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We study the clustering of voids using N-body simulations and simple theoretical models. The
excursion-set formalism describes fairly well the abundance of voids identified with the watershed
algorithm, although the void formation threshold required is quite different from the spherical collapse
value. The void cross bias bc is measured and its large-scale value is found to be consistent with the peak
background split results. A simple fitting formula for bc is found. We model the void auto-power spectrum
taking into account the void biasing and exclusion effect. A good fit to the simulation data is obtained for
voids with radii ≳30 Mpc h−1, especially when the void biasing model is extended to 1-loop order.
However, the best-fit bias parameters do not agree well with the peak-background results. Being able to fit
the void auto-power spectrum is particularly important not only because it is the direct observable in galaxy
surveys, but also our method enables us to treat the bias parameters as nuisance parameters, which are
sensitive to the techniques used to identify voids.

DOI: 10.1103/PhysRevD.90.103521 PACS numbers: 98.80.−k, 98.65.−r

I. INTRODUCTION

Cosmic voids have emerged as an interesting probe of
large-scale structure, as they account for the bulk of the
cosmic web and can be easily observed in modern galaxy
surveys. They are also good laboratories for testing general
relativity [1–3], dark energy models [4–8], or inflationary
non-Gaussianities [9–12] thanks to their low matter con-
tent. Moreover, voids preserve the initial conditions better
than their overdense halo counterparts, as their evolution is
simpler and has undergone less virialization [13,14].
Although cosmic voids have been found in galaxy

surveys for many years [15,16], little attention has been
devoted to them as compared to halos. One of the reasons is
that cosmic voids occupy large volumes while being the
least sampled structures, so galaxy surveys are required to
cover both large volumes and reach high sampling densities
at the same time. Recent galaxy surveys like the SDSS have
produced void catalogs suitable for statistical analyses
[17–20]. Unfortunately, there is no well-defined definition
for what is a void in galaxy surveys. Among the various
possibilities (see [21] for a comparison of void finders), the
void identification based on the watershed algorithm [22] is
a fairly general and practical definition because it does not
require any prior on the morphology of voids and is
parameter free. We shall use it in this work.
Most studies thus far have focused on the characteristics

of individual voids, such as their average density profile
[23–29], but the large-scale spatial distribution and

clustering of voids has been hardly investigated [30,31].
Voids have a much larger spatial extent than halos, ranging
from a few to over 100 Mpc. Their size thus is expected to
impact significantly their clustering statistics. In this paper,
we shall study the clustering properties of voids, with the
aim of eventually assessing how much cosmological
information can be extracted from void measurements,
and how much this technique is complementary to halo
clustering statistics. For this purpose, we will model the
void power spectrum using concepts similar to those
developed for halo clustering studies. For example, the
distribution of voids is also biased relative to the underlying
dark matter distribution. However, void clustering statistics
are much more sensitive to void exclusion effects owing to
their large spatial extent. Understanding these effects will
be essential to extract cosmological information from the
large-scale clustering of voids.
The goal of this paper is to identify the most salient

features in the large-scale clustering of voids using N-body
simulations, and explain them with a simple model. The
paper is organized as follows: we begin with a brief
description of the simulations and the void finder used
in this work (Sec. II). We examine the void-size distribution
and introduce the void bias parameters using the peak-
background split (PBS) formalism (Sec. III). We then study
the void cross-power spectrum, extract the void cross-bias
parameter bc and test whether it is consistent with the real-
space void profile (Sec. IV). We also measure the large-
scale value of bc and compare it with the PBS prediction.
Finally, we model the void auto-power spectrum in Sec. V,
accounting for void exclusion using the hard-sphere model.*KwanChuen.Chan@unige.ch
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Augmented with void biasing, we obtain a reasonably good
description of the void auto-power spectrum for large voids.
We discuss and conclude in Sec. VI.

II. SIMULATIONS AND VOID FINDER

Before presenting the numerical results, we first outline
the details of the simulations used in this paper. Two suites
of simulations with different box sizes are used:
1500 Mpc h−1 (six realizations) and 250 Mpc h−1 (three
realizations), abbreviated as L1500 and L250 later on. In
each simulation, there are 10243 particles. The cosmology
is a flat ΛCDM model, with the WMAP 7 cosmological
parameters adopted [32], i.e., Ωm ¼ 0.272, ΩΛ ¼ 0.728,
Ωb ¼ 0.0455, and σ8 ¼ 0.81. Thus, for the large box each
particle carries a mass of 2.37 × 1011M⊙h−1, while this
value is 1.10 × 109M⊙h−1 for the small box. The combi-
nation of large and small box sizes enables us to capture a
wide range in void sizes and to conduct a resolution study.
We use Gaussian initial conditions with a spectral index of
ns ¼ 0.967. The transfer function is output from CAMB
[33] at redshift z ¼ 99. The initial particle displacements
are implemented using 2LPT [34] and the simulation is run
with the GADGET2 code [35]. Furthermore, although we do
not show them explicitly here, many of the results pre-
sented have been cross-checked using the 1000 Mpc h−1

simulation used in [28,30].
Voids are identified using the public void identification

and examination toolkit VIDE [36]. At its core, the void
finder ZOBOV [37], which is based on the watershed
algorithm [22], is employed. In this work, we will only
consider voids identified in the dark matter distribution.
Since many of their properties are sensitive to the exact
void finding procedure, we begin with a brief description of
our void identification algorithm. We refer the reader to
[36,37] for more details. First, tracer particles are parti-
tioned by a Voronoi tessellation, and a density field is
created. The Voronoi cells around a local minimum are
joined to form catchment basins (zones). For each zone, the
density (water level) is increased until another local
minimum is found (water flows to a new local minimum)
and the height of the ridge separating the two minima
(watershed) is recorded. We stop growing voids if the ridge
between zones is higher than 0.2n̄, where n̄ is the mean
particle number density [36,37]. However, we note that this
lead to asymmetry in the treatment between the voids with
minimal density less then 0.2n̄, which are allowed to grow
the void hierarchy, and those voids with minimal density
larger than 0.2n̄, which can only be single zone voids. This
asymmetry only exists for the smallest voids, because the
minimum densities of larger voids are always below 0.2n̄.
Apart from this criterion, there are no other free parameters
in the void finder itself, and generally voids can take on any
shape. However, one can further apply various cuts on the
catalog to select some specific samples. In the void finder,
there is no a priori upper bound for their minimum density.

