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ABSTRACT

We present a study of weak lensing shear measurements for simulated galaxy images at radio
wavelengths. We construct a simulation pipeline into which we can input galaxy images of
known shapelet ellipticity, and with which we then simulate observations with eMERLIN and
the international LOFAR array. The simulations include the effects of the cLEAN algorithm, uv
sampling, observing angle and visibility noise, and produce realistic restored images of the
galaxies. We apply a shapelet-based shear measurement method to these images and test our
ability to recover the true source shapelet ellipticities. We model and deconvolve the effective
point spread function, and find suitable parameters for cLEaN and shapelet decomposition of
galaxies. We demonstrate that ellipticities can be measured faithfully in these radio simulations,
with no evidence of an additive bias and a modest (10 per cent) multiplicative bias on the
ellipticity measurements. Our simulation pipeline can be used to test shear measurement
procedures and systematics for the next generation of radio telescopes.

Key words: gravitational lensing: weak —instrumentation: interferometers — methods: obser-

vational —techniques: image processing —cosmology: observations —dark matter.

1 INTRODUCTION

The bending of light due to the large-scale structure in the Universe
is a powerful probe in studying the underlying matter distribu-
tion. This is due in part to the gravitational lensing being insensi-
tive to the type of matter causing the light deflection (e.g. Bartel-
mann & Schneider 2001; Refregier 2003a; Munshi et al. 2008).
There is the added benefit of lensing being sensitive to the geom-
etry of the Universe, making it useful in the study of dark energy
(Huterer 2002).

To date, almost all cosmic shear analyses have been conducted
at optical wavelengths. However, radio astronomy is currently go-
ing through a period of rapid expansion which will make future
radio surveys competitive for lensing studies. New radio telescopes
will have sensitivities that will reach a level where the radio emis-
sion from ordinary galaxies will be routinely resolved (e.g. with
eMERLIN,' LOFAR? and eventually SKA?; cf. Seymour, McHardy
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& Gunn 2004); hence, radio source densities will become compa-
rable to those found at optical wavelengths. Also, radio interfer-
ometers have a well-known and deterministic dirty beam pattern,
which may be an advantage in deconvolving galaxy shapes for shear
measurements.

With the FIRST survey (Becker, White & Helfand 1995; White
et al. 1997), Chang, Refregier & Helfand (2004) made the first
detection of cosmic shear with radio data. This survey has a de-
tection threshold of 1 mly, with 2220 resolved sources per square
degree useable for weak lensing. This is a much lower number
density than found in deep optical shear surveys, with a corre-
spondingly lower signal-to-noise ratio (SNR) on the final cosmo-
logical constraints. However, the differential radio source counts
at 1.4 GHz show an increase at flux densities below 1 mly
(e.g. Seymour et al. 2004), and it is this increase in the number den-
sity at the micro-Jansky level that makes future radio weak lensing
plausible.

The feasibility of weak lensing studies at radio wavelengths, and
in particular at the micro-Jansky flux levels, was demonstrated in
Patel et al. (2010). Due to the low number density of sources used
in that work, no significant cosmic signal was detected. However,
an upper bound was obtained on a combination of the cosmological
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parameters og, the normalization of the matter power spectrum,
Qn, the cosmic matter density parameter and z.,, the median red-
shift of the sources. One of the main conclusions of that work was
the need for a detailed study of the systematics involved in radio
interferometry and the relevant imaging techniques.

In this current paper, we pursue that study. We will explore pos-
sible systematics which will be important for weak lensing studies
with future radio surveys; for example, the systematics which might
be introduced by steps such as the cLEAN algorithm or a poor choice
of shape-measurement parameters. In tandem, we will quantify our
current ability to measure realistic galaxy shapes from simulated
radio data, increasing our confidence in current and future radio
lensing measurements.

The paper is organized as follows: in Section 2, we describe
the whole of our radio image simulation and shape-measurement
pipeline. We describe the shapelets method which is used through-
out this work, and how deconvolution works within its framework
and the shape estimator we use. We then describe the shapelets-
based images that we created as the input for our simulations, before
describing how the simulator works to produce realistic radio inter-
ferometer images that we use for our analysis. We also describe the
telescope configurations we use in this study, and the observational
effects that we consider.

In Section 3, we describe the results of our shape measurements
on the simulated images. We assess the appropriate level of CLEANing
of images, and examine the modelling of point sources and the effect
of changing the position on the sky at which images are observed.
We discuss the impact of the shapelet scale parameter in modelling
galaxy ellipticities successfully, and the effect of slightly changing
the uv sampling. We then present the main result of the paper: how
well we are able to recover the input ellipticities with our shape-
measurement method. We describe how we add realistic noise into
the simulations and what effect this has on our results. In Section 4,
we end with a discussion of our results, their limitations and suitable
directions for further study.

2 SIMULATIONS OF RADIO IMAGES

The radio image simulation pipeline is built in two parts. We first
create a suite of input images, containing sources which constitute
the inputs for the main part of the simulation code. These input
images are then fed into the simulator that ‘observes’ and ‘images’
them with a given telescope configuration and user defined obser-
vation parameters. In this section, we start by briefly describing
the shapelets technique of Refregier (2003b) and Refregier & Ba-
con (2003) which we use to create the galaxy shapes in our input
images; we will also use shapelet techniques for shape measure-
ment later. We then describe the creation of the input images before
discussing the radio observation pipeline.

2.1 Shapelets

The shapelets description of galaxy shapes is based on decomposing
an object’s surface brightness f(x) into a series of localized basis
functions By, ,,, called shapelets,

FE) =" furmBuyny (x5 B). ¢))

We briefly describe the relevant parts of the method here and re-
fer the reader to Refregier (2003b), Refregier & Bacon (2003) and
Massey & Refregier (2005) for a more detailed description. The
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basis functions used (in the Cartesian formalism) B,, ,,, are a lo-
calized orthonormal basis set,
Jx[2

H () Ha (3) €

12
(2”1"2/327Tn|!n2!) /

By (x5 ) = @
where H,,(B) is the mth order Hermite polynomial, and B describes
the characteristic scale of the basis. We will see that this quantity
is very important in our point spread function (PSF) and galaxy
shape analysis. n; + n, refers to the order of the basis functions,
and in practice all galaxy decompositions are truncated at some
order nyax = Ny + Na. Nmax Needs to be chosen so that the galaxy
model is sufficiently detailed to capture ellipticity information. As
the basis functions are orthogonal, we can find shapelet coefficients
for a galaxy by calculating

.mm=/fmmmuwm%. 3)

Massey & Refregier (2005) introduced the closely related polar
shapelet formalism (the polar basis set is an orthogonal transforma-
tion of the Cartesian set; see Massey & Refregier 2005 for details
of this transformation), which has a different basis set P, (0, ¢;
B), given by

Pw¢m:PW“W{M—mmur2

phmi+! 7 [(n — |m])/2]!
|m| g lm] 6’ —62/28% —im¢
x 0 L(ﬂ%m\)ﬂpe e . 4)

In this basis set 6 is the modulus of the complex sky position vector
0, + i6,, and ¢ = arctan(6,/6,). L?, (x) are the associated Laguerre
polynomial defined as

x~9e* d’

I(x)= ——
Lpto = p! dx?

