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ABSTRACT
The microphysical properties of the dark matter (DM) particle can, in principle, be constrained
by the properties and abundance of substructures in galaxy clusters, as measured through strong
gravitational lensing. Unfortunately, there is a lack of accurate theoretical predictions for the
lensing signal of these substructures, mainly because of the discreteness noise inherent to
N-body simulations. Here, we present a method, dubbed as Recursive-TCM, that is able to
provide lensing predictions with an arbitrarily low discreteness noise. This solution is based
on a novel way of interpreting the results of N-body simulations, where particles simply
trace the evolution and distortion of Lagrangian phase-space volume elements. We discuss the
advantages and limitations of this method compared to the widely used density estimators based
on cloud-in-cells and adaptive-kernel smoothing. Applying the new method to a cluster-sized
DM halo simulated in warm and cold DM scenarios, we show how the expected differences
in their substructure population translate into differences in convergence and magnification
maps. We anticipate that our method will provide the high-precision theoretical predictions
required to interpret and fully exploit strong gravitational lensing observations.

Key words: gravitational lensing: strong – gravitational lensing: weak – methods: numerical –
cosmology: theory – dark matter – large-scale structure of the Universe.

1 IN T RO D U C T I O N

Gravitational lensing has become a powerful and robust technique
to explore the ‘dark side’ of our Universe (see Bartelmann 2010,
for a recent review). In the near future, it is expected to probe the
accelerated cosmic expansion and to constrain the properties of the
dark matter (DM) particle.

In the weak regime, lensing by the large-scale structure of the Uni-
verse causes small distortions in the apparent shape of high-redshift
galaxies and in the apparent temperature anisotropy of photons at the
last scattering surface. These effects can be detected statistically by
wide-field surveys (e.g CFHTLS1 DES,2 J-PAS,3 Euclid,4 LSST5),

�
E-mail: reangulo@gmail.com

1 http://www.cfht.hawaii.edu/Science/CFHLS/
2 http://www.darkenergysurvey.org/
3 http://j-pas.org/
4 http://sci.esa.int/euclid/
5 http://www.lsst.org/

and by cosmic microwave background experiments (Planck,6 SPT,7

ACT8). From correlations in the distortions, one can infer the am-
plitude, shape and redshift evolution of the matter power spectrum
– quantities sensitive to the initial density perturbations, the law
of gravity and the cosmic expansion. Therefore, gravitational lens-
ing measurements are expected to contribute significantly to our
understanding of the Dark Energy and the physics of the early Uni-
verse (e.g. Huterer 2010; Marian et al. 2011; Oguri & Takada 2011;
Hilbert et al. 2012; Giannantonio et al. 2012).

In the strong regime, efficient lensing configurations can pro-
duce multiple images of the same background galaxy or quasar.
Each of these images is further distorted by intervening small-scale
structures, thus the differences in their shape and/or flux can be
used to constrain the substructure content of galaxy and cluster
haloes (Mao & Schneider 1998; Metcalf & Madau 2001; Dalal &
Kochanek 2002; Kochanek & Dalal 2004; Natarajan & Springel
2004; Natarajan, De Lucia & Springel 2007; Vegetti et al. 2010).

6 http://www.esa.int/Our_Activities/Space_Science/Planck/
7 http://pole.uchicago.edu/
8 http://www.princeton.edu/act/
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This method is, in fact, the only way of detecting substructures in
distant galaxies (Vegetti et al. 2012). The amount and compactness
of halo substructures depend strongly on the nature of the DM par-
ticle: colder candidates produce more and denser substructures (e.g.
Klypin et al. 1999; Moore et al. 1999; Diemand, Kuhlen & Madau
2007; Springel et al. 2008); particles with larger self-interaction
cross-sections produce shallower and more spherical density pro-
files (Meneghetti et al. 2001; Peter et al. 2013). Therefore, strong
gravitational lensing can probe the microphysical properties of the
DM particle and thus provide a direct test of the cold dark matter
(CDM) paradigm.

In order to fully exploit gravitational lensing measurements in
both strong and weak regimes, it is essential to have accurate predic-
tions for the non-linear state of the mass distribution in the Universe.
In particular, it is important to predict correctly the abundance, spa-
tial distribution and internal properties of DM haloes and their
substructure. Among the different theoretical approaches available,
cosmological N-body simulations appear as the only robust and
accurate method that meets these requirements.

Moreover, cosmological N-body simulations (e.g. Peebles 1971;
Efstathiou & Eastwood 1981; Efstathiou et al. 1985; Springel et al.
2005; Angulo et al. 2012) are also invaluable cosmological tools:
(i) They are the most reliable and precise method to follow the
highly non-linear evolution of primordial density fluctuations (e.g.
Kuhlen, Vogelsberger & Angulo 2012, for a recent review). (ii)
They provide virtual universes with which we can test, predict
and interpret astronomical observations (e.g. Overzier et al. 2013).
(iii) They allow us to experiment with the laws of physics and the
background cosmological model (e.g. Fontanot et al. 2012, 2013).
Thus, numerical simulations not only can provide the theoretical
predictions required by gravitational lensing, but they also can be
particularly useful for testing analysis algorithms and for exploring
the connection between lensing observations and the underlying
cosmological model (Bartelmann et al. 1998; Jain, Seljak & White
2000; Vale & White 2003; Meneghetti et al. 2007; Hilbert et al.
2009).

Unfortunately, numerical simulations have a serious limitation
that is inherent to the formulation of the N-body problem: in order
to efficiently solve the Poisson−Vlasov equation, the initial cosmic
density field must be represented by a set of discrete bodies. This
discretization allows us to follow the non-linear dynamics and evo-
lution of the DM fluid, but it introduces a small-scale noise that is
very often larger than the small-scale lensing signal itself. The noise
decreases on large scales and/or with better mass resolution. How-
ever, it is still comparable to the strong lensing signal from most of
the substructure population, even with the highest resolution simu-
lations to date (Xu et al. 2009; Rau, Vegetti & White 2013). In other
words, the substructure lensing properties that could constrain the
DM particle mass remain buried beneath the discreteness noise.
Hence, current theoretical predictions are not sufficiently accurate
for upcoming lensing measurements.