The void volume V is calculated as the sum of the void’s
constituent Voronoi cell volumes. The void size or effective
radius is given by

R ¼
�
3V
4π

�1
3

; ð1Þ

and we define the void center as volume-weighted average
of all its Voronoi cells,

X ¼ 1P
iVi

X
i

xiVi; ð2Þ

where xi and Vi are the positions and Voronoi volumes of
each tracer particle i, respectively. In this paper, we
consider voids identified in dark matter simulations only.
We note that there are further complications in going from
dark matter voids to galaxy voids, but these are fairly well
understood [38–40].
The watershed algorithm automatically returns a hierar-

chical structure for parent voids and their nested children
(subvoids). Most of the existing void studies focus on parent
voids only. The subvoid fraction in a given sample increases
with the tracer sampling density, but as voids exhibit self-
similar behavior [39], subvoids share many properties of the
parent voids [28]. Thus, the inclusion of subvoids increases
the sample size and therefore its statistical power. In this
work, we will only show the results obtained using all the
voids returned by ZOBOV that are larger than the mean
particle separation, without additional filtering. However,
we have also checked the robustness of our results using two
distinct subsamples: one including the parent voids solely,
and the other including the voids with central density
≤ 0.2n̄. The central density is defined to be the one averaged
within R=4 about their center. However, we note that this
kind of cut can be noisy for small voids because of few
number of particles inside R=4, but it should be fine for
large voids. Also, the central density defined here should not
be confused with the minimal density at the center of the
voids. We will comment on the differences in the results
from various samples in due course.
The tracer sampling density is a key quantity of the void

finding process. In order to study its influence on void
properties, we randomly remove tracer particles from our
simulations to achieve different degrees of subsampling.
For L1500, we use 0.02 ðMpc h−1Þ−3, which roughly
amounts to the number density of galaxies in the lowest
redshift main sample of the SDSS. We use three different
sampling densities for L250, namely 2, 0.2, and
0.02 ðMpc h−1Þ−3. For the relatively low sampling density
of 0.02 ðMpc h−1Þ−3, the sample is dominated by top-level
voids, while for the sample with 2 ðMpc h−1Þ−3 tracer
density, the contribution from subvoids is much more
important. The hard sphere model that we consider is no
longer effective when subvoids are included, thus we need
to discard them in that case.
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III. SIZE DISTRIBUTIONS AND THE
PEAK-BACKGROUND SPLIT BIAS

In this section, we shall present the numerical void-size
distribution and compare it with the theoretical one
obtained from the excursion-set formalism. We will also
derive the peak-background split bias parameters.

A. The void-size distribution

Like halos, the abundance of voids can be modeled using
the excursion-set formalism [41]. It naturally solves the so-
called cloud-in-cloud problem, which arises when a halo is
embedded in a larger-scale overdensity and subsumed in
the latter to form an even bigger halo. On the contrary, there
is no cloud-in-void problem, because parent halos can exist
in large-scale underdensities. Therefore, there is only one
barrier in the excursion set description of halos, which is
the linear threshold δc for halo formation. For the descrip-
tion of voids, however, Sheth and van de Weygaert (SvdW)
[42] argued that one needs to consider both δc and the
threshold for void formation δv. Besides the void-in-void
problem (analog to the could-in-cloud problem of halos),
voids are subject to the void-in-cloud problem: a void
embedded within a collapsing overdensity will be crushed
out of existence. SvdW argued the value of δc lies some-
where between the linearly extrapolated overdensity at
turnaround and at virialization, or, according to the spheri-
cal collapse model, between 1.06 and 1.68, respectively.
The epoch of shell crossing is used to define the threshold
for void formation δv [43], which is about −2.81 according
to spherical expansion in the Einstein-de Sitter Universe.
In analogy with the halo mass function, the void mass

function can be cast into the form

dn
d lnM

¼ ρ̄m
M

νF ðν; δv; δcÞ
d ln ν
d lnM

; ð3Þ

where ρ̄m is the mean dark matter density and

ν ¼ jδvj
σM

ð4Þ

is the peak height or significance. Here, σM is the root-
mean-squared density fluctuation smoothed with a top-hat
window of size RL, the Lagrangian size of the void. The
first crossing distribution F ðν; δv; δcÞ denotes the proba-
bility that a random trajectory first crosses the barrier δv at ν
without crossing δc for ν0 > ν. It is given by [42]

F ðνÞ ¼ 2D2

ν3
X∞
j¼1

jπ sinðDjπÞ exp
�
−
j2π2D2

2ν2

�
; ð5Þ

where D is the void-and-cloud parameter

D ¼ −δv
δc − δv

: ð6Þ

SvdW provided an approximate, albeit more compact
expression, for the series in Eq. (5):

F approxðνÞ ¼
ffiffiffi
2

π

r
exp

�
−
ν2

2

�
exp

�
−
jδvj
δc

D2

4ν2
− 2

D4

ν4

�
:

ð7Þ

For large M, the Lagrangian void contains a large
amount of matter, such that the first-crossing distribution
is dominated by random walks that first cross δv directly,
without reaching relatively large positive δ. In this regime,
F ðνÞ reduces to the probability of crossing only one
barrier, δv:

F oneðνÞ ¼
ffiffiffi
2

π

r
exp

�
−
ν2

2

�
: ð8Þ

In fact, most of the voids we consider in this paper fall into
this regime.
In observational data, the relevant quantity is the

void-size distribution rather than the void mass function.
The simplest way to convert the mass in Lagrangian space
to size in Eulerian space is to use the spherical collapse
model. In spherical collapse, the nonlinear density contrast
of voids is −0.8. From this, we can estimate the Lagrangian
size of voids, RL:

RL ¼ 0.58R: ð9Þ

Assuming their number density is conserved when voids
evolve from Lagrangian to Eulerian space, the void-size
distribution in Eulerian space becomes

dn
d lnR

¼ dn
d lnRL

¼ 3
dn

d lnM
; ð10Þ

where we have used Eq. (9) to map R to RL.
Since the void abundance sensitively depends on the

void definition, we shall treat δv as a free parameter to
model the data. On the other hand, for the large voids that
we are mainly interested in, the effect of δc is negligible,
unless its value is much smaller than the spherical collapse
threshold of 1.68. Thus, we will simply fix δc to be 1.68
throughout. For illustration, Fig. 1 displays the void-size
distribution for various values of δv using the exact SvdW
first crossing distribution Eq. (5), where we sum up to
the first 12 terms of the series. The approximate distribu-
tion from Eq. (7) is also shown. It provides a very
good agreement to Eq. (5) for R≳ 5 Mpch−1. In this
regime, even the one-barrier distribution Eq. (8) is a good
approximation to the exact result.
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The void-size distributions measured in our N-body
simulations at z ¼ 1, 0.5, and 0 are depicted in Fig. 2.
Note that, for a sampling density of 0.02 ðMpc h−1Þ−3, both
L1500 and L250 agree nicely on the abundance of small
voids. However, the L1500 simulation samples the large
voids much better, and thus extends the void-size distribu-
tion to larger void radii. To obtain measurements at small
void radii, we increase the sampling density in L250. While
the L1500 catalogs are dominated by top-level voids, the

smaller boxes with larger sampling density are more
influenced by subvoids. Notwithstanding, the data points
in Fig. 2 agree reasonably well. However, there is some
discrepancy between different sampling densities in the
overlapping regions: higher sampling densities seem to
suggest lower abundances for intermediate-size voids. This
effect can be explained by void fragmentation due to
resolution effects [39]: only with sufficient sampling density
can the substructure of all voids be resolved. If this is not the
case, small voids artificially merge to form larger voids.
In Fig. 2, we overplot the SvdW prediction with δv ¼

−2.8 together with the best-fit void-size distribution
obtained upon allowing δv to vary freely (as in [39]). As
the higher sampling densities are more affected by sub-
voids, and subvoids are not included in the treatment of
SvdW, we only fit the L1500 data with R > 20 Mpc h−1.
We fit the data separately at each redshift and obtain the
best-fit values of δv ¼ −1.02, −1.05, and −0.99 for z ¼ 1,
0.5, and 0, respectively. These numbers are remarkably
consistent with each other, although they are quite different
from the canonical spherical collapse value of −2.8. In the
construction of voids, the shell crossing condition, which is
used to define void formation, is never incorporated.
A priori it is not clear if the voids constructed in the
watershed algorithm would agree with the shell crossing
estimate. Because the watershed algorithm defines voids of
arbitrary geometries and density profiles in various tracer
sampling densities, this discrepancy is not surprising.
Interestingly, the best-fit curves also agree with the void-

size distributions from L250 down to lower void radii. In
fact, if we restrict ourselves to top-level voids only, the void

FIG. 1 (color online). The void-size distribution for various
values of δv: −2.8 (blue), −1.7 (red), and −1.0 (green). For each
value, the void-size distributions obtained using Eq. (5) by
summing up the first 12 terms (dashed line), the approximate
distribution from Eq. (7) (solid line), and the single barrier
distribution from Eq. (8) (dotted-dashed line) are compared.

