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Monochromatic gamma ray lines have long been known to provide potential smoking-gun signals for
annihilating dark matter. Here, we demonstrate that the situation is particularly interesting for Kaluza-Klein
dark matter because resonant annihilation is generically expected for small, but not necessarily vanishing
relative velocities of the annihilating particles. We calculate the contribution from those hitherto neglected
resonances and show that the annihilation rate into monochromatic photons can be significantly enhanced,
in a way that is much more pronounced than for the associated production of continuum photons.
For favorable astrophysical conditions, this leads to promising prospects for the detection of TeV-scale
Kaluza-Klein dark matter. We also point out that the situation may be even more interesting in the vicinity
of black holes, like the supermassive black hole at the center of our Galaxy, where in principle center-of-
mass energies much larger than the rest mass are available. In this case, annihilating Kaluza-Klein dark
matter may show the striking and unique signature of several gamma ray lines, with an equidistant spacing
corresponding to twice the compactification radius of the extra dimension.
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I. INTRODUCTION

There is firm evidence for a sizable amount of dark
matter (DM) on both cosmological and galactic scales.
While its nature still remains unknown, weakly interacting
massive particles (WIMPs) are expected to be thermally
produced in the early Universe and thus represent a
theoretically very appealing class of possible candidates
[1–3]. Gamma rays provide a particularly promising means
of indirectly searching for DM [4], not the least because the
spectra from annihilating WIMPs often show prominent
features that do not only help significantly to distinguish
DM signals from astrophysical backgrounds [5] but also
carry important information about the underlying particle
physics model. The most prominent spectral feature is that
of a monochromatic line from the loop-suppressed direct
annihilation into photons [6], while leading-order radiative
corrections can produce sharp steps [7,8] or somewhat
broadened linelike structures [9]; cascading decays of
annihilation products might also give rise to box-shaped
spectral features [10].

In view of the small galactic velocities, v ∼ 10−3, the
typically adopted approach in computing DM annihilation
rates in this context is to take the v → 0 limit such that the
center-of-mass system (CMS) energy in collisions equals
exactly twice the DM particles’ mass. This greatly sim-
plifies otherwise rather intricate analytic calculations, both
at the level of kinematics and amplitudes, and proved to
be very useful when deriving full one-loop [11–14] or
three-body final state [9,15] results for annihilation rates
connected to the spectral features described above.
In this article, we consider situations where nonzero

relative velocities lead to a significant enhancement of
monochromatic gamma ray signals from annihilating DM
or even introduce a new type of smoking-gun spectral
signature. In theories with additional spatial dimensions
[16–18], in particular, standard model (SM) fields are
accompanied by a whole “tower” of heavy Kaluza-Klein
(KK) states in the effective four-dimensional theory, with
masses that are given by integer multiples of the inverse
compactification scale [19]. In such setups, the lightest new
state may constitute a viable DM candidate and one
inevitably expects to encounter resonances in the annihi-
lation rate, due to the presence of other KK particles with
almost exactly twice the DM particles mass. In fact, in
astrophysical environments where DM collisions with very
large CMS energies are possible, resonances with larger
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even-integer multiples of the DM mass could be reached—
with the exciting prospect of producing, in principle, a
comblike structure of equidistant gamma ray lines. Such a
signature would, if observed, not only be a smoking-gun
signature of particle DM but also unequivocally point to its
underlying extradimensional origin.
While the situation sketched above is generic to KK DM

models, we will in the following mostly restrict our
discussion, for definiteness, to the case of one universal
extra dimension (UED) [20] in which all SM fields can
propagate. In this case, the first KK excitation of the photon
is a viable DM candidate [21–24] that has been intensely
discussed in the literature—both in terms of prospects for
accelerator searches [25–28] and direct DM detection
[29–32], as well as indirect DM searches with gamma rays
[8,14,33,34], positrons [35–37], neutrinos [38–41] or anti-
protons [42,43] (for a review, see Ref. [44]). The relevance
of resonances for the DM phenomenology of this model
[45] has been explored in detail for both collider searches
[46–48] and precision computations of the relic density
[48–51]. In this article, we demonstrate that resonances can
be at least as important for indirect detection, and calculate
annihilation rates for processes that produce pronounced
spectral signatures in gamma rays.
We study various situations of interest where the full

velocity dependence of the annihilation rate must be taken
into account. For DM annihilation in the galactic halo, e.g.,
averaging over the DM velocity distribution can signifi-
cantly enhance the annihilation rate into monochromatic
photons, compared to the v → 0 limit, even for small
average velocities. A supermassive black hole (SMBH) like
the one at the Galactic center (GC), on the other hand, can
act as an effective DM particle accelerator with CMS
energies many times above the rest mass [52,53]. Whether
the effect of those high-energy collisions close to the
horizon is actually observable far away from the black
hole (BH) [54–59], or rather not [60–62], is a matter of
ongoing debate. Here, we point out that if the annihilation
rate is sufficiently large, upcoming GC observations at TeV
energies by HESS [63] or CTA [64] may indeed reveal the
unique and striking spectral signature of a line “forest” that
we have already mentioned above.
This article is organized as follows. We start by intro-

ducing the UED model in Sec. II, with a particular focus on
its minimal version. The resulting gamma ray spectrum
from KK DM is then addressed in Sec. III, including in
particular a detailed discussion of the hitherto neglected
contributions from various resonances in the relevant
annihilation cross sections. Next, we introduce in
Sec. IV the astrophysical setup that is required to translate
annihilation rates into the expected gamma ray flux,
including a short discussion about DM halo density and
velocity distributions. In Sec. V we apply this formalism to
our results from Sec. III in order to assess the impact of a
nonvanishing, but still not highly relativistic, DM velocity

on the gamma ray signal from KK DM. Section VI then
focuses on the more optimistic case of highly relativistic
DM particles accelerated by SMBHs—which offers, as we
will see, the possibility of a particularly striking signature
in gamma rays. In Sec. VII, finally, we summarize our
results and conclude. The technical details on the calcu-
lation of the annihilation process are given in Appendixes
A, B and C, while the details for the photon flux from the
region around a BH can be found in Appendix D.

II. UNIVERSAL EXTRA DIMENSIONS

The UED model is essentially a higher-dimensional
version of the SM of particle physics, i.e. all SM fields
are allowed to propagate in one or more compactified extra
dimensions [20]. Since the SM in d > 4 is not renormaliz-
able, this must be understood as an effective field theory
which is only valid up to a cutoff scale Λ. We will restrict
our discussion in the following to the simplest case of one
UED, where the extra dimension is compactified on an
S1=Z2 orbifold. The orbifold construction is essential to
both recover the chiral structure of the four-dimensional
effective theory, which is nontrivial in view of the fact that
chiral fermions do not exist in five dimensions, and to
prevent unwanted light degrees of freedom that correspond
to the higher-dimensional components of gauge fields.
Five-dimensional fields, or rather all their components

with a well-defined behavior under four-dimensional
Lorentz transformations, can then be expanded as either

Φðxμ; yÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2πR

p ϕð0ÞðxμÞ þ 1ffiffiffiffiffiffi
πR

p
X∞
n¼1

ϕðnÞðxμÞ cos ny
R

ð1Þ
or

Φðxμ; yÞ ¼ 1ffiffiffiffiffiffi
πR

p
X∞
n¼1

ϕðnÞðxμÞ sin ny
R

; ð2Þ

depending on whether one assigns even (1) or odd (2)
transformation properties under the orbifold projection
y → −y. Here and in the following, xμ denote ordinary
four-dimensional space-time coordinates, y the extra
dimensional direction and R the compactification radius.
Each five-dimensional Φ thus corresponds to a whole tower
of heavy states ϕðnÞ in the effective four-dimensional theory
that is obtained after integrating out the extra dimension;
only even states, however, have a light zero mode ϕð0Þ
(which is identified with the corresponding SM field).
In this way, each SM gauge field Aμ is accompanied by a

tower of KK states, AðnÞ
μ , and each fermion ψ by two towers

that represent SUð2Þ doublets, ψ ðnÞ
d , and singlets, ψ ðnÞ

s ,
respectively. As for the scalar sector, there is the SM
Higgs field h and its KK tower hðnÞ; further physical states
aðnÞ and aðnÞ� arise at n ≥ 1 as linear combinations of the
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higher-dimensional components of the SUð2ÞL ×Uð1ÞY
gauge fields and would-be Goldstone bosons of the
Higgs doublet. Up to the first KK level, n ≤ 1, the spectrum
of states is thus the same as in the minimal supersym-
metric standard model, up to the spin properties of
the SM partners, which is why the UED model has
sometimes also loosely been referred to as “bosonic super-
symmetry” [65].
As a direct consequence of momentum conservation

along the extra dimension, KK number is conserved at tree
level. Every tree-level vertex involving particles with KK
number ni must thus obey one of the selection rules implied
by

P� ni ¼ 0. At higher orders in perturbation theory, on
the other hand, this is not necessarily the case because the
orbifold fixpoints break the original five-dimensional trans-
lational invariance. One of the phenomenologically most
important consequences of the orbifold compactification,

however, is that KK parity, defined as ð−1Þ
P

i
ni , is still

conserved.1 This remnant of the original five-dimensional
translational invariance implies that the lightest Kaluza-
Klein particle (LKP) is stable and thus a potential DM
candidate (in the very same fashion as the lightest super-
symmetric particle is stable if R-parity is conserved). For
our discussion, however, the actual mass spectrum is not
only crucial for determining the LKP but also because it
determines both the exact location of resonances and which
decay processes are kinematically allowed.
At tree level, the mass of a KK state is given by

