some radius r = R, one may
regard it as the exterior of a star that has been magnetized in a
peculiar split-monopole pattern. Since the magnetic flux through
closed surfaces vanishes, no monopole is required and ordinary
currents flowing in the star can generate the field.
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2512 S. E. Gralla and T. Jacobson

6.2 Generalized split field construction

We may split a field configuration across more general surfaces as
follows. Begin with any force-free solution F, and replace it with a
new solution

F split = σF , (49)

where σ is a ‘step function’ on spacetime: constant except where
it has a jump across a timelike three-volume S, the world vol-
ume of the current sheet. In the case of the vacuum monopole
discussed above, S would be the equatorial plane, extended in time,
but in general it is a dynamical submanifold whose motion must be
determined.

The jump conditions implied by Maxwell’s equations must hold
at the current sheet. As explained in Appendix A3, these are that
(i) the pullback to S of the jump in F must vanish (implying no
monopole surface charge or current), and (ii) the pullback to S
of the jump in ∗F is the surface current 2-form K (which de-
scribes both charge and two-current densities). The jump in Fsplit is
[Fsplit] = [σ ]F, so the jump conditions are

F |S = 0, ∗F |S = K/[σ ], (50)

where the bar notation |S denotes the pullback to S. The first of
these conditions implies that the current sheet fully contains any
field sheet that intersects it at a point where F �= 0: at a point where
a field sheet intersects but is not contained in S, there exists a basis
consisting of three vectors tangent to S and a fourth tangent to the
field sheet, and F vanishes when contracted with any pair of these,
so F = 0. It follows that the three-dimensional current sheet world
volume must be foliated by field sheets. Equivalently, the current
sheet must be given by an equation f(φ1, φ2) = 0, where f is some
function depending only on the two Euler potentials. This criterion
is necessary and sufficient for a valid split of the form (49).

In terms of a 3 + 1 split, these considerations tell us the pos-
sible shapes of current sheets of the form (49) and specifies their
unique time evolution: an initial configuration for a current sheet
must be a two-dimensional surface tangent to magnetic field lines,
and the time evolution is that of the field lines. In a spacetime sense,
the world volumeS of a current sheet may be generated by selecting
a single ‘seed curve’ γ , transverse to field sheets, and flowing to all
points on the field sheets intersecting γ . Put differently, it is just the
bundle of field sheets over γ .

So far we have treated current sheets as infinitesimally thin re-
gions where the field has a discontinuity. A physical sheet would
have a finite thickness determined by its internal structure and the
forces confining it. A simple model for a finite-thickness current
sheet is obtained by using a smooth transition function σ (x) in-
stead of the step function of equation (49), yielding a degenerate,
but not force-free, field F̃ ≡ σ (x)F . Provided F is magnetic, this
leads to opposing, compressional Lorentz forces as follows. Like
all electromagnetic fields, F̃ must satisfy Faraday’s law dF̃ = 0,
which implies dσ ∧ F = 0. Thus σ must be constant on the field
sheets. The divergence of the stress tensor T̃ab = σ 2Tab is equal to
Tab∇bσ

2 since the original field was force-free (∇aTab = 0). Using
equation (15) for the stress tensor of a degenerate field, only the
h⊥ term contributes (since σ is constant on the field sheets) and
we find that the Lorentz force −∇aT̃ab is equal to − 1

4 F 2∇bσ
2. For

magnetically dominated fields, this force is towards the centre of
the sheet on both sides, i.e. compressional. A more complete model
would account for the opposing force establishing equlibrium; for
example, thermal pressure provides the support in a Harris current
sheet (Harris 1962).

6.3 Rotating split monopole

We now apply the splitting procedure to the Michel monopole (41)
and discuss its application to the BZ black hole monopole (47) and
the whirling monopole (43).

6.3.1 Aligned split monopole

We first perform the split in the equatorial plane. Since all field lines
in the equatorial plane remain in the plane (see Fig. 2), it is clear
that this plane is a valid location for a current sheet. This original
Michel split monopole is simply

F aligned = sgn(cos θ )F Michel, (51)

where as before the solution should be terminated on a rotating,
conducting star. We label this field as ‘aligned’ because the mag-
netic axis is aligned with the spin axis. The surface current for the
resulting equatorial current sheet is given by equation (50) with
[σ ] = 2, i.e. K splitMichel = 2 ∗ F Michel|S . Taking the dual of equation
(41), we thus have

K splitMichel = 2q

r2
dt ∧ dr + 2q�dϕ ∧ du. (52)

The first term is an azimuthal current density that falls off like
r−2, while the second term is a radial null current density that falls
off like r−1 (because |dϕ| = 1/rsin θ ). The latter is the ‘return
current’ in the complete circuit: whereas the non-split monopole
has a current flowing in from infinity in the northern hemisphere
and out to infinity in the southern hemisphere, the split monopole
has current flowing inwards in both hemispheres, and outwards in
the current sheet.

6.3.2 Inclined split monopole

We may equally well consider the inclined case, with the star mag-
netized in a split-monopole pattern with the split along an equator
inclined at an angle α to the rotation axis ẑ and corotating with the
star. This provides a model for a pulsar with inclined magnetic axis.

Recall that the Michel field sheets are specified by the values of
the two Euler potentials, −qcos θ and ϕ − �u, so that the current
sheet must be given by an equation of the form f(θ , ϕ − �u) = 0. To
produce an inclined sheet, we choose f to vanish on the corotating
inclined circle. This circle at one time plays the role of the curve γ

that generates the current sheet. A function satisfying this require-
ment is f (θ, ϕ − �u) = m̂(u) · r̂(θ, ϕ), where m̂(u) is the rotating
split-magnetization axis inclined at the angle α to ẑ), and r̂(θ, ϕ) is
the angle-dependent radial unit vector. Since m̂ uniformly rotates

Figure 2. The Michel monopole, with central star drawn in. On the left,
some representative lab frame magnetic field lines. On the right, the current
sheet in the inclined case, with tangent field lines drawn in black. The
pattern of the sheet rotates rigidly with the star, or equivalently moves
radially outwards at the speed of light.
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Force-free magnetospheres 2513

with angular velocity � about ẑ, m̂ · r̂ actually depends on u and ϕ

only through ϕ − �u; explicitly,

m̂(u) · r̂(θ, ϕ) = cos α cos θ + sin α sin θ cos(ϕ − �u). (53)

The inclined split monopole is thus given by

F inclined = sgn[m̂(u) · r̂(θ, ϕ)]F Michel. (54)

The rather intricate shape of this current sheet is shown in Fig. 2. The
complete field configuration, where the field changes sign on either
side of the dynamical current sheet, is sometimes known as a ‘striped
wind’. Equation (54) was derived by Bogovalov (1999) in 3 + 1
language. A current sheet of nearly identical shape and dynamics is
observed outside the light cylinder in simulations of inclined dipolar
magnetospheres (Spitkovsky 2006; Kalapotharakos, Contopoulos
& Kazanas 2012).16

The dipolar split monopole is the most relevant split configuration
for emulating a dipole pulsar, but a variety of other configurations
are possible. For example, one may split the solution on cones of
fixed latitude, as is clear from the field lines shown in Fig. 2. Having
two such cones, say at latitudes where cos θ = ±1/

√
3, provides

a rough imitation of a quadrupole pulsar. In this aligned case, the
conical sheets are stationary, but it would be straightforward to de-
termine the more complicated shapes and dynamics in the inclined
case. Most generally, one may use any seed curve on the sphere
at one time to construct a sheet, since the monopolar (radial) com-
ponent of the Michel monopole ensures that all such curves are
transverse to field lines. In this sense, one may consider a sphere of
arbitrary split-monopolar magnetization.

6.3.3 Black hole split monopole

One may also split the black hole version of the Michel monopole, as
done by BZ in their original paper. The procedure is precisely anal-
ogous to the case of flat spacetime discussed above. The BZ model
involves splitting in the equatorial plane, equation (51) with FMichel

replaced with FBZ (equation 47). The sheet extends all the way to the
event horizon. In nature, a magnetized accretion disc could source
a field, and the current sheet becomes a crude model of such a disc.
However, Lyutikov has raised the interesting possibility that the
gravitational collapse of a pulsar could form a split-monopole black
hole magnetosphere, where the current sheet originally present out-
side the light cylinder (e.g. Fig. 4) meets the horizon. If so, then
the split BZ model would directly describe an astrophysical mag-
netosphere, if only for a brief time before magnetic reconnection
destroys the sheet.

Although only the equatorial splitting has been explicitly con-
sidered in the black hole context, the more general splits discussed
in the previous section are also possible. In particular, the inclined
equatorial split also yields equation (54), with FMichel replaced with
FBZ (47). As argued by Lyutikov in the aligned case, it is conceiv-
able that this solution could model a black hole newly formed from
the gravitational collapse of an inclined pulsar.

6.3.4 Whirling split monopole

In the whirling case (43), as in the simple rotating case, any curve
tangent to the sphere is transverse to field lines, and so is a valid seed

16 Such sheets are supported in simulations by (non-force-free) prescriptions
that enforce magnetic domination.

curve for a splitting. Thus while we do not construct explicit exam-
ples, our results do cover the magnetosphere, including current sheet
dynamics, of an arbitrarily whirling, arbitrarily split-monopole-
magnetized, conducting sphere. Astrophysically, the whirling split
monopole could be helpful for modelling emission (or lack thereof)
associated with pulsar glitches, including the case where in addition
to the magnitude the direction of angular velocity is modified.

6.4 Reflection split

The preceding picture of current sheet behaviour applies to sheets
produced by simple rescalings of the field strength across the sheet
(equation 49). While this type of sheet commonly appears (for ex-
ample in the outer region of many pulsar magnetosphere models),
Maxwell’s equations admit other types of field discontinuities sup-
ported by a current sheet S, provided only that the pullback to S of
the jump in F vanishes. For this type of discontinuity, the magnetic
field is not necessarily tangent to the sheet, and there is no simple
story regarding the location and dynamics of the current sheets.

A common example of such a discontinuity occurs in reflection-
symmetric magnetospheres, where F is reflected across the equa-
torial plane, entailing an equatorial current sheet. The field at S,
the world volume of the equatorial plane, can be decomposed as
F = F‖ + F⊥, where F‖ is the projection of F into S and is invariant
under reflection, and F⊥ flips sign under reflection. F‖ comprises
the magnetic field normal to and the electric field tangent to the
symmetry plane, and F⊥ comprises the tangent magnetic field and
the normal electric field. The jump in F across S is thus [F] = 2F⊥,
and the pullback of this vanishes, so the jump condition on F is
satisfied. For the other jump condition, note that the dual ∗F⊥ is
entirely ‘parallel’, so the jump in ∗F is [∗F ] = 2 ∗ F⊥ = K, which
determines the surface current.

The aligned split monopole discussed in Section 6.3.1 is a spe-
cial case of this construction. In that example, F‖ vanishes, so the
effect of the reflection is an overall sign change. Examples with
a non-zero normal component of the magnetic field (and tangen-
tial component of the electric field) are the pulsar magnetospheres
considered in Gruzinov (2011) and Contopoulos, Kalapotharakos
& Kazanas (2014), the black hole magnetospheres of Uzdensky
(2005), and the paraboloidal magnetospheres of Blandford (1976)
and BZ.

7 STAT I O NA RY, A X I S Y M M E T R I C
M AG N E TO S P H E R E S

We turn now from specific analytical models to a general treat-
ment of stationary, axisymmetric force-free magnetospheres, rele-
vant both to spinning stars and to black holes. This section consists
primarily of a systematic review and derivation of the standard
mathematical and physical results, but using new computational
techniques and the conceptual framework developed in Section 3.
It can be seen as a spacetime counterpart to the 3+1 presentation of
MacDonald & Thorne (1982), using an extension to curved space-
times of the Euler-potential methods developed by Uchida (1997b).
With our systematic use of differential forms, the efficiency and
elegance of Uchida’s approach is fully realized. In the following
sections, we apply these results to pulsar and black hole magneto-
spheres.

Our treatment is spacetime geometrical in the sense that we do
not decompose tensors into spatial components and temporal com-
ponents with respect to a time foliation. However, we make heavy
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2514 S. E. Gralla and T. Jacobson

use of the existence of a coordinate system in which the metric com-
ponents are block diagonal and do not depend on the two ‘symme-
try coordinates’. This hybrid technique of using spacetime objects,
specifically differential forms, in concert with special coordinates,
is both remarkably efficient for computations and revealing about
the structure of the theory. Another source of the efficiency and
simplicity is the avoidance of unnecessary introduction of metric
dependence into the calculations, and of confining what metric de-
pendence there is to the action of the Hodge dual operator and metric
determinants. This is achieved by using the exterior derivative rather
than covariant derivatives, integrating p-forms on p-surfaces, and
using the Hodge dual operator.

7.1 2+2 decomposition of spacetime

In this section, we set up the decomposition of spacetime that is
central to our treatment. We assume that the spacetime is sta-
tionary and axisymmetric, and that these two symmetries com-
mute, so that there exist coordinates t, ϕ such that ∂t and ∂ϕ are
the time-translation and axial-rotation Killing fields, respectively.
Moreover, we assume that these Killing fields are orthogonal to
two-dimensional surfaces. These assumptions should hold to a very
good approximation in most astrophysically relevant settings.17 We
refer to these surfaces as the ‘poloidal subspaces’, and to the surfaces
generated by the Killing vectors ∂t , ∂ϕ as the ‘toroidal subspaces’.
This is the standard usage of the word poloidal, while it general-
izes toroidal to refer to the t–ϕ sector, rather than just the spatial
ϕ-direction. We will label the poloidal subspaces with coordinates
(r, θ ) that are constant along the integral curves of the Killing fields,
so that the metric components in these coordinates are block diag-
onal,

g..(r, θ ) =
(

gT
.. 0

0 gP
..

)
. (55)

We refer to gT
.. and gP

.. as the toroidal and poloidal metrics, respec-
tively. Although it will not be necessary for all considerations, we
further assume that gT

.. is Lorentzian, while gP
.. is Riemannian. These

metrics depend only on the point in the poloidal surface, i.e. their
components are functions only of r, θ . We emphasize that here r
and θ are just names for arbitrary poloidal coordinates.

We adopt the orientation of dt ∧ dϕ ∧ dr ∧ dθ for all integrals
and dualization. The corresponding metric volume elements ε, εT,
and εP on full, toroidal, and poloidal subspaces (respectively) are
given by

ε = √−g dt ∧ dϕ ∧ dr ∧ dθ, (56)

εT =
√

−gT dt ∧ dϕ, εP =
√

gP dr ∧ dθ, (57)

where g, gT, and gP are the determinants of the corresponding
metrics in these coordinates. These satisfy the identities

ε = εT ∧ εP, ∗εT = −εP, ∗εP = εT. (58)

17 There is no loss of generality in assuming that the symmetries commute
(Carter 1970), and for asymptotically flat solutions to Einstein’s equation in
vacuum or with a circularly rotating fluid source, the 2-surface orthogonality
property necessarily holds (Wald 1984). Non-circular spacetimes result from
gravitational effects of meridional matter flow or toroidal magnetic fields
(Gourgoulhon & Bonazzola 1993). A fully geometrical treatment of ideal
MHD in stationary, axisymmetric spacetimes, allowing for non-circularity,
is given in Gourgoulhon et al. (2011).

We use εT and εP to define the Hodge dual operator on toroidal and
poloidal forms, and we denote this operator by �, reserving ∗ for
the spacetime dual. Specifically, if ωP is a poloidal differential form
(a form made from poloidal cotangent vectors), then �ωP denotes
its Hodge dual on the poloidal space with respect to the poloidal
metric, and similarly for �ωT. On toroidal 1-forms, �� = 1, while
on poloidal 1-forms, �� = −1. The signs are opposite to these on
0-forms and 2-forms. The dual operators satisfy the following useful
identities:

∗(ωT ∧ ωP) = −�ωT ∧ �ωP, (59)

∗ωP = �ωP ∧ εT, (60)

where ωT and ωP are toroidal and poloidal 1-forms, respectively.
More discussion of orthogonal subspaces and duality is given in
Appendix A.