FIG. 2 (color online). The void-size distribution at z ¼ 1, 0.5, and 0 (from left to right) measured in simulations. The data are obtained
from L1500 with sampling density 0.02 ðMpc h−1Þ−3 (star, black), and L250 with sampling densities 2 (triangle, gray), 0.2 (circle, gray),
and 0.02 ðMpc h−1Þ−3 (diamond, gray). The SvdW void-size distribution is shown with δv equal to −2.8 (dashed line, green) and with
the best-fit value δv (solid line, red) as stated in the inset of each panel.
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abundance hardly changes for a sampling density of
0.02 ðMpc h−1Þ−3. At higher sampling densities, however,
it is reduced by a factor of at least a few and does not agree
with the best fit anymore.
There are some extensions of the SvdW model which

address mainly the void-in-cloud problem [44–46]. As we
aremostly interested in the larger voids, these are not relevant
here, so we restrict ourselves to the simpler SvdWmodel. In
the original SvdW model, the steps in the excursion set are
uncorrelated, which corresponds to a sharp-k filter. In
[44,45], the excursion set with correlated steps was consid-
ered. However, correlated steps reduce the void abundance
[44] and, therefore, do not improve the agreement with our
numerical data. In the SvdWmodel, the void number density
dn is conserved as one converts the void-size distribution
from Lagrangian to Eulerian space. In Ref. [46] the authors
argued instead that large voids form by merging of smaller
voids and, thereby, the volume Vdn should be conserved.
Using this Vdn model, together with Eq. (9), one obtains

dn
d lnR

¼ VL

V
dnL

d lnRL
; ð11Þ

where the Lagrangian quantities are denoted by the sub-
script L, while the Eulerian ones are without subscript.
Reference [46] found that this prescription results in much
better agreementwith simulation data than theoriginal SvdW
model. Because in spherical collapse, V > VL, this model
with δv ¼ −2.8 yields a worse fit to our simulation data than
SvdW. Although the authors of [46] also use ZOBOV to
identify voids, they only select spherical nonoverlapping
regions of density 0.2n̄ around density minima as voids,
whereas we include all voids returned by ZOBOV without
any further processing. Also note that Ref. [46] focuses on
voids with radiiR≲ 20 Mpc h−1. This reflects the important
caveat that the void-size distribution is very sensitive to the
void definition adopted.

B. Void bias from the peak-background split

As demonstrated in the previous section, by allowing δv
to vary as a free parameter in the excursion-set formalism,
we can fit the void-size distribution reasonably well. We
can now use the void mass function to derive the PBS bias
parameters for voids. For Rv ≳ 5 Mpc h−1 the full SvdW
mass function is well approximated by Eq. (7). As we are
mostly interested in voids of that size range, we will use this
approximation for convenience.
Suppose there is a long wavelength perturbation δL in the

Lagrangian space, then the thresholds δv and δc shift as

δv → δv − δL; δc → δc − δL: ð12Þ

The bias parameters in Eulerian space are given by (see
e.g. [47])

bi ¼
1

n0

∂i

∂δi ½ð1þ δÞnðδLÞ�jδ¼0; ð13Þ

where δ denotes the corresponding perturbation in Eulerian
space and n0 and nðδLÞ represent the mass function with
zero and δL background perturbation, respectively. The
factor 1þ δmaps the mass function from Lagrangian space
to Eulerian space. We shall use spherical collapse to relate δ
and δL [48],

δL ¼ δ − ν2δ
2 þ ν3δ

3 þ � � � ; ð14Þ

with ν2 ¼ 12=21 and ν3 ¼ 341=567. Therefore, the bias
parameters are given by

b1 ¼ 1þ ν2 − 1

δv
þ δvD
4δ2cν

2
; ð15Þ

b2 ¼
2ðν2 − 1Þ

δv
þ D
2δ2c

þ ν2

δ2v
½2δvð1 − ν2Þ − 3� þ ν4

δ2v

Dδv
2δ2cν

2

�
1 − ν2 þ

1

Dδc

�
þ D2δ2v
16δ4cν

4
; ð16Þ

and

b3 ¼ 3½b2 − 2ðb1 − 1Þ� þ b03; ð17Þ

where

b03 ¼
ν6

δ3v
−
6ð1þ ν2δvÞ

δ3v
ν4 −

3Dν2

4δ2cδ
4
v
½−δ3v þ 4δ3cð1þ 6ν2δv þ 2ν3δ

2
vÞ − 4δ2cδvð1þ 6δvν2 þ 2δ2vν3Þ�

þ 3D2

16δ4cδvν
2
½−9δ2v þ 16δcδvð1þ δvν2Þ þ 8δ3cð2ν2 þ δvν3Þ − 8δ2cð1þ 4δvν2 þ δ2vν3Þ�

−
3D2δv
16δ5cν

4
ðδc − 2δv þ 2δcδvν2Þ þ

D3δ3v
64δ6cν

6
: ð18Þ
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Equation (15) corrects a typo in Eq. (27) in Ref. [42].
When D ¼ 0, Eq. (7) reduces to Eq. (8). Thus, Eqs. (15)–
(17) reduce to those obtained from the Press-Schechter
mass function [49,50].
In Fig. 3 we show b1, b2, and b3 as a function of R, each

for the two values of δv ¼ −2.8 and −1.0 at redshift z ¼ 0.
Notice that b1 and b2 cross zero at similar values of R. In
the following Secs. IV and V, we measure the bias
parameters from the cross-power spectrum and the auto-
power spectrum of voids individually, and compare them
with the PBS results.

IV. CROSS-POWER SPECTRA AND
DENSITY PROFILES

In this section, we measure the cross-power spectrum
between voids and the dark matter in our simulations and
extract the large-scale bias parameters from it. We also
determine the void density profile in configuration space,
which is the Fourier transform of the void-matter cross-
power spectrum. Since in practice small inaccuracies and
noise either in configuration or Fourier space may signifi-
cantly affect the corresponding transform, we find it
prudent to investigate the correspondence between the
two measurements in the data.

A. The void cross-power spectrum

The void density contrast δv is defined in analogy to that
of halos, i.e.