In this paper, we propose Recursive-TCM,9 a method to create
gravitational lensing simulations almost free of discreteness noise.
Our procedure builds on a recently proposed method to solve for
the collisionless dynamic of the DM fluid (Abel, Hahn & Kaehler
2012; Kaehler, Hahn & Abel 2012; Shandarin, Habib & Heitmann
2012; Angulo, Hahn & Abel 2013; Hahn, Abel & Kaehler 2013).
The novel approach considers simulation particles as the vertices

9 The term Recursive-TCM abbreviates for ‘Recursive deposit of Tethrahe-
dra approximated by their Center of Mass’.

of Lagrangian phase-space volume elements, not mass carriers as
in the usual interpretation of numerical simulations. The evolution
and distortion of these volume elements is described by the Eulerian
coordinates of simulation particles. Consequently, the DM density
field is determined by spatially overlapping phase-space elements,
which can be deposited on to a target grid using a recursive algo-
rithm. The result is a continuous and smooth density field ideal for
small-scale lensing simulations.10

We devote this paper to the presentation and testing of the al-
gorithm. We start in Section 2 by describing how we compute the
gravitational lensing signal of a set of simulation particles. We then
apply our method to a cluster-size halo simulated in CDM and
Warm-DM (WDM) cosmologies. These simulations are described
in Section 3. In Section 4, we compare our method with standard
density estimators, and show how the noise in the surface density
and magnification maps is greatly reduced. This allows us to ex-
plore the impact of substructure on the strong lensing magnification
fields for our CDM and WDM haloes. We present our conclusions
and a discussion of possible future work in Section 5.

2 LENSI NG SI MULATI ONS

We start by describing how the gravitational lensing signal of a set
of simulation particles is computed, including details of our method
to estimate the respective surface density maps.

2.1 Gravitational lensing

Within the plane lens approximation, the lensing distortions pro-
duced by a concentrated mass distribution can be derived from a
lensing potential, �(θ), (e.g. Bartelmann & Schneider 2001)

�(θ ) = 1

π

∫
d2θκ(θ ) ln

∣∣θ − θ ′∣∣ , (1)

where θ = (θ1, θ2) denotes an angular position on the (plane) sky,
and the convergence κ(θ) is defined as

κ(θ ) = �ang(θ )

�
ang
c

. (2)

Here, �ang(θ ) denotes the projected angular surface mass density
of the lens mass concentration. The critical angular surface mass
density is defined as

�ang
c = c2

4πG

aLfLfS

fLS
, (3)

with the speed of light c, gravitational constant G, scale factor aL at
the redshift of the lens, and comoving angular diameter distances
fL, fS and fLS from the observer to the lens, from the observer to
the source, and between the source and the lens, respectively.

The deflection angle α(θ ) = (α1(θ), α2(θ )), the complex shear
γ (θ ) = γ1(θ) + iγ2(θ ) and the magnification μ(θ ) are given by

α(θ ) = (�1(θ ), �2(θ )) , (4)

γ (θ ) = 1

2
[�22(θ ) − �11(θ)] − i�12(θ ), (5)

μ(θ ) = {
[1 − κ(θ )]2 − |γ (θ )|2}−1

, (6)

10 The reduction of discreteness noise also helps to suppress the artificial
fragmentation of filaments seen in WDM simulations (Angulo et al. 2013;
Hahn et al. 2013).
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where the subscripts refer to partial derivatives with respect to one
of the angular coordinates.

There are several ways of computing the lensing signal from
numerical simulations (e.g. Wambsganss, Cen & Ostriker 1998;
Couchman, Barber & Thomas 1999; Jain et al. 2000; Aubert, Amara
& Metcalf 2007; Hilbert et al. 2009). Here, we choose one of the
simplest, which consists in computing the surface density on a
regular lattice and then solving for the lensing potential in Fourier
space:

�F (�) = 1

π
κF (�) lnF (�) (7)

2π2�2�F (�) = −κF (�), (8)

where the superscript F indicates a Fourier transform. These ex-
pressions can be readily evaluated by using fast Fourier transforms
(FFT). However, this requires additional corrections, because FFT
algorithms implicitly assume periodic boundary conditions, while
the appropriate conditions should be vacuum boundary conditions.
To suppress shear artefacts induced by periodic images of the mass
distribution, generous zero padding is employed.11 To recover the
correct mean convergence [which is lost in the FFT methods due to
setting κF (� = 0) to zero], the potential from the FFT is corrected
by a term ∝ θ2. Finally, the lensing deflection, shear and magni-
fication can be obtained by computing derivatives of � either in
Fourier space, or in real space by using finite difference methods
(Hilbert et al. 2009).

2.2 Recursive-TCM: a new density estimator

The problem is now reduced to obtaining the surface mass density,
�(θ ), on a uniform grid from which the respective lensing poten-
tial can be computed. Essentially, this step consists in mapping a
three-dimensional (3D) distribution of simulation particles on to
a two-dimensional (2D) grid. Although it is in principle a simple
task, in practice it is rather difficult to accurately carry out the map-
ping. Several authors have explored different projection methods
and have concluded that all of them give rise to a noise field of
amplitude comparable to the strong lensing signal produced by real
DM substructures (Bradač et al. 2004; Li et al. 2006; Xu et al. 2009;
Rau et al. 2013). This is true even for the highest mass resolution
simulations of DM haloes available to date. Similarly, large-scale
N-body simulations, with volumes comparable to that of future
wide-field galaxy surveys, have typically a low number density of
simulation particles, which adds a Poisson noise that dominates the
small-scale weak lensing predictions (e.g. Jain et al. 2000; Vale &
White 2003; Hilbert et al. 2009; Sato et al. 2009).

There are several proposed ways of dealing with this problem. For
strong lensing, one of the most common ways is to model the smooth
component of a DM halo with an analytic expression (e.g. a single
isothermal sphere), and then add on top the substructure population
(e.g. Xu et al. 2009). Although, it is possible to incorporate the
correct density profile and the triaxiality of the DM halo, this method
washes out all other higher order or more subtle features of the DM
halo substructures such as streams, caustics, etc. For weak lensing,
maps are often smoothed with a fixed-size kernel, which decreases
the particle noise but also erases actual small-scale structure (Hilbert
et al. 2009; Takahashi et al. 2011).

11 For simplicity, we refrain from also applying a force-range cut-off.

Here we present Recursive-TCM, a mass-depositing scheme that
captures a simulated density field in all its complexity by reducing
drastically the noise introduced by the finite number of particles.
The method extends the techniques proposed by Abel et al. (2012),
Shandarin et al. (2012), Hahn et al. (2013), Kaehler et al. (2012),
Angulo et al. (2013), and thus we refer to these papers for an exten-
sive discussion of the method. The key idea is to consider simulation
particles as vertices of Lagrangian phase-space tetrahedra. At any
redshift, the particles indicate the current positions of these ver-
tices. To create surface density maps, the matter represented by
these tetrahedra is deposited on a target mesh using a recursive
splitting scheme.