7.2 Degenerate, stationary, axisymmetric fields

A stationary, axisymmetric electromagnetic field satisfies L∂t F =
L∂ϕ F = 0. In this subsection, we assume that the electromagnetic
field is degenerate, F ∧ F = 0, but not necessarily force free. Thus it
can be expressed in terms of Euler potentials as F = dφ1 ∧ dφ2. The
Euler potentials need not share the symmetry of F, but their depen-
dence on the ignorable coordinates t and ϕ is very restricted. Their
form is worked out in Appendix D, following Uchida (1997b).
Apart from the special case of purely toroidal magnetic field
(∂ϕ · F = 0), one may always choose Euler potentials given by
equation (D14),

φ1 = ψ(r, θ ), φ2 = ψ2(r, θ ) + ϕ − �F(ψ)t . (61)

We focus on this generic case in the following. The special case
∂ϕ · F = 0 is treated briefly in Section 7.6 below.

Field sheets are surfaces of constant φ1 and φ2, hence are labelled
by a value of ψ and a value of φ2. If the field is magnetically
dominated, as we assume from now on unless otherwise stated, the
field sheets are timelike. A magnetic field line, defined with respect
to t, is the intersection of a field sheet with a surface of constant t.
Besides the ‘true’ magnetic field lines, one can also define poloidal
field lines, which are just the ψ contours in the poloidal space.
The bending of a true field line in the azimuthal direction, i.e. the
variation of its ϕ coordinate at fixed t, is determined by ψ2. As
explained below, ψ determines the polar magnetic flux, and the
function �F(ψ) determines the angular velocity of the field lines.

The field strength corresponding to the general Euler potential of
the form (61) is

F = dψ ∧ dψ2 + dψ ∧ η, (62)

where η ≡ dϕ − �F(ψ)dt . (The properties of this useful 1-form
are discussed below in Section 7.2.4.) Note that there is no term
proportional to dϕ ∧ dt, i.e. no ‘toroidal electric field’. This is a
consequence of Faraday’s law for stationary, axisymmetric fields,
since the toroidal line integral of the electric field must be equal to
minus the vanishing time derivative of the magnetic flux through
the loop. It does not depend on the field being force free or even
degenerate. Using equation (59), the dual of F is given by

∗F = I

2π
dt ∧ dϕ − �dψ ∧ �η, (63)

where, for the moment, I is simply defined by

∗(dψ ∧ dψ2) = I

2π
dt ∧ dϕ, (64)
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Force-free magnetospheres 2515

but it will be interpreted below as the polar current. We can express
F in terms of I instead of ψ2, by taking the dual of equation (64),
using equation (58) and ∗∗ = −1 on 2-forms, as

F = I

2π(−gT)1/2
εP + dψ ∧ η. (65)

This displays the field as a sum of its poloidal and toroidal parts.
Note the potentially confusing fact that because the magnetic field
vector is defined via the dual of the field strength 2-form F, the
poloidal part of F (the first term in equation 65) actually corresponds
to the toroidal magnetic field, i.e. the magnetic field component in
the ∂ϕ-direction according to an observer at rest in the poloidal
subspace. The notation commonly used for this toroidal field is
BT = I/2π. Note that the proper magnitude of the toroidal field is
thus not BT but rather BT/

√−gT.
The invariant F2 = FabFab is the sum of the invariant squares of

the toroidal and poloidal parts in equation (65),

F 2 = I 2

2π2(−gT)
+ |dψ |2|η|2. (66)

Here and below, we use the notation |η|2 to denote gabηaηb. The
first, poloidal term is always positive or zero, while the sign of the
second, toroidal term is that of |η|2, which is negative when η is
timelike.

In the following subsections, we expand on the interpretation and
properties of the quantities introduced here.

7.2.1 Magnetic flux function ψ

It was noted above that ψ labels magnetic field lines, but it is
also directly related to the flux as follows. Fix a poloidal point
(r, θ ) and time t, denote by C the loop obtained by flowing along
∂ϕ , and let S be any topological disc bounded by C. The inte-
gral of F over S is the magnetic flux through C. (Integration of
differential forms is reviewed in Appendix A1.) Writing F as an
exact differential F = d(ψ dφ2) and using Stokes’ theorem, we find∫
S F = ψ

∫
C dφ2 = 2πψ , so

ψ(r, θ ) = 1

2π

∫
S(r,θ )

F . (67)

That is, 2πψ(r, θ ) is the magnetic flux through the loop of revolution
defined by the poloidal point (r, θ ). This is why ψ is often called
the magnetic flux function. Another common name is the stream
function. We will use both of these names, depending on the context.

In deriving equation (67), we have chosen the orientation dϕ on
the loop C, which by Stokes’ theorem fixes the orientation for the
2-surface S with respect to which the flux is defined. We will call
this the flux in the ‘upward’ direction. To understand the name,
consider flat spacetime in cylindrical coordinates (t, z, ρ, ϕ), and let
S be a disc of constant z. Then the orientation dϕ on the boundary
corresponds to the orientation dρ ∧ dϕ for the disc. Given the
spacetime orientation dt ∧ dz ∧ dρ ∧ dϕ, this corresponds to the
flux of the magnetic field pseudo-vector using the surface-normal
+∂z.

The potential ψ is also related to the electrostatic potential as fol-
lows. A particle of mass m and charge e in stationary gravitational
and electromagnetic fields has a conserved energy ξ · (mU + eA),
where ξ is the stationary Killing vector, U is the particle four-
velocity, and A is a vector potential that is invariant under the sym-
metry,LξA = 0. Then it is natural to define ξ · A as the ‘electrostatic
potential’. Although not gauge invariant, under a gauge transforma-
tion A → A′ = A + dλ this changes by ξ · dλ, which must be a

constant if LξA
′ is to vanish. Hence, the electrostatic potential dif-

ference between two points is gauge invariant. For the degenerate
fields discussed here, we may use A = ψ dφ2, so that the electro-
static potential is −�F(ψ)ψ . This determines the ‘potential drop’
between magnetic field lines.

7.2.2 Polar current I

The integral of the charge-current 3-form J = d ∗ F over the 3-
surface S × �t , formed by flowing S along ∂t for a coordinate
distance �t, is (by Stokes’ theorem) equal to the integral of ∗F over
the boundary. The contributions from the initial and final copies of
S cancel out by stationarity, leaving

∫
J = ∫

C×�t
∗F . Since this

surface extends only in t and ϕ, only the first term of equation (63)
contributes, and we have simply

I (r, θ ) = 1

�t

∫
S(r,θ )×�t

J , (68)

assuming the orientation dt ∧ dϕ on C × �t , which by Stokes’ the-
orem fixes the ‘upward’ orientation on S × �t .18 Thus I(r, θ ) is
equal to the electric current, with respect to Killing time, flowing
in the upward direction through the loop of revolution defined by
the poloidal point (r, θ ). We will call I the polar current. Another
common name is the poloidal current; however, we reserve that
name for the current density flowing in the poloidal subspace, as
distinguished from the net current through a loop. Besides its inter-
pretation as a current, recall (cf. discussion below equation 65) that
I/2π is equal to BT, the toroidal magnetic field times

√−gT, which
controls the bending of field lines in the ϕ-direction. (This relation
between BT and I is an instance of Ampère’s law.) In addition to
these roles, I gives the angular momentum flux per unit ψ , equation
(80) below.

7.2.3 Angular velocity of field lines �F(ψ)

The stationary axisymmetry implies that the field F is unchanged
by a shift in ϕ and/or t; however, the potential φ2 is in general un-
changed only by a combined, helical shift (�t,�ϕ = �F(ψ)�t).
Under such a helical shift, the two Euler potentials are both un-
changed, so a field sheet maps into itself. We may therefore in-
terpret �F(ψ) as the angular velocity of the field line, the latter
being defined by the intersection of the field sheet with a surface of
constant t.

7.2.4 Corotation 1-form η

It is already apparent that the 1-form

η = dϕ − �F(ψ)dt (69)

plays an important role in characterizing stationary, axisymmetric
magnetospheres. In light of (∂t + �∂ϕ) · η = � − �F, η measures
the extent to which a trajectory corotates with field lines. We refer
to η as the corotation 1-form. Defining the corotation vector χF =
∂t + �F∂ϕ , we have χF · η = 0, so η and χF are orthogonal as
vectors (using the inverse metric to convert η to a vector). Both
vectors lie in the two-dimensional, timelike toroidal subspace so,

18 In cylindrical coordinates in flat spacetime for a disc of constant z, this
corresponds to the orientation dt ∧ dϕ ∧ dρ on S × �t , which, given the
spacetime orientation dt ∧ dϕ ∧ dρ ∧ dz, corresponds to flux along the
+∂z-direction.
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2516 S. E. Gralla and T. Jacobson

being orthogonal, they evidently have opposite timelike/spacelike
causal character. Explicitly,

|χF|2 = gT|η|2, (70)

where the determinant gT of the toroidal metric is negative (since
that metric is Lorentzian). Observers corotating with the magnetic
field therefore exist only where χF is timelike and η is spacelike.

7.2.5 Light surfaces

At a point where η and χF are null, the corotating observer would
need to travel at the speed of light. For this reason, a surface com-
posed of such points is generally called a light surface, other names
being critical surface, singular surface, velocity-of-light surface,
or light cylinder.19 The latter name stems from the fact that in flat
spacetime, with �F = const, there is one light surface located where
the cylindrical radius is equal to 1/�F.

Light surfaces in magnetospheres play a significant role for two
reasons. One is that the equation satisfied by the magnetic flux
function (the so-called stream equation, cf. Section 7.4) has a critical
point at a light surface. The implications of this for solutions of the
equation are described briefly in Section 7.4.2.

The other role of light surfaces is that they determine causal
boundaries of propagation of charged particle winds and Alfvén
waves. As explained in Section 3.2.3, the field sheet metric governs
such transport. Where the corotation vector χF is null, it coincides
with one of the two field sheet light rays delineating the light cone on
the sheet. Since χF is strictly toroidal, the light surface is evidently
a causal boundary (at least locally) for either ingoing or outgoing
motion on the sheet. In the case of the Michel monopole solution
(41), for example, outside the light cylinder particles can propagate
only to larger radii. For field sheet modes, the light cylinder is thus
a horizon, beyond which influences cannot affect the interior.

In a general stationary, axisymmetric magnetosphere, the allowed
direction of particle flow across the light surface, i.e. the direction
of the other future pointing light ray on the field sheet, is the same
as the direction of positive angular momentum flow in the field if
�F is greater than �Z, the angular velocity of the local zero angular
momentum observer (ZAMO). If instead �F < �Z, these directions
are opposite. This is demonstrated in Section 7.3.1.

7.2.6 Field sheet Killing vector

As noted in Section 7.2.3, the Euler potentials are unchanged under
a combined time-translation and rotation (�t,�ϕ = �F(ψ)�t).
The field sheets and the field strength are preserved under this
transformation, which is generated by the flow of the corotation
vector field

χF = ∂t + �F(ψ)∂ϕ, (71)

introduced in Section 7.2.4.20 This is not only a symmetry of the
electromagnetic field; it is also a symmetry of the intrinsic geom-
etry of the field sheets. That is, although χF is not a spacetime
Killing vector if �F(ψ) is not constant, it is always a Killing vector

19 We caution the reader that some authors reserve the term ‘light surface’
for a place where F2 vanishes. These two notions of light surface agree only
when I = 0 (see equation 66).
20 The existence of this symmetry of the Euler potentials is an example of a
general property, discussed in Appendix D, which holds for degenerate fields
with two commuting symmetry vectors X and Y, provided the (constant)
quantity X · Y · F is non-vanishing.

of the induced metric on the field sheets, because ψ is constant
on a field sheet. We therefore refer to χF also as the field sheet
Killing vector.

As explained in Section 3.2.3, the field sheet metric governs the
propagation of collisionless charged particles and Alfén waves in a
certain approximation. The field sheet Killing vector thus provides
conservation laws for these sorts of transport. In particular, there
is a conserved quantity χ · p = pt + �Fpϕ associated with each
particle or wavepacket trajectory, where p is the four-momentum or
wave four-vector, respectively. Since the field sheet metric is two-
dimensional, the single conserved quantity is enough to completely
determine the motion from a choice of initial position and velocity.
In applications, such initial conditions may be provided e.g. by
particle injection velocities at non-degenerate gaps in an otherwise
force-free magnetosphere. The four-velocity u of a particle at any
point is then determined by the equations u2 = −1, u · F = 0, and
uaχ

a
F = const.

In flat spacetime, the conserved quantity for particles moving
along field lines is uaχ

a
F = γ (−1 + �Fρ vϕ), where γ is the Lorentz

factor of the trajectory (in the rest frame defined by ∂t ), ρ is the
cylindrical radius, and vϕ = ρ dϕ/dt is the azimuthal three-velocity.
This quantity is sometimes used to determine outflow velocities
from force-free solutions (e.g. Contopoulos, Kazanas & Fendt 1999,
equation 16). We have obtained the conserved quantity as a simple
consequence of the existence of a Killing vector on the field sheets,
a formulation that generalizes to arbitrary circular spacetimes.

We note that the intersection of a light surface with a given field
sheet is a Killing horizon for the field sheet Killing vector. That
is, it is a null curve to which the Killing vector is tangent. As
mentioned in Section 5.1.1, in the case of the Michel monopole, the
field sheets are isometric to two-dimensional de Sitter space, and
the light cylinder horizon is a de Sitter horizon.

7.3 Energy and angular momentum currents

A physical system governed by a Lagrangian on a spacetime with
a symmetry generated by a Killing field ξ a has an associated con-
served Noether current, Jξ . In Appendix E, we review how this
comes about using the language of differential forms. The electro-
magnetic field contribution to the Noether current 3-form (neglect-
ing couplings) is given by

Jξ = −(ξ · F ) ∧ ∗F + 1
4 F 2ξ · ε. (72)

This is the dual of −Ta
bξ

b, where Tab is the Maxwell stress–energy
tensor (1). The current is conserved if and only if FabJbξ a = 0,
i.e. when the component of four-force in the ξ -direction vanishes.
As explained in Appendix E, the second term of equation (72) is
conserved automatically when the electromagnetic field also shares
the symmetry, LξF = 0.

In terms of the Euler potentials for a degenerate field, we have

ξ · F = ξ · (dφ1 ∧ dφ2) = (ξ · dφ1)dφ2 − (ξ · dφ2)dφ1. (73)

The first term on the right vanishes for stationary, axisymmetric
fields characterized by the Uchida potentials (equation 61), while
the second term is simply −dψ for the angular Killing field ∂ϕ and
+�F dψ for the time-translation Killing field ∂t . Thus the angular
momentum and energy currents are given by

JL = −dψ ∧ ∗F − 1

4
F 2 ∂ϕ · ε, (74)

JE = −�F(ψ) dψ ∧ ∗F + 1
4 F 2 ∂t · ε. (75)
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Force-free magnetospheres 2517

The angular momentum current is minus the Noether current
(72).21 The conserved quantity associated with the asymptotic time-
translation symmetry is sometimes called Killing energy, or energy
at infinity, to distinguish it from energy as defined by local ob-
servers. We will often simply call it ‘energy’, when the meaning is
clear from the context.