(xPTe™) . 3)
Two integers, n and m uniquely describe every member of the basis
set, with n > 0 and |m| < n. The surface brightness of a galaxy f(6)
is given by

o0 n
FO=FO.8)=>>" funPun(©.6:p). (6)
n=0 m=—n
The polar basis set has rotational symmetries which are very useful
for describing weak lensing, so in practice galaxies are decomposed
using the Cartesian basis set (which easily describes square pixels)
and then transformed to the polar set.

Both the Cartesian and polar shapelet basis functions have simple
behaviour under convolution (Refregier 2003b) and deconvolution
(Refregier & Bacon 2003), making them particularly well suited
for describing and correcting the effects of a PSF. Since this is
important for our shape-measurement analysis, we briefly describe
deconvolution in the shapelet framework below.

2.2 Deconvolution with shapelets

The approach used in this work for deconvolution is to estimate the
deconvolved shapelet coefficients f,, ,, by ‘forward convolving’
the shapelet basis function with the PSF model g(x), in advance,
creating a new basis set which we label

Dy oy (x5 B) = g(x5 B) * Byyny (x5 B), @)

with an equivalent expression for the polar shapelet basis functions.
Fitting the data h(x) using this new basis set D,, ,,, one obtains the
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deconvolved shapelet model for the galaxy as follows:

h(x) = g(x) * f(x)
= g(x)* |:Z fnl,nanl.nz(x;ﬁ):|

ni,na

= Z f;zl,nz [g(x)* Bnl.nz(x;ﬁ)}

ny,ny

= Z fVl[,nanl,nz(x;ﬂ)~ (8)

ny,ny

Comparing with equation (1), the returned coefficients will re-
construct the deconvolved image when used with the original
basis set.

We use the publicly available shapelets software package* de-
scribed in Massey & Refregier (2005) in order to make shapelet
decompositions for all our objects. This code is well tested using
optical data (cf. Heymans et al. 2006; Massey et al. 2007a). In Patel
etal. (2010), we indicated the applicability of this code to radio data
with some modifications; with our radio image simulations, we are
now in a position to demonstrate its ability to accurately recover el-
lipticities in Section 3. In all that follows, we have used the shapelet
equivalent to Gaussian weighted quadrupole moments to estimate
ellipticities for all our objects. In the polar shapelet convention, this
estimator takes the form

_ V21
(foo = fao)’
as is fully discussed in Massey et al. (2007b).

®

€12

2.3 Image simulations with shapelets

In this section, we describe how the input images are created. We
generate two different sets of input images: the first set contains
point sources, consisting of a collection of single illuminated pixels
atrandom locations. The second suite are images containing detailed
galaxy shapes and morphologies, but each with a centroid at the
same locations as the point sources in the previous image set. In
optical weak lensing studies, stars are used to study the behaviour of
the PSF across the field. Since stellar point sources are not present
in radio images some other mechanism will be needed to study
the beam behaviour. Nonetheless, we simulate the point sources
to study the behaviour of the dirty beam or PSF of the telescope.
The galaxy images provide a more realistic challenge, with the goal
being to recover the (known) shapes of galaxies in the presence of
all the systematics that distort them.

The galaxy images are created using the shapelets-based formal-
ism described above. The method of populating the images is based
on the Massey et al. (2004) pipeline, which was used as part of the
STEP2 shear methods testing programme (Massey et al. 2007a).
The motivation for the use of shapelets galaxy models, as discussed
in Massey et al. (2004), is to simulate deep sky images which include
some degree of realistic galaxy morphology.

The procedure used to generate simulated galaxy images in this
paper most closely follows that described by Rowe et al. (2013) for
the generation of simulations of Hubble Space Telescope (HST)
data. Using a PSF and real noise properties estimated directly
from real HST survey data (specifically the GEMS Survey; see e.g.
Heymans et al. 2005; Rix et al. 2004), Rowe et al. (2013) created

4 http://www.astro.caltech.edu/~rjm/shapelets/code/
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realistic simulations of Advanced Camera for Surveys (ACS) im-
ages in the F606W filter. These were then used to investigate shear
and higher order lensing shape measurements in ACS data.

As we are simulating radio observations, we do not require a high
level of similarity to optical images, in terms of noise, PSF or even
shape; in our previous work, Patel et al. (2010), we found that on
a galaxy-by-galaxy basis, optical and radio shapes of galaxies are
only weakly correlated. However, we also showed that the overall
distribution of ellipticities in the optical and radio sky were very
similar, so we choose to follow the optical distribution of shapelets
in this study. This is a reasonable choice given the current absence
of a large observed sample of highly resolved radio objects at puJy
flux density thresholds, which could inform us about the details of
the radio shapelet distribution.

A “‘starter set’ of galaxy shapelet models was created using
shapelet decompositions of GEMS images, modelled according to
Rowe et al. (2013) using a spatially and temporally varying model
of the ACS PSF. The temporal variation of each shapelet coefficient
in an iy, = 20 model of the PSF was modelled in three epochs as
described by Heymans et al. (2005), using a third order polynomial
surface to describe the spatial variation on each ACS chip. The re-
sulting PSF-deconvolved shapelet models are then sampled from to
produce the simulated galaxy images.

When creating the simulated galaxies from the starter set, the
models are randomly rotated and/or inverted to eradicate any re-
maining signature of gravitational lensing. We also note that the
starter set represents a large but ultimately limited sample of galaxy
morphologies. This is alleviated by introducing small random per-
turbations to the shapelet models (see Massey et al. 2004; Rowe
et al. 2013 for details).

Using this prescription, a suite of 100 images of size
1024 x 1024 pixels with a pixel scale of 0.05 arcsec were cre-
ated. We have constructed these images such that all the sources
(galaxies and point sources) were at a constant flux. We explic-
itly assume that we are able to perfectly calibrate and remove the
brighter sources from the data. The bright sources will be fewer in
number than the far more numerous faint galaxies, which will be
the most useful from a weak lensing perspective. The assumption
or perfect bright source calibration could be potentially limiting for
future weak leaning studies as the bright sources will dominate the
side-lobe contribution; however, we con side assessing this contri-
bution to the shape-measurement analysis to be outside the scoot of
this initial work.

We also inspected the relationship between the 8 values of the
simulated galaxies, derived from GEMS, and the B parameters that
were derived from the shapelet modelling of the actual radio sources
in Patel et al. (2010). It was found that the distribution of the g
parameters from the best-fitting shapelet models of the GEMS data
had a systematically lower value (shift of 0.185 arcsec) than the
radio shapelet models from Patel et al. (2010, (8) ~ 0.3 arcsec for
the silver catalogue in that work). To make the simulations a more
realistic representation of radio data we therefore add 0.185 arcsec
to the B scale parameter for our galaxy models; these then provide
a close match to the distribution of the derived 8 values from Patel
et al. (2010).