One way of interpreting our method is that it assigns to each
particle a smoothing kernel whose size and shape are given by their
Lagrangian (not Eulerian as in most smoothing methods) neigh-
bours. In particular, this kernel is anisotropic and not even uniquely
defined in an Eulerian space. We also note that our method is con-
ceptually different to those that project a Delaunay or Voronoi tes-
sellation built from the Eulerian particle distribution (Schaap & van
de Weygaert 2000; Bradač et al. 2004).

The four main steps for a practical implementation of Recursive-
TCM are:

(1) Creating the initial tessellation: first, we need to define a set of
disjoint Lagrangian phase-space elements that fully fill the volume
of a N-body simulation. In three dimensions, the most natural choice
is a Delaunay tessellation of the unperturbed particle distribution.
The result is a set of tetrahedra (six times more abundant than the
number of particles) whose corners are given by the simulation
particles.12 The connectivity of each tetrahedron is fixed and stored
(it can also be trivially recovered from the particles’ ID number in
case the ID is related to the position of a particle in an unperturbed
lattice).

(2) Reconstructing the evolved tessellation: after the simulation
has been evolved and the particles moved to different locations,
the initial set of tetrahedra (which therefore also moved) is recon-
structed using the stored connectivity. The internal density of each
tetrahedron is assumed to be uniform, and the density field at any
given location is simply given by all those tetrahedra that intersect
the target location. We note that it is also possible to compute, at
any point of space, other quantities besides the density, such as
the number of streams, the velocity dispersion tensor, vorticity, etc.
(Hahn et al. 2014).

(3) Projecting the density field: the next step is to compute the
projected density field on a grid, i.e to map the tetrahedra on to a 2D
regular mesh. The simplest way, called TCM by Hahn et al. (2013),
is to represent each tetrahedron by a single point mass located at
the centre of mass. Another option is to represent each tetrahedron
by four particles, preserving the monopole and quadrupole of the
parent polyhedra (Hahn et al. 2013). Here, we propose a more exact
deposit, referred to as Recursive-TCM, which consists in recursively
biparting each tetrahedron along its longest edge. The process con-
tinues until all the child tetrahedra are completely contained inside
one grid cell, or a maximum number of levels in the recursion is

12 Constructing the tessellation can be a computationally expensive task for
state-of-the-art simulations (e.g. Pandey et al. 2013). However, this is trivial
if the particle distribution is arranged in a regular lattice (as opposite to a
glass-like distribution): each set of eight grid points defines a cube that is
subdivided into six disjoint tetrahedra.

MNRAS 444, 2925–2937 (2014)
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2928 R. E. Angulo et al.

reached. Then, each child tetrahedron is subsequently represented
using a single particle of mass 2−lmtet (where l is the recursion level
and mtet is the mass of the top tetrahedron) that is deposited using a
nearest grid point assignment scheme.

(4) Removing density biases: over the range of scales in which
the mass resolution of a given simulation is adequate to describe
the evolution and distortion of Lagrangian phase-space volumes,
our method provides a very reliable proxy for the density field
(Abel et al. 2012). However, tetrahedron-based density calcula-
tions are biased if the distortion of an initial phase-space volume
cannot be represented by linear transformations. This happens in
two situations. One is at the centre of DM haloes, which have
high densities and short dynamical times. As discussed in Hahn
et al. (2013), this has the net effect of densities being overestimated
at the halo centre, and underestimated at slightly outer regions.
The second situation regards the tidal stripping of substructures,
where some vertices of a given tetrahedron are stripped while oth-
ers might still be attached to the substructure. This has the net effect
of underestimating the mass associated with substructures and it
might introduce spatially-coherent density biases along the orbit of
substructures.

Fortunately, these biases in the density are small and can be identi-
fied and corrected for. Moreover, the centres of haloes are typically
dominated by a stellar component (specially in galaxy-sized DM
haloes, where the observational search for substructures is focused),
and also are affected by baryonic processes absent in DM-only
N-body simulations (such as feedback, adiabatic compression, etc).
Hence, any DM-only-based predictions need to be altered to ac-
count for these and produce realistic lensing efficiencies (e.g. Xu
et al. 2009), so an additional correction that remove biases of our
density estimator can be easily included.

Here, we propose and use a simple way to remove density biases:

(4.1) We first compute two 2D density maps of the same simu-
lated region, one using our method and another using a traditional
(noisier) estimator.

(4.2) We then apply a correction factor to the Recursive-TCM
map, defined as the average ratio between densities computed us-
ing the traditional estimator and the Recursive-TCM, in bins of
Recursive-TCM densities. This aims to correct the overestimation
of central densities.

(4.3) We apply an additional correction factor to account for
spatially coherent, large-scale biases related to tidal stripping of
substructures. This extra factor is set to the ratio of the density
maps using the traditional and the Recursive-TCM estimator (after
the above correction is applied), both Gaussian smoothed to keep
only large-scale modes.

As we will show in the next section, this simple correction pro-
cedure eliminates most biases in surface density maps, preserving
the reduced noise properties of our method. We note, however,
that more sophisticated correction methods are possible and should
decrease the biases even further. Some possible extensions are ap-
plying corrections to 3D densities instead of projected ones, and/or
applying separate correction factors for different substructures. We
also note that the Lagrangian phase-space elements we employ can
be adaptively refined during the gravitational evolution of an object.
In such case, we expect Recursive-TCM to be completely unbiased
and thus eliminating the need of a posteriori correction. We plan to
investigate this in a future work.

3 R ECURSI VE-TCM IN ACTI ON

For illustrative purposes, we now apply our new method to numer-
ical simulations of cold and warm DM cosmologies. We start by
presenting these N-body simulations, together with one particular
DM halo on which we focus our analysis. Then, we provide details
of our density estimator when applied to these simulated objects.

3.1 Parent N-body runs

We employ two of the cosmological N-body calculations presented
in Angulo et al. (2013). These simulate two different cosmolog-
ical scenarios: (i) a standard CDM and (ii) a WDM model with
a 250 eV DM particle mass. In the latter, fluctuations below k ∼
1 h Mpc−1 are suppressed, which translates into a lack of collapsed
structures below M ∼ 2 × 1012 h−1 M�, and consequently into a
strong suppression of the subhalo population of massive haloes.
Although this WDM model is ruled out by observations (Viel et al.
2013), we will consider it for illustrative purposes. The cosmologi-
cal parameters of the simulations are consistent with those inferred
from the WMAP7 data release (Komatsu et al. 2011): 	m = 0.276,
	
 = 0.724, 	b = 0.045, h = 0.703, σ 8 = 0.811 and spectral index
ns = 0.96.