δv ≡ nv − n̄v
n̄v

; ð19Þ

where nv and n̄v are the number density and the mean
number density of voids, respectively. The cross-power
spectrum Pc between voids and dark matter is defined as

hδvðk1Þδðk2Þi ¼ Pcðk1ÞδDðk1 þ k2Þ; ð20Þ

where δ is the dark matter density contrast and δD the
Dirac delta function. Using Pc, we define the cross-bias
parameter as

bc ≡ Pc

Pm
; ð21Þ

where Pm denotes the dark matter auto-power spectrum.
In Fig. 4 we plot bcðkÞ at z ¼ 0. We have grouped all

voids into radius bins of width 5 Mpc h−1; the midpoints of
the bin values are stated on top of each panel. For
R≲ 20 Mpch−1, the behavior of bc at low k changes with
the sampling density. The cross-bias of the larger voids
(R≳ 20 Mpc h−1) is more robust to variations in the
sampling density, yet the results are noisier owing to
sampling variance, especially in the small box. Despite
the strong dependence of small voids on sampling density,
the existence of significant correlations (and anticorrela-
tions) between voids and the dark matter suggests the
possibility of extracting information on dark matter from
void clustering.
Overall, our results agree with the findings of Ref. [30]:

bc is roughly constant at low k (k≲ 1=R), whereas it
exhibits oscillations on intermediate scales and converges
to zero at high k (k≳ 10=R). The relative scaling is more
easily recognizable when bc is plotted against kR; see
Fig. 9. The qualitative features also hold for other red-
shifts, such as z ¼ 1. Note that the radius of voids with
bcðk → 0Þ ¼ 0 corresponds to about 17.5 Mpc h−1, in
agreement with the number the authors of Ref. [28] found
for the size of compensated voids in the dark matter.
Because compensated voids do not feature any large-scale
perturbations, their linear bias vanishes [30]. In the follow-
ing section, we will show how the oscillations in bc are
related to the structure of the void density profile.
In the case of halos, bc can be well described by a

constant value on large scales, known as linear halo bias.
Here we follow this approach and fit a constant to the low-k
plateau of bc, as shown in Fig. 4. For the smaller box size,
we only consider the bin of radius 7.5 Mpc h−1, as the other
cases in L250 do not reach a plateau in the shown range of k
yet. To isolate the dependence of the large-scale bias of
voids on their radius, we display in Fig. 5 the best fit large-
scale value of bc as a function of R for z ¼ 1, 0.5, and 0. We
compare these measurements with the prediction of
Eq. (15) assuming different values of δv. Here again, δv ¼
−2.8 significantly underestimates the data, whereas a better
(qualitative) agreement is achieved when the best-fit δv
derived from the void-size distribution is used. This is
particularly true for voids with R > 20 Mpc h−1 at z ¼ 0,
while the agreement slightly deteriorates at higher redshifts.
The results from L250 with higher sampling densities are
somewhat below the PBS prediction, which is likely due to

FIG. 3 (color online). The PBS bias parameter b1 (solid line),
b2 (dashed line), and b3 (dotted-dashed line) as a function of void
radius R. Two values of δv are chosen: −2.8 (blue) and −1.0 (red).
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the non-negligible contribution of subvoids in the higher
sampling densities.
We now comment on the other subsamples that

we consider. When only the top-level voids are selected
from the void catalog, with lowest sampling density
[0.02 ðMpc h−1Þ−3], we find that bc is somewhat larger
at low k by roughly ∼0.5. However, for the high density
cases, the trend with sampling density is opposite to the one
shown, so the low-k plateau increases with higher sampling
densities. Restricting ourselves to voids with central density
less than 0.2ρ̄m has little effect on the results, except for an
increase in noise due to smaller sample size.

B. The void density profile and its Fourier transform

The void radial density profile ρvðrÞ describes the
distribution of matter conditioned on having a void center
at r ¼ 0. It can be shown that it is the same as the cross-
correlation function ξcðrÞ between void centers and
dark matter particles (see e.g. p. 144 of [51]). Using the
conditional form of the correlation function, we can write

ρvðrÞ ¼ ρ̄m½1þ ξcðrÞ�: ð22Þ

So the relative void density profile compared to the mean
density ρ̄m,

ΔvðrÞ≡ ρvðrÞ
ρ̄m

− 1; ð23Þ

is simply equal to ξcðrÞ. An accurate fitting formula for
ΔvðrÞ was proposed in Ref. [28]:

ΔvðrÞ ¼ δcen
1 − ð rrsÞα
1þ ðrRÞβ

; ð24Þ

where both the central density fluctuation δcen and the scale
radius rs (the radius at which Δv vanishes) are free
parameters. As demonstrated in Ref. [28], the remaining
two parameters α and β can be parametrized in terms
of rs and the void radius R. These parametrizations have
been calibrated at z ¼ 0 using a sampling density of
0.02 ðMpc h−1Þ−3. However, since we are probing a wide

FIG. 4 (color online). Void-matter cross-bias bc as a function of wave number k for various void sizes R at z ¼ 0. The results are shown
for L1500 with sampling density 0.02 ðMpc h−1Þ−3 (star, purple), L250 with sampling density 0.02 (diamond, blue), 0.2 (circle, green),
and 2 ðMpc h−1Þ−3 (triangle, red). Horizontal lines show best fits to the linear large-scale regime of bc whenever the fit is feasible (solid
line, black).
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range of sampling densities and redshifts, we will allow all
the four parameters of Eq. (24) to vary freely when we fit
them to our simulation data. One should bear in mind that
the empirical formula in Eq. (24) is only accurate out to a
few times the void radius R and does not capture the large-
scale correlation regime. Although the equivalence between
Δv and ξcðrÞ is mathematically exact, we prefer to keep
separate notations to highlight that Δv measurements are
often accurate only for relatively small r.

Before examining the numerical data, we first investigate
the properties of the void density profile given in Eq. (24).
For simplicity, we adopt here values for α and β derived
from the parametrization of Ref. [28], keep δcen ¼ −0.8
fixed and only vary rs. In the left-hand panel of Fig. 6, the
void density profile from Eq. (24) is shown for five
different values of rs. Note that rs mainly controls the
amplitude of the ridge at the void edge (compensation
wall). When rs is small (large) compared to R, the ridge is

FIG. 5 (color online). The large-scale best fit to the void-matter cross-bias bc as a function of void radius R from L1500 (circles), L250
with sampling density 2 (square) and 0.2 ðMpc h−1Þ−3 (triangle) at redshifts z ¼ 1, 0.5, and 0 (from left to right). The curves show b1
computed from Eq. (15) for various values of δv, in particular the best-fit δv from the void-size distribution (solid line, red).

FIG. 6 (color online). The void density profile in configuration space (left), its Fourier transform (middle), and its Fourier transform
divided by the nonlinear matter power spectrum as predicted by Eq. (24). Here, R ¼ 20 Mpc h−1, δcen ¼ −0.8, and α and β are
determined according to the parametrization in Ref. [28]. The values for rs are shown in the inset.
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high (low). The Fourier transform of ΔvðrÞ is shown in
the middle panel of Fig. 6. It is formally equal to the
void-matter cross-power spectrum