For each image, we have a corresponding catalogue containing
the input shapelet coefficients of each source in the image, as well
as the centroid of the objects. An example of one of our images
containing galaxies is shown in Fig. 1.

The negative value regions associated with some of the sources
created within the images are a result of the deconvolution of
the HST data. The presence of noise in the data manifests as

MNRAS 444, 2893-2909 (2014)

220z ludy Gg uo Jasn O1S| - SUND Ad 6090162/€682/€/771/3101UE/SEIuW/WOd dNO"dlWapede//:sdiy Wol papeojumod


http://www.astro.caltech.edu/~rjm/shapelets/code/

2896 P Patel et al.

51.2 arcsecs

51.2 arcsecs {

Figure 1. Example of input shapelet-based galaxy images; the image has a
linear grey-scale.

high-frequency artefacts after deconvolution is performed. If these
simulated images were to be used for an optical study (e.g. Rowe
et al. 2013; Massey et al. 2007b), then Fig. 1 would be reconvolved
with the HST PSF and appropriate noise added to produce a more
realistic looking image.

We note that these images represent an ambitious imaging
scenario, as they are very densely populated fields representing
deep pointings. The input images contain a number density of
n ~ 140 arcmin™2, which is far larger than current lensing studies,
even those in space. There is motivation for setting a high number
density as it better allows us to probe systematic errors related to
radio interferometers deriving from both the instrumental setup and
the radio imaging pipeline. While a large number of point sources
allows one to better probe the dirty beam behaviour across the field,
a larger number density in the galaxies means a more challenging
imaging problem, since side-lobe noise will be greater in densely
packed images.

We note that both eMERLIN and LOFAR have much larger in-
stantaneous fields of view than considered here. This is due mainly
to the practical computational limits we currently have. Since we
need to create images with a very fine pixel resolution, to simulate
large fields of view would be computationally challenging, the cur-
rent imager is also limited in terms of the maximum size of image
it can compute. Computation of the visibilities from the image also
depend on the size of image so increases the length of time it takes to
run the simulation. Smaller images, with many sources is favoured
in terms of computation time and so this was adopted here since it
is not currently possible to realistic fields-of-view at the required
resolution for weak lensing.

Note that the simulated galaxies have not been sheared; in this
analysis, we are not concerned with trying to recover a cosmic shear
signal from galaxies; rather, we are examining how well we can
recover known input ellipticities, which is the basis for recovering
such a signal.

Having described the details of the input images, we now de-
scribe the details of our simulated configurations. We aim to create
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observations from radio arrays of our choice, including imaging
steps such as dirty beam deconvolution and visibility weighting, in
order to create realistic restored images.

2.4 Simulations pipeline

Our simulation pipeline is implemented using the MEQTREES® soft-
ware system. MEQTREES is a software package for implementing
the Measurement Equation for radio interferometers and is fully
described in Noordam & Smirnov (2010) and Smirnov (2011).
The heart of a Measurement Equation is formed by the 2 x 2
Jones matrices (Jones 1941) which describes the various effects
associated with observations that can corrupt the measured visibil-
ities. The formulation for a generic Radio Interferometer Measure-
ment Equation (RIME) was developed by Hamaker, Bregman &
Sault (1996), after preparatory work by Morris, Radhakrishnan &
Seielstad (1964). Hamaker (2000) then recast the formalism into
2 x 2 matrix form which is used within MEQTREES.® The RIME pro-
vides an elegant mathematical framework for generic radio instru-
ments, both existing and future, to be better understood, simulated
and calibrated. For a full description of the mathematical formalism
for the measurement equation of interferometers, we refer the reader
to Hamaker et al. (1996), Smirnov (2011) and references therein.

The MEQTREES software was originally designed to implement the
measurement equations for the purposes of simulation and calibrat-
ing (Noordam & Smirnov 2010). We use MEQTREES in this work to
simulate the sky as would be observed by a specific radio interfer-
ometer. The galaxy images created above are fed into the MEQTREES
simulator, which calculates observed visibilities; these visibilities
are then imaged. The user can specify many options such as the level
of noise on the visibilities, the specific method used to deconvolve
the dirty beam, and the weighting scheme applied to the visibility
data prior to imaging.

One subtlety is that the input in our work is an image rather
than a set of visibilities. In order to obtain uv samples from the
image, we use a module of the MEQTREES software that implements
a ‘degridding’ algorithm. This algorithm is an interpolation scheme
that allows one to transform between the regularly gridded image
and a sparsely sampled Fourier (or uv) plane. The details of how
this algorithm work is explained fully in Tan (1986).

The well-known general relationship between observed visibili-
ties and the true sky brightness for an interferometer is given by

2171(ul+um+w(n 1)
I1(¢,m,n) = //V(u v, w) = du dv, (10)
J1 —

where n = /1 — £2 — m?. This expression can be reduced to a two-
dimensional Fourier transform if the field of view is small (Clark
1999), i.e. if n >~ 1. Since our study consists of fields that are less
than an arcminute on a side, we have adopted this simplification
here such that

10, m) ~ / / V(u, v)e? ™ My dy, (11)

equation (11) should also include the sampling function term,
S(u, v) on the left-hand side. The sampling function accounts for
the fact that the visibilities are collected at a set of discrete locations
in the uv plane. Its functional form is simply a linear combination

3 http://www.astron.nl/meqwiki
6 Some versions of the RIME are still implemented using the 4 x 4 Mueller
matrices (Mueller 1948), which are entirely equivalent.

220z ludy Gg uo Jasn O1S| - SUND Ad 6090162/€682/€/¥ii/o101e/SEIUW/WOD dNO"DlWapEedE//:SARY WOolj papeojumoq


http://www.astron.nl/meqwiki

Weak lensing in simulated radio images 2897

Simulations Pipeline

. S'“"“"‘“‘?d R Simulated Telescope observed Restored
images (galaxies and [~ de-gridding ~*| . . .. — RIME L — Imager ¥ .
. visibilites visibilities image
point source) 7 )
Raw | |  Weighting, | | Dirty | | CLEAN > CLEANed | | CLEAN
visibilities averaging, FFT, etc. image image beam

Figure 2. Summary of the main steps involved in the simulation pipeline from start to finish.

of Dirac delta functions at all (#, v) where data is collected. The
Fourier inversion of equation (11) leads to the dirty image, which is
the convolution between the sampling function (in the image plane)
and true sky brightness. Since direct Fourier transforms become
computationally expensive with large data sets, Fast Fourier Trans-
forms (FFTs) need to be used. Although the use of FFTs speeds
up computations, it requires that we grid the data. The process by
which this degridding is done, and its implication for the recovered
image is described in Tan (1986). The MEQTREES software employs
the use of prolate spheroidal functions in the degridding process,
which have been shown to reduce the effect of aliasing (Tan 1986).