Each of these two simulations corresponds to a cubic region of
L = 80 h−1 Mpc side length, containing 10243 simulation particles
of mass 3.65 × 107 h−1 M�. The initial conditions were created
using the music code (Hahn & Abel 2011) at z = 63. The parti-
cles were subsequently evolved using a Tree-PM method, as im-
plemented in the l-gadget3 code (Angulo et al. 2012; Springel
et al. 2005). Gravitational forces are smoothed using a Plummer-
equivalent softening length set to 5 h−1 kpc. Additionally, we have
located DM haloes using an FoF algorithm (Davis et al. 1985) (us-
ing a standard value for the linking length b = 0.2), and identified
self-bound substructures (or subhalos) within these haloes using the
SUBFIND algorithm (Springel, Yoshida & White 2001).

The numerical simulations were started using identical phases
and evolved with the same numerical parameters, which allows a
direct comparison of structure formation in general, and of gravita-
tional lensing signatures in particular.

3.2 Target cluster-sized DM halo

For our strong gravitational lensing analysis, we will focus on the
most massive cluster present in our simulations at z = 0. This object
has a mass of M200 = 4.38 × 1014 h−1 M�, and it is resolved with
more than 10 million particles. For comparison, this corresponds
roughly to the lowest resolution runs of the clusters in the Phoenix
project (Gao et al. 2012), and it is a factor of 10 coarser than the
main cluster employed by Rau et al. (2013).13 The force resolution
is ∼250 times smaller than the halo’s virial radius, and thus the halo
structure is resolved adequately for our purposes.

The spherically averaged density profile of the halo is well
fitted by a cored NFW profile (Navarro, Frenk & White 1996,
1997), ρ(r)−1 ∝

√
(r/rs)2 + (rc/rs)2(1 + r/rs)2, with concentra-

tion rs/r200 = 3.9, and core radius, rc = 5 h−1 kpc, both in CDM
and WDM. We note that the core is a numerical artefact, and arises
due to the lack of force resolution on scales smaller than the simu-
lation softening length.

Fig. 1 shows an image of the selected halo in our two cosmolog-
ical scenarios. The DM halo displays the same overall structure in

13 Our force resolution is also much lower.
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Towards noiseless lensing simulations 2929

Figure 1. Projected DM density, as computed by Recursive-TCM, for the most massive halo in our simulations at z = 0 (M200 = 4.38 × 1014 h−1 M�). Each
image corresponds to a square region of 3.05 h−1 Mpc side length and 3 h−1 Mpc projection depth around the cluster centre. The white circle indicates the
virial radius R200 = 1.229 h−1 Mpc. The left-hand panel shows the halo in a WDM scenario, the right-hand panel assumes a CDM cosmology.

WDM and in CDM, and the differences caused by the DM parti-
cle mass are evident only in their small-scale properties. In CDM,
the halo contains a wealth of substructure: a large number of small
clumps that are the remnants of previously accreted DM haloes.
These, in contrast, are almost absent when WDM is adopted, but
caustics, streams and filaments are instead much better defined. In-
side R200 of the CDM halo, we find 2121 substructures with more
than 15 particles, which corresponds to a minimum subhalo mass
of Ms ≥ 7.3 × 108 h−1 M�. Contrasting this, we found only 119
substructures inside the WDM halo – which are mostly a result
of numerical fragmentation of filaments (Wang, Mo & Jing 2007;
Angulo et al. 2013). The substructure population contributes 1.7
and 6.5 per cent of the mass inside R200, respectively, for our WDM
and CDM halo.

Considering only substructure with masses above 1010 M�, the
subhalo mass function in CDM follows a power law dn/d log ms ∝
m−0.79

s . However, the slope decreases to −0.66 when we consider all
the subhalos detected. These values are shallower that the average
slope found in other simulations (−0.9, e.g. Angulo, Baugh & Lacey
2008; Gao et al. 2012). The discrepancy is most likely caused by
our low force resolution compared to our mass resolution (many
low-mass haloes are tidally disrupted too efficiently due to our low
force resolution, which makes our subhalo mass function being
incomplete up to higher subhalo masses than in simulations with
smaller softening lengths), which could explain the change in slope
in the subhalo mass function. Although these discrepancies are
not important for our work, we caution the reader that the amount
of substructure in our work is underestimated compared to other
simulations of similar mass resolution.

3.3 Recursive-TCM lensing simulations

We are now in position of applying our method to the WDM and
CDM halo described before. We artificially place the haloes at
z = 0.32, where the most massive galaxy clusters are expected to
be observed, and assume a background source population located
at z = 2. We consider the 3D particle distribution inside a region of
dimensions 0.6 × 0.6 h−1 Mpc (equal to 0.5 × R200) and 3 h−1 Mpc
deep centred on our halo, and project it on to a 10002-pixels mesh.

This yields a spatial resolution of 0.6 h−1 kpc, sufficient to resolve
the smallest structures present in our simulation given our grav-
itational resolution limit (5 h−1 kpc). We checked that neglecting
structures beyond our projected density field is a good approxima-
tion for the lensing quantities explored in this paper: we repeated
our analysis considering a four times larger region, covering 1.2 ×
1.2 h−1 Mpc, and found no significant differences in the resulting
magnification maps.

We apply our full Recursive-TCM algorithm using a maximum
of 10 recursion levels, i.e. every top-level tetrahedron is split into
210 = 1024 smaller tetrahedra, at most.14 Using these maps, we
create convergence fields, compute the lensing potential, and derive
the associated μ, γ and α, as described in Section 2.1. We use
a 32 7682 FFT mesh (this is approximately a factor of thousand
larger than the density mesh to allow for non-periodic boundary
conditions), and compute the spatial derivatives in Fourier space.

The computational cost of our Recursive-TCM algorithm is
higher than usual projection methods, but it is still negligible com-
pared to the time employed in carrying out an N-body simulation.
For our particular data structure, data access and target grid, and
maximum recursion level, it took 123 min using 256 processors, i.e.
500 CPU hours. It is important to remember that this corresponds
to an implementation in software for CPUs, and that less recursion
levels significantly reduce the execution time. In addition, alterna-
tive algorithms based on GPU-rendering routines can, in principle,
achieve significantly better performances (Kaehler et al. 2012).