PcðkÞ ¼
Z

4πr2dr
ð2πÞ3

sinðkrÞ
kr

ΔvðrÞ: ð25Þ

However, as the empirical profile in Eq. (24) is expected to
be accurate only up to a few times of R, the low-k regime in
its Fourier transform should not be trusted. Although the
amplitude of Δv becomes quite small outside a few void
radii, it may still yield sizable contributions to the Fourier
transform integral in Eq. (25). To facilitate the comparison
with our simulation results, we normalize ΔvðkÞ with
respect to the nonlinear dark matter power spectrum in
the right-hand panel of Fig. 6. This furnishes an estimate for
the void-matter cross-bias bcðkÞ. The resulting predictions
for bc are qualitatively similar to those displayed in Fig. 4,
except for a scale dependence at low k which is particularly
large for voids with high ridges. This strong scale

dependence as k → 0 originates from the fact that
Eq. (24) does not properly take into account large-scale
correlations.
We also measure the spherically averaged void density

profile in our simulations by stacking voids in different
radius bins in Fig. 7 (for details, see [36]). We find good
agreement between L1500 and L250 for the identical
sampling density of 0.02 ðMpch−1Þ−3. Voids from higher
sampling densities exhibit lower ridges at fixed void radius,
in agreement with Ref. [39]. Overall, Eq. (24) offers a very
good description of the simulation data.
Because the void density profile is measured accurately

out to a few void radii only, and small inaccuracies can end
up as large deviation in Fourier space, it is not clear how
well one can predict the cross power spectrum using the
void profile fitted by Eq. (24). In practice, we extrapolate a
small-scale quantity to large scales in order to predict the
power spectrum down to low values of k. In Fig. 8 we
compare the z ¼ 0 void cross-bias bc from the L1500
simulation with that obtained from a Fourier transform of

FIG. 7 (color online). Void density profiles for different void radii at z ¼ 0 from L1500 with sampling density 0.02 ðMpc h−1Þ−3
(square, violet) and L250 with sampling densities 0.02 (circle, blue), 0.2 (star, green), and 2 ðMpc h−1Þ−3 (triangle, red). Solid lines
show the best fits using Eq. (24) (same colors).
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the best-fit void density profile shown in Fig. 7. As
expected, the agreement is only qualitative, although it
improves as the void size increases. At low k, the profile
from Eq. (24) often causes a strong scale dependence.
Furthermore, the amplitude of the first two prominent
oscillations beyond the low-k plateau is underestimated,
even though their shape is reproduced. The agreement
improves for larger voids, essentially because their density
profile is measured out to larger distances r, or equivalently,
lower values of k.
Before the end of this section, we would like to discuss

an interesting possibility that the cross-bias parameter may
exhibit scale dependence at very low k. At large r, the void-
matter cross-correlation function is expected to be propor-
tional to the dark matter correlation function. Therefore, we
can split Eq. (25) into two contributions,

PcðkÞ ¼
Z

r�

0

4πr2dr
ð2πÞ3

sin kr
kr

½ΔvðrÞ − b1ξmðrÞ�

þ b1

Z
∞

0

4πr2dr
ð2πÞ3

sin kr
kr

ξmðrÞ; ð26Þ

where the scale r� is determined with the simplifying
assumption that ΔvðrÞ ¼ b1ξmðrÞ for r > r�. The magni-
tude of r� may be taken to be a few void radii. Hence,
ΔvðrÞ − b1ξmðrÞ does not vanish if void bias is different
from a simple k-independent linear contribution. Since at
small k we have sinðkrÞ=kr ∼ 1, the first integral on the
right-hand side of Eq. (26) yields a constant in the limit
k → 0:

PcðkÞ ¼ constþ b1PmðkÞ; ð27Þ

or equivalently

bcðkÞ ¼
const
PmðkÞ

þ b1: ð28Þ

The first term in Eq. (28) can generate a residual
k-dependent bias at very low k. Our argument is similar
to that given in Ref. [52], where the existence of white noise
power in the low-k auto-power spectrum is expected if
biasing is nonlinear. Figure 4 does not show any clear
residual scale dependence at low k, which would indicate
the constant in Eq. (26) to be nonzero. We can thus safely
ignore it in this paper. A more decisive check can be
made if the measurement is extended to lower k, such
as k≲ 10−3 Mpc−1 h.

C. The void-matter cross-power spectrum
and its inverse Fourier transform

In this section, we follow a different approach and first
attempt to describe the void-matter cross-power spectrum
in Fourier space with a physically motivated formula. We
subsequently use it to predict the void density profile in
configuration space. In order to write down an expression
for bcðkÞ, we take advantage of the close connection
between voids and minima of the linear density field, as
already discussed in SvdW. Since the whole peak formal-
ism straightforwardly applies to the description of initial
minima, we expect the void linear cross-bias to exhibit a
k2 dependence [53]. Furthermore, since voids trace a
smoothed version of the mass density field, while bc is
defined relative to the unsmoothed mass distribution, we
must also include a filter function. For these reasons, we
consider the following parametrization:

bcðkÞ ¼ ðb0 þ b2k2 þ b4k4Þ exp
�
−
1

2
ðkRGÞ2

�
; ð29Þ

FIG. 8 (color online). Comparison of the void-matter cross-bias bc from the L1500 simulation (blue with error bars) with the Fourier
transform of the corresponding best-fit void density profile divided by the matter power spectrum (green lines) at z ¼ 0.
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where b0, b2, b4, and RG are free parameters. Here,
ðb0 þ b2k2Þ times the Gaussian is the Fourier transform
of the peak profile derived in [53], which naturally arises
from the peak constraint. Note that exactly the same linear
bias appears in the peak auto-power spectrum [54]. We
have added a k4 piece in order to better reproduce the large
oscillatory features. The excursion set peak (ESP) pre-
scription of [55,56], which generates additional k depend-
ence through the first-crossing constraint [57,58], would
provide a more consistent description of bcðkÞ. However,
an extension of the ESP formalism to voids is beyond the
scope of this paper. We will thus stick to the simple formula
in Eq. (29).
In Fig. 9 we show bcðkÞ at z ¼ 0 from L1500 and L250

with sampling density 2 ðMpc h−1Þ−3 together with the best
fit obtained from Eq. (29). We are able to fit the simulation
data for voids of various sizes and sampling densities very
well, with the caveat that we first determine b0 separately
by fitting a constant at low k before fitting the entire data to
constrain the other parameters. We indeed found that, if we

fit Eq. (29) to bc directly, the best fit often overshoots at low
k and lies above the low-k plateau. Our two-step fitting
procedure alleviates this problem. Note that a second
trough of smaller amplitude beyond the maximum of
bcðkÞ is visible in some cases in Fig. 9, but to fit this,
additional feature higher order terms, such as k6, have to be
included in Eq. (29).
In the spirit of the previous section, we can try to predict

the void density profile using information from Fourier
space. We can carry out the inverse Fourier transform of
Pc ¼ bcPm using the best fit from Fig. 9. However, we find
that generally the void density profile in the void interior is
poorly reproduced, with the density contrast much lower
than the measured one. In particular, the constraint that
δ ≥ −1 is often not satisfied. This suggests that the high-k
structure of bc is important to describe the interior of the
void density profile. As expected, the discrepancy is largest
close to the void center and diminishes towards larger
distances, especially for bigger voids for which the “peak”
approximation should be most accurate.