When the electromagnetic field is coupled to charges, the energy
and angular momentum currents (74) and (75) are not conserved,
unless the four-force vanishes along ∂ϕ and ∂t , respectively. Since
the second terms in equations (74) and (75) are automatically con-
served for stationary axisymmetric fields (see note below equation
72), conservation of energy and angular momentum amounts to
the condition dψ ∧ d ∗ F = 0. (In particular, if a stationary, ax-
isymmetric, degenerate field conserves one of these, it also con-
serves the other.) This is equivalent to the first of the two force-
free equations (26) or, equivalently, conservation of the first Euler
current (27).22

Suppose that energy and angular momentum are conserved, either
because the field is fully force free or because the dissipation van-
ishes in symmetry directions, FabJbξ b = 0. We have shown above
that this is equivalent to dψ ∧ d ∗ F = 0. Using equation (63) for
∗F , we have

0 = dψ ∧ d ∗ F

= 1

2π
dψ ∧ dI ∧ dϕ ∧ dt − dψ ∧ d(�dψ ∧ �η). (76)

The second term vanishes because when factored it contains three
poloidal 1-forms, while the poloidal space is only two-dimensional.
It follows that dψ ∧ dI = 0, which implies that

I = I (ψ). (77)

Thus for stationary, axisymmetric, degenerate energy- and angular-
momentum-conserving fields, the polar current I, like the angular
velocity of field lines �F, is a function of the stream function alone.
The physical interpretation is that the poloidal current flows along
poloidal magnetic field lines, so that the Lorentz force along ∂ϕ

vanishes.23

The angular momentum and energy currents (74) and (75) both
contain a dψ factor and therefore vanish when integrated on a
surface of constant ψ . This means that there is no flux of angular
momentum or energy across such a surface; put differently, these
quantities flow along the poloidal field lines, as well as in toroidal
directions. (The vectorial characterization of this property is that
poloidal part of the vector current (∗J )a is tangent to poloidal field
lines.) To evaluate the flux, let P be a poloidal curve, and consider
the 3-surfaceS = P × S1 × �t generated by rotatingP all the way
around the axis, and extended in Killing time by an amount �t. The
total flux of angular momentum across S is the integral of JL over
that surface. The ∂ϕ · ε term does not contribute, since its pullback

21 The total four-momentum vector Pa is defined by
∫ Jξ = −ηabP

aξb∞,
so that the time and space components of Pa, which define the energy and
translational momentum, have opposite signs in relation to the corresponding
‘Hamiltonian’

∫ Jξ .
22 This property also holds for configurations with a single symmetry: for a
degenerate EM field that is Lie derived by a Killing field ξ of the background
spacetime, conservation of the current conjugate to ξ is equivalent to the
force-free condition involving the potential that is invariant under the sym-
metry. This follows from equation (106) and the analysis of Appendix D1.
23 In the electrically dominated case, we instead have that poloidal current
flows along poloidal equipotentials, i.e. perpendicular to electric field lines.

to a surface including the ∂ϕ-direction vanishes. The ∂t · ε term
similarly vanishes for the total energy flux, since the surface also
includes the ∂t -direction. The total fluxes are therefore given by∫

S
JL = −

∫
S

dψ ∧ ∗F, (78)

∫
S
JE = −

∫
S

�F dψ ∧ ∗F . (79)

Since the surface S extends in both ϕ and t, the integral vanishes
unless the integrand contains a toroidal 2-form. Since dψ is poloidal,
only the pure toroidal part of ∗F (equation 63), i.e. (I/2π)dt ∧ dϕ,
contributes, and so the flux rates through P × S1 are given by24

dL/dt = −
∫
P

I dψ, (80)

dE/dt = −
∫
P

�FI dψ. (81)

If the poloidal curve P is a line of constant ψ , i.e. a poloidal field
line, these integrals obviously vanish, illustrating the point made
above that these currents ‘flow along the poloidal field lines’. When
energy and angular momentum are conserved (such as when the
fields are force free), then we have I = I(ψ) (equation 77) and
equations (80) and (81) become ordinary one-dimensional integrals
over a coordinate ψ , with limits corresponding to the value of ψ at
the start and end of the curve P .

7.3.1 Direction of particle flow at a light surface

We now establish the result mentioned in Section 7.2.5 that the di-
rection of particle flow across a light surface is the same or opposite
to the direction of positive angular momentum flow, according to
whether �F − �Z is positive or negative. Here �Z is the ZAMO
angular velocity discussed beginning with equation (87) below.

In the physical setting discussed in Section 3.2.3, charged particle
motion is effectively tangent to the field sheets. The four-velocity u
of such a particle thus satisfies

0 = u · F = I

2π(−gT)1/2
u · εP − (u · η) dψ + (u · dψ) η (82)

using equation (65). The last term is toroidal, and vanishes identi-
cally since ψ is constant on the field sheet. The poloidal angular
momentum current 3-form (i.e. the part of JL containing εT as a
factor) is given by

J P
L = [−dψ ∧ ∗F ]P = − I

2π(−gT)1/2
dψ ∧ εT (83)

= −1

u · η

I 2

4π2(−gT)
(u · εP) ∧ εT, (84)

using equation (63) in the second step and equation (82) in
the final step. The particle current is a positive number times
u · ε = (u · εP) ∧ εT + εP ∧ u · εT, whose poloidal part is the first
term, (u · εP) ∧ εT. The relative sign of the poloidal angular momen-
tum current and particle current in the direction u is thus equal to the

24 With the outward orientation for P × S1, equations (80) and (81) give
the outward flux of angular momentum and energy, respectively, so they
give minus the angular momentum and energy change, respectively, of the
system inside the surface.
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2518 S. E. Gralla and T. Jacobson

sign of −u · η. Since η is null at the light surface, the sign of its con-
traction with all future pointing vectors is the same. In particular, the
ZAMO four-velocity uZ = ∂t + �Z∂ϕ is a future pointing timelike
vector everywhere,25 so sgn(u · η) = sgn(uZ · η) = sgn(�Z − �F).
We conclude that particle flow and positive angular momentum
flow have the same direction if �F > �Z, and opposite direction if
�F < �Z. In flat or Schwarzschild spacetime, �Z = 0, so all that
matters is the sign of the angular velocity of the field line, and the
direction of particle flow agrees with the direction of energy flow.

7.4 Stream equation

Up to now our discussion of stationary, axisymmetric fields has
assumed degeneracy of the field, but has not assumed that it is force
free. For force-free fields, the stream function ψ satisfies a non-
linear partial differential equation which is known by many names:
stream equation, Grad–Shafranov equation, transfield equation, and,
in flat spacetime, pulsar equation (Michel 1973; Scharlemann &
Wagoner 1973; Okamoto 1974; BZ). We will call this equation the
stream equation, and we now derive it in the case of a general
stationary, axisymmetric metric of the block diagonal form (55). A
similar equation can be derived in the presence of other sorts of
symmetries.

The stream equation follows directly from the two force-free
equations (26). As already demonstrated above equation (77), the
first force-free condition implies that I = I(ψ), which is equivalent to
conservation of energy and angular momentum. The second force-
free condition yields

0 = dφ2 ∧ d ∗ F

= (dψ2 + η − �′
Ft dψ) ∧

(
I ′

2π
dψ ∧ dt ∧ dϕ − d(�dψ ∧ �η)

)

= I ′

2π
dψ2 ∧ dψ ∧ dt ∧ dϕ − η ∧ d(�dψ ∧ �η)

= II ′

4π2 gT
ε + d(η ∧ �dψ ∧ �η) − dη ∧ �dψ ∧ �η

= II ′

4π2 gT
ε − d(|η|2 � dψ ∧ εT) + �′

Fdψ ∧ dt ∧ �dψ ∧ �η

= II ′

4π2 gT
ε − d(|η|2 ∗ dψ) − �′

F|dψ |2〈dt, η〉 ε. (85)

In the second line, prime denotes a ψ derivative, and we use equa-
tions (61), (69), (63), and (77). Of the six cross terms, only two
survive in the third line; two vanish because they contain three
poloidal 1-forms, one vanishes because it contains three toroidal 1-
forms, and one vanishes because it contains the same 1-form twice.
In the fourth line, in the first term, we use the dual of equation (64),
together with equations (57) and (58) (alternatively, equation A9).
The other two terms arise from ‘integration by parts’ of the second
term in the previous line, using the antiderivation property of d. To
obtain the fifth line, we use equation (A9) in the second term, and
the definition of η (equation 69) in the third term. In the last line,
we use equation (60) in the second term, and equations (A9) and
(58) in the third term.

25 uZ is future pointing timelike at infinity, is timelike everywhere (since it
is orthogonal to the spacelike vector ∂ϕ and lies in the toroidal plane), and
is nowhere zero. Hence, it is future timelike everywhere.

Finally, since d ∗ ω = ∇aω
a ε for any 1-form ω, the last line of

equation (85) yields

∇a(|η|2∇aψ) + �′
F〈dt, η〉|dψ |2 − II ′

4π2 gT
= 0, (86)

where ∇a is the covariant derivative determined by the spacetime
metric. This is the stream equation, in a form that holds for any
metric of the form (55). If �F and I are specified as given functions
of ψ , then equation (86) becomes a quasi-linear elliptic equation
for ψ , with critical points where the 1-form η is null, i.e. at light
surfaces (see Section 7.2).

The stream equation (86) involves the quantities |η|2 and 〈dt,
η〉, which depend on �F and the toroidal metric. Without loss of
generality, we may write this metric in the common form

(dsT)2 = −α2dt2 + ρ2(dϕ − �Zdt)2, (87)

where α, ρ, and �Z are functions of the poloidal coordinates
(r, θ ). The quantity �Z is the angular velocity of ZAMOs, who
follow the (non-gedoesic) toroidal curves orthogonal to the angular
Killing field ∂ϕ , while α is the rate of ZAMO time with respect to t,
sometimes called the redshift factor (MacDonald & Thorne 1982).
In terms of these quantities, those appearing in the stream equation
are given by

|η|2 = ρ−2 − α−2(�F − �Z)2 (88)

〈dt, η〉 = α−2(�F − �Z) (89)

− gT = α2ρ2. (90)

In particular, the light surfaces are located where ρ = ±α/(�F −
�Z), and 〈dt, η〉 vanishes where �Z = �F.

For comparison with other treatments, note that the four-
dimensional determinant g can also be expressed as −αρgP or as
gTgP. We may thus write the first term in equation (86) using the co-
variant derivative Da on the three-dimensional surfaces of constant
t or the two-dimensional poloidal covariant derivative Da, giving

∇a(|η|2∇aψ) = α−1/2 Da[α1/2|η|2 Daψ] (91)

= (−gT)−1/2Da[(−gT)1/2|η|2Daψ]. (92)

The RHS of equation (91) is the standard 3 + 1 form (MacDonald
& Thorne 1982), while equation (92) gives a 2 + 2 form.

It is worth mentioning that the stream equation can apply more
generally than in the stationary axisymmetric case. In particular, for
any 2 + 2 metric, if the field is symmetric under one of the factors
of the 2 + 2, and falls into Uchida’s case 1 (Appendix D2), then
the same manipulations above will give rise to a stream equation
that differs only in minor details. For example, a stream equation
applies to the case where the field is plane symmetric, i.e. x and y
are the ignorable coordinates, while the fields depend on z and t, in
flat spacetime.

7.4.1 Action derivation of stream equation

The stream equation can also be efficiently derived directly from
the action (28), with the symmetric form (61) for the potentials.
Uchida (1997a) worked this out and explained the relation to
the Scharlemann–Wagoner action (Scharlemann & Wagoner 1973)
from which the derivation is even simpler. Here we will briefly
summarize Uchida’s analysis using our methods.
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Force-free magnetospheres 2519

The action (28) takes the form

Ssym = − 1
2

∫
(dψ ∧ dψ2) ∧ ∗(dψ ∧ dψ2) + |η|2|dψ |2ε. (93)

The quantities to be varied are ψ and ψ2, while �F(ψ) in η is
treated as a fixed function. The variation of ψ2 yields the equation
dψ ∧ d ∗ (dψ ∧ dψ2) = 0, which using equation (63) implies that
dψ ∧ dI = 0, and hence I = I(ψ). (This is basically the same as the
derivation of equation 77.) The variation of ψ in the second term
of the action yields minus the first two terms of the stream equation
(86) times ε, while variation in the first term yields

dψ2 ∧ d ∗ (dψ ∧ dψ2) = 1

2π
dψ2 ∧ dI ∧ dt ∧ dϕ

= II ′

4π2 gT
ε, (94)

where in the last step we used the conclusion I = I(ψ) from the ψ2

variation, together with

dψ2 ∧ dI = I ′dψ2 ∧ dψ = − II ′

2π(−gT)1/2
εP. (95)

Hence, we recover the stream equation (86).
It is tempting, after having found that I = I(ψ), to substitute

dψ ∧ dψ2 = (I/2π
√

−gT)εP back into the action, eliminating ψ2

and yielding (−I 2/4π2 gT)ε for the first term in the integrand, and
then treating I as a fixed function. This is not correct: it would be
like solving for a velocity component q̇(p, qi, q̇i) in mechanics in
terms of a conserved conjugate momentum p and the other coordi-
nates and velocities, and substituting that back into the action. The
resulting action would yield invalid equations of motion, because in
the original action the conserved quantity was not held fixed. How-
ever, if at the same time one modifies the Lagrangian by addition of
−pq̇(p, qi, q̇i), the procedure is then correct. (This amounts to us-
ing the Hamiltonian formalism for q, and the Lagrangian formalism
for the remaining coordinates.) Following an analogous procedure
to trade the ψ2 dependence of the action in favour of I(ψ), Uchida
shows that the net result is simply to flip the sign of the I2 term,
yielding the action

SSW = − 1
2

∫ (
I 2

4π2 gT
+ |η|2|dψ |2

)
ε. (96)

This is the Scharlemann–Wagoner action (Scharlemann & Wag-
oner 1973), from which the stream equation (86) follows imme-
diately as the ψ stationarity condition when treating I(ψ) as a
fixed function.

7.4.2 Solution of the stream equation

The stream equation (86) for the stream function ψ has the peculiar
feature that it contains unknown functions �F(ψ) and I(ψ) which
must also be somehow determined. In this subsection, we briefly
discuss the nature of this equation and mention several approaches
to finding solutions.

If �F(ψ) and I(ψ) are specified, then the stream equation (86)
becomes a quasi-linear equation for ψ . Where |η| �= 0 (i.e. away
from any light surfaces), the equation is second order, with elliptic
principal part. Thus on a domain not containing light surfaces, one
expects unique solutions given suitable boundary data for ψ .26 At

26 For Dirichlet data, choosing I(ψ) and �F(ψ) is equivalent to specifying
I and �F on the boundary. Thus the total boundary data are a component of

a light surface (where |η| = 0), the stream equation becomes first
order,27

∇a(|η|2)∇aψ + �′
F〈dt, η〉|dψ |2 + II ′

4π2 gT
= 0. (97)

When I(ψ) and �F(ψ) are specified, this may be viewed as a Robin-
type boundary condition for ψ at a new boundary, the light surface.
If a single light surface cuts a domain in two, one expects a unique
solution on either side, but the solutions will generally not match
smoothly at the light surface. It is thus plausible that the requirement
of smooth matching restricts the choice of I(ψ) and �F(ψ) to a single
free function on field lines, at least on field lines (values of ψ) that
cross the light surface. If a second light surface is crossed by the
same field line, one expects both I(ψ) and �F(ψ) to be determined.

These expectations are borne out in numerical calculations that
iteratively update guesses for the free functions until a sufficiently
smooth match is achieved across all light surfaces. This approach
to solving the stream equation in the presence of light surfaces
was introduced by Contopoulos et al. (1999) and later used by
several other authors (Uzdensky 2005; Gruzinov 2006; Timokhin
2006; Contopoulos, Kazanas & Papadopoulos 2013; Nathanail &
Contopoulos 2014). For a pulsar magnetosphere, �F(ψ) may be
fixed in advance to be the (constant) angular velocity of the star (cf.
Section 8.1), and the single free function I(ψ) may be determined by
matching across the single light surface. Black hole magnetospheres
are qualitatively different in three respects: (i) the location of the
light surfaces generally depends on �F(ψ) and ψ , (ii) if the black
hole is spinning, there can be two light surfaces (cf. Section 9.3),
and (iii) at the horizon there is a fixed relation between ψ , I, and �F,
the Znajek condition (cf. Section 9.1). The Znajek condition can be
viewed as determining ψ on the horizon, given I(ψ) and �F(ψ).
On field lines that cross both light surfaces, the latter two functions
would also be determined.

In order to find analytic solutions to the stream equation, one
approach is to restrict the dependence of ψ to a one-dimensional
subspace of the two-dimensional poloidal space, converting the
stream equation into an ordinary differential equation (ODE). Then,
for example if �F is a fixed constant, the boundary condition on ψ

can determine I(ψ) locally, leaving just an ODE to be solved. This
kind of tactic was used for example by Menon & Dermer (2007),
who found a family of solutions in the Kerr spacetime where ψ ,
�F, and I are independent of BL radial coordinate r.

Finally, stationary, axisymmetric force-free solutions can be gen-
erated by time-dependent evolution from non-force-free initial data,
using numerical devices that short out electric fields and dissipate
energy. Thus one effectively solves the stream equation through
time-dependent evolution (e.g. Komissarov 2001; McKinney 2006;
Spitkovsky 2006; Komissarov & McKinney 2007).

7.5 Field line topology

In this subsection, we establish two restrictions on the possi-
ble topology of magnetic field lines in stationary, axisymmetric
force-free magnetospheres. In Sections 8 and 9, we apply the sec-
ond of these results to pulsar and black holes magnetospheres.

the poloidal magnetic field (derived from ψ), a component of the poloidal
electric field (obtained from �F and ψ), and the toroidal magnetic field
(proportional to I).
27 If |η|2 vanishes quadratically or faster, the equation would actually be
zeroth order, i.e. algebraic. However, this situation does not arise in practice.
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2520 S. E. Gralla and T. Jacobson

7.5.1 No closed loops

We begin with the simpler of the two restrictions:

A stationary, axisymmetric, force-free, magnetically dominated
field configuration cannot possess a closed loop of poloidal field
line.