For comparison, we computed densities using two additional
techniques. The first one, referred to as CiC, represents each par-
ticle by a cube of uniform density and size equal to the cell size
of the target grid. This is the most-common projection method in
cosmology (Hockney & Eastwood 1981). The second method, re-
ferred to as smoothed particle hydrodynamics (SPH), employs a
spherically-symmetric polynomial kernel (Springel et al. 2005) to

14 We note that the value of 10 is the maximum allowed recursion level in
the deposit. In practice, unless a tetrahedron is extremely stretched, it will
never reach this stage because all its child tetrahedra will be smaller than
the pixel size. In this sense, the deposit algorithm automatically adapts to
the mesh resolution.
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Figure 2. Relation between the densities estimated using Recursive-TCM
and SPH, for 10002 pixels covering the inner 0.6 × 0.6 h−1 Mpc region cen-
tred in our WDM cluster. The red line display the mean value in logarithmic
bins of log ρrtcm = 0.1.

project each particle on to our 2D grid. The characteristic size of the
kernel is given by the local density about each particle, explicitly,
by the 3D distance to the 32nd nearest neighbour. This approach is
the core of the SPH (Monaghan 1992) numerical formalism.

3.4 Bias correction

As discussed in Section 2.2, Recursive-TCM densities can be biased
in regions where heavy winding of the primordial phase-space sheet
occurs. These biases can be seen in Figs 2 and 3, which compare
results obtained using our method with those obtained using SPH.
In particular, Fig. 2 shows the overestimation of the density in high-
density regions (values below the unity), which in turn results into
an underestimation of the density in comparatively lower density
regions (values above the unity). In addition, Fig. 3 shows the large-
scale coherent bias caused by the tidal stripping of substructures.
These effects were explored in detail in Hahn et al. (2013). Fortu-
nately, we can use a noisy estimator to correct for such biases, as
we will show below. In practice, we follow the procedure described
in §2.2 and apply a two-step bias correction.

The first step accounts for the overestimation of the density in
central regions by multiplying Recursive-TCM densities by a factor
that depends only on density. This factor was computed as the
geometric mean of the ratio between densities estimated using SPH
and Recursive-TCM, in logarithmic bins of log ρrtcm = 0.1, and it
is shown as a red line in Fig. 2. Because the densities produced by
our tetrahedral approach are biased high in central regions of DM
haloes (see Section 2.2), the average ratio progressively decreases
at higher densities. The largest correction factor is 0.4 at the very
centre of our halo. We note that at low densities it approaches a value
somewhat larger than the unity as a result of mass conservation and
of the large-scale bias we discuss next.

The second correction step accounts for spatially coherent biases.
In Fig. 3, we show the ratio between convergence maps in SPH and

Figure 3. Fractional difference between the convergence maps built using
the SPH and Recursive-TCM methods. The region displayed corresponds
to the inner 0.6 × 0.6 h−1 Mpc region centred in our WDM halo.

in Recursive-TCM for our WDM halo and after the first correction
has been applied. Ideally, this figure would be a pure white-noise
field, however, we can clearly see that there is a large-scale com-
ponent in this field. This arises partially because the 2D projected
density field is not a one-to-one function of the full 6D phase-space
structure (which determines the amount of winding and overesti-
mation). Another aspect contributing to this map is related to mass
accretion history and shortcomings of the tetrahedron-based densi-
ties to represent the tidal stripping of infalling DM haloes. In order
to correct for this, we further divide the Recursive-TCM map by
a version of the map shown in Fig. 3, but smoothed with a Gaus-
sian kernel of size 50 h−1 kpc. We note that this scale is set to be
larger than those dominated by discreteness noise in SPH. As we
will see later, the simple procedure described here, is successful in
producing accurate lensing maps.

4 R ESULTS

We now present and discuss the results of our lensing simulations.
We first focus on the input surface density maps, and then on lensing
magnification maps. In particular, we discuss the performance of
our algorithm and the role of discreteness noise compared to the
signal of DM substructures.

4.1 The surface densities and lensing convergence

Fig. 4 shows maps of the surface density in the inner regions of
our WDM (top row) and CDM haloes (bottom row). Each column
shows the result of one of our three projection methods, as indicated
by the legend. Note that the colour scale is identical in all six panels.

In both cosmological scenarios, we can appreciate how the small-
scale noise is decreased from left to right. The CiC method shows
the largest fluctuations, though we note that the visual impression
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Towards noiseless lensing simulations 2931

Figure 4. The convergence κ in the central 0.6 × 0.6 h−1 Mpc region about our WDM (top row) and CDM clusters (bottom row), using CiC, SPH, or
Recursive-TCM density estimates. The colour scale is identical for all six sub-images. Note the different noise levels present in the different projection
methods. Recursive-TCM displays the least noise.

of the noise depends on the target mesh resolution, as this sets the
size of the CiC smoothing kernel. The SPH method reduces the
noise significantly in this case, though still a considerable amount
of spurious fluctuations remains. These two images illustrate the
discretization-related noise in traditional density estimators.

In contrast, the new Recursive-TCM method, does not present
any appreciable noise thanks to the extra sophistication in the mass
deposit, nor presents appreciable biases thanks to the correction
method described in Section 2.2. We note that despite being much
smoother, all those peaks seen clearly in the CiC and SPH maps
also appear in the Recursive-TCM maps. It is important to note
that our method is the only one that could in principle distinguish
random fluctuations in surface density maps from those produced
by halo substructures: compare the differences between the CDM
and WDM halo in rightmost column, with the differences seen in
the leftmost column. In both CiC and SPH, it is almost impossible
to visually distinguish CDM from WDM.

We now carry out several tests of the algorithm as applied to our
WDM halo. We chose WDM over CDM since the former allows a
more straightforward comparison among different methods and res-
olutions. The reason for this is that in WDM there is no small-scale
structure, thus exactly the same mass distribution is represented at
all resolutions. This is not the case in CDM since there is always
structure at the resolution limit of a simulation.