In Fig. 2, we illustrate the simulation setup from start to finish.
(Note that in this work we have focused on one particular method
of deconvolution of the dirty beam, namely the cLEAN algorithm
(Hogbom 1974), which we shall describe in Section 2.5.2.) We start
with an image that is Fourier transformed to create the set of simu-
lated visibilities. These are then modified by the RIME formalism
for our given set of parameters to create a set of visibilities as ob-
served by our given array. These visibilities are Fourier transformed
again to produce the dirty image, which is then cLEaNed as our setup
defines to produce the cLEAN component image. The residual of the
dirty image is then added to the cLEAN components once convolved
with the cLEAN beam (usually an elliptical Gaussian measured from
the main lobe of the dirty beam). The final step involves convolving
the cLEaNed image with the cLEAN beam. The CLEAN beam is usually
a Gaussian fitted to the main lobe of the PSF and it is this final beam
that the point source simulations will characterize. This is also what
we shall deconvolve from the galaxies to produce our final images
from which the shapes of our sources will be measured.

2.5 Simulated configurations

In this section, we describe the different experiments we have car-
ried out to examine a variety of potential causes of systematic
effects.

We choose to concentrate on two specific interferometers:
eMERLIN and LOFAR. The eMERLIN array is an upgrade to the
existing MERLIN array, maintaining the same number of dishes.
The eMERLIN array upgrade is designed to increase sensitivity by
more than an order of magnitude by using new receivers and tele-
scope electronics. The array spans 217 km, with observing bands at
1.3-1.8, 4-8 and 22-24 GHz, with a total bandwidth of 4 GHz. It
also has resolution capabilities of between 10-150 mas and sensi-
tivity of ~1 ply.

LOFAR is a new generation radio interferometer, with the ul-
timate goal of surveying the Universe at low frequencies with

high resolution and sensitivity. It operates in the less explored low-
frequency range of 10-250 MHz. LOFAR belongs to a new gener-
ation of telescopes, with the concept of utilizing many inexpensive
dipole antennas arranged in stations without any moving parts, in
contrast to the usual notion of radio dishes as used by eMERLIN.
Different parts of the sky are observed by steering the beam elec-
tronically. The spatial resolution of the Netherlands part of the array
is governed by the ~100 km baselines, leading to a resolution of
~2 arcsec at 240 MHz. The LOFAR array will eventually be ex-
tended over Europe, with stations in the UK, Germany, Sweden and
France. These Europe wide baselines will reach ~1500 km, leading
to ~0.14 arcsec resolution at 240 MHz. In our study, we include
some of these larger (<700 km), Europe-wide baselines.

For both arrays, we create two different Measurement
Sets’ (MSs) centred on a fixed RA 00"02™34343, but with differing
Dec. +90°1641”75 and Dec. +60°16'41775. A MS is a specific
definition of how visibility data is stored, designed to be compat-
ible with the measurement equation formalism. For our purposes,
we can think of it as a large table containing information about
the particular observation in question. For the eMERLIN MSs, we
use a central frequency v = 1.4 GHz while for the corresponding
LOFAR MSs, we use a central frequency v = 240 MHz. In both
cases, we set our bandwidth specifications to 128 channels each of
125 kHz resulting in a 16 MHz bandwidth. We have also employed
a 20 s time averaging over a 24 h observation. We further note here
that we have assumed that the time and frequency sampling is fine
enough to keep smearing effects to a minimum and are not con-
sidered in this study. In practice, these smearing effects will place
some practical limit of the field of view that can used for the final
analysis. In assuming that the smearing effects are small, we are ef-
fectively assuming that the majority of the field of view is available
for the analysis. The uv coverage corresponding to these four MSs
are shown in Fig. 3.

We use the MEQTREES imager to create restored (deconvolved) im-
ages for these telescope configurations. We image an area twice the
size of the original input image, and use a portion of this extra image
to estimate the rms of the residuals as described below. Our default
imaging option uses the Clark cLEAN deconvolution algorithm; we
shall describe below how we estimate the number of CLEAN com-
ponents used for each simulation. In creating the restored images,
we have kept our pixel scale the same as that of the original input
images, 0.05 arcsec.

7 Interested readers are referred to http://aips2.nrao.edu/docs/notes/229/
229.html for a detailed explanation.
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Figure 3. uv coverage corresponding to our four starting MSs. The top panels show LOFAR coverage for observations at two declinations, while the bottom

panels show eMERLIN coverage.

For all of the simulations that we perform, we create a set of 10
MSs and then use each to simulate and image 10 point source and
10 galaxy images each. The eMERLIN and LOFAR MSs described
above are 1.5 and 17 GB, respectively. Each eMERLIN MS took
36 h to simulate and image its 20 images while for the LOFAR case
this was closer to 60 h.

In some runs of the analysis, we do not include measurement
noise (i.e. the visibilities are not corrupted in any way). Clearly
this is unrealistic, but allows us to distinguish between systematic

MNRAS 444, 2893-2909 (2014)

effects and noise effects. Once we have analysed these noise-free
images, we explore the effect of adding measurement noise to see
what effect that has on our results. Below we list and briefly discuss
the telescope effects we study in this work.

2.5.1 Observing angle

We have created MSs for both arrays observing at differing dec-
lination angles to examine what effect this has on our shape
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measurements. It can be shown that the equation for the el-
lipse traced in the uv plane by a particular baseline is given by
(Thompson 1999)

iy (2= (Ez/2)cosdy ’ _ L+
sin 8(} )\.2

, 12)

where Ly, y 7 are the coordinate separations between the two anten-
nas and § is the declination of the phase tracking centre (usually
where the field of view is centred). As the interferometer observes
a point on the celestial sphere, the rotation of the Earth causes the
u and v components of the baseline to trace out an elliptical locus
according to this equation.

Since the sampling function is effectively a collection of these
elliptical loci (cf. Fig. 3), we see that it depends on the declination of
the observation and the antenna spacings. The sampling function, as
already mentioned, determines the PSF (or dirty beam) for the ex-
periment. Our different declination observations give us the means
to see how the variation of the sampling function (measured from
the point sources) affects the recovered galaxy shape distributions.

2.5.2 CLEAN

We have mentioned above the Fourier relationship between the
observed visibilities and the desired sky intensity. We discussed
how the FFT of the visibilities leads to an estimate of the dirty
image, which is the sky brightness convolved with the sampling
function. In order to obtain an estimate of the sky intensity, we need
some way to perform a deconvolution.