Mi
ðnÞ ¼ mi

EW þ
�
n
R

�
i
; ð3Þ

where i ¼ 2 (i ¼ 1) for bosons (fermions) and mEW is the
mass of the corresponding SM state, generated by electro-
weak symmetry breaking. Current collider data constrain
the compactification scale to R−1 ≳ 700 GeV [66–68], with
stronger limits applying for d > 5. One thus generically
expects very degenerate spectra at any given KK level, due
to R−1 ≫ mEW, which implies that radiative mass correc-
tions δMðnÞ become important to determine the actual mass
hierarchy of states. Those corrections on top of the SM
contributions (which are renormalized in the usual way)
arise both due to winding modes of loops in the bulk and
due to terms localized at the orbifold boundaries
[21,69,70]. The latter are formally infinite and thus need
to be renormalized by counterterms with in general
unknown finite parts.
The scenario of minimal UED (mUED) rests on the

simplifying assumption that those terms at the orbifold
boundaries can be neglected at the cutoff scale Λ; all
KK masses are then uniquely determined by only two

parameters Λ and R [21]. For the recently determined Higgs
mass of mh ∼ 125 GeV [71,72], however, the running of
the Higgs self-coupling implies an unstable vacuum unless
the cutoff scale is as small as ΛR ∼ 5 [51,68,73]. In the
mUED scenario, the LKP is the first KK excitation of the
photon, which to a very good approximation is the same as
the first KK excitation of the hypercharge gauge boson,
Bð1Þ. As it turns out, the Bð1Þ is indeed an excellent DM
candidate [23]. Thermal production in the early Universe
leads to the correct relic density for R−1 ≃mBð1Þ ∼ 1.2 TeV
[51,74], a compactification scale that may well be in reach
for the LHC after its upgrade [22]. Taking into account the
requirement of relic density and vacuum stability, there are
thus essentially no free parameters in the simplified UED
scenario known as mUED.
The interaction terms localized at the orbifold fixpoints,

however, are in principle arbitrary (though their scale-
dependence is determined by bulk interactions). At a given
scale, they should thus in general simply be viewed as new
free parameters of the theory. In particular, those param-
eters should follow from some more fundamental theory at
energies E≳ Λ and there is no obvious reason why such a
theory should predict all those terms to vanish at the cutoff
scale. Compared to the mUED scenario, nonvanishing
boundary terms will affect the corrections to the self-
energies, and thus the mass hierarchy, of KK particles. In
fact, in non-minimal UED scenarios, one may explicitly
allow even for bulk mass terms [75] (see also Ref. [76] for a
recent review on the status of nonminimal UED). An often
adopted approach is therefore to treat the mass splittings
δMðnÞ as essentially free parameters. We note that this could
even change the nature of the LKP [77], but leave an
investigation of possible consequences of this interesting
possibility for future work. Changing the mass splittings
of the KK particles can have significant effects on the
compactification scale that results in the correct relic
density for a Bð1Þ LKP. The lowest possible value is given
by R−1 ∼ 800 GeV and corresponds to mass splittings
much larger than in the mUED case, such that coannihi-
lations are no longer important [23]. Tuning the mass
spectra to be highly degenerate, on the other hand, makes
coannihilations even more important and may drive the
compactification scale, and thus mass, of a thermally
produced Bð1Þ LKP up to a value of a few TeV [78,79].
Finally, let us stress that the cutoff scale will in general be
significantly larger than the value of ΛR ∼ 5 implied by
vacuum stability in the simplified mUED scenario.

III. PHOTONS FROM KK DARK MATTER

A. Spectrum in the zero-velocity limit

The expected gamma ray spectrum from the annihi-
lation of Bð1Þ pairs to SM model particles has been
extensively studied in the literature. First of all, there is
the usual secondary contribution to the spectrum from

1This can be traced back to the invariance of (1), (2) under
reflection about the center (y ¼ πR=2) of the extradimensional
interval.
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Bð1ÞBð1Þ → q̄q; ZZ;WþW− [33] that results from the frag-
mentation and decay of the annihilation products, mostly
via π0 → γγ. Unlike the typical situation in supersymmetry,
also the decay of τ leptons gives an important contribution
and leads to a significantly harder spectrum [8] as a result of
the relatively large Bð1ÞBð1Þ → τþτ− rate.
In fact, the annihilation into lepton final states is the

dominant channel, with roughly the same branching fraction
of ∼20% for all lepton families. An even more important
contribution at the phenomenologically most relevant
highest energies, i.e. close to the kinematical endpoint of
Eγ ¼ mχ , are thus primary photons radiated off lepton final
legs [8]. This final state radiation (FSR) is dominated
by collinearly emitted photons, resulting in a universal
spectrum of the Weizsäcker-Williams form [7,8,80]:

dNFSR
γ

dx
≡ 1

σBð1ÞBð1Þ→lþl−

dσBð1ÞBð1Þ→lþl−γ

dx
ð4Þ

≃ α

π

1þ ð1 − xÞ2
x

log

�
sð1 − xÞ

m2
l

�
: ð5Þ

Here,
ffiffiffi
s

p ¼ 2mBð1Þ is the CMS energy and x≡ 2Eγ=ffiffiffi
s

p ¼ Eγ=mBð1Þ . Overall, one expects a characteristic, rela-
tively hard spectrum which drops abruptly at the DM mass;
such a photon distribution could very efficiently be
discriminated from typical astrophysical backgrounds [5].
An even more striking spectral feature would be the

quasimonochromatic line expected for Bð1ÞBð1Þ → γX, at a
photon energy of

Eγ ¼ mBð1Þ

�
1 −

m2
X

4m2
Bð1Þ

�
: ð6Þ

Due to the large LKP mass, the three possible line signals
(for X ¼ γ; Z; h) would essentially be indistinguishable and
thus simply add up in the spectrum (at Eγ ≃mχ). A fully
analytic one-loop calculation has been performed for the
dominant process of Bð1ÞBð1Þ → γγ via fermion box dia-
grams [14]. Numerical calculations have both confirmed
and extended these analytic results [34], as well as
estimates [14] for the subdominant annihilation channels
into γZ and γh final states. In order to discriminate the
monochromatic signal from the continuum FSR photon
signal discussed above, given an expected total annihilation
cross section of ðσvÞγX ≲ 10−29 cm3=s, requires the energy
resolution of the detector to be better than a few percent
[14]. While such a performance is, unfortunately, unfea-
sible for both operating and upcoming Air Cherenkov
Telescopes, which feature energy resolutions of 10–15%, it
might be well in reach for space-based telescopes given the
design characteristics of planned missions like Gamma-400
[81], DAMPE [82] or CALET [83].
It is worth stressing that the continuous gamma ray

spectrum from annihilating Bð1Þ pairs is rather insensitive

to the other KK masses, such that one expects essentially
the same spectrum even in nonminimal UED scenarios.
The strength of the line signal, on the other hand, can be
enhanced by a factor of a few when allowing for smaller
mass differences between KK fermions and the Bð1Þ [14]
(and can be much larger for other LKP candidates, such as
the Zð1Þ [84]).

B. Annihilation rate revisited

Let us now address the question of how the above
presented situation changes when allowing for a nonzero
relative velocity of the annihilating LKP pair. The first
thing to note is that the FSR continuum spectrum
dNFSR=dx will not change visibly if, as already indicated
in Eq. (5), one uses the actual CMS energy rather than
2mBð1Þ in defining the dimensionless photon energy x.
The same is true for the secondary photons, given that s
is the only scale in the problem (provided that, as is the case
of interest here, the CMS energy is much larger than the
mass of any of the annihilation products). Unless one is in
the highly relativistic regime, furthermore, one can expect
even the normalization of the spectrum to stay roughly
constant because the Bð1Þ is an s-wave annihilator with a
total annihilation cross section of

σvrel ≃ 3 × 10−26 cm3 s−1
�

mBð1Þ

800 GeV

�
−2
; ð7Þ

where both σv and the final state branching ratios are rather
insensitive to the spectrum of other KK states [42]. The
same expectations hold for the line signals discussed above:
while the location of the line will shift from Eγ ≃mχ to
Eγ ≃ ffiffiffi

s
p

=2, its normalization will stay roughly the same as
long as the CMS energy is not significantly larger than the
rest mass of the two annihilating LKPs.
There is one important exception to these considerations

and this is what we will focus on in the following: the
appearance of s-channel resonances may significantly
enhance the annihilation rate with respect to the zero-
velocity limit (in which case s-channel diagrams give
subdominant contributions for both the line and continuum
signals). A further advantage of these resonances is that they
add a scale to the process, which in general is the onlyway to
preserve a sharp spectral feature in the potentially observ-
able gamma ray flux after integrating over a distribution of
CMS energies or relative velocities (see also Sec. IV).2

2This is most easily seen for the case of a monochromatic line:
integrating dσ=dEγ ≡ NδðEγ −

ffiffiffi
s

p
=2Þ over some—astrophysi-

cally motivated and typically featureless—CMS energy distri-
bution fðsÞ simply results in a flux proportional to fð2EγÞ for an
energy-independent normalization N; the initial line feature is
thus completely smeared out. If, on the other hand, N is strongly
peaked, at the energy of the resonance, a pronounced peak at the
same energy will also show up in the flux—independently of the
functional form of f.
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For at least three reasons, these observations are par-
ticularly relevant for the case of KK DM:
(1) Due to the mass degeneracy of KK states, relevant

resonances are naturally expected for level-2 KK
states in the s channel.

(2) The decay of these resonances into SM states is
necessarily loop suppressed because it violates KK
number conservation. This implies very narrow
widths, and thus large enhancements on resonance,
if the decay to level-1 KK states is kinematically
forbidden or otherwise suppressed (which, as
discussed below, often is the case).

(3) Another consequence of a loop-suppressed total
width is that continuum and monochromatic photons
are produced at roughly the same strength on
resonance, unlike the typical situation where only
the line signal is loop suppressed. In other words,
one can expect a much larger relative enhancement
of the line signals (which, as discussed above, is not
the least needed to overcome the large contribution
from FSR photons).