By a closed loop of poloidal field line we mean a level set of ψ that
forms a smooth closed curve, i.e. a closed set ψ = const on which
dψ �= 0. Note that such loops do not in general correspond to closed
loops of ‘true’ field line, since those lines bend in the ∂ϕ-direction.
To establish the result, we employ the expression (26) of the force-
free condition in terms of the conservation of the Euler currents. In
particular, we use the fact that the Euler current J2 = dφ2 ∧ ∗F is
a closed 3-form. By Stokes’ theorem, this implies the vanishing of
the integral of J2 over any closed 3-surface bounding a force-free
region of spacetime.

Suppose for contradiction that a closed loop of poloidal field line
exists, i.e. that a smooth level curve C of ψ is closed. Flowing this
loop along ∂ϕ , one obtains a torus, and flowing that along ∂t (by an
amount �t), one obtains a closed 3-surface, consisting of a timelike
tube S = C × S1 × �t and initial and final spacelike, solid torus
caps C × S1. Integrating J2 on this surface, the contributions from
the caps cancel. The timelike tube is a surface of constant ψ on
which dψ �= 0, so we can express it using equation (A7), with v any
vector field such that v · dψ = 1 on S:

0 =
∫
S

dφ2 ∧ ∗F

=
∫
S

v · (dψ ∧ dφ2 ∧ ∗F )

=
∫
S

v · (F ∧ ∗F )

= 1

2

∫
S

F 2 v · ε

= π�t

∮
C

F 2
√

−gTv · εP. (98)

In the third line, we used F = dφ1 ∧ dφ2 (equation 22) and φ1 = ψ

(equation 61); in the fourth line, we used equation (A9); and in the
last line, we used (58) and carried out the toroidal part of the integral.
The contraction of the poloidal 1-form v · εP with a tangent vector
to C vanishes only if v is also tangent to C, which is excluded by
v · dψ = 1. Thus if F is magnetically dominated (F2 > 0) everywhere
on C, the integral (98) cannot vanish, so we have a contradiction.
This establishes our ‘no closed loops’ result.

7.5.2 Light surface loop lemma

In this subsection, we prove a light surface loop lemma that will be
useful when we treat pulsar and black hole magnetospheres. This
lemma was part of the ‘no-ingrown-hair’ argument of MacDonald &
Thorne (1982), but here we present it on its own and also discuss two
related results. The lemma states that for stationary, axisymmetric,
force-free fields (not necessarily magnetically dominated),

no poloidal field line may pierce a light surface twice in a con-
tractible region where �′

F = I ′ = 0

The condition �′
F = 0 indicates that all field lines rotate with

the same angular velocity, while I ′ = 0 implies that no poloidal
current flows in this region (otherwise I, being the total current

through the cap with boundary at ψ , would depend on ψ). Our
hypotheses allow non-zero toroidal magnetic field I, supported by
poloidal current flowing elsewhere in the magnetosphere.

The proof is based on the fact that when �′
F = I ′ = 0, conser-

vation of the second Euler current is equivalent to conservation
|η|2∗ dψ ,

0 = d(dφ2 ∧ ∗F ) = d(|η|2 ∗ dψ). (99)

Equation (99) result follows from the derivation of the stream
equation (85), and the vectorial version ∇a(|η|2∇aψ) = 0 can be
seen directly from the final form of the stream equation (86). Sup-
pose for contradiction that a smooth (dψ �= 0) poloidal field line
intersects a light surface (where |η| = 0) twice, without intersecting
another light surface, as depicted in Fig. 3(b). We may construct a
closed 3-surface by considering the portions of the field line and
light surface that form a closed poloidal loop, and flowing this loop
along ∂t (for time �t) and along ∂ϕ . Integrating |η|2∗ dψ over this
3-surface, the initial and final spacelike caps cancel by stationarity,
while the timelike portion involving the light surface vanishes since
|η| = 0 there. The remaining portion is that generated by the field
line segment, which is a surface of constant ψ on which dψ �= 0.
With the same notation as in the previous subsection, that integral
is given by

0 =
∫

|η|2v · (dψ ∧ ∗dψ)

=
∫

|η|2|dψ |2v · ε. (100)

By assumption, η is non-null everywhere on the field line segment,
so cannot change sign. Since the poloidal subspace is Riemannian,
we have |dψ |2 > 0. Thus |η|2|dψ |2 does not change sign, and the
reasoning used below equation (98) implies that the integral (100)
cannot vanish, a contradiction.

If more than one light surface is present, then, for any field line
segment that pierces a single light surface twice (or more), there will
also be a subsegment that pierces a (possibly different) light surface
twice without encountering any other light surface. We may then
run the above argument on that subsegment, again concluding that
the field configuration is impossible. This establishes the lemma.

The conclusion of the light surface lemma also holds in two
additional cases. First, since it is the product �′

F〈dt, η〉 that appears
in the stream equation (85) or (86), we may replace the assumption
�′

F = 0 with 〈dt, η〉 = 0. The interpretation of 〈dt, η〉 = 0 is that
field lines corotate with ZAMOs, cf. equation (89).

Secondly, we may drop the force-free assumption and instead
assume that (i) angular momentum is conserved (first force-free
condition is satisfied and hence I = I(ψ)) and (ii) there is a reflection

Figure 3. Disallowed topologies of force-free poloidal magnetic field lines.
(a) No closed loops when magnetically dominated. (b) No light surface loops
when �′

F = I ′ = 0.
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Force-free magnetospheres 2521

isometry28 (of the spacetime and the fields) about a spacelike 2-
surface (poloidal curve flowed in toroidal directions) intersecting
the light surface loop. The reflection isometry implies that I is odd
under reflection (see equation 65, noting that F is even while εP is
odd), but I = I(ψ) and the evenness of ψ implies that I is even. Thus
we in fact have I = 0, and the assumption I′ = 0 is superfluous. We
must still include �′

F = 0 as an assumption, and in this case we still
have the last equality in equation (99), dφ2 ∧ d ∗ F = d(|η|2∗ dψ).
These quantities are now not known to vanish, but we may use the
reflection isometry to argue that their integrals do vanish. To do so
note that dφ2 is even (first use the evenness of η and F to establish
evenness of dψ , and then F = dψ ∧ dφ2 implies dφ2 is even), while
d ∗ F is odd on account of the duality. Thus the form dφ2 ∧ d ∗ F

is odd. Since the shape of the light surface loop is symmetric, the
integral of this form over the interior of the loop (flowed in ϕ and t
to form a four-volume) is vanishing. This establishes the first line of
equation (100), and the same arguments establish a contradiction.
To summarize, we have shown that for stationary, axisymmetric,
reflection-symmetric, degenerate energy- and angular-momentum-
conserving fields with �′

F = 0 (or 〈dt, η〉 = 0), no light surface
loops straddling the reflection surface may exist.

7.6 Special case: no poloidal field

As mentioned above, the form (61) of the Euler potentials of a
stationary, axisymmetric solution is valid only when F · ∂ϕ �= 0.
The case F · ∂ϕ = 0 corresponds to a purely toroidal magnetic field,
and may be useful in situations where the poloidal field is small (e.g.
Contopoulos 1995). When F · ∂ϕ = 0 one may choose the form
(D15),

φ1 = χ (r, θ ), φ2 = χ2(r, θ ) + t . (101)

We may then write F as

F = I

2π(−gT)1/2
εP + dχ ∧ dt, (102)

where I satisfies ∗(dχ ∧ dχ2) = (I/2π)dt ∧ dϕ, the analogue of
equation (64). It is evident that χ is an electric potential for the
(purely poloidal) electric field, while I is again equal to the electric
current through a toroidal loop (Section 7.2.2). As in the generic
case, the first force-free equation implies I = I(χ ) (see discussion
above equation 77). To derive the associated stream equation, we
may follow the same steps of equations (85), finding

∇a(|dt |2∇aχ ) − II ′

4π2 gT
= 0, (103)

where ′ is a χ derivative. Note that equations (101) and (103) can
be obtained from the generic versions (61) and (86) (respectively)
by the replacements ψ → χ , ϕ → t, and �F → 0. However, since
ψ determines the poloidal magnetic field (which vanishes in the
special case), it is more physical to obtain them from the limit
ψ → 0 and �F → ∞ with the product �Fψ → −χ finite.

An example of this limit is provided by the Michel monopole so-
lution −qd(cos θ ) ∧ (dϕ − �Fdu). In the limit q → 0, �F → ∞,
with q�F held fixed. The vacuum monopole term (which pro-
vides the poloidal magnetic field) vanishes, leaving just the sta-
tionary, axisymmetric outgoing Poynting flux solution (30), F =
q�Fd(cos θ ) ∧ du, which satisfies the stream equation (103) rather
than the generic stationary axisymmetric stream equation. Euler

28 A definition of a reflection isometry is given in Section 8.2.

potentials for this solution in the above notation are specified by
χ = q�F cos θ and χ2 = −r.

Another interesting example arises in the Menon–Dermer so-
lution, i.e. the stationary axisymmetric case of the Poynting flux
solution (34) in Kerr spacetime (35), A(θ )dθ ∧ (du − a sin2 θ dϕ̄).
That solution falls in the generic class on account of the dϕ̄ term,
but since that term vanishes along the axis, the axis limit lands on
this special case. The angular velocity of the field lines in this so-
lution is �F = 1/(a sin2 θ ), whose limit indeed diverges as the axis
is approached.

The case of no poloidal field does not appear to have been previ-
ously considered in the force-free context. However, Gourgoulhon
et al. (2011) have given a completely general treatment of station-
ary, axisymmetric equilibria in the context of ideal MHD, which
includes the magnetically dominated force-free case as a limit.

8 PULSAR MAG NETO SPHERE

This section addresses general features of magnetospheres around
conducting, magnetized stars in the case of aligned rotation and
magnetic axes. Such a configuration is stationary and axisymmet-
ric, so does not pulse; however, it serves as a simple example of key
properties of pulsar magnetospheres, and as an approximation for
a nearly aligned pulsar. Specifically, we discuss the boundary con-
dition at the stellar surface which determines the angular velocity
�F(ψ) of the field, and the roles of the light cylinder and current
sheet in delimiting the region of closed field lines.

The pulsar magnetosphere has mainly been studied in flat space-
time. We will discuss general features of pulsar magnetospheres
based on the general metric (55), so our comments will hold when
gravity is included. Our analysis also serves to identify precise
circumstances under which each particular feature must hold.

8.1 Angular velocity of field lines

The angular velocity of field lines �F may be determined by the as-
sumption of a perfectly conducting stellar surface, which should be
a good approximation for neutron stars. If U is the four-velocity field
of a perfectly conducting surface, then the contraction of U · F with
any vector tangent to the surface vanishes. That is, the electric field
in the rest frame of the conductor must have no component tangent to
the surface. If the surface is that of an axisymmetric star with four-
velocity U ∝ ∂t + �∂ϕ , then for a stationary, axisymmetric de-
generate field (62) we have U · F = −(U · η)dψ ∝ (�F − �)dψ .
Provided the poloidal magnetic field is not tangent to the stellar sur-
face (i.e. provided there is a surface tangent vector v with v · dψ �=
0), it follows that � = �F. We have thus shown that for stationary,
axisymmetric, degenerate fields,

poloidal field lines that non-tangentially intersect a perfectly
conducting star must have �F = �

Thus the field lines corotate with the star. Note that when � = �F

we have U · F = 0 (see expression in text above), implying that also
the normal component of the electric field in the rotating frame must
vanish at the surface of the conducting star. Thus there is no induced
charge on the stellar surface, according to corotating observers.
Static observers, on the other hand, will generically measure induced
charge, depending on the assumptions for the field configuration
within the star.

The lack of induced surface charge in the rotating frame is a direct
consequence of degeneracy and the conducting boundary condition:
since the tangential components must vanish on the conducting
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2522 S. E. Gralla and T. Jacobson

surface, the electric field is purely normal. But if the magnetic field
has a normal component, E · B = 0 implies that the electric field
vanishes entirely, and there is no induced charge. If the star were
instead surrounded by vacuum, the field would not be degener-
ate, and generically there would be a surface charge and a normal
component of the electric field in the rotating frame.

8.2 Open and closed zones

Closed field lines are defined to be field lines that intersect the
star twice, while open field lines intersect it once. In vacuum, the
field lines of a monopole star would all be open, while those of a
dipole are all closed. The standard aligned force-free pulsar mag-
netosphere (Fig. 4), on the other hand, is a mix: the field lines
form a dipole pattern at the star, but only some of them return to
close, with the rest opening up to infinity. This basic structure of
closed and open zones was postulated in the earliest work on the
subject (Goldreich & Julian 1969), and later work has confirmed
that such solutions do exist.

An important feature of all configurations previously considered
is that the closed field lines remain within the light cylinder,29 unless
they pass through a non-force free region such as a current sheet.
While it is commonly asserted that closed force-free field lines
must remain within the light cylinder, we are unaware of any ex-
plicit demonstration in the literature. In this section, we will critique
the reasoning that one often hears or reads, and then demonstrate
several related results based on various specific assumptions. We
will conclude by explaining why, despite these results, the possibil-
ity that closed force-free field lines could venture outside the light
cylinder has not (yet) been ruled out.

An argument one often hears or reads for the impossibility of
closed magnetic field lines in a degenerate field outside the light
cylinder is based on the notion that particles stuck on such field
lines (in cyclotron motion) would have to be moving faster than
the speed of light. It seems unsatisfactory to invoke ‘particles’ to
determine something about force-free fields, however, since the
matter plays no role in the dynamics of those fields (other than to
carry the current). To the extent that such an argument is valid, it
should be possible to reformulate it without reference to particles.

To identify such a reformulation, we note that (i) particles are
stuck on field lines only if the field is magnetically dominated,
and (ii) such field lines always admit subluminal particles stuck on
them, because magnetically dominated, degenerate fields always
have timelike field sheets. Hence, to rule out some behaviour of a
degenerate field ‘because particles stuck on field lines cannot go
faster than light must be logically equivalent to ruling it out simply
by the assumption that the field is magnetically dominated. In what
follows, we will base our arguments on magnetic domination rather
than considerations of particles. We will also give one argument
that does not require magnetic domination.

A stationary, axisymmetric field cannot remain magnetically
dominated outside the light cylinder if the field line has no toroidal
component, because such a line sweeps out a spacelike field sheet
outside the light cylinder. To reach this conclusion computationally,
note that the absence of a toroidal magnetic field is equivalent to
the condition I = 0 (cf. equation 65), which implies F2 = |dψ |2|η|2
(equation 66). The factor |dψ |2 is non-negative, since the poloidal

29 To model pulsars, we focus on spacetimes for which degenerate field
configurations will have a single light surface with the topology of a cylinder,
outside of which corotating trajectories are spacelike. We refer to this surface
as the light cylinder.

Figure 4. Diagram illustrating the poloidal structure of the standard aligned
pulsar magnetosphere. A current sheet (thick brown line) separates poloidal
field lines (black) into three zones, one closed and two open. The closed
zone terminates at, or just within, the light cylinder (dashed line, shown
artificially close to the star).

subspace is Riemannian, and outside the light cylinder |η|2 < 0 by
definition, so if I = 0, then F2 must be negative (or zero) outside
the light cylinder, violating magnetic domination. This establishes
a link between the absence of polar current and the confinement of
magnetic field lines:

In a stationary, axisymmetric, degenerate, magnetically domi-
nated field configuration, field lines with I = 0 must lie within
the light cylinder.

The idea that closed field lines must remain within the light
cylinder may in part be due to an association between closed field
lines and I = 0. The original Goldreich–Julian model postulated a
corotating portion of the magnetosphere, where one sign of charge
rotates rigidly with the star. This portion indeed has I = 0, since there
is no poloidal current. In most self-consistent models constructed by
solving the stream equation (e.g. Contopoulos et al. 1999), I = 0 is
assumed in the closed zone. One possible reason for this assumption
is the fact that

reflection symmetry and the force-free condition imply that closed
field lines crossing the equatorial plane must have I = 0.