The commonly used algorithm CLEAN is one way to perform this
deconvolution. Devised by Hogbom (1974), it assumes that the
radio sky can be represented by a collection of point sources (CLEAN
components) in an otherwise empty field. The intensity distribution
1(¢, m) is then approximated by superposition of these point sources
which have a positive intensity A;, at the locations (¢;, m;). The
CLEAN algorithm then aims to determine A;(¢;, m;) such that

1P, m) =" A B — b, m —m;) + (€, m), (13)

where I°(€, m) is the dirty image that is obtained from the inversion
of the visibilities, B(¢, m) is the dirty beam which is the inverted
sampling function and, /. (¢, m) is the residual brightness distribu-
tion. The approximation is deemed to have been successful if this
residual noise is similar to that of the measured visibilities. This
decomposition cannot be analytically computed and an iterative
approach is required.

The original cLEaN algorithm is applied entirely in the image
plane. It uses a simple iterative procedure to find the position and
strengths of the sources in the dirty image, from which a dirty beam
multiplied by the peak strength is subtracted. All positions where
this occurs are recorded as well as the corresponding peak flux. The
procedure stops when all remaining peaks fall below some specified
level. The recorded positions and fluxes constitute the point source
model, which is then convolved with the idealized cLEAN beam
(usually the central lobe of the dirty beam) and the residuals from
the dirty image are added to produce the final, deconvolved image.
We refer the reader to Schwarz (1978) and Schwarz (1979) for
further details.

Our imaging pipeline can implement a variety of CLEAN algo-
rithms; in this paper, we choose a widely used version, the Clark
cLEAN (Clark 1980), which efficiently implements the algorithm and
can provide improved speed for larger images.

2899
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We note that our imaging pipeline makes use of the light weight
imager (Iwimager) based on the casa imaging libraries. Throughout
the analysis of the simulations in this work, we have adopted a
cleaning threshold of 0 and a loop gain parameter of 0.1.

It is important for us to study the effect of the cLEaN method (and
the process of deconvolution as a whole) on shape measurement.
Although cLEAN is well tested and appropriate for many imaging
applications, it is non-linear and does not necessarily converge in a
well-defined manner. It is not immediately clear if it is suitable for
the purpose of shape measurement as required for weak lensing; we
will test this in the next section.

3 SHAPE-MEASUREMENT RESULTS

In this section, we present the results from the shape-measurement
analyses of both point sources and galaxies. We first address the
question of how many CLEAN components are required to adequately
represent these images. We then examine the behaviour of point
source ellipticities, for different telescope configurations and decli-
nations. Next, we assess the modelling of galaxy shapes, in relation
to the shapelet scale parameter and uv sampling. All this is in prepa-
ration for the main result of the paper, which is the presentation of
whether output ellipticity estimates are in line with true input el-
lipticities. Finally, we discuss the impact of realistic noise on the
measurement of ellipticity.

3.1 Required number of CLEAN components

We aim to find the lowest number of components that suitably de-
convolve the sources in the images, since this reduces computation
time and avoids fitting noise. To assess this issue, we set several
different target numbers of CLEAN components on one of the images
from our set of simulations. We ran this experiment on all four MSs
with the point sources and the galaxies. Since the point sources have
a much simpler set of source structures, it would be expected that
they would require fewer CLEAN iterations. We examine the resid-
uals (of the dirty image) in order to compare the relative merits
of the different numbers of cLEAN components used. We examine
where we find the minimum rms residuals as a function of number
of CLEAN iterations.

We image the residuals just outside the patch where we have
sources in order to estimate the residual side-lobe noise from the
sources inside the central part of the image. To estimate the rms of
the residuals, we select a frame around the inner image containing
the sources, with a width 16 pixels (0.8 arcsec) which we split into
20 cells, from which we calculate a mean rms. In Fig. 4, we show
how the mean point source and galaxy rms residuals vary with the
number of CLEAN components for each of our MSs.

We wish to perform our analyses on the images with the smallest
rms residuals. For the point source images, the lowest tested number
of CLEAN components, Ncin = 10°, has the smallest rms, and we
adopt this value. We see that in the eMERLIN galaxy simulations
there is a different minimum in the rms residuals for the two different
declinations with Nepy =4 x 10° and Nen = 5 x 10° favoured
by the Dec. = +90° and Dec. = 4-60° simulations, respectively. For
the LOFAR cases the minimum lies near N¢jny = 2 x 10°; these are
the iteration numbers that we have adopted for galaxies.

3.2 Source extraction and shapelet modelling

Since the images we create have known source positions, we by-
pass the source extraction stage of a lensing analysis. We instead

MNRAS 444, 2893-2909 (2014)
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Figure 4. Mean rms residuals for varying number of Clark cLEAN components, for point sources and galaxies, in each of our four MSs.

Table 1. Table summarizing main SEXTRACTOR

parameters.
Configuration parameter Value
ASSOC_TYPE NEAREST
ASSOC_RADIUS 5 pixels
DETECT_THRESH 1.5
DETECT_MINAREA 5
DEBLEND_MINCONT 0.005
DEBLEND_NTHRESH 32
BACK_SIZE 64
BACK_FILTERSIZE 3

use SExTrAcTOR in the ASSOC mode whereby we input a cata-
logue of positions where objects are known to lie. Of course, even
in this mode, we will only detect objects which meet the inter-
nal requirements to be classified as an object. We use the default
SEXTRACTOR settings of Table 1; with these settings, we find that
we are able to detect ~85-90 per cent of the objects that are in
the original images, with detected number densities ranging from
n ~ 120130 arcmin2.

We use the shapelets software as described in Section 2.1 to
estimate the ellipticities of the point sources and the galaxies. We
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first examine the point sources, in order to estimate the beam, which
we can then use to deconvolve from the galaxies. After this, the
deconvolved galaxy ellipticities will be compared to the ellipticities
of the original catalogues.

3.3 Point sources

For the point sources, we use a straightforward approach for shapelet
modelling, decomposing each source into shapelets while examin-
ing how the distribution of ellipticities changes if we vary the B
parameter. We try the algorithm employed in the shapelet software
(Massey & Refregier 2005) to optimize the 8 and ny, parame-
ters, as well as adopting B values of 1, 1.5 and 2 pixels with a
fixed nymax = 10. We find the mean point source full width at half-
maximum (FWHM) is approximately ~2 pixels for the eMERLIN
simulations and ~6 pixels for the LOFAR ones (where the pixel
size is chosen to be the same as for the input images). In Fig. 5, we
show the normalized ellipticity distributions of the point sources for
each MS; note that the ‘Massey’ label refers to ellipticities obtained
using the optimization algorithm in the shapelets software (Massey
& Refregier 2005).

From these ellipticity distributions, we can see that the most
tightly peaked distributions are produced from a fixed 8 = 1.5 pixel
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Figure 5. Normalized ellipticity distributions for our four default MSs, for different methods of shapelet decompositions. Red curves correspond to the
shapelet optimization algorithm of (Massey & Refregier 2005), and the yellow, blue and green curves correspond to decompositions done with fixed rpax = 10
and B =1, 1.5, 2 pixels, respectively. The solid lines show ellipticity element € and the dashed show €.

approach. The underlying PSF ellipticity distribution should be nar-
row in a small image region, so we adopt § = 1.5 for our PSF
measurements in all four cases. We also note that in the LOFAR
ellipticity distributions, changing B can change the measured el-
lipticity of the PSF and therefore would lead to different galaxy
ellipticities if used for deconvolution. This can be understood by
comparing the mean point source FWHM of 6 pixels with the at-
tempted B choices; having a small 8 will mean that the decom-
position cannot capture the larger scale shape information, so the
B = 1 pixel histograms behave erratically. Since the eMERLIN
mean point source FWHM is ~2 pixels, all our attempted g choices
produce well-measured point source models.