In the UED scenario, resonances thus indeed single out
spectral features in a unique way.
With these general considerations in mind, let us now

turn to a more detailed discussion of which resonances will
be most relevant in our case. Charge conservation implies
that for the annihilation of a Bð1Þ pair the only possible
resonances at KK level 2 are the vector bosons Bð2Þ,
Að2Þ
3 and the scalars Hð2Þ, að2Þ0 . In Fig. 1, we show the

corresponding Feynman diagrams. Here, the blobs on the
left represent effective Bð1ÞBð1ÞYð2Þ couplings that may
either exist at tree level or correspond to one-loop subdia-
grams. The right blob represents a KK-number violating
coupling and is thus necessarily loop suppressed. However,
not all combinations of resonance states Yð2Þ and final states
γX are actually possible. For a scalar resonance, for
instance, X must be a vector in order to conserve helicity.
Vector resonances, on the other hand, are only allowed
for X ¼ H: the γγ annihilation channel is forbidden by
the Landau-Yang theorem [85,86]; γZ final states cannot
appear due to the anomaly cancellation familiar from the
SM, which prevents anomalous three-gauge-boson
couplings. For a very similar reason, in fact, it turns out
that the að2Þ0 resonance cannot decay into two vectors
either (recall that a0 contains the fifth component of the
higher-dimensional Z boson).

The obvious next step consists in identifying which of
the remaining processes are most relevant in producing line
signals. To do so, it is instructive to have a closer look at the
actual mass spectrum of the involved states. In Fig. 2, we
show in the left column the mass of the relevant resonant
particles Yð2Þ (in units of twice the inverse compactification
scale R−1). For comparison, the middle and right column
show the mass of first-level excitations. The first thing to
note is that the tree-level decay of Yð2Þ into KK-1 states is in
some cases not kinematically possible, or at least heavily
suppressed. The decay width for those particles is therefore
instead determined by the loop-suppressed decay into two
SM particles; such a narrow width will correspondingly
enhance the LKP annihilation rate on resonance. The
dominant decay channels are shown in the figure and also
summarized in Table I. For comparison, we also indicate
how this would change if all final states were kinematically
accessible, as can be arranged in nonminimal UED scenar-

ios [for the case of the Að2Þ
3 resonance, we show instead

the dominant decay to SM particles if the decay into
KK(1) leptons was not kinematically allowed]. The other
important parameters to take into account are clearly the
(effective) couplings that appear in Fig. 1. In Table I, we
thus also indicate for reference the size of the (effective)
Bð1ÞBð1ÞYð2Þ coupling as well as the decay rate Yð2Þ → γX.
From this overview, it becomes clear that the Hð2Þ reso-
nance is clearly expected to result in the strongest line
signal: it is not only the most long-lived resonance, but also
the only one that couples to the incoming LKP pair at
tree level.

FIG. 1 (color online). Diagrams that generally lead to the most
pronounced spectral features in the UED scenario when allowing
for relative WIMP velocities v ≠ 0. The blobs correspond to
effective couplings that are computed in Appendixes A and B.
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FIG. 2 (color online). Mass spectrum of relevant KK (2)
resonances in the mUED scenario, in units of twice the inverse
compactification scale R−1 (left column). The middle and right
columns show the mass of KK(1) states; note that only for the KK
top quark the mass eigenstates ðtð1Þ1 ; tð1Þ2 Þ differ significantly from
the flavor eigenstates ðtð1Þs ; tð1Þd ). Dominant decay channels in the
mUED case are displayed by solid arrows unless the resonance
mainly decays to SM particles. Dashed arrows indicate the
dominant decay process in nonminimal UED versions.
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We have performed a full calculation of the dominant
contribution to all annihilation processes shown in Fig. 1,
which includes a determination of the relevant effective
couplings and decay rates (for details, see Appendixes A
and B). In Fig. 3, we show the individual contributions to
the cross section for Bð1ÞBð1Þ → γX from these diagrams.
Note that the ratios of the peak values agree well, within an
order of magnitude, with the naive estimates one can infer
directly from the values stated in Tab. I. In particular, the by
far largest cross section for a monochromatic photon can
be obtained for Bð1ÞBð1Þ⟶Hð2Þ

γZ, with a very pronounced
resonance corresponding to the mass of the Hð2Þ.
Remarkably, this cross section (as well as the corres-
ponding process for γγ final states) can be significantly
larger than the cross section for Bð1ÞBð1Þ → γX in the

zero-velocity limit as indicated by the dashed line,
σv ¼ 2 × 10−30 cm3=s. In fact, even at v ¼ 0, the Hð2Þ
resonance thus contributes at roughly the same level as γZ
final states without taking into account these contributions
[14,34]. While the locations of the resonances are specific
to the mUED scenario, the couplings are typically only
affected at the level of radiative corrections for deviations
from the minimal scenario; this implies that the signal
strengths shown in this figure are rather generic. A possible
exception to this last comment would occur if the mass
spectrum displayed in Fig. 2 would change in a qualitative
way, opening up new or closing existing decay channels.
An interesting possibility to even further enhance the
Bð1ÞBð1Þ → γX rate beyond the mUED expectation would
also be to increase the mixing between the KK top quark
states beyond its mUED value of sin 2αð1Þt ¼ 0.143,
a quantity which enters quadratically in the cross
section (B3), (B4).
So far, we have only mentioned the effect of second-level

KK resonances. As discussed in Sec. VI later on, however,
there may exist extreme astrophysical environments where
much higher CMS energies are available for the collision of
two LKPs. If those energies are sufficient to excite higher
KK resonances Yð2nÞ, with n > 1, this would lead to a rich
phenomenology. While we do not aim at an exhaustive
discussion here, we would like to point out that most of
the arguments presented above can straightforwardly be
applied to this situation as well. One of the most striking
consequences, however, may in any case be the appearance
of multiple gamma ray lines with an equidistant spacing in
energy that equals almost exactly twice the inverse of the
compactification radius, ΔEline

γ ≃ 2=R: if such a striking
spectral signature would be observed, this would constitute
a smoking-gun signal for the higher-dimensional origin of
the cosmological DM.
In Fig. 4, we show explicitly that such a structure indeed

appears in the mUED model.3 While Hð2nÞ resonances
dominate over other resonances also at n > 1, however,
their contribution to the annihilation cross section is a few
orders of magnitude smaller than that of the first resonance
(shown in more detail in Fig. 3). This is mainly due to two
reasons. First, in contrast to the tree-level coupling between
Hð2Þ and the two incoming LKPs, the corresponding
couplings of higher-level Hð2nÞ are radiatively generated
and localized at the orbifold fixed points—see Appendix C
2 for an exhaustive discussion on radiative vertices in UED.
Second, higher-level KK states have more possible decay
modes and it is thus less likely that there is no kinematically
allowed channel at tree level. As discussed above, the
resulting larger decay widths thus decrease the expected

TABLE I. Main decay channels, couplings and possible γX
final states for the resonances shown in Fig. 1 (note that
Γ
að2Þ
0
→γγ;γZ

¼ 0). Decay rates are given in GeV and obtained
for R−1 ¼ 1.2 TeV and ΛR ¼ 5; see Appendix A for calcula-
tional details.

Resonance Yð2Þ Bð2Þ Að2Þ
3 Hð2Þ

Yð2Þ → γX
γH γH γγ, γZ

ðΓ ∼ 0.07Þ ðΓ ∼ 0.07Þ ðΓ ∼ 0.12; 0.36Þ
Γmain
Yð2Þ (mUED)

f̄SMfSM l̄ð1Þd lð1Þd t̄t
ðΓ ∼ 0.8Þ ðΓ ∼ 70Þ ðΓ ∼ 0.1Þ

Γmain
Yð2Þ (non-mUED) f̄ð1Þd;sf

ð1Þ
d;s

f̄SMfSM t̄ð1Þd;st
ð1Þ
s;d

ðΓ ∼ 15Þ ðΓ ∼ 0.8Þ ðΓ ∼ 160Þ
Bð1ÞBð1ÞYð2Þ ∼g03mt ∼g02gmt ∼g02g−1mW

H 2 Z

H 2

106 B 2

109 A3
2

mUED R 1=1.2TeV, R=5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

10 30
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10 26

v c

v
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3
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FIG. 3 (color online). Bð1ÞBð1Þ → γX cross sections in the
mUED scenario, for the various channels considered in Fig. 1,
as a function of the relative speed of the WIMPs (the curves
associated with the Bð2Þ and Að2Þ

3 resonances are multiplied by
factors 106 and 109 respectively). The horizontal dashed line
indicates the dominant line signal in the zero-velocity limit,
which arises from Bð1ÞBð1Þ → γγ [14]. Note that the location of
the resonances is essentially a free parameter in UED theories; in
particular, it can occur at much smaller velocities than shown here
for the mUED case.

3Note that in order to demonstrate this effect, we have allowed
for a larger cutoff value ΛR ¼ 20, which can be motivated by
slightly nonminimal boundary terms affecting the Higgs self-
coupling and thus circumventing the arguments from vacuum
stability that lead to ΛR ∼ 5.
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peak annihilation rate. By relaxing the restrictive assump-
tions of the mUED model, however, both these caveats can
be overcome: allowing large boundary terms at the cutoff
scale that prevent the Bð1ÞBð1ÞHð2nÞ (n > 1) vertex from
being strictly radiative, while keeping the vertices relevant
for the Hð2nÞ decay small, would boost these resonances
to a level which can be fairly comparable to the one
encountered in the Hð2Þ case.
To summarize this section, we have pointed out the

remarkable fact that resonances in extradimensional DM
models may naturally enhance monochromatic gamma ray
lines much more than the continuum signal of secondary
and FSR photons. In the mUED model, this leads to a line
signal which for DM velocities v ∼Oð0.1Þ can be
enhanced by several orders of magnitude with respect to
the v ¼ 0 limit known from the literature. As we have
stressed, however, there is no particularly strong reason to
adopt the restrictive limitations of the minimal model.
In fact, UED scenarios generally allow for resonances at
considerably smaller relative velocities of the annihilating
DM particles and, to a lesser degree, there is also some
freedom to enhance the signal normalization even further.
Potentially even more important, these scenarios allow for
the appearance of multiple strong line signals at equally
spaced photon energies.