FIG. 9 (color online). Void-matter cross-bias bc for different void sizes from L1500 (diamond, blue) and L250 with sampling density
2 ðMpc h−1Þ−3 (circle, green) and its best fits using Eq. (29) (violet and red lines, respectively) at z ¼ 0.
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V. VOID POWER SPECTRUM AND EXCLUSION

The void auto-power spectrum is more closely related to
observational data than the void-matter cross-power spec-
trum, because voids can also be defined in the spatial
distribution of galaxies without knowledge of the under-
lying dark matter density field. As these voids are biased
tracers of the mass, this allows one to infer information
about the dark matter power spectrum. Furthermore, since
the void-size distribution and the void bias are sensitive to
the definition of voids, it is useful to regard them as
nuisance parameters in the void auto-power spectrum that
can be marginalized over, similarly to what is being done in
galaxy clustering analyses. In this section we investigate
this approach, but also compare our numerical results to the
PBS predictions.
In analogy to halos, the void auto-power spectrum is

affected by shot noise due to the discrete nature of voids.
Poisson shot noise is straightforward to model; its con-
tribution to the void power spectrum is scale independent
and is given by

PPoi ¼
1

ð2πÞ3n̄v
: ð30Þ

Voids are also biased tracers of the density field. On
large scales, it is usually sufficient to consider only linear
bias. However, as we will extend our analysis to
k≳ 0.1 Mpc−1 h, we have to consider higher orders as
well. In fact, as we shall see below, even at low k linear bias
may not be sufficient. For simplicity and comparison
purposes, we begin with a linear bias model, which we
will further extend using the renormalized bias approach
[59] to include higher order bias up to the 1-loop order.

The sampling-density dependence of the void auto-
power spectrum at z ¼ 0 is shown in Fig. 10 for different
bins in void size upon subtracting the Poisson shot noise.
The results obtained from L1500 and L250 with the same
sampling density of 0.02 ðMpch−1Þ−3 are consistent with
each other. However, the power spectra of small voids from
different sampling densities exhibit larger discrepancies,
which are again likely caused by their high subvoid
fraction. As the void size increases, differences among
various sampling densities are reduced. The power spec-
trum of small voids (R≲ 15 Mpc h−1) features a bump at
low k for the lowest sampling density [0.02ðMpc h−1Þ−3].
This feature is more significant and persists for larger void
radii (R≲ 25 Mpc h−1) when we restrict the sample to top-
level voids. Furthermore, for large voids and higher
sampling densities, the power spectrum reaches a negative
plateau at low wave number. These findings are weakly
sensitive to the exact value of the central density cut.

A. Void exclusion

Because voids are generally much more extended than
halos, void exclusion plays an important role in modeling
the void power spectrum. To this end we adopt the hard-
sphere approximation commonly used in statistical mechan-
ics to describe simple liquids and nonideal gases (see e.g.
nonideal gases (see e.g. [60,61]). Recently, hard-sphere
models have also been applied to model halo exclusion
[62–64]. A system of hard spheres exhibits correlations that
are purely induced by their finite size. In an ensemble of
identical hard spheres of diameterD and number density n̄ in
equilibrium, the correlation function is accurately described
by the so-called Percus-Yervick equation. The correspond-
ing power spectrum is given by [60,61,64]

FIG. 10 (color online). Void auto-power spectrum from L1500 (square, violet) and L250 with sampling densities 0.02 (diamond, blue),
0.2 (circle, red), and 2 ðMpc h−1Þ−3 (triangle, green) for voids of different size at z ¼ 0. Poisson shot noise has been subtracted.
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PHSðkÞ ¼
cðkÞ

1 − ð2πÞ3n̄cðkÞ ð31Þ

with

cðkÞ ¼ −
D3

2π2q3

�
a1ðsin q − q cos qÞ þ 6ηa2

q
½2q sin q

þ ð2 − q2Þ cos q − 2� þ ηa1
2q3

½4qðq2 − 6Þ sin q

− ð24 − 12q2 þ q4Þ cos qþ 24�
�
; ð32Þ

where q ¼ kD, η is the packing fraction,

η ¼ πn̄D3

6
; ð33Þ

and a1 and a2 are given by

a1 ¼
ð1þ 2ηÞ2
ð1 − ηÞ4 ; a2 ¼ −

ð1þ η=2Þ2
ð1 − ηÞ4 : ð34Þ

When η ≪ 1, the hard-sphere correlation is well approxi-
mated by a top-hat window in configuration space [60–62]

ξTHðrÞ ¼
�

−1 for r < D;
0 for r ≥ D:

ð35Þ

Its Fourier transform is

PTHðkÞ ¼
D3

2π2q3
ðq cos q − sin qÞ: ð36Þ

Due to the sharp transition between the exclusion zone
and the outer region, hard-sphere models feature strong
ringing in Fourier space. By contrast, voids are not perfect
spheres. Also binning of voids in radius also reduce the
sharpness of the effective radius. Because of these, a soft-
sphere model that smoothly interpolates the transition
region in the correlation function from −1 to 0 may be
more realistic. For example, we can use the function
tanhðrÞ for that purpose, which is well known in studies
of domain walls. Thus, in configuration space we write

ξtanhðrÞ ¼
1

2

�
tanh

�
r −D
σt

�
− 1

�
; ð37Þ

where σt is the width of the transition region. Unfortunately,
no simple analytic form for the Fourier transform of this
function exists. Multiplying PHS or PTH by a Gaussian
damping factor of width σG in Fourier space achieves a
similar smoothing,

WGðkÞ ¼ exp

�
−
1

2
ðσGkÞ2

�
: ð38Þ

In the case of halos, the residual power spectrum Pres is
often considered in order to study the large-scale noise
contribution to the halo power spectrum Ph (e.g. [64–66]):

PresðkÞ ¼ PhðkÞ − b21PmðkÞ; ð39Þ

where b1 is the cross-bias parameter in the low-k limit. In
fact, this can be regarded as a definition of “noise” in the
auto-power spectrum. As the measured bc only qualita-
tively agrees with the PBS predictions, we will not follow
Eq. (39), but use b1 as a free parameter below.

B. Linear bias model

We begin with the simple linear bias model, in which

Pv ¼ P1;1 þ Pexcl; ð40Þ

P1;1 ¼ b21Pm; ð41Þ

where Pm denotes the nonlinear dark matter power spec-
trum. We shall consider five different approximations to
Pexcl as listed in Table I. Models 1 and 2 contain two free
parameters, b1 and D, while the other ones include one
additional smoothing parameter (σt or σG). Also note that
Ptanh is computed via numerical Fourier transform
of Eq. (37).
In Fig. 11 we show the best fits of Eq. (40) to the void

auto-power spectrum from L1500 for different void radius
bins at z ¼ 0. We also plot the individual terms from
Eq. (40) separately to highlight their relative importance.
Poisson shot noise has been subtracted from the numerical
results, and only data points up to k ¼ 0.2 Mpc−1 h are
included in the fit. For clarity, only results obtained with
model 1 are shown, as the others all lead to similar results.
Equation (40) gives a poor fit for the smallest voids
(notably R ¼ 7.5 and 12.5 Mpch−1), but describes
the power spectra for larger voids reasonably well. The
exclusion term plays a central role, especially in the low-k
regime, where P1;1 and Pexcl are of opposite sign, but the
magnitude of the exclusion term is comparable or even
larger than that of the b1 term. Towards smaller scales the
fits are not performing as well, firstly because linear bias is

TABLE I. Different models for Pexcl.

Model # Pexcl

1 PHSðk;DÞ
2 PTHðk;DÞ
3 Ptanhðk;D; σtÞ
4 Wðk; σGÞPHSðk;DÞ
5 Wðk; σGÞPTHðk;DÞ
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not sufficient on those scales, and secondly because the
oscillations from the hard-sphere model are too strong.
Although the high-k wiggles in models 3, 4, and 5 are
damped, their best fits do not have the correct amplitude.
The best-fit values for b1,D (in unit of void radius R) and

the χ2 per degree of freedom are plotted in Fig. 12 as a
function of R for our five models; they all yield fairly
similar results. For the sake of comparison, we also plot b1
from the PBS formalism, i.e. Eq. (15) with the best-fit δv
from the void-size distribution. Its R dependence qualita-
tively agrees with the data, but its amplitude is systemati-
cally larger by unity or so. On the other hand, the
large-scale bc measurements agree with the PBS results
much better. We will comment on this issue more in the
next section. The χ2 per degree of freedom, with values of
∼5 for the intermediate range of void sizes, reflects the
rather poor fits obtained with the linear bias approximation.
It is even worse at small R, as apparent from Fig. 11.