To quantify any spatial variation in PSF ellipticity, we combine
all the point source simulations and bin objects’ ellipticities in x and
y coordinates. In Fig. 6, we show how the mean ellipticities vary as a
function of pixel position across our field. For each of our four MSs,
we show the measured (uncorrected) and corrected ellipticities; the
correction applied in each case is a simple subtraction of the global
mean measured ellipticity on the image.

As mentioned in Section 2.5.1, the dirty beam is related to the
uv plane sampling function. In Fig. 6, we see how the different uv

tracks related to our four MSs (as shown in Fig. 3) create different
real space ellipticities.

In all four cases, we see that there is no substantial variation in
the beam behaviour across the images. In each case, we find that
€, 22 0. For the LOFAR Dec. = 4-90°, there is a small €; component
with mean 0.005; while in the lower declination LOFAR simulation,
we see there is an almost constant €, = 0.06 across the field. After
correction, there is no evidence of a coherent ellipticity pattern.
For the eMERLIN observations, we see a change in sign of the
magnitude of €; from positive to negative for the Dec. = +90°
and Dec. = +60° cases, respectively. As in the LOFAR case, the
induced ellipticities are constant in our small fields, so a simple
correction by the mean works well.

We also note significant PSF ellipticity (¢; = 0.024) for the
eMERLIN § = 90° case, which is surprising given the nominally
circular uv coverage. We have found that this is induced by uniform
weighting; a naturally weighted image yields a perfectly circular
PSF as expected. A possible explanation is given by the way uniform
weighting is traditionally implemented: the uv plane is divided into
rectangular cells, and weights are assigned per cell according its
population, i.e. the number of ungridded visibilities falling into that

MNRAS 444, 2893-2909 (2014)
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Table 2. Table summarizing PSF ellipticities.

MS PSF ellipticities
€1 €2

LOFAR § = +90° 0.005 —10~4

LOFAR § = +60° 0.063 —107°

eMERLIN § = +90° 0.024 —0.001

eMERLIN § = +60° —0.042 —107°

cell. The uv cell size is determined by the size of the output image,
and the number of uv cells by the resolution. This means that
the uv tracks are weighted in a non-smooth manner given by the
cell boundaries, and it is possible to induce ellipticity in the PSF
where there was none in the unweighted uv coverage. Sparser uv
coverages should be more susceptible to this effect, which explains
why the LOFAR § = 90° case shows a far smaller induced ellipticity.
To confirm this, we have also experimented with different image
sizes and resolutions, and found that image size does significantly
change the measured PSF ellipticity, while resolution has little to
no effect. Our conclusion is that uniform (and robust, since it uses
the same principles) weighting will always induce a PSF ellipticity,
especially with sparser arrays. For weak lensing measurements,
we can treat this as a constant bias. In principle, more advanced
weighting methods such as that suggested by Boone (2013) should
eliminate this effect, but no mainstream imaging software currently
implements them.

We can now use these models from the point sources to construct
a PSFin each of our four MSs and use them to deconvolve the galax-
ies. The peaks in the histograms provide us with a tight measure
of the beam ellipticity, as does using the mean of the uncorrected
whisker plots; the measured ellipticities for the beam are summa-
rized in Table 2 for our four MSs. To construct our PSF models, we
stack all our point sources and perform a shapelet decomposition
with 7, = 10 and B = 1.5 pixels on the stacked source.

3.4 Shapelet modelling the galaxies

In Patel et al. (2010), we found that the optimization algorithm
from Massey & Refregier (2005) performed poorly on galaxies in
our radio data, and that fixing the ny,, and § parameters in the
shapelet modelling gave much better reconstructions. We attributed
the poor performance of this algorithm to the properties of the noise
in the radio data. Here, we have further tested this by performing the
shapelet decompositions of galaxies in a number of different ways:
we have used the optimization algorithm from Massey & Refregier
(2005) to see if it performs better on the noiseless simulated images;
we have also performed several shapelet decompositions with a
fixed nmax = 10 and varying B; we have used multiples of the
SExtractorR FWHM for this purpose, analogously to Patel et al.
(2010).

As with the point sources, we use SEXTRACTOR in ASSOC mode
for source extraction before performing the shapelet decomposi-
tions. Before comparing to the original input ellipticities, we re-
moved all shapelet model failures. Most of these shapelet models
can be attributed to objects being close to other objects and also
objects lying near the edge of the images. Due to the high number
density of objects in the images, there is a large failure rate; in all
four cases, we lose ~50 per cent of objects due to bad shapelet
models.

For all our catalogues, we compute the deconvolved elliptic-
ity estimator described in Section 2.1, with a PSF kernel with
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B = 1.5 pixels. We then match our catalogues to the original cat-
alogues and compute the corresponding ‘true’ ellipticities, €] to
which we will compare. We have binned the catalogues in € and
have calculated the median measured ¢; in each bin, along with
associated error.

We can now assess the best choice for the g parameter for galaxy
shapelet decompositions. For each choice of 8, we fit a linear model
to our data points, (¢, — €} = m;€} + ¢;) and compare the relative
merit of each choice through the calculated m; and ¢; parameters. In
Fig. 7, we show how the measured ellipticites, after deconvolution,
compare to the input ones for different choices of fixing 8. For
clarity, we have suppressed the error bars on all the curves barring
those with the best- and worst-fitting models.

In all four cases, we see that there is a strong dependence on
the choice of 8. We see that in the eMERLIN simulations, the
Massey & Refregier (2005) optimization algorithm performs badly
in comparison to fixing 7, and S. In the LOFAR cases, it performs
a little better, but fixing the parameters in question is still a marginal
(=5 per cent better on m;) improvement. The choice of 8 favoured
in this approach is 0.2 x sexTRAcToR FWHM; smaller B does not
capture the information about shape at the edges of objects, while
larger B smears out the detail in the object. We adopt 8 = 0.2 x
FWHM for the rest of this work.

3.5 Recovered ellipticity distributions

‘We now turn to the main result of this work, which is to demonstrate
how well we can recover the input ellipticities given the data re-
duction and imaging pipelines described above. We have described
how we obtain measurements of input ellipticity €; and measured
ellipticities €;; now we compare the two.