IV. GAMMA RAY FLUX FROM DM
ANNIHILATION

Neglecting for the moment relativistic effects, the
expected gamma ray flux from DM annihilation from a
direction ψ , averaged over the opening angle Δψ of the
detector, is given by

dΦ
dEγ

ðEγ;ψÞ ¼
1

8π

Z
ψ

dΩ
Δψ

Z
l:o:s

dlðψÞρ2ðrÞ

×
1

m2
DM

�
σvrel

X
f

Bf
dNf

γ

dEγ

�
; ð8Þ

where the integration is performed along the line of sight
(l.o.s) and we take into account that the DM particles are
self-conjugate (for DM candidates with distinct particle and
antiparticle there would be an additional factor of 1=2). The
spatial distribution of the signal traces the DM density
profile ρðrÞ and is typically assumed to be fully determined
by the quantity JðψÞ≡ R

ψ dΩ=Δψ
R
l:o:s dlðψÞρ2ðrÞ. The

second line of Eq. (8) contains the particle physics of
the underlying theoretical model, as discussed in the
previous section: the velocity-weighted CMS annihilation
cross section σvrel at present time, the branching ratio Bf
into channel f, times the number of photons Nf

γ produced
per annihilation; this factor determines the spectral shape of
the signal.
The velocity average that appears above is given by

hfðvrelÞi≡
Z

d3v1d3v2Prðv1ÞPrðv2ÞfðvrelÞ

¼
Z

d3vrelPr;relðvrelÞfðvrelÞ ð9Þ

≡
Z

dvrelpr;relðvrelÞfðvrelÞ; ð10Þ

where PrðviÞ is the three-dimensional normalized velocity
distribution function of a WIMP at a position r and

Pr;relðvrelÞ≡
Z

d3vCMPrðvCM þ vrel=2ÞPrðvCM − vrel=2Þ
ð11Þ

is the three-dimensional distribution function of the
relative velocities of the WIMPs, with vrel ≡ v1 − v2 and
vCM ≡ ðv1 þ v2Þ=2. For a Maxwell-Boltzmann (MB)
distribution prðvÞ ¼ 4π−

1
2v−30 v2 exp½−v2=v20� with most

probable velocity v0, for example, pr;relðvrelÞ is given by
an MB distribution with most probable velocity

ffiffiffi
2

p
v0.

Let us stress that in general the particle physics factor in
Eq. (8) cannot be factorized out of the integral along the
line of sight, because an implicit r-dependence enters via
the velocity average over Pr;relðvrelÞ. In our case, the gamma
ray flux thus depends on both the density and velocity
distribution profile of the DM particles—in contrast to the
typically assumed situation of a velocity-independent cross
section.
The general expression (8) simplifies for the monochro-

matic photons emitted by the annihilation of LKP pairs we
consider here. The differential cross section near a strong
resonance, in particular, is given by

mUED R 1=1.3TeV, R=20)

1 2 3 4 5

10 36

10 34

10 32

10 30

10 28

s 2mB 1

v
cm

3
s

FIG. 4 (color online). Contributions of the first five Hð2nÞ
resonances to the Bð1ÞBð1Þ → γZ annihilation rate in the mUED
scenario, taking however ΛR ¼ 20, as a function of

ffiffiffi
s

p
=2mBð1Þ .

The dashed line is an extrapolation (∝ s−1) of the standard result
for Bð1ÞBð1Þ → γγ [14]. Note that in general one can encounter
much larger peak normalizations than what is shown here for the
minimal UED case.
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σ
X
f

Bf
dNf

γ

dEγ
≃ NγσresΓ2

resm2
res

ðs − m2
resÞ2 þ Γ2

resm2
res

δ

�
Eγ −

ffiffiffi
s

p
2

�
;

ð12Þ

wheremres and Γres are the mass and width of the s-channel
particle, respectively, σres is the peak value of the cross
section and we have neglected the masses of the final state
particles; Nγ ¼ 2 for γγ final states and Nγ ¼ 1 otherwise.
Given that s ¼ 4m2

DM=ð1 − v2rel=4Þ in the CMS system, the
velocity average can be evaluated trivially and the flux near
the resonance becomes

dΦres

dEγ
≃ NγðσvrelÞres

8πE3
γ

~JlineðEγÞΓ2
resm2

res

ð4E2
γ −m2

resÞ2 þ Γ2
resm2

res
; ð13Þ

where

~JlineðEγÞ≡ 1

ΔΩ

Z
ΔΩ

dΩ
Z
l:o:s:

dl
Z

ρ2ðrÞpr;relðvlinerel Þ
vlinerel =4

ð14Þ

and vlinerel ðEγÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

DM=E
2
γ

q
≃ ffiffiffi

8
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eγ=mDM − 1
p

.

Before discussing in more detail the implications for the
UED model, however, let us in the following subsections
briefly describe the DM density profile and the DM
velocity distribution in a halo that enters in the above
expressions.

A. DM density profile

A generic parametrization for a spherically symmetric
DM density, which encompasses several halo profiles, is
given by

ρðrÞ ¼ ρ⊙
�

r
r⊙

�
−γ
�
1þ ðr⊙=r0Þα
1þ ðr=r0Þα

�β−γ
α

; ð15Þ

where ρ⊙ ≃ ð0.3–0.4Þ GeV=cm3 [87,88] is the DM density
in the solar neighborhoods and r⊙ ≃ 8.5 kpc denotes the
Sun’s position with respect to the GC. In our analysis we
consider the two density profiles with the extreme opposite
behavior in the inner part. The Navarro, Frenk and White
(NFW) density profile [89] is obtained for ðα; β; γÞ ¼
ð1; 3; 1Þ and a scale radius of r0 ¼ 20 kpc. Such a cuspy
profile is favored by numerical N-body simulations; for
very small galactocentric distances, r≲ 100 pc, the profile
may in fact be even steeper and exhibit a slope of ρ ∝ r−1.2

[90–92]. On the contrary the cored isothermal profile—
which is observationally inferred for low surface brightness
as well as dwarf galaxies [93,94]—has ðα; β; γÞ ¼ ð1; 2; 1Þ,
a scale radius of 3.5 kpc and a finite density core close to
the GC.

It is very likely that the central SMBHs in galaxies have
primordial DM density spikes [95]. When indeed a BH
forms, the DM distribution adjusts to the new gravitational
potential and this process leads to the formation of spikes.
Even though gravitational scattering off stars of DM
particles and DM annihilation [96,97] tend to reduce the
DM density in spikes, the enhancement is still significant
with respect to ordinary cuspy profiles. This leads to a
change in the slope γ → γ0 ¼ 7=3 of the density profile
within the BH radius of influence for a NFW profile (prior
to BH formation), with a plateau at a radius where annihi-
lations become important over the BH lifetime. General
relativity (GR) corrections to the profile for the
Schwarzschild case are computed in [98], where the inner
radius of the annihilation plateau is found to be 2rS, where
rS is the Schwarzschild radius of the BH. The extent to
which the spikes survive dynamical heating by their
environment is unknown. We consider the pessimistic case
described in [99], where an initially γ0 ¼ 3=2 profile is
adopted, arising from a cored isothermal profile. In other
words, in the case of the GC, stellar scattering affects the
BH spike over several core relaxation times, amounting to a
few Gyr. Hence the density profile is most likely softened to
a γ0 ∼ 3=2 profile [100]. However more massive SMBH
dynamical relaxation via stellar interactions does not occur,
because the core relation time scales are much longer. In the
case of M87, which we will discuss later as one of our most
promising candidates, the core-related time scale is of order
105 Gyr. Hence the initial spike profile is preserved.
More quantitatively, consider a DM density spike sur-

rounding a massive BH. There are several scales of interest.
The gravitational radius of influence, which by definition
contains the same mass as the BH, and the half-mass radius
of the spheroid are respectively

ri ¼
GMBH

σ2
; r1=2 ¼

GM1=2

σ2
; ð16Þ

where σ is the bulge velocity dispersion. The density profile
is then given by

ρ ∝
	
r−γ if r > ri;

r−γ
0

if r < ri:
ð17Þ

Efficient annihilation sets an upper limit on the DM
density in the innermost parts. A density plateau,
with ρp ≡ ρðr≲ rpÞ, thus occurs at a radius rp where
the annihilation time scale equals the BH age,
tBH ∼ 108–1010 years, i.e. where

ρðrpÞðσvrelÞ ¼
mDM

tBH
: ð18Þ

B. Velocity distribution

By definition the density profile and the velocity
distribution are related via
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ρðrÞ ¼ mDM

Z
d3vFðv; rÞ; ð19Þ

where Fðv; rÞ is the WIMP phase space distribution in the
galactic frame. Given a DM density profile, the underlying
DM velocity distribution can be extracted by inverting
Eq. (19) under the assumption of hydrostatic equilibrium, a
solution known as the Eddington formula [101]. The above
integral can be inverted only under certain assumptions,
such as spherical symmetry for the density profiles. For
instance the MB distribution results from an isothermal
density profile scaling as r−2.
Other spherically symmetry density profiles, such as

NFW, can be used to infer the corresponding velocity
distribution and an application of this procedure for DM
indirect detection is given in [102]. However it has been
shown in [103] that the presence of baryons in N-body
simulations has the effect of making the matter distribution
more concentrated by adiabatic contraction, and the WIMP
velocity distribution is brought closer to a MB distribution.
Significant departure from the MB on the other hand arises
when the velocity dispersion becomes small, e.g. close to
the GC or in dwarf galaxies. In these regions, however, the
main uncertainty derives from the inner slope of the density
profile, which is difficult to extract from data and has not
converged in simulations either. In fact, these N-body
simulations indicate that DM halos are anisotropic and
exhibit clumpy structures and streams, features that cannot
be captured by the Eddigton formula in a simple way.
Going even closer to the central BH, where the DM spikes
form, the assumption of hydrostatic equilibrium is not
satisfied anymore: in this case, one would have to extract
the DM velocity distribution from N-body simulations after
adiabatic contraction. In order to avoid addressing in detail
the large uncertainties involved in any brute force compu-
tation of the velocity distribution near the SMBH, we will
in the following make the simplifying assumption of a MB
distribution when considering DM particle collisions.
The old star population (> 1Gyr) in the central 0.5 pc

of our galaxy has a stellar cusp with relatively shallow
slope nðrÞ ∝ r−γ , where γ ¼ 0.4� 0.2 [104], measured
in a three-dimensional kinematic study. This slope is
much flatter than the dynamically relaxed expectation
(γ ¼ 3=2 − 7=4) that we have adopted for the DM. The
flattening is attributed to stellar heating. We note however
that the recently discovered [105] young nuclear star cluster
centered on SagA* (≳50% of the stars formed in the most
recent star formation event 2–6 Myr ago) has a significantly
steeper slope within its half-light radius of ∼4 pc, compa-
rable to the gravitational sphere of influence radius at
∼3 pc. Because the BH has certainly grown by accretion
of gas and stars over the past Gyr, it is not clear how the
competing effects of adiabatic contraction of the DM, that
steepen the profile, compete with dynamical heating. As
discussed previously, the effects of stellar heating are

irrelevant for SMBHs much more massive than in our
Galactic center, as is the case for M87 and Cen A. The
three-dimensional kinematic study shows that the velocity
field is consistent with that earlier inferred from orbital
studies within 0.05 pc of SagA* and yields a similar
mass estimate for the central SMBH. Our simplifying
assumption of a MB distribution should not modify our
estimates of collision velocities by a significant factor
compared to the other uncertainties in our model.