By ‘reflection symmetry’ we mean an isometry of the spacetime
and fields under which the volume element ε changes sign, and
which leaves fixed a 3-surface composed of a spacelike 2-surface
flowed along the timelike Killing field. In flat spacetime, this corre-
sponds to the usual reflection symmetry about the plane z = 0, and
in the general case, we refer to the spacelike 2-surface as the equa-
torial ‘plane’ although it would generally have intrinsic curvature.
To establish the result, we note that I(ψ) is constant on the field
line, hence is even under reflection, but it is also required to be odd
since F (equation 65) is even while the poloidal area element εP is
odd. Since this result relies only on I = I(ψ), it suffices to assume
just that energy and angular momentum are conserved, rather than
the full force-free condition (see discussion in Section 7.3 above).

Combining the previous two quoted statements, we have the
following theorem on closed field lines:

In a stationary, axisymmetric, reflection-symmetric, force-free,
magnetically dominated field configuration, field lines crossing
the equatorial plane must have I = 0 and remain within the light
cylinder.
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Force-free magnetospheres 2523

Note that reflection symmetry implies that field lines which
come from the star and cross the equator are closed, so this result
provides a precise set of assumptions under which the basic topol-
ogy of the standard pulsar magnetosphere is to be expected. Again,
the force-free assumption may be replaced by that of conservation
of energy and angular momentum. The assumption of magnetic
domination can be replaced by the condition that �′

F = 0 which,
as shown in Section 8.1, necessarily holds if the field terminates
on a rigidly rotating, perfectly conducting star with non-tangential
poloidal surface field. Then, together with the other assumptions,
the light surface loop lemma of Section 7.5.2 applies and establishes
that closed lines cannot extend outside the light cylinder. We thus
have the following alternate result:

In a stationary, axisymmetric, reflection-symmetric, force-free,
field configuration with �′

F = 0, field lines crossing the equato-
rial plane must have I = 0 and remain within the light cylinder.

Given the above considerations about closed field lines, a natural
(and so-far standard) configuration for the dipole pulsar magneto-
sphere is that shown in Fig. 4. Field lines near the equator of the
star would, in vacuum, have returned more quickly to the star, so
it stands to reason that the closed zone of the configuration will be
near the equator. On the other hand, field lines near the poles would
have extended far from the star in vacuum, so it makes sense that in
the force-free case these field lines will open up to infinity. Outside
the light cylinder, there are no closed field lines, and the reversal
of the sign of the field across the equator implies the presence of a
current sheet (see Section 6). A current sheet is also present at the
boundary between closed and open zones, connecting to the star.
This general structure of the aligned dipole pulsar force-free mag-
netosphere has become standard, but alternative models do exist
(Gruzinov 2011; Contopoulos et al. 2014).

We conclude this section with a discussion of situations in which
closed field lines could be present outside the light cylinder in a
magnetically dominated field configuration. We first discuss fields
that are assumed to be degenerate but are otherwise arbitrary. In this
case, it is straightforward to construct closed zones that proceed out-
side the light cylinder, since ψ , �F(ψ), and I may be chosen freely.
In particular, we may take �F = const, choose ψ corresponding
to the standard closed/open structure of the pulsar magnetosphere
except with the closed zone penetrating the light cylinder, and then
choose I large enough that F2 is positive everywhere in the closed
zone (see equation 66). This configuration must violate reflection
symmetry, but by a similar construction we may form closed loops
outside the light cylinder in a reflection-symmetric magnetosphere
by confining those loops to a hemisphere.

A more interesting example is provided by the new pulsar magne-
tosphere of Contopoulos et al. (2014). There the field is magnetically
dominated, reflection symmetric, satisfies �′

F = 0, and is force free
everywhere except in the equatorial plane where lies a current sheet.
There are closed field lines with I(ψ) �= 0 that extend outside the
light cylinder and have a kink at the current sheet. This configura-
tion escapes our no-go theorem because of the infinitesimally thin
current sheet violating the force-free condition. Specifically, a non-
zero current is consistent with reflection symmetry because I(ψ)
flips sign across the current sheet. That is, Ibelow(ψ) = −Iabove(ψ).
This reversal of the sign of I on a field line would not be allowed if
the field were force free everywhere.

Adopting the additional constraint that the fields be everywhere
force free has the potential to eliminate the possibility of closed
poloidal field lines venturing outside the light cylinder, but we have
not found an argument that does so. Gruzinov (2006) has found

force-free solutions with closed lines having I �= 0, showing that
there is no difficulty of the lines closing. He has chosen to study con-
figurations where the closed lines remain within the light cylinder,
but we see nothing preventing alternative configurations for which
they do not. As far as we are aware, it is currently an open question
whether magnetically dominated force-free fields can have closed
field lines outside the light cylinder.

9 B L AC K H O L E MAG N E TO S P H E R E

Force-free magnetospheres of spinning black holes differ quali-
tatively from those of stars because of the presence of the event
horizon and ergosphere. Within a star, the force-free condition does
not hold, so energy (and angular momentum) can be transferred
from the star to the electromagnetic field. In the case of a stationary
black hole, by contrast, the force-free condition may in principle
hold up to and across the horizon, and conditions behind the horizon
cannot affect the exterior, so there is no analogue of the star trans-
ferring energy to the field. On the other hand, the meaning of this
conserved energy is modified because of the spacetime curvature:
as discussed in Section 7.3, it is the integral of the Noether current
associated with the ‘time-translation’ Killing vector. On a station-
ary spinning black hole spacetime, this Killing vector is timelike
far from the black hole, but spacelike near the black hole in the
ergosphere, due to the extreme ‘dragging of inertial frames’. In the
ergosphere, therefore, Killing energy is actually spatial momentum
as defined by local observers. Hence, the electromagnetic field can
have a local negative Killing energy density. Killing energy can
therefore be extracted from the black hole, despite its conservation,
because a corresponding negative Killing energy can flow across
the horizon into the black hole. A process in which rotational en-
ergy is extracted from a spinning black hole, with a negative Killing
energy flux across the horizon balancing a positive Killing energy
flux at infinity, is (or should be30) called a Penrose process (Penrose
1969, 2002). When the mechanism involves a force-free magneto-
sphere, it is generally known as the BZ process or mechanism. For
further discussion of the relationship between the Penrose and BZ
processes, see e.g. Komissarov (2009) and Lasota et al. (2014).

Another qualitative difference between stellar and black hole
magnetospheres lies in the topology of their field lines. The main
qualitative feature of the pulsar magnetosphere relative to vacuum
is that some field lines are open, although some loop back on to the
star. In the case of a spinning black hole, it turns out that all field
lines extending from the horizon must be open, unless they enter
or loop around a non-force-free region, such as an accretion disc.
In reference to the ‘no-hair’ theorems on black hole uniqueness in
vacuum, we name this result the no-ingrown-hair theorem. This
illustrates the fact that while the magnetic field lines (hairs) may
indeed emerge from the horizon of a black hole with a force-free
magnetosphere, they may not return unless they encounter a non-
force-free region. The no-ingrown-hair result was first derived by

30 The term is sometimes reserved for a particular class of such processes.
However, while Penrose introduced the idea with the example of lowering a
mass into the ergosphere at the end of a rope, he concluded that ‘Thus, in a
sense, we have found a way of extracting rotational energy from the “black
hole”. Of course, this is hardly a practical method! Certain improvements
may be possible, e.g. using a ballistic method.7 But the real significance is to
find out what can and what cannot be done in principle since this may have
some indirect relevance to astrophysical situations.’. (His footnote 7 states
‘Calculations show that this can indeed be done’, and goes on to describe
the particle splitting method, now usually called the Penrose process).
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MacDonald & Thorne (1982); our proof is similar but uses some
different arguments.

Finally, there is a tricky technical point that arises only in the
treatment of black hole magnetospheres. The 2 + 2 poloidal/toroidal
decomposition of the spacetime, which is so useful in handling the
stationary axisymmetric force-free equations, breaks down at the
horizon. One issue is that the 1-form dr becomes null (it is normal
to the horizon, which lies at constant r), so that the poloidal subspace
becomes null, rather than spacelike. Another is that the 1-forms dt
and dϕ diverge, both in a manner proportional to dr, so that the
toroidal subspace also becomes null, with the same null direction
as the poloidal subspace. One way to handle this is to instead use
coordinates that are regular at the horizon. Alternatively, one can
continue to use the 2 + 2 decomposition, being careful to determine
the appropriate conditions that must be imposed to ensure regularity
at the horizon. Here we will do some of both.

In this section, we adopt the Kerr metric for the black hole;
however, the main important property is the presence of a horizon-
generating Killing vector ∂t + �H∂ϕ , so analogous results could
be easily derived for other spinning black hole metrics of the form
(55).

9.1 Znajek horizon condition

On the future horizon of the Kerr spacetime, the quantities �F, I,
and ψ are not independent, but instead obey the Znajek condition
(Znajek 1977):

I = 2π(�F − �H)ψ,θ

√
gϕϕ

gθθ

. (104)

This holds for any stationary axisymmetric degenerate solution of
Maxwell’s equations with ∂ϕ · F �= 0. Here �H is the angular ve-
locity of the horizon, defined by the condition that the Killing field

χ = ∂t + �H∂ϕ (105)

is tangent to the null horizon generators. Znajek obtained equation
(104) by demanding that the corresponding electromagnetic field
strength F (equation 65 in our notation) is regular on the horizon,
and the condition is often employed to guarantee regularity in cal-
culations involving irregular coordinates. However, as elaborated
below, all quantities appearing in equation (104) have invariant
geometrical status, making the condition independent of any coor-
dinate concerns, including their regularity. To emphasize this point,
we begin by providing a tensorial derivation of equation (104). We
then present a derivation expressing F in regular coordinates, which
shows how equation (104) guarantees regularity of F on the future
horizon for non-extremal black holes. We find an additional con-
dition required for regularity in the extremal case a = M. Finally,
we reproduce the surprising fact, first pointed out by MacDonald
& Thorne (1982), that the stream equation (86) in fact implies the
Znajek condition up to sign, corresponding to regularity on either
the future or past horizon.

To see that equation (104) is a relationship between invariants,
recall that �F may be defined by the condition (∂t + �F∂ϕ) · F = 0
for degenerate fields F with ∂ϕ · F �= 0, the polar current I is the
upward flow of charge per unit Killing time through a polar cap
bounded by an axial loop, 2πψ is the upward flux of F through
such a loop, and 2π

√
gϕϕ is its circumference. These notions are

valid on the horizon, where the remaining ingredient ψ,θ/
√

gθθ is
the derivative with respect to proper length along the horizon in
the direction orthogonal to the two Killing vectors, away from the
upward pole.

The tensorial derivation makes use of the horizon-generating
Killing field (105) which, in view of the defining property of �F

and the structure of the field strength (62), has the useful property

χ · F = (�F − �H)dψ. (106)

The derivation proceeds by evaluating the polar current on the hori-
zon and performing a few manipulations:

I/2π = ∗Fab∂
a
t ∂

b
ϕ (107)

= ∗Fabχ
a∂b

ϕ (108)

= Fab ∗ (χa∂b
ϕ) (109)

= Fabχ
a∂b

θ

√
gϕϕ/gθθ (110)

= (�F − �H)ψ,θ

√
gϕϕ/gθθ . (111)

In the first line, we used equation (64), in the second line, we used
antisymmetry of Fab to replace ∂t by χ , and in the third line, we
shifted the duality operation from Fab to χa∂b

ϕ . In the fourth line,
we used the fact that on the horizon χ is null and orthogonal to ∂ϕ ,
so that the 2-form χ[a(∂ϕ)b] is null and therefore can be dualized
as explained in Appendix A2.3. In this step, we also use the fact
that ∂θ is orthogonal to both ∂ϕ and χ . We have chosen the sign
appropriate for the future horizon.31 Finally, in the last line, we use
equation (106). Note that, other than stationary axisymmetry with
commuting Killing fields, the only special property of the spacetime
used in this derivation is the existence of a Killing horizon generated
by χ .

When thinking of the intrinsic quantities I, �F, and ψ individ-
ually, we are unaware of any reason to expect them to be related
on the horizon. However, since the poloidal and toroidal subspaces
become null, and with non-trivial intersection in the limit at the hori-
zon, the corresponding parts of the 2-form F are not independent.
This makes the existence of the Znajek condition less surprising.

To show that equation (104) guarantees regularity on the future
horizon of Kerr (in the non-extremal case), we begin with equa-
tion (65), F = I/(2π

√
−gT)εP + dψ ∧ η. Using

√
−gP/gT =

(r2 + a2 cos2 θ )/(� sin θ ), the first term can be written as

I

2π(−gT)1/2
εP = I

2π

r2 + a2 cos2 θ

� sin θ
dr ∧ dθ, (112)

where we have used relations from Appendix C. Note that this term
is singular on the horizon r = r+, where � ≡ (r − r+)(r − r−) = 0.
The second term dψ ∧ η is also singular because η (equation 69) is
composed of the singular 1-forms dϕ and dt.

To isolate the divergent behaviour, we define a ‘regularized’ coro-
tation 1-form,

η̃ = dϕ̃ − �F dv, (113)

where v and ϕ̃ are the regular ingoing Kerr coordinates (C8) and
(C14). Then η̃ is regular on the future horizon, and differs from η

31 To determine the sign of �χ , note that on the future horizon χa ∼ (du)a

(both 1-forms are null and normal to the horizon). As shown at the end of
Appendix A2.3, in the Schwarzschild case, �du = du; hence, �χ = χ . The
Kerr case is related by a continuous deformation to Schwarzschild, so the
sign is the same. On the past horizon, χa ∼ (dv)a and �dv = −dv; hence,
�χ = −χ .
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by a singular form proportional to dr,

η = η̃ + [�F(r2 + a2) − a]
dr

�

= η̃ + [
�F(r2 + a2) − �H

(
r2
+ + a2

)] dr

�
. (114)

The η term in F can then be written as

dψ ∧ η = dψ ∧ η̃

− ψ,θ

(�F(r2 + a2) − �H(r2
+ + a2)

�
dr ∧ dθ. (115)

The field strength is the sum of equations (112) and (115),

F = dψ ∧ η̃ + f (r)

(r − r+)(r − r−)
dr ∧ dθ, (116)

with

f (r) = I (r2 + a2 cos2 θ )

2π sin θ

− ψ,θ

[
(�F(r2 + a2) − �H

(
r2
+ + a2

)]
. (117)

Regularity of the field at the horizon requires f(r+) = 0, i.e.

I = 2π(�F − �H)ψ,θ

(
r2
+ + a2

)
sin θ

r2+ + a2 cos2 θ
(118)

evaluated at r+. The rightmost factor agrees with
√

gϕϕ/gθθ on the
horizon, so we have recovered the Znajek condition (104) on the
future horizon.

In the non-extremal case r+ �= r−, this condition is also sufficient
for regularity, and the horizon value of the field takes the form

F = dψ ∧ η̃ + f ′(r+)

r+ − r−
dr ∧ dθ. (119)

In the extremal case, f′(r+) = 0 is a second necessary condition, and
together the two are sufficient. Using r+ = M = a, which holds in
the extremal case, this second condition becomes

0 = f ′(r+)

2M2
= I ′ψ,r (1 + cos2 θ )

4π sin θ
+ 1

M

(
I

2π sin θ
− ψ,θ�F

)

− ψ,θr (�F − �H) − ψ,θψ,r�
′
F, (120)

where now �H = 1/2M , and the expression is evaluated at r = r+.
We are not aware of a previous derivation of this condition, although
the analogous condition is known in the Reissner–Nordstrom case
(Takamori et al. 2011). In the near extremal case, F would become
large if f′(r+) does not go to zero as r+ − r− = 2M

√
1 − (a/M)2.

It seems reasonable to expect that F does not blow up as extremality
is approached (for physically reasonable boundary conditions), so
we expect equation (120) to be approximately satisfied for near-
extremal black holes.