In Fig. 8, we show how our four MSs perform in this comparison
(these are the blue curves in Fig. 7). For each of the four cases,
we compute the Pearson’s correlation coefficient to quantify the
correlation between the input and measured ellipticities, and also
calculate the best-fitting linear model (¢; — €} = m;€! + ¢;) as well
as a x2; to assess the goodness of fit, all of which we summarize
in Table 3.

m; # 0 is indicative of a calibration bias, which usually results
from poor correction of factors that circularize images, such as poor
PSF correction. A non-zero value for ¢; suggests a systematic that
induces some constant ellipticity so that even circular objects appear
to have some ellipticity.

Encouragingly, we find that in all four of our test cases, we are
able to recover tightly correlated input-to-output ellipticities, with
the Pearson correlation coefficient being close to one in all cases (see
Table 3). From Fig. 8 we see that for both LOFAR and eMERLIN,
we find a very close relationship between the original and measured
ellipticities. The fact that there is essentially no ¢; component to any
of the simulations tells us that there is no constant induced ellipticity
in our pipelines. There is evidence of a small calibration bias (i.e.
non-zero m;) in all four sets of simulations, with the LOFAR ones
faring slightly better than the eMERLIN counterparts.

We see that in both cases, the lower declination simulations pro-
vide a better recovered ellipticity (comparing m; values) over the
Dec. = +90° observations. The most accurately recovered ellip-
ticity distribution is for LOFAR Dec. = 4-60°, which we can see
from Fig. 3 has the fullest uv coverage, which should naturally
lead to better quality images. The worst performing simulation is
eMERLIN Dec. = 4+90°, which has the simplest uv coverage (cf.
Fig. 3).
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Figure 8. Comparison of original and recovered ellipticities for our four configurations.

Table 3. Table summarizing ellipticity measurement fidelity, for all the reported telescope configurations.

MS Dec. 8) Ncin  Number density n (arcmin~2)  Pearson correlation Best-fitting parameters Xc%of

() x 10> Detected Useable (pi) (m;) (ci)
eMERLIN 90 4 128.1 63.6 0.702 £ 0.007 —0.180 £ 0.012 0.008 £ 0.004 1.281
0.706 £ 0.007 —0.158 £0.012  —0.001 £ 0.004  1.280
eMERLIN 60 5 132.1 75.8 0.790 £ 0.005 —0.144 £+ 0.008 0.001 £ 0.003  1.306
0.799 £ 0.005 —0.128 + 0.008 0.003 £ 0.003 1.062
LOFAR 90 2 1214 50.0 0.687 £ 0.009 —0.085 +0.013 0.009 £ 0.005 0.843
0.716 £ 0.008 —0.034 £0.012  —0.001 £ 0.005 1.291
LOFAR 60 2 128.3 59.3 0.778 £ 0.006 —0.068 = 0.008 0.010 £ 0.004  0.961
0.816 £ 0.005 —0.075 + 0.007 0.003 £ 0.003  1.060
LOFAR (N) 60 2 127.1 52.6 0.759 £ 0.007 —0.084 +0.010 0.008 £ 0.004 1.270
0.749 £ 0.007 —0.099 £+ 0.011 0.002 £ 0.004 0.708

3.6 Adding noise

The simulations above contain background fluctuations due to side
lobes, but do not contain measurement noise on the visibilities; we
now consider the addition of this noise to the simulations. Within
MEQTREES, the required input is the standard deviation of the Gaus-
sian from which the noise for each visibility datum is drawn. For
this test, we restrict ourselves to the LOFAR Dec. = 4-60° MS.

3.6.1 Assessing noise levels

To assess the noise levels in the image plane corresponding to the
noise input parameter in the MEQTREES software, we write the total

noise 7, in an image as
2 2 2
ng=ny + Mns (14)

where ny is noise associated with side lobes (which is present even
in the absence of measurement noise) and n,, is the contribution
arising from the corruption of the visibilities. We use the noise-
free simulations described in the previous section to estimate the
ng term, and we run test simulations with varying noise in the
visiblilities to estimate the n, terms. Hence, we can estimate the n,,
terms using the equation above.

We find that the relationship between the measured n,, and the
visibility noise is linear, and calibrate the chosen level of noise
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Figure 9. Mean rms residuals for varying numbers of Clark cLEAN compo-
nents for the LOFAR Dec. = 4-60° case.

accordingly. We calculate the SNR of each object in the image by
measuring the flux density in an aperture of 0.75 arcsec around its
known position, and dividing through by the total noise n, integrated
in the aperture.

We choose the noise level such that our objects have SNR
~ 10; this is the typical level to which weak lensing measure-
ments are currently made. We found that in MEQTREES parame-
ter units, a choice of 20 for the visibility noise creates an im-
age where the mean of the SNR distribution of the objects is
(SNR) ~ 9.5, and this is the value that we adopted. We also note
that we have neglected to simulate the effect of primary beam at-
tenuation which would increase the effective noise radially from
the image centre. As we have not included this effect, this amounts
to assuming that we are in the beam centre where the effect is
negligible.

With this choice of visibility noise, we carry out the same pro-
cedure as before. We first determine how many CLEAN compo-
nents we need to sufficiently deconvolve the beam, by running a
similar test to the noise-free case, the result of which is shown
in Fig. 9.

We find that there is a different behaviour to that seen in the
noise-free case (cf. Fig. 4). We see that there is a reduction in
the residuals as we increase the number of CLEAN components; at
high numbers of components, both the point source and galaxy
rms flattens out. In our noise-free simulations, we adopted a value
of 1 x 10° and 2 x 10° cLEAN components for point sources and
galaxies, respectively, for this MS. We see that with the addition
of noise, point sources require more CLEANing than before, while
for the galaxies 2 x 10 iterations still seems sufficient. We do not
find a minimum in the rms residuals for either the point sources
or the galaxies, but since after Nopxy = 2 x 10° there is only slow
reduction, this is the value we have chosen. The choice will be
vindicated if there is good correlation between measured and input
ellipticities.

We now consider the noisy point source shape measurements.
We perform a similar analysis for the shapelet modelling as in
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Figure 10. Normalized point source ellipticity histograms for different
choices of g, for the noisy LOFAR Dec. = 4-60° case. Red curves correspond
to the shapelet optimization algorithm of Massey & Refregier (2005), and
the yellow, blue and green curves correspond to decompositions done with
fixed nmax = 10 and B = 1, 1.5, 2 pixels, respectively. The solid lines show
€1 and the dashed show €;.

Section 3.3 to find a good choice for the 8 parameter. We decompose
all the sources using the shapelet optimization algorithm as well
as using our fixed B and n,x approach. Again, we use a fixed
nmax = 10 and use B values of 1, 1.5 and 2 pixels. We show the
corresponding results in Fig. 10.

Immediately, we note that the addition of noise has broadened out
the ellipticity distributions in contrast to those measured in Fig. 5.
As before, we find that fixing the 8 parameter seems to produce a
cleaner measurement than the standard shapelet optimization algo-
rithm, and we see again that a choice of § = 1.5 pixels produces the
most tightly peaked histogram. We again adopt this value for 8 and
an Ny, = 10 in our modelling of the point sources and the PSE.