V. ENHANCED GAMMA RAY LINES
FROM KK DM ANNIHILATION

Let us now assess in more detail by how much the line
signal at Eγ ∼mBð1Þ can be enhanced with respect to the
v ¼ 0 result in concrete applications. To this end, we
assume a MB distribution for the WIMP velocities and
compare the flux from resonant diagrams, as given by
Eq. (13), with the flux in the zero-velocity limit. The result
is shown in Fig. 5 as a function of the resonance mass and
the assumed velocity dispersion (using for example the
velocity dispersion extracted from Fig. 18 of [102] instead
of MB, based on an NFW profile with a baryonic bulge,
does not qualitatively change our results). For anHð2Þ mass
as given in the mUED scenario, indicated by the dashed
line, the hitherto neglected diagrams will thus enhance the
line signal by more than an order of magnitude for a most
probable DM velocity of v0 ≳ 0.05. Allowing for a smaller
Hð2Þ mass in nonminimal scenarios, on the other hand, will
result in similar enhancements already for much smaller

FIG. 5 (color online). Enhancement of the line signal due to the
presence of resonances: the color scale indicates the ratio of the
monochromatic photon flux resulting from the diagrams shown in
Fig. 1, assuming a Mawell-Boltzmann distribution with most
probable DM velocity v0, to the one expected in the v ¼ 0 limit.
The dashed line indicates the mass difference between the
resonance Hð2Þ and twice the LKP Bð1Þ in the minimal scenario
(for R−1 ¼ 1.2 TeV and ΛR ¼ 5).
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velocities. In the most favorable case, the signal may be up
to three orders of magnitude stronger than expected from
the calculation in the v ¼ 0 limit.
It should be noted that the typical velocities in the

Milky Way are of the order of v ∼ 10−3, such that there is
seemingly little hope to actually observe resonant LKP
annihilation on galactic scales (see, however, the next
section). Furthermore, current limits on monochromatic
photons at TeV energies [106], deriving from observations
of the Galactic center, are almost three orders of magnitude
weaker than the mUED signal expected in the v ¼ 0 limit
(though CTA will improve these limits by significantly
more than one order of magnitude [107]). While s-channel
annihilation will in general start to be important for mass
differences between the Hð2Þ mass and two times the LKP
mass at the per mille level, as illustrated in Fig. 5, even
more degenerate spectra would thus be needed to make the
signal observable with near future technology.
The situation is considerably better for galaxy clusters,

where the typical velocities of up to v ∼ 10−2 would be
sufficient to probe the resonant regime for less nonminimal
setups. Another advantage of clusters is that they are the
astronomical targets for indirect DM searches with the
largest mass hierarchy of (sub)sub halos, which implies that
they maximize the signal enhancement due to substructures
[108]. In optimistic scenarios for the distribution of sub-
structures, they may thus be the brightest sources of DM
annihilation radiation [109]. In combination with the
enhancement from resonances studied here, line signals
from clusters may thus offer a promising opportunity for
DM detection with future Air Cherenkov telescopes
like CTA.
Still, even the velocity dispersion of 0.008c measured in

the most massive galaxy cluster known [110] appears
relatively small in our context, and to really probe the
extradimensional resonances even higher particle velocities
are in general indispensable. Hence we turn next to an
environment where there are known sources of high-energy
gamma rays and high particle collision velocities are
inevitable, in the vicinity of SMBHs.

VI. GAMMA RAYS FROM DARK
MATTER SPIKES: SCHWARZSCHILD

BLACK HOLE CASE

SMBHs are found to be effective DM particle accel-
erators. Particle collisions occur to high CMS energies and
are especially important for the case of a Kerr BH [53]. The
CMS energy for particle collisions is limited to 4.5 times
the rest mass for a Schwarzschild BH, in the case of Kerr
attains energies of 20 times the rest mass for Kerr
parameter4 a ¼ 0.998 and is formally infinite for the
extremal Kerr BH.

The following issues have been raised with regard to
whether there is any potentially observable flux, namely
whether the density spike survives, whether there is a
negligibly small flux at infinity, whether backreaction
limits the acceleration and whether the large redshifting
of photons generated in DM particle collisions renders any
debris unobservable [60–62,111].
None of these issues is insuperable for a number

of reasons, none of which can however be considered
definitive, but are discussed in [100,112–115].
At the very least, one can infer that the topic of particle

collision signatures near BH horizons merits further
study. Specifically, several ways have been proposed for
observing BH-boosted annihilations:
(1) It has been shown that there are some unbound

geodesics around the axis of rotation [116]. If the
ergosphere were evenly populated with injection of
annihilation debris, an increasing fraction of null
geodesics are unbound in the limit of large and
increasing a. To feed these would require that
annihilation seeds the Penrose effect.

(2) Penrose boosting of the energetics of collisional
debris can occur in the ergosphere. Sufficiently
detailed models have not been worked out however
to come to a quantitative result [111,117,118].

(3) There is no horizon near naked singularities. Dirty
BHs are another option. In these cases collisions at
infinite CMS energies are possible [119].

Given the considerable interest should any signal be
observable, and that the possibility of such an effect
remains to be clarified, we have decided to explore a
potentially unique signal from KK particle annihilations
near the horizon. For our further considerations we stick for
simplicity to the case of a nonrotating Schwarzschild BH.
Because of the spherical symmetry of the system, it is
enough to study the collision of DM particles in the
equatorial plane to recover the general solution.
Considering the DM density around a BH, described by

the spike and plateau configuration, a key scale ratio is that
of plateau scale to Schwarzschild radius,

rp
rS

¼
�
c
σ

�
2
�hσvrelit

mDM
ρ1=2

�
1=γ0

�
M1=2

MBH

�
γ=γ0

: ð20Þ

The plateau radius approaches the horizon for the
most massive BHs: this amplifies the annihilation flux
considerably.
The maximum luminosity (number of γs per second) is

evaluated at rh ¼ 2rS,

Lh ¼
4π

3

ð2rSÞ3
hσvrelit2

; ð21Þ

and the total spike luminosity is4a is the angular momentum J divided by the BH mass.
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Lsp ¼ Lh

�
rp
2rS

�
3

: ð22Þ

This reduces to

Lsp ¼
�
c
σ

�
6
�hσvrelit

mDM
ρ1=2

�
3=γ0

�
M1=2

MBH

�
3γ=γ0

×
32π

3

r3S
hσvrelit2

: ð23Þ

For scaling purposes, we assume σ4 ¼ G2Σ1=2M1=2 and

ρ1=2 ¼ Σ3=2
1=2M

−1=2
1=2 , where Σ1=2 ¼ ρ1=2r1=2. We assume σ is

unchanged between rsp and r1=2. We now find

Lsp ¼ 32π

3

hσvreli3=γ0−1
mγ=γ0

DM

tð3=γ0−2ÞΣ
3
2
ð3=γ0−1Þ
1=2

×

�
MBH

M1=2

�
3ð1−γ=γ0Þ

M
3
2
ð1−1=γ0Þ
1=2 : ð24Þ

Let us consider the case of a NFW halo profile: in the
central region, γ ¼ 1 and γ0 ¼ 7=3. Here we have

Lsp ¼ 32π

3

hσvreli2=7
m9=7

DM

t−5=7Σ3=7
1=2

�
MBH

M1=2

�
6=7

M6=7
BH : ð25Þ

One can now see the explicit dependence on BHmassMBH.
The dependence on MBH=M1=2 is found to be constant at
the present epoch (and to be reduced weakly with increas-
ing redshift) [120]. The empirical dependence of surface
brightness on galaxy luminosity, both defined at the
effective radius (equivalent to a correlation between Σ1=2

and M1=2) is also weak [121].
Let us consider now two DM particles which, accel-

erated by the BH, collide and emit photons. The CMS
energy depends on the distance r of the collision point from
the BH horizon and on the angular momentum of the DM
particles, l1 and l2 respectively, as in [52,53]

E2
CM ¼ 2m2

Bð1Þ
r2ð2r − rSÞ − l1l2ðr − rSÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rSr2 − l21ðr − rSÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rSr2 − l22ðr − rSÞ

p
r2ðr − rSÞ

: ð26Þ

To get maximal enhancement the angular momenta should
be opposite in sign, as shown in Fig. 6 in the left panel,
where the DM rest mass is fixed to unity. The enhancement
in the CMS energy decreases fast as soon as the angular
momenta decrease or as soon as the distance from rh
increases (right panel). The Schwarzschild BH provides at
most a CMS energy 4.5 times the DM mass. Such an
acceleration is enough to excite the second and fourth KK

levels, see Fig. 4, producing a pair of gamma ray lines.
Potentially in the case of a Kerr BH the two gamma ray
lines might become a line forest, because of the almost
infinite CMS energy at the disposal of the DM particles.
However each emitted photon will be subject to gravi-

tational and Doppler redshift, which in principle depends
on where the collisions occur and in which direction the
photon is emitted. The photons are emitted close to the BH