Fig. 5 shows the power spectrum of the surface overdensity,
δ = �/〈�〉 − 1, as given by the three projection methods ap-
plied to the WDM halo. We note that the measurements are robust
only until k ∼ 0.4 × knyq, where knyq = 1000/(0.6 h−1 Mpc) × π =
5235 h Mpc−1 denotes the Nyquist frequency of the surface density

Figure 5. The power spectra of the 2D overdensity δ = �/〈�〉 − 1, pro-
duced by the three projection algorithms when applied to a WDM halo.
Wavelengths are shown in units of the Nyquist frequency of the density
mesh knyq = 5235 h Mpc−1. The method proposed here, Recursive-TCM,
yields the lowest amplitude on small-scale fluctuations. Also shown are ex-
pectations for a smooth NFW profile without and with central core. The
dotted horizontal line indicates the white-noise level.
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mesh. On smaller scales, aliasing and the mass assignment window
introduce visible artefacts, damping the measured power spectra.
We also display the expectations of a white-noise field with the
same number of point particles as those projected in our surface
density maps. For comparison, we also show the expectations for
a (cored) NFW halo with the same mass and concentration as the
spherically-averaged density profile of our DM haloes, but without
noise.

Comparing all the measured power spectra, we observe a situation
consistent with the visual impression provided before. On large and
intermediate scales, all methods provide essentially identical power
spectra decreasing as k−4, as expected for an NFW profile. This
incidentally supports the validity of our simple approach to correct
the biases in Recursive-TCM densities.

On scales smaller than k � 20 h Mpc−1 or roughly r ∼ 50 h−1 kpc
(k > 0.08 × knyq) – a scale much larger than the typical size of sub-
structures – all methods begin to differ. The CiC spectrum follows
the value expected for a 2D Poisson field: Pnoise = n−1 = 2.3 ×
10−7. Interestingly, the SPH method levels to this expectation at
roughly the same scale as the CiC spectrum, but then decays much
more quickly. This is because the SPH method heavily smooths the
field on scales smaller than the kernel size. This smoothing also
erases true (specially anisotropic) small-scale density fluctuations
present in our DM haloes. For instance, it can be trivially seen that
structures resolved with less than 32 particles will be smoothed out.

The performance of Recursive-TCM appears to be considerably
better. The noise level is a few orders of magnitude below that of the
other projection methods. The noise measurements are consistent
with our expectations of reducing the noise in a way proportional to
the maximum level of recursion, lmax, in the adaptive mass deposit:
Pnoise = n−1 × 6 × 2lmax , where n is the number density of bodies
used in the map creation. The prefactor of six is understood in terms
of the six times more particles (one per tetrahedron) employed to
describe the mass field. This scaling predicts the Poisson noise in
our measurements to be a factor of 6 × 210 = 6144 smaller than
the CiC method. This value is very close to the actual differences
(measured at k = 0.27 h Mpc−1): 7136.7.

Finally, we can see that Recursive-TCM creates a projected mass
power spectrum that is very close to that of an ideal NFW halo,
differing only on the slope at high wavenumbers. On these scales, the
core introduced by the softening length in our simulations becomes
relevant, and the Recursive-TCM power spectrum follows that of a
cored NFW profile.

4.2 Mass resolution dependence

We now explore how the noise of our convergence maps varies with
the mass resolution of the underlying N-body simulation. For this,
we have down-sampled the field by factors of 2, 4 and 8 in each
coordinate, or equivalently, reducing the total number of particles in
our N-body simulations by factors of 8, 64 and 512. The most down-
sampled case is equivalent to a 1283 particle simulation, where our
WDM halo would be resolved with only 20 000 particles. For each
case, we have created convergence maps with maximum recursion
levels set at 2 for the original maps, and to 5, 8 and 11, respectively,
for the down-sampled versions. The increased recursion level com-
pensates the sparser particle data, so that in all four cases the maps
are created with roughly the same number of tetrahedra (i.e. keeping
n−1 × 2lmax constant).

In Fig. 6, we show the four resulting convergence maps. In all
sub-panels, we see that our method produces extremely smooth
surface density maps. Naturally, as we decrease the effective reso-

Figure 6. Comparison of the convergence maps created by the same particle
distribution of the WDM halo down-sampled by factors of 8 (top right), 64
(bottom left) or 512 (bottom right). Therefore, these would correspond to
haloes simulated with 10243, 5123, 2563 and 1283, respectively, as indicated
by the legend. The original map is shown on the top-left panel. We use an
identical logarithmic colour scale in all subpanels.

lution, small-scale features slowly disappear, for instance, the three
substructures located on the bottom-right side of the image. With
low mass resolution, orbits and accretion become discrete and subtle
radial features appear. However, even in the lower-right case, which
contains almost three orders of magnitude less particles than in our
original simulation, the small-scale noise is considerably smaller
than with the CiC method (compare to the leftmost panel of the top
row in Fig. 4). This shows that the limitation of our maps is in the
actual amount of structure that the parent N-body simulation tracks
correctly, and not in the discreteness noise associated with the finite
number of particles.

A quantitative comparison can be obtained from Fig. 7, which
shows the 2D power spectra of our four test cases, with and with-
out applying our density correction (cf. Section 3.4). The overall
shape of the power spectra is very similar among all resolutions, as
expected from the previous images, but small differences arise due
to the different amount of structure resolved in the different cases.
Nevertheless, the discreteness noise appears at the same level and
is set by the maximum amount of deposited tetrahedra. This again
shows that the limitation of our gravitational lensing simulations
mostly resides on the ability of the parent N-body simulation to
represent DM structures properly, and not in an artificial noise in-
troduced by our mass-projection method. In the next subsection, we
will show that this has positive repercussions on simulated lensing
signals.

4.3 The lensing magnification

The magnification field, μ(x), which gives the ratio of the area of the
lensed image to the original area of the source, depends on second-
order derivatives of the lensing potential (whereas α((x)) depends
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Figure 7. Comparison between the power spectra of projected overdensity
maps created from the WDM halo with the Recursive-TCM method applied
on progressively sparser data. The solid red line show the result for our
original data set and a maximum level of recursion set to 4, whereas the
dot–dashed magenta line shows the result for a case using 512 less particles
but allowing seven further levels of refinements.

only on first-order derivatives). Thus, μ((x)) is very sensitive to
small perturbations to the lensing potential (such as those caused
by subhalos). This is also the reason why μ((x)) is very sensitive to
the noise introduced by the discretization in N-body simulations.

In Fig. 8, we display maps of the inverse of the magnification
field, μ−1((x)), created from each of the three projection methods
we consider. We highlight two contour lines: (i) where the magni-
fication is formally infinite, μ−1 = 0, which are known as critical
lines; and (ii) where μ−1 = 0.6, which serves as an eye guide for
the amount of noise and substructures in the outer parts of the halo.
Note that our simulated cluster is not a particularly efficient lens,
partly due to its particular dynamical state, and also because of our
modest force resolution and the lack of a modelling of a central
stellar component.