BZ regarded the Znajek condition (104) as a boundary condition
at r = r+ for the stream equation. However, MacDonald & Thorne
(1982) pointed out that it in fact follows from the stream equation,
up to a sign. To see this, first write the stream equation (86) near the
horizon as

II ′

4π2
= A

�
sin θ ∂θ

[
sin θ

�
(�F − �H)2 ∂θψ

]

− A

�2
sin2θ �′

F (�F − �H) (∂θψ)2 + O(�), (121)

where A, �, and � are defined in Appendix C, and we have made
use of equations (88)–(90). Here we assume that ψ , �F, and I are

smooth in r and θ . The fact that only θ -derivatives appear is related to
the vanishing of grr on the horizon. On the horizon r = r+ = const,
we may relate ψ and θ derivatives using the ordinary chain rule,
f ′ = ∂θf /∂θψ for functions f. Then we have

∂θ

(
I 2

8π2

)
= II ′

4π2
∂θψ (122)

= ∂θ

[
A sin2θ

2�2
(�F − �H)2 (∂θψ)2

]
, (123)

where the second line follows using equation (121) and the Leibniz
rule. We may now integrate in θ along the horizon, yielding

I 2 = 4π2 A sin2θ

�2
(�F − �H)2 (∂θψ)2 + C. (124)

The integration constant C must vanish for the fields to be regular
on the axis (otherwise a line current will be present there), so we
conclude that the stream equation implies

I = ±2π

√
A sin θ

�
(�F − �H) ∂θψ. (125)

This is the Znajek condition (104), with an additional ± on the
right-hand side.

If the minus sign is chosen, then the fields are regular on the past
horizon instead of the future horizon and thus represent a white hole
magnetosphere rather than a black hole magnetosphere. Note that it
is impossible for the fields to be regular on both horizons, since all
quantities appearing in equation (125) take the same value on both
horizons. The fact that equation (125) is always satisfied by smooth
solutions to the stream equation indicates that, when solving the
stream equation on r ≥ r+, the only boundary condition at r = r+
that one needs to impose is the sign choice corresponding to a black
hole.

The Znajek condition has a number of practical applications.
First, it can be used as a horizon boundary condition for the stream
equation, as in the original BZ paper. (The BZ solution can equally
well be derived without the use of the condition; cf. McKinney &
Gammie 2004 and our Section 5.3.) The condition is also helpful in
derivations of theoretical results. We use it to obtain the illustrative
flux formulae (126) and (127) (following BZ) and to prove the
no-ingrown-hair theorem (following MacDonald & Thorne 1982).

9.2 Energy and angular momentum flux

The general expressions (80) and (81) give the outward energy and
angular momentum flux in terms of the invariants I and �F. In
the Kerr spacetime, it is instructive to push these integrals to the
horizon. That is, let the poloidal curve P be the horizon r = r+.
Using the Znajek condition (104) and the fact that dr = 0 on the
horizon, we have

dL/dt = 2π

∫ π

0
(�H − �F)(ψ, θ )2

√
gϕϕ

gθθ

dθ (126)

dE/dt = 2π

∫ π

0
�F(�H − �F)(ψ, θ )2

√
gϕϕ

gθθ

dθ. (127)

It follows that positive Killing energy flows outwards if and only
if �F is between 0 and �H. Since no influence can emerge from
behind the horizon, however, it is more natural to say that negative
Killing energy flows inwards across the horizon, as explained at
the beginning of this section. Note that the BZ solution (47) has
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�F = �H/2, the value that maximizes the energy flux at fixed mag-
netic flux through the horizon.

It also follows from equations (126) and (127) that any outflow
of energy is accompanied by an outflow of angular momentum.
This is consistent with the fact that the source of the energy is the
rotation of the black hole. A universal upper limit to the energy
extracted for a given angular momentum extracted can be found
using the null energy condition, Tab�

a�b > 0 for null vectors �a,
which in particular is satisfied by the electromagnetic field stress
tensor. Since the horizon-generating Killing field χ is null on the
horizon, we have Tabχ

aχb ≥ 0 there. This expression is equal to
the inward flux of energy Tab∂

a
t χ

b minus �H times the inward flux
of angular momentum −Tab∂

a
ϕχb. It follows that the outward flux

of energy is bounded by δE ≤ �HδJ . The BZ process satisfies
δE = �FδJ , so its efficiency is governed by the ratio �F/�H.

As noted in the original paper, the process can be characterized in
thermodynamic terms. The BZ process is stationary, but when the
back reaction on the geometry is taken into account it becomes a
quasi-stationary process in which the first law of black hole mechan-
ics (Bardeen, Carter & Hawking 1973; Bekenstein 1973) should
apply, δM − �HδJ = (κ/8π)δA, where M and J are the mass and
angular momentum of the black hole, κ is the surface gravity, and
A is the horizon area. The second law of black hole mechanics
(which follows from the null energy condition and cosmic censor-
ship) states that the area cannot decrease, δA ≥ 0 (Hawking 1972;
Hawking & Ellis 1973; Penrose & Floyd 1971). In the BZ process,
δM = −δE and δJ = −δJ , so the first and second laws imply the
same upper bound obtained above using the null energy condition
directly. Perfect efficiency corresponds to the case in which the area
of the horizon is unchanged. According to the second law of black
hole mechanics, only in that limit is the process reversible.

9.3 Light surfaces in a black hole magnetosphere

Recall that a light surface is a hypersurface in spacetime where the
field sheet Killing vector χF = ∂t + �F(ψ)∂ϕ is null or, equiva-
lently, where the corotation 1-form η is null. Light surfaces play a
practical role in finding force-free solutions, since they correspond
to singular points of the stream equation (see Section 7.4.2). They
also act as horizons for the propagation of particles and Alfvén
waves through the magnetosphere (see Section 7.2.5). In the Kerr
spacetime, there are in general two light surfaces, an outer one
qualitatively similar to the ordinary light cylinder, and an inner one
within the ergosphere. Outside the outer light surface, a corotating
curve with angular velocity �F is rotating too fast to be timelike,
whereas inside the inner light surface, it is rotating too slowly to
be timelike. The existence of the inner surface follows from the
fact that within the ergosphere observers (i.e. timelike curves) must
rotate with a minimum angular velocity, which approaches �H at
the event horizon. Any field line with �F < �H will therefore cross
an inner light surface at some point sufficiently close to the horizon.
The inner light surface meets the horizon at the poles.

The field sheet Killing vector is spacelike inside the inner light
surface and outside the outer one, and timelike in between. For
�F < �H, wind particles and Alfvén waves can travel only inwards
across the inner light surface and only outwards across the outer
light surface, as indicated in Fig. 5. This follows from the analysis
of Section (7.3.1), which established that the particle wind direc-
tion relative to that of positive angular momentum flow (126) is
determined by the sign of �F − �Z, which is positive at the outer
light surface and negative at the inner one. This was shown using a

Figure 5. Diagram of black hole light surfaces (dashed lines) and wind
propagation along a field line. The inner light surface is drawn exaggeratedly
far from the black hole. Arrows indicate the projection of the field sheet null
vectors on to the poloidal plane. These bound the possible poloidal velocities
of particles moving on the field line. Particles may only move inwards inside
of the inner surface, and only outwards outside of the outer surface.

different method by Komissarov (2004), who has given a detailed
discussion of the properties of the light surfaces of Kerr.

9.4 No ingrown hair

We now prove the no-ingrown-hair theorem, which forbids regions
of closed field lines for black hole magnetospheres (MacDonald &
Thorne 1982). By a closed field line we mean a smooth poloidal
field line that non-tangentially32 intersects the horizon twice, i.e. a
level set of ψ on which dψ �= 0, which intersects r = r+ twice,
each time with ψ , θ �= 0. We first establish that I = 0 and �F = �H

for a closed field line in a force-free region. (We use only the first
force-free condition I = I(ψ) for this part of the argument.) The
regularity condition (104) implies that the sign of I is determined
by the product of �F(ψ) − �H, which is the same at the two ends
(and everywhere on the line), with ψ , θ , which has opposite sign
at the two ends (since loops with different values of ψ are nested
and θ is monotonic along the horizon). Thus I has opposite sign at
opposite ends; however, I is also constant on the line, and hence
must vanish. The regularity condition (together with ψ , θ �= 0) then
implies that �F = �H for the line.

In a force-free region of closed field lines, we thus have �′
F =

I ′ = 0, so the conditions for the light surface loop lemma hold.
Furthermore, since �F = �H, the horizon itself is a light surface
[recall that the Killing vector (105) is null at the horizon], and the
lemma applies to it. This proves the no-ingrown-hair theorem:

A contractible force-free region of closed poloidal field lines can-
not exist in a stationary, axisymmetric, force-free Kerr black hole
magnetosphere.

Thus a black hole cannot have a ‘closed zone’ like a dipole pulsar
does. Note that the theorem does not rely on reflection symmetry or
magnetic domination.

Closed field lines may exist if they pass through, or loop around,
non-force-free regions of the magnetosphere. For example, closed
field lines may connect the black hole to an accretion disc. Or if a
torus of material orbits the black hole, field lines may loop around
the torus before returning to the horizon. (These looping field lines
must still have �F = �H and I = 0.) The no-ingrown-hair theorem is
a natural generalization to the force-free setting of the no-hair idea
that an astrophysical black hole cannot have its ‘own’ magnetic

32 In earlier discussion, we did not include this additional proviso as part of
the definition of ‘closed field line’. Note, however, that non-tangential inter-
section is necessary for establishing that conductors determine the rotation
frequency of their field lines (see Section 8.1).
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Force-free magnetospheres 2527

Figure 6. Allowed (blue solid) and disallowed (red dashed) topologies of
poloidal field lines in a force-free black hole magnetosphere. Open lines are
allowed. Closed lines must pass through, or loop around, a non-force-free
region (grey).

field. In order for closed field lines to exist, non-force-free currents
must flow to support them. These ideas are illustrated in Fig. 6.

Like its classical counterpart, the no-ingrown-hair theorem deals
only with stationary situations, giving no insight into how any closed
loop will be destroyed during the approach to stationarity. It seems
likely that loops will either be absorbed by the black hole (Thorne,
Price & MacDonald 1986) or opened up by non-force-free processes
(Lyutikov & McKinney 2011). Qualitative discussions of different
field line types in black hole magnetospheres can be found in Thorne
et al. (1986), Blandford (2002), Hirose et al. (2004), and McKinney
(2005).
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APPENDIX A : D IFFERENTIAL FORMS

A differential form is an antisymmetric, covariant tensor. Under the
operations of scalar multiplication, addition, and wedge product ∧ ,
differential forms comprise a graded algebra. The correspondence
with tensor index notation is given by

(α ∧ β)a1...apb1...bq = (p + q)!

p!q!
α[a1...apβb1...bq ], (A1)

where the square brackets denote antisymmetrization. Note that for
any 1-form α we thus have α ∧ α = 0. The exterior (antisym-
metrized) derivative d is a graded derivation on the algebra, and
satisfies dd = 0. The graded derivation property is that for any
p-form α and q-form β, we have

d(α ∧ β) = (dα) ∧ β + (−1)pα ∧ dβ. (A2)

In tensor notation,

(dα)aa1...ap = (p + 1)∇[aαa1 ...ap ], (A3)

where ∇a is any torsion-free derivative operator, e.g. coordinate
partial derivatives. A form α is closed, if dα = 0 and exact if
α = dγ for some γ . An exact form is always closed, since dd = 0.
In a contractible region, a closed form is always exact.

A p-form can be contracted with any number of vectors up to a
maximum of p. Given a p-form α and a vector v, the contraction on
the first ‘slot’ or first ‘index’ of α will be denoted here by a dot:

(v · α)a...b = vmαma...b. (A4)

A more common notation for this operation is ivα. The pullback of
a form β to a p-dimensional submanifold S is just β, considered
as a form on S. That is, the contraction of the pullback of β with
any set of p vectors tangent to S is, by definition, the contraction of
those vectors with β.

A1 Integration of forms

A p-form α can be integrated on a p-dimensional surface, or sub-
manifold S. Intuitively, one chops up S into infinitesimal paral-
lelopipeds each generated by p infinitesimal vectors, evaluates α

on these p vectors, and adds the resulting numbers. Because of the
multilinearity and antisymmetry of α, the result is independent of
how the chopping is done. Note, however, that the sign of the result

depends on the order taken for the edge vectors of the parallelop-
ipeds. Thus the integral is well defined only once an orientation for
S is specified, i.e. an equivalence class of continuous, nowhere van-
ishing p-forms on S related by positive multiples. The edge vectors
are ordered so that the result is positive on members of this class.
(For brevity, we will sometimes refer to a continuous, nowhere van-
ishing p-form ω as an ‘orientation’ for a p-surface, meaning actually
that ω determines the orientation.) An ordered coordinate system
(y1, . . . , yp) on S determines the orientation dy1 ∧ ··· ∧ dyp, with
respect to which the integral of α = α1. . . pdy1 ∧ ··· ∧ dyp is given
by an ordinary multiple integral:∫

S
α =

∫
α1...p dy1 · · · dyp. (A5)

In this paper, we make use of two properties of p-form integrals.
One is Stokes’ theorem, which relates the integral of dω on S to the
integral of ω on the boundary ∂S:∫

S
dω =

∫
∂S

ω, (A6)

where the orientation on ∂S is the one induced by contracting an
outward-pointing vector on the first slot of the orientation form on
S. In particular, note that if dω = 0, then

∫
∂S ω = 0.

The other property pertains to the integral of a 3-form (more
generally, to the integral of an (n − 1)-form over a hypersurface in
an n-dimensional space). Suppose S is a level hypersurface of the
function y, i.e. it is defined by the equation y = y0 for some constant
y0, and let v be any vector field such that v · dy = 1 on S. Then the
pullback of a 3-form ω to S is equal to the pullback of v · (dy ∧ ω).
(To show this, just contract with any three vectors tangent to S.)
The integral of ω on S can thus be expressed as∫

S
ω =

∫
S

v · (dy ∧ ω). (A7)

This is useful when the 4-form dy ∧ ω has properties that allow
efficient computation of the integral.

A2 Hodge dual operator

To begin with an intuitive definition, the Hodge dual ∗ of a decom-
posable p-form is simply the orthogonal decomposable form with
the same squared norm, up to a sign. The sign of the squared norm
of the dual is opposite in four dimensional spacetime, because the
dual of a spacelike form is timelike, and vice versa. This definition
is extended linearly to linear combinations of such forms, and it
defines the dual of a form up to a sign. A more precise definition
fixes all of these signs, up to one overall sign that depends on the
choice of an orientation. Keeping track of the signs can be tedious,
but for many purposes they need not be determined. The dual of the
dual ∗2 brings one back to the same form, up to a sign that de-
pends on the dimension of the space, the rank of the form, and the
signature of the metric. In two- or four-dimensional Lorentzian
spacetime, ∗2 = ±1, with the + sign for odd rank forms and
the − sign for even rank forms, while for Euclidean signature the
signs are opposite to these.

An explicit definition of the dual in an n-dimensional space can
be given in terms of the metric-compatible volume element εa1···an ,
which is the unique, up to a sign, totally antisymmetric tensor
normalized by εa1···anε

a1···an = ±n!, with the + sign for Euclidean
and the − sign for Lorentzian signature. (The indices are raised
by inverse metrics as usual.) The choice between the two volume
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elements is a choice of orientation. The dual of a p-form with respect
to this orientation is defined by

∗βb1···bn−p = 1

p!
βa1···ap εa1···apb1···bn−p . (A8)

For any pair of p-forms α and β, one has the useful relation

α ∧ ∗β = 〈α, β〉g ∗ 1, (A9)

where

〈α, β〉 = 1

p!
αm1···mpβm1···mp , (A10)

and ∗1 is the volume element (with a choice of orientation). In fact,
the dual is defined implicitly by the relation (A9).

A2.1 Diagonal metrics

If the line element is written in diagonal form, it is particularly
easy to find the action of the dual. For example, consider the
Schwarzschild line element

ds2 = −Adt2 + A−1dr2 + r2dθ2 + r2 sin2 θ dϕ2, (A11)

with A = 1 − 2M/r (in units with G = c = 1). We can read
off that the four 1-forms A1/2 dt, A−1/2 dr, rdθ , and rsin θ dϕ are
orthonormal, the first being timelike and the others spacelike. The
dual ∗(dθ ∧ dϕ) is therefore proportional to dt ∧ dr. To determine
the coefficient function, we can simply scale all the forms so they
have unit norm. Thus

∗(dθ ∧ dϕ) = 1

r2 sin θ
∗ ((rdθ ) ∧ (r sin θ dϕ))

= ± 1

r2 sin θ
(A1/2dt) ∧ (A−1/2dr)

= ± 1

r2 sin θ
dt ∧ dr. (A12)

Since ∗∗ = −1 on spacetime 2-forms, it follows that also
∗(dt ∧ dr) = ∓r2sin θ dθ ∧ dϕ. As explained above, the overall
sign depends upon the orientation. According to equation (A9), we
have dθ ∧ dϕ ∧ ∗(dθ ∧ dϕ) = 〈dθ ∧ dϕ, dθ ∧ dϕ〉∗ 1, and since the
metric on the angular subspace is positive definite this is a positive
number times the volume element ∗1. Hence, the sign in equation
(A12) is + for the orientation of dθ ∧ dϕ ∧ dt ∧ dr and − for the
opposite orientation.