FIG. 6 (color online). Left: Contour plot of the CMS energy per unit DM rest mass as a function of the two DM angular momenta l1
and l2, with the collision radial coordinate being fixed at r ¼ rS. Right: Same as left as a function of the collision radial coordinate r and
the angular momentum of the first DM particle l1, with l2 fixed at its minimal value ðl2 ¼ −4Þ.
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horizon with initial energy E0
γ and are boosted with the

CMS velocity β of the annihilating DM particle pair. The
gravitational redshift denotes the redshift in the energy a
photon undergoes when detected by an observer comoving
with the source, while the Doppler shift arises by moving to
the reference frame of a distant observer at rest. The total
redshift is thus given by

Eγ ¼ E0
γ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rS
r

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
1þ vtot cos δ

; ð27Þ

with δ being the angle at which the photon is emitted with
respect to the velocity vtot of the two DM particle system.
We define a total mean redshift factor R̄tot to assess the
smearing in the photon energy detected by a distant
observer (the details are given in Appendix D), while
the spectral feature is maintained, as discussed in Sec. III B.
The total mean redshift factor is the average over all
possible trajectories of the emitted photons along the
l.o.s. which escape the BH. The photon energy observed
by the distant detector is then given by

Eγ ¼ E0
γRðrÞtot; ð28Þ

while the initial injected spectrum becomes

dNf
γ

dE0
γ
¼ dNf

γ

dEγ

dEγ

dE0
γ
: ð29Þ

Considering point sources, from Eq. (8) we can compute
the photon flux observed at the Earth position from a
SMBH at a distanceD after having integrated over the solid
angle

dΦ
dEγ

¼ 1

2m2
DM

1

D2
×
Z

3=2rS

rS

r2ρ2ðrÞ
�
σvrel

X
f

Bf
dNγ

dEγ

�
dr;

ð30Þ

where the upper limit of integration is given by the
maximum value of r which can lead a ECMS large enough
to excite at least the first resonance, as detailed in
Appendix D. The GR effects that redshift the photons
are given by Eqs. (28) and (29), which modify Eq. (13) into

dΦres

dEγ
≃ NγðσvrelÞres

4ð ¯RðrSÞtotE0
γÞ3

×
RðrSÞtot ~JlineðRðrSÞtotE0

γÞΓ2
resm2

res

ð4RðrSÞ2totðE0
γÞ2 −m2

resÞ2 þ Γ2
resm2

res

; ð31Þ

with

~JlineðRðrSÞtotE0
γÞ≡ 1

D2

m2
DM

t2BHðσvrelÞ2

×
Z

3=2rS

rS

drr2
pr;relðvrelÞ
vrel=4

: ð32Þ

Here we used the explicit formula for the density spike,
Eq. (18); notice that there is no more r dependence for the
density profile as the region of interest for the signal is
contained within the plateau region. The velocity distribu-
tion is simply given by gravitational motion around the BH
and it is typically of the order of c, which we take as
reference value. There are several astrophysical factors that
affect the observed flux:
(1) The mean total redshift decreases the observed

photon energy. In fact, simple energy conservation
arguments imply that the maximally observable
energy for a distant observer still corresponds to
the rest mass of the annihilating DM particles (unless
very efficient Penrose boosting is at place);

(2) In general, redshift and Doppler effects will also
broaden the line signal considerably. The intrinsic
width of the signal is much smaller than the
experimental resolution, however, so we do not
expect this to significantly affect observational
prospects;

(3) The distance of the SMBH tends to decrease the
flux, while its Schwarzschild radius boosts the
signal: supergiant BHs can compensate their dis-
tance with their mass and perform better for instance
than SagA*, as it will be discussed below;

(4) The time of BH formation is also relevant, as shorter
tBH lead to larger fluxes;

(5) Thevalue of the annihilation cross section in the early
Universe is fixed by the scaling relation in Eq. (7)
and corresponds to σvrel ≃ 1.3 × 10−26 cm3=s for a
1.2 TeV KK particle;

(6) pr;relðvrelÞ denotes the probability that the two DM
particles encountering each other at a radial position
r have a relative speed vrel; this quantity should be
sufficiently large for the CMS energies necessary to
excite the resonance. The solutions of the geodesics
equations for massive particles would require
numerical simulation. Assuming that the DM rest
mass is negligible with respect to the CMS energy
[55] the geodesics can be approximated with those
of massless objects, concluding that the infall of
particles is not radial unless at the exact position
r ¼ rS. The infall orbits are even more complicated
and far from the radial behavior in the Kerr geometry
[57,122]. In light of these uncertainties, we simply
set pr;relðvrelÞ=vrel=4 to unity in our estimation of the
photon flux near the resonances—keeping in mind
that a full treatment, which is beyond the scope of
this work, might turn out to yield a significantly
smaller value.
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We roughly estimate the expected gamma ray flux at the
Earth position for two SMBHs using Eq. (31), withmBð1Þ ¼
1.2 TeV and for the first peak produced by the Hð2Þ
resonance, which is the dominant one.
a. SMBH in the GC The center of the Milky Way hosts a

SMBH with ≃4.6 × 106M⊙, which corresponds to a
Schwarzschild radius of about 4 × 10−7 pc. For a density
plateau of the order of 1011M⊙=pc3, derived considering a
SMBH formation time of 108 yr, the flux near the
resonance is Φres ∼ 10−18 photons=cm2=s, which is slightly
below the reach of HESS or CTA for line searches.
b. Supergiant elliptical galaxy M87 The case of the

Virgo A galaxy is more promising for observation,
because it hosts a supergiant BH, MBH ¼ 6.6 × 109M⊙.
This increases considerably the Schwarzschild radius
rS ∼ 6 × 10−4 pc, which in turn compensates the fact that
the SMBH is much more distant than the GC, i.e.
D ¼ 16.4 Mpc. In total this provides a boost of ∼103 to
the gamma ray flux with respect to the case of SagA*,
Φres ∼ 10−15 photons=cm2=s which might be observable by
the next generation of gamma ray telescopes.

VII. CONCLUSIONS

In this article, we have demonstrated that taking into
account the nonvanishing velocities of annihilating DM
particles can significantly change the predictions for the
signal expected in indirect DM searches. This is especially
true for Kaluza-Klein DM, where resonances naturally
appear close to the CMS energy in the zero-velocity limit.
For our concrete calculations we have focussed on a class
of rather popular UED models, where the DM particle is
given by the first KK excitation of the photon, but the
general features we have discussed are generic to most
KK DM models. In particular, we have pointed out the
remarkable fact that these resonances can rather generically
enhance line signals significantly more than the continuum
gamma ray spectrum from DM annihilation. This has
important phenomenological implications for the search
for TeV-scale DM candidates with upcoming instruments
like CTA.
For the model that we have chosen to investigate we

have presented a systematic discussion of the dominant
processes, for which we performed detailed higher-order
computations to update existing results for the zero-
velocity limit. This included hitherto neglected diagrams
and a set of rather complex computations of various
radiatively generated couplings (as explained in detail in
the technical appendixes). In the specific case of the rather
restrictive mUED model, and for typical galactic velocities,
those new contributions only increase the monochromatic
photon flux by Oð10%Þ; for more general models, how-
ever, the line signal may indeed be enhanced by up to about
three orders of magnitude.
Large enhancements of the line signals can also be found

in astrophysical environments where DM velocities larger

than ∼0.01c prevail. A particularly interesting place to look
for line signals from DM annihilation are thus SMBHs like
in the center of our Galaxy. In this case, in fact, one may
even encounter CMS energies several times the DM rest
mass. For such a situation, we have identified a new
smoking-gun signature that consists of several equally
spaced gamma ray lines and that would unequivocally
point to the extradimensional origin of the annihilation
signal. While a very rough estimate for the expected fluxes
seems to indicate that rather favorable assumptions about
the astrophysical environment are needed to observe such a
multiline signal, a full investigation is beyond the scope of
this work. Given the potentially spectacular signature,
however, it is certainly worthwhile to further explore this
exciting possibility.

ACKNOWLEDGMENTS

T. B. acknowledges support from the German Research
Foundation (DFG) through the Emmy Noether Grant
No. BR 3954/1-1. The research of C. A. and J. S. has been
supported at IAP by the ERC Grant No. 267117 (DARK)
hosted by Université Pierre et Marie Curie—Paris 6, PI J.
Silk. J. S. acknowledges the support of the JHU by NSF
Grant No. OIA-1124403, while C. A. acknowledges the
partial support of the European Research Council through
the ERC starting grant WIMPs Kairos, PI G. Bertone.
M. V. acknowledges support from the Forschungs- und
Wissenschaftsstiftung Hamburg through the program
“Astroparticle Physics with Multiple Messengers.” For
the computation and numerical evaluation of the relevant
Feynman diagrams we largely relied on FEYNCALC [123]
and LOOPTOOLS [124].

APPENDIX A: DECAY WIDTHS OF
SECOND-KK-LEVEL PARTICLES

As discussed in Sec. III B, the way resonances decay has
phenomenological consequences that are essential to our
analysis. In this appendix, we provide technical details
about the computation of the relevant decay widths of
potentially resonant KK particles, c.f. Fig. 1 and Table I.
For concreteness, we will fix

ΛR ¼ 5; R−1 ¼ 1.2 TeV ðA1Þ

whenever we state numerical results.
While tree-level couplings preserve KK number and

straightforwardly follow from the SM Lagrangian in five
dimensions (see, e.g., Refs. [125,126] for a list of Feynman
rules), the KK-number violating effective couplings that
one encounters in resonant diagrams require a considerably
more involved treatment. The general formalism to obtain
these effective vertices, which have to be renormalized by
counterterms located on the brane, is detailed in Ref. [21]; it
involves not only the calculation of radiative corrections to
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the vertex on the brane but also, at the same one-loop order,
kinetic and mass mixing effects between states of different
KK number. Here, we will in particular make use of the
result that for the coupling of a generic gauge field Aμ to
chiral SM fermions f,

Leff ⊃ gAf̄feff Að2Þ
μa f̄ð0ÞγνTa 1� γ5

2
fð0Þ; ðA2Þ

the coupling constant for the corresponding vertex in the
mUED case is given by

gAf̄feff ¼ gffiffiffi
2

p
�
δ̄ðm2

Að2Þ Þ
m2

2

− 2
δ̄ðmfð2Þ Þ
m2

�
; ðA3Þ

where g is the corresponding coupling between zero
modes, and mn ≡ n=R and δ̄ðmÞ refers to radiative mass
corrections due to terms localized on the brane.