While the magnification maps from CiC, SPH and Recursive-
TCM agree on large scales, they differ substantially in the amount
of associated small-scale noise. In the CiC case, the noise fluctu-
ations make it almost impossible to distinguish CDM from WDM
based solely on the topology of iso-μ lines. The same is true to
some degree for SPH. The method Recursive-TCM is superior: the
contours are not disturbed by discreteness noise, which allows us to
explore the magnification field with great detail. When applied to
the WDM case, we see contour lines that are extremely smooth. For
the CDM halo, the contour lines are also very smooth in most parts
of the map, but they display many small protuberances with high
significance. As we will see in the next section, these are caused by
the rich substructure population of this halo and thus are a distinctive
signature of the DM candidate properties.

Figure 8. Map of the inverse of the magnification field, μ−1, at the central region of our WDM (top) and CDM (bottom). The region displayed matches that
shown in Fig. 4. White and black lines shows contours, where μ−1 = 0.6 and 0, respectively. Note we use the same colour scale in all panels, ranging from
−0.18 (white) to 0.85 (light yellow).
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Figure 9. Probability density pdf(|μ|) of the magnification modulus |μ|
computed with CiC (red dotted), SPH (blue dashed), and Recursive-TCM
(black solid lines) for the WDM halo.

Fig. 9 shows frequency of magnification values predicted by the
different methods for the WDM halo (results for the CDM halo
are very similar). The noise in the CiC magnification maps leads
to substantially broader magnification distributions compared to
those for SPH and Recursive-TCM. In contrast, the distributions
predicted by SPH and Recursive-TCM are very similar. However,
the probability densities predicted by SPH display more features,
i.e. local deviations from a smooth density function, which we
attribute to residual noise in the SPH maps. This illustrates that the
inferred magnification distribution at low and intermediate values is
indeed different for different projection methods, even for the same
simulated object.

4.4 The impact of substructures

In order to further explore the capabilities of our method, we now
focus on the impact of halo substructure on the magnification and

convergence maps. In Fig. 10, we show isomagnification lines, as
computed in Recursive-TCM maps, together with the substructures
identified with more than 50 particles in our simulated halo. Note
that the small amount of noise visible in the outer contour is a result
of the maximum number of recursion levels (lmax = 10) employed
in our method. This noise can also be seen in the power spectra of
the projected density field shown in Fig. 5, and, as we discussed
earlier, it can be reduced further by simply increasing lmax at the
expense of more CPU time.

We can clearly see the differences between CDM and WDM. In
the WDM case, there are only 13 substructures in the field, and
consequently iso-μ lines are mostly smooth, showing only a few
notorious protuberances. In contrast, in the CDM case, there are 89
substructures, and the iso-μ lines show many protuberances, but are
almost smooth otherwise.

As Fig. 10 illustrates, all protuberances in the isomagnification
contours are associated with nearby substructures. However, the
relation is not simple, and different substructures produce perturba-
tions of different importance. Moreover, in some cases fluctuations
are not caused by a single substructure, but by a group of them.
This case is seen, for example, in the lower-right section of the
CDM μ−1 = 0.2. In contrast, some substructures near contours
do not strongly perturb the magnification field. These objects have
typically surface mass densities below average. For instance, the
substructure located at (−0.04, 0.05) in the WDM case, has a pro-
jected density a factor of ten smaller than the substructure found at
(0.14, −0.2).

In Fig. 11, we compare the signal of identified substructures
among the convergence maps. The x-axis shows the true subhalo
mass Msub, as defined by the SUBFIND algorithm. The y-axis shows
the ratio of the excess convergence κ with respect to a simple
expectation κsub based on the substructures properties. The mea-
sured value, κ , is defined as κhm − κback, where κhm is the mean
convergence within the half-mass radius Rhm, and the background
convergence κback is the given by the mean convergence in an

Figure 10. The relation between substructure and perturbations in lensing magnification for our simulated CDM (left) and WDM (right) halo. Black lines
denote isomagnification contours at μ−1 = 0.8, 0.7, 0.6, 0.4, 0.2 and 0 inwards. Red circles indicate the positions where substructures were identified, and
their radii are equal to the half-mass radius of the respective subhalo. Note the reduced number of substructures in the WDM case, which result from the initial
suppression of small-scale fluctuations.
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Figure 11. Ratio of the measured excess convergence κ of substructures
and a simple expectation κsub, as a function of the subhalo mass, Msub, in
maps constructed using the CiC, SPH and Recursive-TCM. Solid lines show
the median values in seven logarithmic bins in Msub.

annulus with 1.5Rhm < R < 1.7Rhm. The expected value, κ sub, is
defined as 0.5Msub/(πR2

hm)/�c.
There are three points illustrated by this figure. The first one is

that the magnification associated with substructures is actually very
close to the expectations. Small deviations from unity are caused
by projections effects, triaxiality or inaccuracies in the background
estimation. The second point is that the scatter in κ/κsub is much
smaller in Recursive-TCM than in the other methods. This is thanks
to a less noisy estimation of both the signal itself and the back-
ground. The third and final point is to illustrate a limitation of our
method. The average value of κ is roughly a factor of two smaller
in Recursive-TCM than in the other two methods. The discrepancy
is originated by two factors. First, it is due to an overestimation of
the bias correction factor: since this factor is essentially set by the
background halo, it does not capture the exact density biases for
substructures, which have different central densities and dynamical
times. The second aspect is an intrinsic underestimation of the mass
associated with subhalos in Recursive-TCM. This has an origin in
tetrahedra being stretched along a subhalo’s orbit by tidal stripping.
We estimated this effect to cause an underestimation of about 30 per
cent in the mass inside subhalos for resolved substructures in our
CDM halo. It remains to be explored whether more sophisticated
correction procedures, or modifications to the Recursive-TCM al-
gorithm, will alleviate these discrepancies.

In order to quantify the performance of Recursive-TCM con-
cerning substructure lensing signals, we have implemented a hier-
archical peak finder algorithm. This proceeds as follows: we start
by smoothing the convergence field with a Gaussian kernel of size
rs = 100 h−1 kpc and then identify local peaks in the smoothed field.
Then, we progressively reduce the kernel size and search for new
peaks, discarding those that are inside a larger peak. We repeat this
procedure for 20 different scales, uniformly spaced in log rs, down
to rs = 1 h−1 kpc. Finally, we compute the signal associated with
each peak as κ = κ rs − κback, where κ rs is the average conver-

Figure 12. The cumulative number of local peaks in convergence maps
detected in our WDM (top) and CDM (bottom) cluster-sized halo. In each
case, we show the results for a map created using three density projection
methods: CiC (red lines), SPH (green line) and Recursive-TCM blue line.
In addition, we show the abundance of substructures detected in 3D by the
SUBFIND algorithm.

gence within rs and κback is the local background value defined as
the average of the map in an annulus of 1.5rs < r < 1.7rs.