Looking at the best-fit values for D, we find that models
1 and 4 on the one hand, and models 2, 3, and 5 on the other
hand yield very similar results. This is not surprising, as
model 4 differs from model 1 only by a Gaussian damping
factor, which only affects relatively high k, while models 2,
3, and 5 are all variants of the top-hat window. Overall, all
models share a similar trend. IfD is taken to be the Eulerian
size of a void, then D=R should be equal to 2. However, if
we use the Lagrangian size for voids, according to Eq. (9)
we expect D=R to be about 1.16. In Fig. 11, D is closer to
the Lagrangian estimate at low R, and gets closer to the
Eulerian estimate for larger void radii.
The model fails for the small voids with R≲ 15 Mpc h−1

whose power spectrum, unlike voids of larger radii,
increases as k decreases and eventually becomes positive.
Figure 11 also suggests that the hard-sphere exclusion
model does not work for this kind of small voids. In fact,
even the inclusion of nonlinear bias, which will be

FIG. 11 (color online). Best fits from Eq. (40) (solid line, blue) to the void auto-power spectrum from L1500 at z ¼ 0 (gray data points
with error bars). The individual components of the best fit are also shown: the linear bias term P1;1 (dashed line, red) and the void-
exclusion term Pexcl (dotted-dashed line, green). Here, model 1 is used for Pexcl and Poisson shot noise has been subtracted from
the data.
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discussed shortly, does not improve the agreement notice-
ably. However, because the model of Eq. (40) involves
biasing and exclusion, it is unclear which one is the culprit
for the failure. It would be easier to disentangle them in the
configuration space correlation function, where exclusion
effects are confined at short distances while the (linear)
biasing is important at large r.

C. Renormalized bias model

Figure 11 clearly shows that linear bias is not sufficient
to model the data accurately and one must consider higher
orders. While in this work we will restrict ourselves to the
local bias model [67], we will include contributions up to
third order,

δv ¼ b1δþ
b2
2
δ2 þ b3

6
δ3; ð42Þ

where b2 and b3 are the second- and third-order bias
parameters.1 We can now make use of the renormalization
procedure of Refs. [59,68,69]. In plain words, the standard
1-loop expansion of the halo power spectrum with local
bias yields four terms; see e.g. Eq. (12)–(15) and the
corresponding diagrammatic expansion in [70]. However,
two of these terms are simply proportional to PmðkÞ, so by
absorbing them in P1;1 they do not appear explicitly
anymore. In the language of [59], these terms renormalize
b1. As b3 only appears in one of these two terms, it does
not explicitly appear at 1-loop order. Hence, there are
effectively only two new terms

P2;11 ¼ 2b1b2

Z
d3qF2ðq;k − qÞPLðqÞPLðjk − qjÞ;

ð43Þ

P11;11 ¼
b22
2

Z
d3qPLðqÞPLðjk − qjÞ; ð44Þ

and one additional parameter, b2. Here, PL is the linear
matter power spectrum and F2 denotes the kernel

F2ðq;pÞ ¼
5

7
þ 1

2
μ

�
q
p
þ p

q

�
þ 2

7
μ2; ð45Þ

where μ ¼ q̂ · p̂.
Therefore, we shall adopt the following model for the

void power spectrum:

Pv ¼ P1;1 þ P2;11 þ P11;11 þ Pexcl: ð46Þ

Figure 13 displays the resulting best fits obtained after the
inclusion of the b2 terms. Including the quadratic bias
significantly improves the agreement with the numerical
data, except for the smallest voids (R ¼ 7.5 and
12.5 Mpc h−1), for which the fits are still poor. In this
plot, model 4 is used to account for exclusion effects,
although the results do not depend on the exact form of
Pexcl when R≳ 25 Mpch−1.
Closer inspection of the individual components of the

best-fit power spectrum reveals that the term P2;11 is
negligible for the entire range of k shown. On the other

FIG. 12 (color online). The best-fit values for b1 andD using Eq. (40) to fit the void auto-power spectrum and the corresponding χ2 per
degree of freedom. The results from model 1 (circle, blue), 2 (square, red), 3 (triangle, green), 4 (diamond, violet), and 5 (star, yellow)
are shown. The solid line depicts b1 as predicted from the PBS formalism. We also show the large-scale measurement of bc (dotted line,
black) for comparison.

1b2 here should not be confused with the coefficient of k2 in
Eq. (29).
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hand, we find that P11;11 (which is nearly constant at low k
and thus has been coined “shot noise renormalization
term” in [59]) is comparable to, or even larger than P1;1
for the biggest voids. This term drives the improvement of
the fit to the void power spectrum compared to the previous
linear model.
The best-fit parameters b1, b2, D, and the χ2 per degree

of freedom are shown in Fig. 14. For b1 and b2 we also plot
the corresponding PBS prediction for comparison. The five
different exclusion models lead to similar results. For
R≲ 30 Mpch−1, the best fit for b1 agrees with the PBS
prediction, especially for models 1 and 4. However, at
larger void sizes, the best-fit b1 turns over and starts to
increase, while the PBS prediction keeps on decreasing. On
the other hand, we find the best-fit b2 following the PBS
prediction more closely, although it is smaller in magnitude
at R≳ 40 Mpch−1. We remark that in the dominant terms

P1;1 and P11;11 only b21 and b22 enter, while the coupling
term P2;11 is negligible. Our fitting routine actually finds
another set of acceptable fits for which b2 decreases when
R≳ 30 Mpch−1. However, even in this case b1 increases
for R≳ 30 Mpch−1 in a way similar to what is shown in
Fig. 14, mainly because it must compensate the important
contribution of P1;1 to the fit. For D, the best-fit values are
similar to those in Fig. 12. Finally, with the inclusion of b2,
the χ2 per degree of freedom reaches ∼1, a big improve-
ment compared to the linear bias model.
Recall that in Fig. 12, the best fit b1 is systematically

slightly lower than the PBS and large-scale fit of bc;
however, as the fit is poor for the linear bias model, the
results are not conclusive. With the quadratic bias, the fit is
much better as manifested by χ2 per degree of freedom is
∼1. Still, the best-fit b1 is systematically lower than PBS
and bc measurements for R≲ 30 Mpc h−1 and higher for