1. Bð2Þ decay

In the mUED model the Bð2Þ is the lightest of all level-2
KK particles, its mass being almost unaffected by radiative
corrections. Kinematically, the only possible decay is
directly into SM particles by means of KK-number violat-
ing effective vertices and its leading decay channel is
Bð2Þ → q̄q with a branching ratio of around 99% [74].

The mass corrections of Bð2Þ and fð1Þs;d are given by [21,74]

δ̄m2
Bð2Þ

m2
2

¼ −
g02

6

log Λ2

μ2

16π2
; ðA4Þ

δ̄m
fð1Þs

m2

¼
�
9

4
Y2
fs
g02 þ 3g2s −

3

2
y2f

� log Λ2

μ2

16π2
; ðA5Þ

δ̄m
fð1Þd

m2

¼
�
9

4
Y2
fd
g02 þ 27

16
g2 þ 3g2s −

3

4
y2f

� log Λ2

μ2

16π2
; ðA6Þ

where Y refers to the hypercharge, g0 [g] denotes the Uð1Þ
[SUð2Þ] coupling constant and y the Yukawa coupling. The
term proportional to the strong coupling constant gs only
appears for quarks. Using Eq. (A3), this translates into the
vertex relevant for Bð2Þ → f̄f (as reported in Ref. [74]),

Leff ⊃ −f̄γμ
�
gLeff

1 − γ5
2

þ gReff
1þ γ5

2

�
fBð2Þ

μ ; ðA7Þ

gLeff ¼
g0Yfdffiffiffi

2
p

�
g02

6
ð1þ 27Y2

fd
Þ þ 27

8
g2 þ 6g2s −

3

2
y2f

� log Λ2

μ2

16π2
;

ðA8Þ

gReff ¼
g0Yfsffiffiffi

2
p

�
g02

6
ð1þ 27Y2

fs
Þ þ 6g2s − 3y2f

� log Λ2

μ2

16π2
: ðA9Þ

The decay rate then follows straightforwardly as

ΓBð2Þ→f̄f

mBð2Þ
¼ 1

12π

�
1 −

4m2
f

m2
Bð2Þ

�1
2

×

��
1þ 2m2

f

m2
Bð2Þ

�
g2V þ

�
1 −

4m2
f

m2
Bð2Þ

�
g2A

�
; ðA10Þ

where gV ≡ ðgReff þ gLeffÞ=2 and gA ≡ ðgReff − gLeffÞ=2.
Adopting Eq. (A1), the above evaluates numerically to
gLeff ¼ 0.09 and gReff ¼ 0.11, implying a decay rate
of ΓBð2Þ ≈ 0.813 GeV.
When allowing for arbitrary mass splittings on the other

hand, as possible in generic UED scenarios, Bð2Þ would
instead mainly decay into a pair of first-KK-level charged
leptons; the corresponding rate is then given by

Γ
Bð2Þ→l̄ð1Þs lð1Þs

mBð2Þ
¼ Y2

ls
g02

4π

�
1 −

4m2

lð1Þs

m2
Bð2Þ

�1
2
�
1þ

2m2

lð1Þs

m2
Bð2Þ

�
: ðA11Þ

In this case, the existence of a tree-level rather than
loop-suppressed coupling typically overcompensates the
additional phase space suppression, and the decay happens
considerably faster (with Γ ∼ 10 GeV).

2. Að2Þ
3 decay

In the mUED model, Að2Þ
3 is considerable more massive

than Bð2Þ. As a result, kinematics allows for six different

decay channels into first-level leptons l̄ð1Þ
s;dl

ð1Þ
s;d, which

dominates over the only other possible tree-level decay
channels into first-KK-level scalar pairs. The correspond-
ing decay rate is described by Eq. (A11), with
Yg0 → g=

ffiffiffi
2

p
. Adopting Eq. (A1), the total decay rate is

well approximated by Γ
Að2Þ
3

≈ 70 GeV.

In nonminimal scenarios, mass splittings may kinemat-
ically not allow the Að2Þ

3 to decay into first-KK-level states,
but only into SM particles. Assuming that nontrivial mass
and kinetic boundary terms are added at the cutoff scale, in
analogy to Eq. (A7), the radiative vertex that couples Að2Þ

3 to
SM fermion is given by

Leff ⊃ −gLeff f̄γμ
1 − γ5
2

fAð2Þ
3μ ; ðA12Þ

gLeff ¼
gT3fffiffiffi

2
p

�
9Y2

fL

2
g02 −

33

8
g2 þ 6g2s −

3

2
y2f

� log Λ2

μ2

16π2
;

ðA13Þ

where T3f is the fermion weak isospin charge. In deriving
this, we used again formula (A3) and also [21]
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δ̄m2
Wð2Þ

m2
2

¼ 15

2

g2

16π2
log

Λ2

μ2
: ðA14Þ

The decay rate is then calculated just like in Eq. (A10).
Numerically, the total width becomes Γ

Að2Þ
3

≈ 0.8 GeV, with
branching ratios of 11.2% for t̄t, 11.4% for b̄b, 18.0% for
other quark-antiquark pairs and 0.9% for every lepton pair.

3. Hð2Þ decay

In the mUED model the only possible tree-level decay of
the second KK-level Higgs, Hð2Þ → að1Þ0 Bð1Þ, becomes
kinematically forbidden for R−1 ≲ 1 TeV. Therefore,
Hð2Þ is also metastable and decays predominantly into
top antitop pairs due to a radiatively generated vertex
Leff ⊃ geffHð2Þ t̄t, where (λh being the quartic coupling of
the Higgs potential) [74]5

geff ¼
yt
12

�
16g2s þ

33

4
g2 þ 23

6
g02 − 9y2t þ 3λh

� log Λ2

μ2

16π2
:

From this, the decay rate follows as

ΓHð2Þ→t̄t

mHð2Þ
¼ 3g2eff

8π

�
1 −

4m2
t

m2
Hð2Þ

�3
2

:

The factor 3 accounts for the number of colors.
Numerically, adopting Eq. (A1), we find geff ¼ 0.0189
and thus a decay rate of ΓHð2Þ ≈ 99.7 MeV. Note that the
decay ofHð2Þ in SM gauge bosons is suppressed by a factor
of roughly 1

3
ðmW=mtÞ2 ∼Oð0.1Þ. The decay into a Bð1Þ

pair, finally, is the only allowed decay channel into KK
excitations in the mUED scenario (c.f. Fig. 2). Due to the
small mass splitting, however, this channel contributes at an
even lower rate (with ΓHð2Þ ≈ 2.4 MeV).
Equipping the Hð2Þ with a sufficiently large mass in

nonminimal scenarios, on the other hand, it will mainly

decay into t̄ð1Þs tð1Þd and t̄ð1Þd tð1Þs pairs. In this case, one has an
axial scalar coupling with

geff ¼ 2g
mf

mW
: ðA15Þ

Numerically, this gives ΓHð2Þ ∼ 160 GeV, i.e. a much faster
decay than in the mUED scenario.

APPENDIX B: RESONANT LKP
ANNIHILATION AMPLITUDES

In this appendix, we provide technical details about the
computation of the full amplitudes that describe the
resonant annihilation of LKP pairs. The Feynman diagrams
of Fig. 1 can compactly be written as

iAV ¼ ϵμ1ϵ
ν
2L

ρ
Vμν

−ηρσ þ PρPσ

M2
V

s −M2
V þ iMVΓV

Rσ
Vαϵ

α
γ ; ðB1Þ

iAS ¼ ϵμ1ϵ
ν
2LSμν

1

s −M2
S þ iMSΓS

RSαβϵ
α
γ ϵ

β
Z; ðB2Þ

where V and S stand for vector (Bð2Þ, Að2Þ
3 ) and scalar (Hð2Þ,

að2Þ0 ) resonances respectively. The tensors LV;S, RV;S

encode therefore the physical information of the left and
right blobs in each diagram of Fig. 1. In the following, we
will focus our discussion of these tensors in a final-state-to-
final-state basis.

1. Bð1ÞBð1Þ → γγ

The relevant Feynman diagram that contributes to this
process is

Here, Lμν ¼ igBð1ÞBð1ÞHð2Þημν ¼ iðg02v=2Þημν, where v is
the vacuum expectation value of the Higgs field and
the blob on the right-hand side represents the superposition
of several triangle diagrams, the leading ones being

Decomposing the corresponding loop integrals in terms of
Passarino-Veltman functions [127] yields (in the limit

where both KK top quarks have the same mass)

Rγγ
Hð2Þαβ ¼ −

αemQ2
t

π

4igmt sin 2α
ð1Þ
t

mW

mtð1Þ

s

× ð½2 − ðs − 4m2
tð1Þ ÞC0ð0; 0; s; m2

tð1Þ ; m
2
tð1Þ ; m

2
tð1Þ Þ�

× ½sηαβ − 2k1αk2β − 2k1βk2α�
− 4½2B0ðs;m2

tð1Þ ; m
2
tð1Þ Þ − 2B0ð0; m2

tð1Þ ; m
2
tð1Þ Þ

þ sC0ð0; 0; s; m2
tð1Þ ; m

2
tð1Þ ; m

2
tð1Þ Þ�k1αk2βÞ: ðB3Þ

Here, k1 and k2 are the outgoing momenta and
s ¼ ðk1 þ k2Þ2, αem ≈ 1=128 is the fine-structure constant

5Here, we corrected a similar formula found in [74] by
including scalar-vector-fermion loops. See Appendix C for more
details.
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at the TeV scale and Qt ¼ 2=3 is the charge of the top
quark. The angle αð1Þ describes the mixing between
first KK-level flavor and mass eigenstates; in the mUED
case, this is only significantly different from zero for

the case of top quarks (with αð1Þt ≈ 0.071). Notice that
RHð2Þαβ manifestly satisfies the Ward identities both here
and for the amplitudes presented further down, namely
kα1RHð2Þαβ ¼ kβ2RHð2Þαβ ¼ 0.