We use the estimated PSF to deconvolve the noisy galaxies. From
the previous section, we expect that the 8 parameter choice for the
galaxies is important, so we shapelet-decompose the galaxies with
a variety of B choices. As before we find a strong B dependence
when we examine how the measured ellipticities compare to the
input ellipticities, as shown in Fig. 11, again we only show the
smallest and largest error bars for clarity. Similarly to the noise-
free case, we find that fixing 8 to 0.2 x the sexTRacTorR FWHM
estimate yields the best results for m when we compare the mea-
sured and input ellipticities. We show in Fig. 12 our final result
of comparing the input and measured ellipticities in our noisy
LOFAR Dec. = 460° simulation, also summarized in Table 3
as LOFAR (N).

We find that the addition of the visibility noise has de-
graded our slope measurement to €, — €] = (—0.084 £ 0.010)¢} +
(0.008 +0.004), and € — €} = (—0.099 £+ 0.011)€5 + (0.002 +
0.004). While this represents an increase in the calibration bias
over the noise-free case, the calibration bias remains at a modest
10 per cent level.

220z ludy Gg uo Jasn O1S| - SUND Ad 6090162/€682/€/771/3101UE/SEIuW/WOd dNO"dlWapede//:sdiy Wol papeojumod



Massey
0.1 x FWHMSEX
| —— 02x ;:
- 03x
0.5 0.4 x "
—  05x"
0.6 x

€1 0.0

-0.5

2907

Weak lensing in simulated radio images

1.0

0.5

€2 0.0

-0.5
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Figure 12. Comparison of original and recovered ellipticities for the noisy
LOFAR Dec. = +60° MS.

4 CONCLUSIONS AND FUTURE WORK

In this paper, we have made an exploratory study of a radio imag-
ing pipeline suitable for studying weak gravitational lensing, and
have tested a shear measurement pipeline which has been adapted
for radio data. Using our simulations, we can obtain a better un-
derstanding of suitable shear measurement techniques to use with
eMERLIN, LOFAR and ultimately the SKA.

We have constructed a pipeline to simulate current and future
weak lensing observations with radio interferometers. We were mo-
tivated by Patel et al. (2010) in which we attempted to measure a
weak lensing signal using radio data from MERLIN and Very Large
Array. In that work, we found systematic contamination in the data;
indeed, a primary conclusion of that work was the need for a de-
tailed study of the systematics involved in trying to measure weak
lensing using radio data sets. In the current work, we have been able
to assess some of the possible systematics, and have demonstrated
the reliability of our shape-measurement method on realistic simu-
lated radio images. Using the shapelets method, we have created a
set of images containing a collection of point sources and realistic
galaxy shapes. The point sources were used to probe the behaviour
of the beam, while the galaxies were used to test how well one can
recover known ellipticities in the presence of a radio data reduction
and imaging pipeline. The ‘true’ images were run through our sim-
ulator to mimic observations made with the eMERLIN and LOFAR
arrays, at two different declinations, and with different numbers of
CLEAN iterations.

We measured ellipticities for galaxies via a shapelets decom-
position, including deconvolution of the PSF. As in our previ-
ous analysis, we have found that best results with shapelet de-
composition were obtained by fixing the n.,, and S parame-
ters. The galaxy simulations showed a very strong 8 dependance
when we compared their true and measured ellipticities; we found
that 8 = 0.2 x sextracToR FWHM gave the most faithful galaxy
ellipticities.

Given our best shapelet models, we were then able to compare the
true and measured ellipticities in our catalogues. We found highly
correlated results, with all four MSs having Pearson correlation
coefficients close to one. All MSs showed no evidence for an ad-
ditive bias to the ellipticity measurements, and showed a modest
(=~ 10 per cent) multiplicative bias.

We added measurement noise to our simulations, fixing the vis-
ibility noise so that the resulting galaxies had an SNR distribution
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peaking at SNR =~ 10. In this case, we found similar results for
the shapelet ellipticity measurements as with the simulations only
containing side-lobe noise; the multiplicative bias for ellipticity
measurement remains at the 10 per cent level. These results are
encouraging since they suggest that we can already recover well the
true shape of sources from radio data, with well-motivated choices
for the number of cLEANS, and the shapelet scale size. Given fur-
ther studies of systematics effects, we hope to further reduce the
calibration bias.

In this work, we have demonstrated the feasibility of making
weak lensing measurements in the presence of realistic features of
radio observations. Clearly, there are important extensions to what
has been explored here.

(1) In this study, we have confined ourselves to small-scale im-
ages, in order to CLEAN in a reasonably short time. The image size
needs to be upscaled in order to probe position dependent PSF
effects.

(i) We have restricted ourselves to one CLEAN algorithm; the
performance of a range of deconvolution techniques should be
tested.

(iii) We have used a uniform weighting scheme; weighting this
way should maximize the contribution from the longer baselines,
resulting in better resolution images. Natural weighting also ex-
ists, which give more sensitive images. Weak lensing is unique
in that it requires both sensitivity and high angular resolution
images; there are weighting schemes that try to find a compro-
mise between these two criteria (e.g. Briggs weighting; Briggs
1995). Assessing the shape-measurement improvement/degradation
between uniform, natural and intermediate weighting, and com-
paring this to any increase/decrease in source counts will be
valuable.

(iv) In our construction of the MSs, we have used particular fre-
quency and time averaging configurations; these can dramatically
increase/decrease the size of the MS. Examining how different fre-
quency and time averaging configurations affect shear estimates
is a further important line of enquiry. We have also neglected
all time and frequency smearing effects that also require further
investigation.

(v) We have assumed calibration techniques are/will be good
enough to perfectly remove the bright sources from the data.

(vi) In this work, we have used the shapelet method for shape
measurement. The use of the shapelets method for radio data is well
motivated, particularly by the Fourier invariance of the shapelet
basis functions and the possibility of shape measurement directly
in the uv plane. However, in weak lensing, there are a consider-
able number of methods for shape measurement, see for example
Kitching et al. (2012). Exploration of radio weak lensing should in-
clude a study of how these existing methods fare with radio image
simulations.

In this analysis, we have demonstrated an approach to weak lens-
ing measurements at radio wavelengths; encouragingly, we have
seen that our shape-measurement methods and deconvolution tech-
niques provide us with shape measurements that are only modestly
biased. We have pointed out several open questions that still remain
to be answered in this field, some of which this pipeline should
be able to answer. These simulations can be extended to simulate
actual weak lensing fields, where the input images contain realistic
lensing shear, and we can assess how well we recover a cosmic
signal.

MNRAS 444, 2893-2909 (2014)

There are a range of new radio facilities that are/will be ca-
pable of producing data with which weak lensing measurements
will be made. Understanding the relevant systematics, and know-
ing how well shape-measurement methods perform, is an important
step towards using arrays such as a full Europe-wide LOFAR, and
ultimately the SKA, for weak lensing.
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