FIG. 13 (color online). Best fits from Eq. (46) (solid line, blue) to the void auto-power spectrum from L1500 at z ¼ 0 (gray data points
with error bars). The individual components of the best fit are also shown: the linear bias term P1;1 (dashed line, red), P2;11 (dashed line,
green), P11;11 (dashed line, cyan), and the void-exclusion term Pexcl (dotted-dashed line, violet). Here, model 4 is used for Pexcl and
Poisson shot noise has been subtracted from the data.
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larger R. If the model is self-consistent we would expect
that the best-fit b1 from the void-power spectrum agrees
with the large-scale bc measurement. Some of the system-
atics due to the construction of voids can be eliminated by
cross-correlating dark matter with the void density field.
These systematics deviate voids from being simple biased
tracers of the underlying dark matter density field. The
most important one is the exclusion effect modeled by the
hard-sphere model in this paper. Thus, the difference
between b1 from the void auto-power spectrum is likely
due to some remaining systematics in the construction of
voids. This can explain why the bc measurements agrees
with the PBS results much better than those from the
auto-power spectrum. This also suggests that Eq. (46) is
only a phenomenological model; it is not a serious problem
if we only want to fit the void auto-power spectrum, which
is often the case in galaxy surveys. We can simply
marginalize over the bias parameters.
While there have already been several lines of evidence

for corrections to the standard Poisson noise in the large-
scale clustering of halos [63,64], our results demonstrate
that this effect is even more important in the clustering
of voids.
In Refs. [71–73] it has been proposed that at quadratic

order an additional nonlocal term has to be taken into
account. It was shown that this term is naturally generated
by large-scale gravitational evolution [72], and evidence for
this additional term has been found in bispectrum mea-
surements [72,73]. We will leave further investigations to
future work. However, note that this nonlocal term does not
affect substantially the power spectrum at large scale [70]
and, hence, is unlikely the main culprit for the lack of
consistency between different b1 measurements.

VI. DISCUSSION AND CONCLUSION

Cosmic voids have emerged as an interesting probe of
cosmology, yet most studies thus far have focused on the
internal characteristics of voids. In this paper, we have
studied their large-scale clustering using N-body simula-
tions and found some interesting properties. Some ques-
tions remain to be answered; we will discuss some of
them below.
The voids analyzed in this paper are identified in dark

matter simulation using a watershed algorithm. As the
definition of voids depends on the sampling density of the
tracers used to identify them, we used a few different values
to investigate its effect on the size distribution, the density
profile, and the power spectrum of voids. For the power
spectrum we find a rather weak dependence on the
sampling density of voids with radius R≳ 20 Mpc h−1.
We have cross-checked our results using subsamples that
include only parent voids, and voids whose central density
is less than 0.2ρ̄m. These different cuts on the void sample
do not change the main results in this paper. Although we
only deal with dark matter voids in this paper, it is worth
pointing out that besides the tracer density, the bias of
tracers is also important in galaxy surveys. We will leave it
to future work to examine how the observables studied in
this paper depend on the tracer bias.
Even though the SvdW void-size distribution does not

take into account either the tracer sampling-density depend-
ence, or subvoids, we can describe the measured void-size
distribution reasonably well for a large range of R if the
void collapse threshold is treated as a free parameter.
However, the best-fit value of δv ∼ −1 is very different
from the canonical spherical collapse value of −2.8. This is

FIG. 14 (color online). The best-fit values for b1, b2, and D using Eq. (46) to fit the void auto-power spectrum and the corresponding
χ2 per degree of freedom. The results from model 1 (circle, blue), 2 (square, red), 3 (triangle, green), 4 (diamond, violet), and 5 (star,
yellow) are shown. The solid lines depict b1 and b2 as predicted from the PBS formalism. The large-scale measurement of bc is also
plotted (dotted line, black).
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very likely caused by the simplifying assumptions of the
spherical expansion model. The spherical collapse value of
−2.8 is obtained from the shell crossing condition, but this
criterion is not incorporated in the watershed algorithm.
Also, voids constructed by the watershed algorithm are not
spherical in general and strongly depend on the sampling
density. It is also unclear why the best fit agrees also with
samples that are dominated by subvoids (L250 with high
sampling densities). One of the possible ways to investigate
this further would be to trace back void particles from
Eulerian to Lagrangian space and to study their properties
in the initial density field.
We have also explored the void-matter cross-power

spectrum, respectively the cross-bias parameter bc between
the voids and the dark matter. We find that it can be
approximated by a constant on large scales. For our L1500
simulation, which is dominated by top-level voids, the best-
fit value is broadly consistent with the PBS prediction. The
agreement deteriorates for larger void sizes and higher
redshifts.
In order to understand the structure ofbcðkÞ inmore detail,

we have measured the void density profile in configuration
space, and subsequently derived the void-matter cross-
power spectrum by Fourier transform. The Fourier space
oscillation in bcðkÞ is clearly related to the underdense core
and compensation wall seen in the void density profile.
However, it is difficult to reproduce the detailed structure of
bcðkÞ from fitting formulae of the void density profile. The
agreement improves for larger voids. We have also tried to
predict the void density profile by inverse Fourier trans-
forming an educated guess ofbcðkÞ. In this case, however, the
density profile within the void is not reproduced correctly.
Again, the best match is obtained for large voids.
It is particularly important to model the void auto-power

spectrum, because it is in principle directly measurable in
galaxy surveys data. Voids are very extended objects and
when only parent voids are considered, they exclude each
other. This has a large impact on their auto-power spectrum.
We have modeled this exclusion effect using the hard-sphere
model. Furthermore, to account for the fact that voids are
biased tracers of the underlying dark matter density field,
we have first considered the linear bias model. Combined
with the hard-sphere model, we have found that it can
reproduce the overall shape of the void-auto power spectrum
although the fit is not good. For this reason, we have
extended our model to include quadratic bias using the
renormalized bias approach. This improves significantly the
fits, which is particularly good for voids with radii
R≳ 30 Mpch−1. Accounting for void exclusion is essential
here because, on large scales, its sign is opposite that of the
linear bias term while its magnitude is comparable or even
larger. The shot noise renormalization term, which is
constant at low k and of magnitude comparable to the linear
term, also contributes significantly to improve the agree-
ment. There are some lines of evidence that this term is

present in halo clustering. Void clustering statistics also
support its existence. However, the best-fit values for the
linear and quadratic bias parameters b1 and b2 only qualita-
tivelyagreewithPBSexpectations.Moreprecisely, thebest-fit
b1 roughly agrees with the PBS prediction b1 ¼ 1þ bPBS1

forR≲ 30 Mpch−1, but largely deviates from the PBS result
for bigger voids. If voids would behave as dark matter halos,
thenb1 asmeasuredfromthevoidauto-powerspectrumshould
agree with bcðkÞ in the limit k → 0. The lack of consistency
between b1 from auto-power spectrum and cross-power
spectrum could be due to systematics in the measurements
and/or modeling that have not been taken into account.
The model for the void power spectrum considered in

this paper does not seem to work for the small voids. Some
insight into this problem could be gained by measuring the
void autocorrelation in configuration space because it better
disentangles the effect of biasing and exclusion, the latter
remaining confined to short separations.
As already stressed several times in the literature, voids

are very sensitive to the identification procedure. So are
their abundance and biasing. Therefore, it is doubtful that
one can ever predict accurately the abundance and cluster-
ing of the surveyed voids from first principles. In contrast,
for halos the agreement between theory and numerical
results is generally more encouraging than what we find for
voids. Yet, in galaxy clustering analyses, bias parameters
are commonly treated as nuisance parameters. Therefore,
while theory is important for understanding how voids
evolve in time, in practice it might be enough to devise
some phenomenological description of void clustering
where bias factors are marginalized over (so long as there
are not too many free parameters). Our finding that the void
auto-power spectrum can be well described by a combi-
nation of exclusion and biasing is an important step, not
only because it is a direct observable in galaxy surveys, but
also because it enables us to infer information about
the dark matter distribution in the Universe without the
knowledge of the precise values of the bias parameters.
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