The results are shown in Fig. 12, which displays the cumula-
tive number of peaks detected by our algorithm when applied to
CiC, SPH and Recursive-TCM maps, as a function of their local
convergence excess κ . In addition, we plot as a black line the
substructures detected in 3D by SUBFIND, which should correspond
to gravitationally bound density peaks and that we consider as the
true substructure population. The associated κ is computed in the
same way as that of our peaks, but using Rhm as the peak scale.
Our algorithm finds 4241 (CiC), 1116 (SPH) and 125 (Recursive-
TCM) peaks in the CDM map, and 4477 (CiC), 1356 (SPH) and 29
(Recursive-TCM) peaks in the WDM map.

It is clear that the CiC and SPH maps contain a large amount of
spurious peaks produced by the discreteness noise. At all κ there
are between one and two orders of magnitude more detected peaks
than real substructures. Moreover, the number of detected peaks is
almost identical between CDM and WDM, even though the actual
amount of substructure is very different. This further exemplifies
that in current lensing simulations the impact of noise is comparable
or larger than that of real DM substructures.

In contrast, our method recovers roughly the correct amount of
peaks, which is an order of magnitude larger in CDM than in WDM.
Furthermore, 59 and 69 per cent of the substructures can be matched
to a peak in CDM and WDM, respectively. Among those substruc-
tures not detected as peaks, we mostly find objects with a negative or
very small κ value, which are also not detected in the CiC or SPH.
This suggests that these might indeed be the false-positives in SUB-
FIND or special cases of projection effects. However, it might also be
a consequence of the simplicity of our peak detection algorithm. In
order to quantify the implications for observational constraints, this
issue requires further study considering realistic input signals and
analysis procedures, and perhaps more sophisticated procedures to
correct for Recursive-TCM biases.

MNRAS 444, 2925–2937 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/444/3/2925/1061679 by C
N

R
S - ISTO

 user on 25 April 2022



2936 R. E. Angulo et al.

Figure 13. Zoom into a 100 × 100 h−1 kpc region, centred at (x, y) =
(−0.23, −0.11) h−1 Mpc relative to the main halo, showing the convergence
field associated with a tidal feature. The left-hand panel shows a map com-
puted using a Recursive-TCM projection method, whereas the right-hand
panel shows one computed using the SPH method.

There are also peaks in the convergence maps that are not related
to any identified 3D substructure. In many cases, these are due to
our 3D substructure finder algorithm: a density peak not found by
SUBFIND, one that fell below our mass-resolution, or one that is not
a self-bound object. For instance, the large peak located at (−0.27,
−0.28) is not associated with any object in the respective SUBFIND

catalogue. An object of a different nature is shown in Fig. 13. It
does not correspond to a self-bound spherical overdensity, but to
a DM stream of a tidally disrupted substructure. Such features are
expected in hierarchical structure formation scenarios, and perhaps
they could be eventually detected through their lensing signal. (Note
that this feature is barely distinguished over the noise in SPH).
For the moment, this detection serves as a further example of the
potential accuracy and precision of the lensing maps created by the
method presented and discussed here.

5 C O N C L U S I O N S

The next generation of gravitational lensing observations might help
us to decipher the mysteries of the Dark Universe: Dark Energy and
Dark Matter. However, high-precision theoretical predictions are
essential to ensure the correct interpretation of future data sets.

In this paper, we presented Recursive-TCM, a method aimed at
predicting the lensing signal from cosmological simulations with
extremely high accuracy. This algorithm originates from a novel
way of interpreting the results of N-body simulations and over-
comes one of the most serious limitations of current lensing simu-
lations: the noise introduced by the discrete nature of the particle
representation of the density field.

We applied Recursive-TCM to cluster sized-haloes simulated in
WDM and CDM universes. We showed that the method produces
convergence maps with a noise several orders of magnitude smaller
than that of traditional methods (explicitly, a factor of ∼7000 smaller
than the formal shot-noise limit). We also showed that the method
recovers the underlying power spectrum of fluctuations well below
the particle shot noise of the simulations.

With traditional projection methods, the discreteness noise in
lensing maps are comparable to the signal produced by DM sub-
structure. This is not true for Recursive-TCM, where the features
associated with real overdensities are preserved, but the discrete-
ness noise is greatly reduced. We also showed that there are density
biases associated with Recursive-TCM, which, however, can be
mostly eliminated by a simple correction procedure. Therefore, this
method is well suited for creating high-precision predictions for

the relation between the underlying cosmological model and the
expected signatures of small-scale structure in strong gravitational
lensing observations.

With Recursive-TCM, we were able to clearly show the differ-
ences in the lensing properties between CDM and WDM. The dif-
ferences come mainly from their substructure population, and thus
lensing might be able to constrain the DM particle mass. However,
we found that the relation between substructures and the associ-
ated lensing effects is not trivial: some substructures do not affect
the convergence noticeably; many lensing perturbations are caused
by more than a single structure; and a few perturbations are not
associated with any self-bound substructure, but, e.g. with a tidal
debris. This suggests that in order to interpret correctly the lensing
measurements of substructures, a rigorous study of the detectability
of substructures needs to be carried out.

In this paper, we have shown the feasibility of Recursive-TCM,
providing examples of its potential when applied to a rather modest
simulation. In the future, we expect our method to enable many
detailed theoretical studies, exploiting state-of-the-art simulations
of much higher force and mass resolution, also simulating more
realistic WDM scenarios, and even taking advantage of hydrody-
namical simulations. We also expect Recursive-TCM to be very
useful for creating large-scale weak lensing shear and magnifi-
cation maps with high fidelity and low particle noise. Moreover,
the method will be crucial for testing and characterizing the per-
formance of algorithms that extract substructure information from
observed lensed galaxies, in particular methods for constraining the
DM particle mass from image perturbations or flux-ratio anomalies
in multiple-image systems. All this together will allow us to un-
derstand better the impact of the underlying cosmological model in
lensing observations, and therefore help to unleash the full potential
of gravitational lensing.
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