A2.2 Orthogonal subspaces

Suppose the metric space V of dimension n is the direct sum of two
orthogonal subspaces, V = A⊕B, of dimensions nA and nB, and let
the orientations be chosen so that the volume elements are related
by ε = εA ∧ εB. Then the dual of a wedge product α ∧ β of an
A-p-form with a B-q-form is given by

∗(α ∧ β) = (−1)q(nA−p) � α ∧ �β, (A13)

where the symbol � denotes the Hodge dual on the subspaces A or
B, defined with respect to εA and εB. We will find this very useful
for simple 2-forms in stationary, axisymmetric spacetimes, in which
case p = q = 1 and nA = 2, so the sign is −.

A2.3 Dual of a null 2-form

A null 2-form has the composition α ∧ n, with n a null 1-form
and α a spacelike 1-form orthogonal to n. This is orthogonal to

itself, and has zero norm, so the intuitive definition we began with
does not specify the dual. However, we can decompose the space
as in the previous subsection, with α in A and n in B, so that
∗(α ∧ n) = −�α ∧ �n. Now the dual of a null 1-form n in a two-
dimensional space satisfies n ∧ �n = 0, so �n ∝ n. Also �2n = n,
so �n = ±n. One of the two null directions has the plus sign and
the other has the minus sign, but which is which depends on the
orientation of εB. We thus have

∗(α ∧ n) = ±�α ∧ n, (A14)

where ± corresponds to �n = ∓n. Note that the 1-form �α is
not unique, because any multiple of n can be added to it without
changing the wedge product in equation (A14). Thus the particular
2 + 2 decomposition of the space plays no role: �α can be defined
as any 1-form with the same norm as α and orthogonal to both α

and n.
An example to be used in the text involves the retarded time

coordinate

u = t − r∗ (A15)

on the Schwarzschild spacetime, where r∗ is the radial ‘tortoise co-
ordinate’ defined by dr∗ = A−1dr. In terms of u, the Schwarzschild
line element takes the Eddington–Finkelstein form

ds2 = −Adu2 − 2 dudr + r2dθ2 + r2 sin2 θ dϕ2. (A16)

A surface of constant u is an outgoing lightlike, spherical surface in
spacetime, so du is a null 1-form. The dual of null 2-forms involving
du is given by

∗(dθ ∧ du) = ± sin θ dϕ ∧ du, (A17)

∗(dϕ ∧ du) = ∓(sin θ )−1 dθ ∧ du. (A18)

The relative sign of these two duals is fixed by the fact
that ∗∗ = −1 on 2-forms. To fix the overall sign, we adopt
the orientation of dθ ∧ dϕ ∧ dt ∧ dr for ε, dθ ∧ dϕ for
εA, and dt ∧ dr = du ∧ dr for εB. It is then simple to see
that �dθ = sin θ dϕ. To find the sign of �du = ±du, we com-
pute (�du)a = gbc(εB)ca(du)b = gur(εB)ra = (−1)(−du)a. Hence,
�du = du, so the upper signs in equations (A17) and (A18) ap-
ply. Had we used instead the advanced time coordinate, a similar
calculation would have yielded �dv = −dv, since gvr = 1.

A2.4 Dual of a null 3-form

The electric current density is a 3-form, and we shall be interested
in the case in which this 3-form is null. A null 3-form has the
composition α ∧ β ∧ n, where n is null and orthogonal to both α

and β. The dual of this is a 1-form that is orthogonal to all three of the
forms in this triple wedge product, hence is a multiple of n. We can
understand this, and the coefficient, using the method of orthogonal
subspaces described in Section A2.2, with the 2 + 2 decomposition
into the subspace spanned by α ∧ β and the orthogonal subspace.
Then we have ∗(α ∧ β ∧ n) = �(α ∧ β) ∧ �n = |α ∧ β| �n, so the
proportionality factor is just the norm of the 2-form α ∧ β:

∗(α ∧ β ∧ n) = ±|α ∧ β|n. (A19)

For example, dθ ∧ dϕ ∧ du is null, and

∗(dθ ∧ dϕ ∧ du) = −(r2 sin θ )−1 du. (A20)
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A3 Electromagnetism and differential forms

Maxwell’s equations (3) and (4) take an elegant form in the language
of differential forms,

dF = 0, (A21)

d ∗ F = J , (A22)

where F is the electromagnetic field Fab and J is the current 3-
form, related to the current vector ja by Jabc = jmεmabc. Current
conservation dJ = 0 is implied by dd = 0. The charge that flows (in
spacetime) through a patch of oriented 3-surface � is the integral∫

�
J . If � is spacelike with future orientation, this is the total

charge in a spatial three-volume, whereas if � is timelike, it is the
net charge that flows in the orientation direction across a spatial
2-surface over a lapse of time.33

The integral of the 2-form F on a spacelike 2-surface is the
magnetic flux through that surface. The choice of orientation for
the surface integral corresponds in 3+1 terms to the choice of sign
for the normal to the surface when defining the flux of the magnetic
field pseudo-vector.34 This integral vanishes if the 2-surface is the
(closed) boundary of a three-ball and dF = 0 holds everywhere in
the interior. The magnetic flux through two homologous surfaces
bounded by the same loop must therefore be the same, so the flux
through a loop is well defined.35

A surface layer between two spatial regions can support a dis-
continuity in the field F by carrying a surface charge and/or current
density. The jump conditions restricting such discontinuities are nat-
urally formulated in terms of the three-dimensional world volume
S of the surface, which allows for arbitrary motion of the surface
in time. These conditions are that the pullback to S of the jump of
F vanishes, and the pullback to S of the jump of ∗F is equal to the
current 2-form K on S,

[F ]S = 0, [∗F ]S = K. (A23)

The jump is defined as the discontinuous change when crossing S
in a given arbitrary ‘jump direction. The 2-form K is defined so that
when integrated on a patch of two-dimensional surface contained
in S it yields the same result as J integrated on an infinitesimal
thickening of that patch transverse to S. The orientation ε3 of the
thickened patch should satisfy v · ε3 = ε2 (up to positive rescalings),
where ε2 is the orientation of the patch and v is a vector pointing in
the jump direction. The 2-form K may also be expressed in terms
of a distributional current 3-form Jsurf, related to K via

Jsurf = δ(s) ds ∧ K, (A24)

where s is any function that is constant on S and increasing in the
jump direction. The surface current Jsurf does not depend on the
jump direction.

The jump conditions (A23) are established by integrating
Maxwell’s equations (A21) and (A22) over the thickened patch

33 Given a spacetime orientation ε, a direction of flow across a three-surface
� corresponds to an orientation v · ε on �, where v is any vector transverse
to � sharing the flow direction. The integral

∫
� J with respect to this

orientation gives the current flowing across � in the sense of v.
34 The surface orientation ε2 is related to a vector a defining the ‘outward’
direction for the flux by ε2 = a · (u · ε) (up to positive rescalings), where u
is a future timelike vector and ε is the spacetime orientation.
35 An eternal black hole provides an example with non-trivial homology. If
the black hole carries a magnetic monopole charge, then the fluxes through
two surfaces spanning a loop will not be the same if the two surfaces together
enclose the horizon.

and using Stokes’ theorem, in the limit that the width of the thick-
ening goes to zero. It is easily checked that for a surface at rest
in an inertial frame in flat spacetime, these conditions agree with
the familiar ones: the tangential electric field and normal magnetic
field must be continuous, the jump in the normal electric field is
the surface charge density, and the jump in the tangential magnetic
field is the cross product of the surface current density with the unit
normal to the surface in the direction the jump is defined.

APPENDI X B: POYNTI NG FLUX EXAMPLES

The fact that stationary field configurations can carry energy away
from a source in FFE is counter to intuition from the vacuum
case, where this role is normally reserved for time-dependent
fields sourced by accelerated charges. In order to have finite, non-
vanishing net flux from a central source, the Poynting vector (or
at least its angular integral) must fall off as 1/r2. This indicates
that E and B should fall off as 1/r, which in vacuum occurs only
for time-dependent, radiative behaviour. In the stationary, vacuum
case, the E and B fields fall off as 1/r2 and 1/r3 (or 1/r2, if we
allow monopoles), respectively. The Poynting flux is thus at best
1/r5 and so there is no net flux through a large sphere. (By Poynt-
ing’s theorem, there is then no net flux through any closed surface
surrounding the source.)

The situation is different, however, if charge current extends from
the source out into the surroundings. A helpful example is an elec-
tric circuit with a battery and a resistor. In a steady state, power
flows from the battery into the resistor, and the energy is carried
by a Poynting flux largely in vacuum between battery and resistor
(e.g. Galili & Goihbarg 2005). A force-free plasma is, in effect,
a distributed circuit, in which a similar effect can take place. In
particular, considering for example a rotating conductor as a local-
ized energy source, if charge–current extends to infinity, then 1/r
behaviour for the fields is possible in the stationary case, provided
the charge and current fall off as 1/r2. This entails an unphysical
infinite total charge on some (most) conical wedges of space, even
though the total charge may be zero. However, in reality, the force-
free magnetosphere extends only a finite distance, and quantities
that are finite in the infinite-r limit (such as the net flux) should
adequately represent the physics of a real configuration that extends
to large but finite r.

In the remainder of this appendix, we consider three simple,
quantitative examples that help to elucidate the role of the cur-
rent in allowing for energy transport by Poynting flux in stationary
fields. The examples are a plane symmetric vacuum solution, a
coaxial cable, and a cylindrical plasma-filled waveguide. The last
two examples were used by Punsly (2008) to illustrate features and
provide intuition about the physics of MHD magnetospheres, and
we adapt them here to the force-free setting.

B1 Planar symmetry in vacuum

A simple vacuum solution with planar symmetry is given by

F plane = f (u) dx ∧ du, (B1)

where (t, x, y, z) are Minkowski coordinates, u = t − z, and
f is an arbitrary function. (To check that Maxwell’s equations
are satisfied, note that dFplane = 0 follows immediately from
du ∧ du = 0, and Fplane is a null 2-form so (cf. Appendix A2.3)
∗F plane = −f(u)dy ∧ du, which is similarly closed, d ∗ F plane = 0.)
Notice the similarity to the non-vacuum force-free solution (30). If
the function f(u) is sinusoidal, f ∼ sin (ωu), equation (B1) would
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Force-free magnetospheres 2531

typically be described as a plane wave polarized in the x-direction,
but any function f(u) gives a solution. The energy flux (Poynting
vector) is proportional to f(u)2 and persists in the stationary case
f = const, for which equation (B1) represents static crossed electric
and magnetic fields filling all of space.

This stationary case is evidently an ‘energy-transporting field’,
but it has no physical source. Nevertheless, a solution with global
planar symmetry reveals a possible local behaviour of electromag-
netic fields. Vacuum electrodynamics does not allow this local be-
haviour to be extended globally with a localized source. On the
other hand, the force-free case does allow such a global extension.
The correspondence can be made precise by noting that equation
(B1) arises in a planar limit of equation (30), where z and x, y are
identified with the normal and tangential directions (respectively) to
the sphere about a point. The charge-current vanishes in this limit.

B2 Coaxial cable

A coaxial cable consists of a pair of concentric, cylindrical conduc-
tors, and supports transverse electromagnetic (TEM) modes whose
behaviour is closely analogous to the planar case (B1). The relevant
solution is

F coax = f (u)

ρ
dρ ∧ du, (B2)

where ρ is the cylindrical radius of the x, y plane. The demonstration
that it satisfies the vacuum Maxwell equations is essentially the same
as for the planar case (B1). This field tensor corresponds to a radial
electric field and a circumferential magnetic field, both of which
are transverse to the propagation direction. Assuming that there is
no radial magnetic field in the conductor, the boundary condition
at the vacuum/conductor interface is that the pullback of Fcoax to
the world volume of the conducting walls vanishes (see discussion
of boundary conditions in Section A3). The world volume of a
cylinder contains no radial vector, while Fcoax has a dρ factor, so
this is satisfied. Thus Fcoax is indeed a TEM mode, which propagates
at the speed of light, and is terminated at the cylindrical conductors
on which it induces charge and current. If there were no central
conductor, the field would be singular on the axis (at ρ = 0).

As in the planar case, oscillatory solutions f(u) ∼ sin u are usu-
ally considered, viewed as transmission modes in a coaxial cable.
However, also as in the planar case, the local energy flux (Poynting
vector) is proportional to f(u)2 , and persists for any f(u). The sta-
tionary solution is just static crossed electric and magnetic fields,
sourced by an infinite line charge and current in the conductors.

While energy transport is not physically realizable in the strictly
planar configuration (B1), it is realizable in the coaxial case, even for
static fields. Imagine embedding a finite-length coaxial waveguide
in a longitudinal magnetic field, and attaching a conducting disc
to one end and a resistor connecting the inner and outer cylinders
at the other. If the conducting disc is set spinning (while the walls
are fixed), it becomes a ‘Faraday disc’ electric generator, driving
current in the z-direction along the inner cylinder and in the opposite
direction along the outer cylinder. Far from either end, and after
initial transients, field takes the form of a uniform magnetic field in
the z-direction, B0ρ dρ ∧ dϕ, plus a transverse part,

F coax&res = 1

2πρ
dρ ∧ (λ dt + I dz). (B3)

The constant λ is the linear charge density, which determines the
strength of the radial electric field, and the constant I is the current
along the z-direction in the central conductor, which determines

the azimuthal magnetic field strength. The linear charge density is
fixed by the voltage drop V between the walls (which is in turn fixed
by the disc rotation rate and magnetic field strength B0), while the
current is given by Ohm’s law V = IR in terms of the resistance R
of the resistor. The static Poynting vector points from the disc to
the resistor, and we may regard the Poynting flux as delivering the
energy from the agent spinning the wheel to the resistor on the other
end.

The solution (B2) with f(u) constant arises when we take the
special case of equation (B3) with I = −λ. This case is selected
by some unremarkable particular value for the resistance, but it can
also be selected by a sort of ‘no outer boundary’ condition. Suppose
the waveguide is infinitely long, and that the Faraday disc starts
turning at time t = 0. Then at any time the fields should remain
zero beyond some distance from the wheel, and we may model this
by F propagating = θ (vt − z)F coax&res, where θ is the Heaviside step
function and v is a constant speed. The Maxwell equations then
imply dθ ∧ F coax&res = 0 and dθ ∧ ∗F coax&res = 0, which in turn
imply v = 1 and I = −λ. (Note that this implies that the current is
null.) That is, the wavefront propagates at the speed of light, and
behind it we are left with the solution (B2) in the static case.

B3 Plasma-filled waveguide

Now suppose we take out the central cylinder in the coaxial waveg-
uide and fill the cylinder with force-free plasma. Instead of the cur-
rent being carried on the central cylinder, it is distributed throughout
the plasma. The field must satisfy the perfect conductor boundary
condition on the outer cylinder and on the Faraday disc rotating with
angular velocity �, and we suppose it has a uniform magnetic field
of magnitude B0 in the z-direction. In a stationary, axisymmetric
configuration, the total field must then have the form

F waveguide = B0ρ dρ ∧ (dϕ − �dt + dψ2(ρ, z)) (B4)

as explained in Appendix D. The function ψ2 can be determined by
the requirement that the field satisfies the two force-free conditions.
The first one is dρ ∧ d ∗ F = 0, which implies ψ2 = f(ρ)z, and the
second one (or the stream equation) then implies f(ρ) = ±�. The
result (after rejecting a solution that has a line current singularity
on the axis) is dψ2 = ±� dz; hence,

F waveguide = B0ρ dρ ∧ (dϕ − �d(t ∓ z)). (B5)

One thus has a uniform magnetic field superposed with a Poynting
flux in either the positive or negative z-direction. This is a precise
cylindrical analogue of the Michel monopole solution (41) for a
rotating, conducting sphere generating a spherical outgoing flux.
As in that solution, the current associated with equation (B5) is
null, i.e. the charge density and three-current vector have equal
magnitude. The three-current is uniform and in the z-direction. The
force-free condition is satisfied by virtue of a balance between the
radial inward Lorentz force acting on the three-current and the
repulsive radial electric force acting on the charge density. Note
that, in contrast to the coaxial vacuum waveguide (B3), the current
and charge density in the force-free plasma-filled waveguide are not
independently specifiable.

APPENDI X C : K ERR METRI C

In this appendix, we present a number of useful formulae related
to the Kerr spacetime. For a more detailed treatment, see (e.g.)
Poisson (2004). The Kerr metric for a black hole of mass M and

MNRAS 445, 2500–2534 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/445/3/2500/1035561 by C
N

R
S - ISTO

 user on 25 April 2022



2532 S. E. Gralla and T. Jacobson

angular momentum aM is given in BL coordinates by

ds2 = −
(

1 − 2Mr

�

)
dt2 − 4Mar sin2θ

�
dtdϕ

+ A

�
sin2θ dϕ2 + �

�
dr2 + �dθ2 (C1)

= −��

A
dt2 + A

�
sin2θ (dϕ − �Zdt)2 + �

�
dr2 + �dθ2,

(C2)

where

� = r2 + a2 cos2θ, � = r2 − 2Mr + a2 (C3)

A = (r2 + a2)2 − a2� sin2θ, �Z = 2Mar/A. (C4)

The inner/outer horizons r± are the roots of � = (r − r+)(r − r−),
r± = M ± √

M2 − a2. The Killing field ∂t + �H∂ϕ generates the
horizon, where �H = a/(r2

+ + a2) is called the horizon angular
velocity. The relevant metric determinants are given by√

−gT =
√

� sin θ,
√

gP = �/
√

�, (C5)

√−g =
√

−gTgP = � sin θ, (C6)

where ‘T’ and ‘P’ refer to toroidal (tϕ) and poloidal (rθ ), respec-
tively. The inverse metric components are

gtt = −A/(��), gtϕ = −2Mar/(��),

gϕϕ = (� − a2 sin2θ )/(�� sin2θ ), grr = �/�, gθθ = 1/�.

(C7)

The BL coordinates are singular on the future and past event
horizons. The ingoing Kerr coordinates v and ϕ̃ are regular on the
future horizon (but not the past horizon), and are related to t and ϕ

by

dt = dv − [(r2 + a2)/�]dr, (C8)

dϕ = dϕ̃ − (a/�)dr. (C9)

(In Schwarzschild spacetime a = 0, v is the ingoing Eddington–
Finklekstein coordinate.) The Kerr metric becomes

ds2 = −
(

1 − 2Mr

�

)
dv2 + 2dvdr − 2a sin2θdrdϕ̃

− 4Mar sin2θ

�
dvdϕ̃ + A

�
sin2θdϕ̃2 + �dθ2 (C10)

= −dv2 + 2dr(dv − a sin2θdϕ̃) + (r2 + a2) sin2θdϕ̃2

+ �dθ2 + 2Mr

�
(dv − a sin2θdϕ̃)2. (C11)

It follows immediately by inspection of equation (C11) that the 1-
form dv − a sin2θdϕ̃ is equal to (∂r )a , is null, and is orthogonal to
dv, dϕ̃, and dθ . We note that (∂r )a is proportional to the ingoing
principal congruence. The inverse metric components are

gvv = (a2 sin2θ )/�, gvr = (r2 + a2)/�, gvϕ̃ = a/�,

grr = �/�, grϕ̃ = a/�, gθθ = 1/�, gϕ̃ϕ̃ = 1/(� sin2θ ). (C12)

Alternatively, one may use outgoing Kerr coordinates u and ϕ̄,
defined by

dt = du + [(r2 + a2)/�]dr, (C13)

dϕ = dϕ̄ + (a/�)dr. (C14)

(In Schwarzschild spacetime a = 0, u is the outgoing Eddington–
Finklekstein coordinate.) These coordinates are regular on the past
horizon (but not the future horizon). They are useful for describing
outgoing radiation processes, such as the Poynting flux solution
discussed in the text. Analogous formulae for the metric may be
obtained by exploiting the time reversal symmetry t → −t and
ϕ → −ϕ of the Kerr metric. That is, one sends v → −u and
ϕ̃ → −ϕ̄ in equations (C10) and (C11), which yields

ds2 = −
(

1 − 2Mr

�

)
du2 − 2dudr + 2a sin2θdrdϕ̄

− 4Mar sin2θ

�
dudϕ̄ + A

�
sin2θdϕ̄2 + �dθ2 (C15)

= −du2 − 2dr(du − a sin2θdϕ̄) + (r2 + a2) sin2θdϕ̄2

+ �dθ2 + 2Mr

�
(du − a sin2θdϕ̄)2. (C16)

As in the ingoing case, we see that the 1-form du − a sin2θdϕ̄ is
equal to −(∂r )a , is null, and is orthogonal to du, dϕ̄, and dθ . The
vector (∂r )a is proportional to the outgoing principal congruence.
The inverse metric components are

guu = (a2 sin2θ )/�, gur = −(r2 + a2)/�, guϕ̄ = a/�,

grr = �/�, grϕ̄ = −a/�, gθθ = 1/�, gϕ̄ϕ̄ = 1/(� sin2θ ).

(C17)

APPENDI X D : EULER POTENTI ALS W I T H
SYMMETRY

When a degenerate electromagnetic field has a symmetry, the corre-
sponding Euler potentials do not in general have the same symme-
try, but the form of their dependence on the ignorable coordinates
is very constrained. Uchida (1997b) solved the problem of finding
their form in the presence of one symmetry or two commuting sym-
metries. In this appendix, we follow his treatment, making use of
differential forms to streamline the analysis. In the first and second
subsections, we consider the case of one and two symmetries, re-
spectively, and in the final subsection, we apply the results to the
case of stationary axisymmetry.

D1 One symmetry

Suppose the vector field X generates a symmetry of the field,
LXF = 0. Since the force-free equations involve the metric, X
should presumably also generate a symmetry of the metric, i.e.
it should be a Killing vector. However, the arguments in this
section rely only on the symmetry properties of F and the
metric-independent subset of Maxwell’s equations, Faraday’s law,
dF = 0.

Cartan’s ‘magic formula’ [LX = (X·)d + d(X·)] and dF = 0
imply that this symmetry condition is equivalent to d(X · F) = 0,
which implies (modulo homological obstructions) that X · F is exact,
i.e.

X·F = df (D1)
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Force-free magnetospheres 2533

for some function f. A degenerate field can be expressed in terms
of Euler potentials as F = dφ1 ∧ dφ2, in terms of which equation
(D1) becomes

(X · dφ1) dφ2 − (X · dφ2) dφ1 = df . (D2)

Since the differential of f can be written as a linear combination
of dφ1 and dφ2, evidently f = f(φ1, φ2). If X · F = 0, then both
potentials are invariant under the symmetry, but in general that is
not the case.

Now recall that the Euler potentials are not unique: we may
choose any other pair (φ̃1, φ̃2) such that dφ̃1 ∧ dφ̃2 = dφ1 ∧ dφ2,
which amounts to the requirement that the map (φ1, φ2) → (φ̃1, φ̃2)
have unit Jacobian determinant. We may exploit this freedom to
choose potentials that are adapted to the symmetry. In fact, if df �= 0
we may choose φ̃1 = −f to be one of a new pair of potentials. The
unit Jacobian requirement then imposes a single, first-order partial
differential equation on the other potential φ̃2(φ1, φ2), which can be
satisfied by integration with respect to φ2, provided ∂f /∂φ1 �= 0,
or by integration with respect to φ1, provided ∂f /∂φ2 �= 0. The
new pair will satisfy the analogue of equation (D2), with the same
function f since that was defined in equation (D1) without reference
to the potentials. In terms of this new pair, equation (D2) becomes

(X · dφ̃1) dφ̃2 − (X · dφ̃2) dφ̃1 = −dφ̃1, (D3)

from which we read off the symmetry properties

X · dφ̃1 = 0, X · dφ̃2 = 1. (D4)

One of the potentials can thus be taken to be invariant, while the
other has a constant, unit derivative along the symmetry flow.

D2 Two commuting symmetries

Suppose now that there are two commuting symmetry vectors, X and
Y, such that [X, Y ] = LXY = −LY X = 0, and LXF = LY F = 0.
Then, as in (D1), we also have

Y ·F = dg (D5)

for some g. To assess the relation between df and dg, we compute
their wedge product:

df ∧ dg = (X·F ) ∧ (Y ·F ) = (Y ·X·F )F . (D6)

The scalar Y · X · F (=FabXaYb) must be constant:

d(Y ·X·F ) = LY (X·F ) − Y ·d(X·F ) = 0. (D7)

(The first term can be expanded using the Leibniz rule for the Lie
derivative, and both the resulting terms vanish, while the second
term vanishes since d(X·F ) = LXF .) Hence, there are two cases to
consider: Y · X · F = 0, which Uchida called Case I, and Y · X · F
�= 0, which he called Case II. Case II will not be relevant when the
two Killing fields are time translation and rotations around an axis
since, as explained below, no such field configuration is regular on
the axis, even if it is not force-free everywhere.

If both X · F and Y · F vanish, then both potentials are simply
invariant under both symmetries. Suppose now that X · F �= 0.
Considering first only the vector field X, we may then conclude, as
in the one-symmetry case, that one of the Euler potentials may be
chosen to be φ1 = −f. In Case I, we have df ∧ dg = 0, from which
it follows that g = g(φ1). The symmetry condition (D5) for Y then
reads

Y ·F = (Y · dφ1) dφ2 − (Y · dφ2) dφ1 = g′(φ1)dφ1. (D8)

It follows from equations (D4) and (D8), without the tildes, that the
potentials have the symmetry properties

X · dφ1 = 0, X · dφ2 = 1, (D9)

Y · dφ1 = 0, Y · dφ2 = κ(φ1), (D10)

where κ(φ1) = −g′(φ1).
The function κ(φ1) has an interesting geometric interpretation.

The potentials are both invariant with respect to the flow of the
vector field

Z = Y − κ(φ1)X; (D11)

hence, Z generates a symmetry of the field and is tangent to the
field surfaces. If X and Y are spacetime Killing vectors, then Z is
also only if κ(φ1) is constant, but it is always a Killing vector of the
induced metric on the field sheets because φ1 is constant on each
field sheet. That is, Z is a field sheet Killing vector.

In Case II, both X · F and Y · F must be non-vanishing, and
according to equations (D6) and (D7), we may choose the Euler
potentials to be φ1 = −f and φ2 = g/λ, where λ = Y · X · F. Then
equations (D2), without the tildes, and (D8) imply the symmetry
conditions

X · dφ1 = 0, X · dφ2 = 1, (D12)

Y · dφ1 = λ, Y · dφ2 = 0. (D13)

In this case, no linear combination of X and Y is tangent to the field
surfaces.

D3 Stationary axisymmetry

In stationary axisymmetry, there are two commuting Killing fields,
∂t and ∂ϕ , where t and ϕ are Killing coordinates in some coordinate
system. (For example, they could be the usual BL coordinates for the
Kerr metric, but they could also be, say, the ingoing Kerr coordinate
v and azimuthal angle ϕ̃, respectively. These differ by the addition
of functions of the coordinate r, so yield different choices for the
potentials below.) Case II does not occur for such fields, since ∂ϕ

vanishes on the symmetry axis, so the constant ∂t · ∂ϕ · F always
vanishes. Thus we consider only Case I.

If ∂t ·F and ∂ϕ ·F both vanish, then both the potentials are in-
dependent of t and ϕ; hence, the field tensor is purely poloidal
(F ∼ dr ∧ dθ ).

Now let X = ∂ϕ and Y = ∂t , in the notation of the previous
subsection. If ∂ϕ ·F �= 0, we have from equations (D9) and (D10)
that for stationary, axisymmetric fields, the Euler potentials may
always be taken to have the form

φ1 = ψ(r, θ ), φ2 = ψ2(r, θ ) + ϕ − �F(ψ)t (D14)

for some function �F(ψ). We have replaced the notation κ by −�F

since, as explained in the text, �F corresponds to the ‘angular ve-
locity of the field lines’.

An exceptional case not mentioned by Uchida occurs if instead
∂ϕ ·F = 0, i.e. if there is no poloidal magnetic field. Then we must
reverse the roles of X and Y before invoking the results of the
previous subsection, and the Euler potentials may always be taken
to have the form

φ1 = ψ(r, θ ), φ2 = ψ2(r, θ ) + t . (D15)

This can be viewed as a singular limit of equation (D14) in which
�F and ψ2 go to infinity while ψ goes to zero, with the products
held finite.
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A P P E N D I X E: C O N S E RV E D N O E T H E R
C U R R E N T A S S O C I AT E D W I T H A SY M M E T RY

Let L be the Lagrangian 4-form of some field theory, i.e.
it depends on various dynamical fields and perhaps on some
background fields. Suppose the vector field ξ a generates a sym-
metry of the dynamics, in the sense that when the dynamical fields
are varied by their Lie derivative with respect to ξ a, the net induced
variation of L is simply the Lie derivative of L itself as a 4-form,
LξL = d(ξ · L). Since this is a total derivative, the variation of the
action

∫
L will be at most a boundary term. Typically, this will be

the case if the background fields in L have zero Lie derivative with
respect to ξ . In this case, there is a Noether current 3-form Jξ that
is closed (conserved) when the dynamical equations of motion are
satisfied. To see how this comes about, and how Jξ is defined, we
can just make the two variations in question.

Let � stand for all the dynamical fields, and let E be their equa-
tions of motion form. Then the two variations are

δdynamicalL = E Lξ� + dθ (Lξ�) (E1)

δtotalL = LξL = d(ξ · L). (E2)

The 3-form θ depends linearly on the variation Lξ�, and also on
the fields. It is called the symplectic potential, and its integral over a
spacelike (Cauchy) surface is the field-theoretic analogue of pi dqi

in mechanics. Setting these two variations equal, we have

d(θ (Lξ�) − ξ · L) = −E Lξ�. (E3)

When the equations of motion are satisfied, E = 0, the Noether
current Jξ is closed, where

Jξ = θ (Lξ�) − ξ · L. (E4)

For instance, when ξ is the time-translation vector ∂t , the currentJξ

is the field theory analogue of pq̇ − L, the canonical Hamiltonian.
If the only background field is the spacetime metric, then we

get a conserved current for every Killing vector, and perhaps more
conserved currents, if L does not depend on all aspects of the metric.
For example, in vacuum or force-free electromagnetism, L depends
only on the conformal structure, so also conformal Killing vectors
produce conserved currents. Note that for a field configuration such
that the total variation LξL = d(ξ · L) vanishes, the second term
in the Noether current (E4) is automatically conserved by itself,
without appeal to field equations. In this case, the first term also is
conserved by itself, when the equations of motion hold.

E1 Noether currents for electromagnetic field

In the usual Lagrangian formulation of electrodynamics, the dy-
namical field is the vector potential A, the field strength is F = dA,
and the Lagrangian 4-form is − 1

2 F ∧ ∗F , plus any interaction term.
The Lagrangian is invariant (possibly only up to addition of an ex-
act form, i.e. a total derivative) under gauge transformations of the
potential, A → A + dλ, where λ is any scalar function λ.

The electromagnetic Noether current associated with a vector
field ξ can be constructed as above, yielding

Jξ = −LξA ∧ ∗F + 1
2 ξ · (F ∧ ∗F ). (E5)

If A is treated as an ordinary 1-form, substituting

LξA = ξ · F + d(ξ · A) (E6)

into equation (E5), the result is not gauge invariant, although it is
still a correct contribution to a conserved current. The terms that
violate gauge invariance consist of one that vanishes by the equa-
tions of motion, and an exact form that is automatically conserved
by itself. One could drop those terms to arrive at a gauge-invariant
Noether current. A more insightful way to arrive at the same current
is to note that the response of A to the diffeomorphism generated
by ξ is defined only up to a gauge transformation. We can define a
gauge-invariant response by omitting the gauge transformation term
d(ξ · A) from equation (E6), yielding a ‘gauge-invariant Lie deriva-
tive’,

L′
ξA = ξ · F . (E7)

The reasoning leading to the conserved Noether current (E4) can
be applied using this variation, which leads directly to the Noether
current

Jξ = −(ξ · F ) ∧ ∗F + 1
2 ξ · (F ∧ ∗F ). (E8)

Note that for configurations that share the Killing symmetry, i.e.
such that LξF = 0, the second term in equation (E8) is conserved
independently of field equations, so the first term is conserved by
itself when the field equations hold.
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