Concerning a possible contribution from the að2Þ0 reso-
nance, we note that ig

Bð1ÞBð1Það2Þ
0

¼ 0 at tree level and, more

importantly, Γ
að2Þ
0
→γγ;γZ

¼ 0. The latter can be traced back to

the absence of anomalous three-gauge-boson couplings
in the full theory (recall that a0 contains the higher-
dimensional component of the Z boson).

2. Bð1ÞBð1Þ → Zγ

Most of the conclusions from the last section can also be
drawn for this process. The main difference is that the
Z boson is massive and has not only vector, but also
axial-vector couplings. The following two diagrams thus
need in principle to be added for the computation of Rαβ

in this case, but cancel in the limit of m
tð1Þ
1

¼ m
tð1Þ
2

:

In total, we find

RγZ
Hð2Þαβ ¼ −

egQt

π2 cos θW

igmt

mW

mtð1Þ sin 2α
ð1Þ
t

s −m2
Z

�
B½ðs −m2

ZÞηαβ − 2k1βk2α� þ C

�
k2β −

2m2
Z

s −m2
Z
k1β

�
k1α

�
ðB4Þ

with

B ¼
�
YtLsin

2θW −
1

4
cos 2θW

�
½2 − ðs −m2

Z − 4m2
tð1Þ ÞC0ð0; m2

Z; s; m
2
tð1Þ ; m

2
tð1Þ ; m

2
tð1Þ Þ

−
2m2

Z

s −m2
Z
½B0ðs;m2

tð1Þ ; m
2
tð1Þ Þ − B0ðm2

Z;m
2
tð1Þ ; m

2
tð1Þ Þ�� ðB5Þ

C ¼ 2

�
YtLsin

2θW −
1

4
cos 2θW

�
½2þ ðsþm2

Z þ 4m2
tð1Þ ÞC0ð0; m2

Z; s; mtð1Þ ; mtð1Þ ; mtð1Þ Þ ðB6Þ

þ 2
2sþm2

Z

s −m2
Z
B0ðs;m2

tð1Þ ; m
2
tð1Þ Þ − 2

sþ 2m2
Z

s −m2
Z
B0ðm2

Z;m
2
tð1Þ ; m

2
tð1Þ Þ − 2B0ð0; m2

tð1Þ ; m
2
tð1Þ Þ�: ðB7Þ

3. Bð1ÞBð1Þ → Hγ

In this case, the relevant Feynman diagrams are given by

where the vector resonance Bð2Þ can also be interchanged

with Að2Þ
3 . The reason that top quark contributions dominate

in the tensor RV is, as in the cases discussed so far, simply
given by the presence of a Yukawa. For LV, on the other
hand, this follows from anomaly cancellation in the SM:P

fL
ρ
fμνjmf→0 ∝

P
fðY3

R þ Y3
LÞ ¼ 0 implies that Lρ

μν ¼P
fL

ρ
fμν ≃ Lρ

topμν − Lρ
topμνjmt→0 (with the sum running over

all SM fermions f). While this results in an expression for
Lρ
μν that is too lengthy to be displayed here, the tensor

RγH
Bð2Þαβ takes a very similar form as in the previous case:

RγH
Bð2Þαβ ¼ −

eg0QtðYtL þ YtRÞ
2π2

igmt

mW

mtð1Þ sin 2α
ð1Þ
t

ðs −m2
HÞ3

ðB½ðs −m2
HÞηαβ − 2k1βk2α� þ ½C2k2β − C1k1β�k1αÞ ðB8Þ
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with

B ¼ ðs −m2
HÞð½2þ ðs −m2

H þ 4m2
tð1Þ ÞC0ð0; m2

H; s; m
2
tð1Þ ; m

2
tð1Þ ; m

2
tð1Þ Þ�ðs −m2

HÞ
− 2s½B0ðs;m2

tð1Þ ; m
2
tð1Þ Þ − B0ðm2

H;m
2
tð1Þ ; m

2
tð1Þ Þ�Þ

C2 ¼ −2ðs −m2
HÞ½ðs −m2

HÞ½2þ ðsþm2
H þ 4m2

tð1Þ ÞC0ð0; m2
H; s;mtð1Þ ; mtð1Þ ; mtð1Þ Þ� þ 2ðsþ 2m2

HÞ½B0ðs;m2
tð1Þ ; m

2
tð1Þ Þ

− B0ðm2
H;m

2
tð1Þ ; m

2
tð1Þ Þ� þ 2ðs −m2

HÞ½B0ðs;m2
tð1Þ ; m

2
tð1Þ Þ − B0ð; m2

tð1Þ ; m
2
tð1Þ Þ�

C1 ¼ 4½m2
Hðs −m2

HÞ½2þ ðsþ 2m2
tð1Þ ÞC0ð0; m2

H; s; mtð1Þ ; mtð1Þ ; mtð1Þ Þ� þ 2m2
Hð2sþm2

HÞ½B0ðs;m2
tð1Þ ; m

2
tð1Þ Þ

− B0ðm2
H;m

2
tð1Þ ; m

2
tð1Þ Þ� þ ðs2 −m4

HÞ½B0ðs;m2
tð1Þ ; m

2
tð1Þ Þ − B0ð; m2

tð1Þ ; m
2
tð1Þ Þ�: ðB9Þ

For RγH

Að2Þ
3
αβ
, one simply needs to replace sin 2αð1Þt ðYtL þ

YtRÞ in Eq. (B8) with ð1=4Þ sin 4αð1Þt .

APPENDIX C: Hð2kÞ RESONANCES

Similar toHð2Þ, higher order scalar modes decay via KK-
number violating processes in minimal scenarios. However,
these decays occur with nontrivial branching ratios
because, as the KK-mode increases, more and more final
states start to become kinematically available. Therefore a
careful analysis of the effective brane vertices describing
such decays is needed. Fortunately, we can derive all of
them from the master five-dimensional vertex and from the
kinetic and mass radiative mixing terms [21]. In Feynman
gauge, the vertex reads

δLeff ¼ L3=2

�
δðx5Þ þ δðx5 − LÞ

2

�
ytffiffiffi
2

p 1

64π2
log

Λ2

μ2

×

�
fRHt̄d

1þ γ5
2

ts þ fLHt̄d
1 − γ5
2

ts þ H:c:

�
;

ðC1Þ

where x5 is the fifth space coordinate, L ¼ πR is the length
separating the orbifold fixed points and fL;R are given by

fR ¼ 8g2s −
3

2
g2 −

1

6
g02;

fL ¼ −2ytðyt þ ybÞ ≈ −2y2t :

The mixing terms, on the other hand, are given by

δL ⊃ L

�
δðx5Þ þ δðx5 − LÞ

2

�
1

64π2
log

Λ2

μ2

×

�
bs;d1 t̄s;di∂ts;d;þ;− þ bs;d2 ðt̄s;d∂⃖5ts;d;þ;−

þ t̄s;d;þ;−∂5ts;dÞ þ c1
1

2
ð∂μHÞ2 þ c2

1

2
H∂2

5H

�
; ðC2Þ

where the fields ð1� γ5Þt=2 are represented as t�, and b
s;d
1;2

and c1;2 are given by [21]

bs1 ¼
4

3
g2s þ Y2

tRg
02 þ 2y2t ; ðC3Þ

bd1 ¼
4

3
g2s þ

3

4
g2 þ Y2

tLg
02 þ y2t ; ðC4Þ

bs2 ¼ 5

�
4

3
g2s þ Y2

tRg
02
�
− 2y2t ; ðC5Þ

bd2 ¼ 5

�
4

3
g2s þ

3

4
g2 þ Y2

tLg
02
�
− y2t ; ðC6Þ

c1 ¼ −g02 − 2g2; ðC7Þ

c2 ¼
1

2
g02 þ g2 − 2λh: ðC8Þ

1. Hð4Þ decay

The computation of decay rates for Hð2kÞ in the minimal
scenario follows from similar procedures as the corre-
sponding calculation for Hð4Þ. Here we therefore compute
this decay rate as an example.
Notice that the main difference between the lifetimes of

Hð2Þ and Hð4Þ is that whereas the former decays with
branching ratio ∼1 into top quark-antiquark pairs, the latter
can decay into several states with comparable branching

ratios. Namely, Hð4Þ → t̄ð1Þs tð1Þd ðt̄ð1Þd tð1Þs Þ, t̄ð2Þs;dt
ð0Þ (t̄ð0Þtð2Þs;d) and

t̄t turn out to be the seven dominant decay channels, where

for instance the decays Hð4Þ → t̄ð1Þs;dt
ð1Þ
d;s are induced by the

effective vertex

δL ⊃
yt

64π2
log

Λ2

μ2
Hð4Þ

��
154

9
g2s þ

41

16
g2 þ 697

432
g02

−
23

4
y2t þ

8

3
λh

�
t̄ð1Þs tð1Þd þ

�
69

9
g2s −

29

16
g2 −

157

432
g02

þ 3

4
y2t

�
t̄ð1Þs γ5t

ð1Þ
d þ H:c:

�
;

which is obtained by decomposing (C1) in terms of the KK
modes and including the kinetic and mass mixing terms
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with tð3Þs;d, t
ð5Þ
s;d, H

ð0Þ and Hð2Þ. The numerical value for the

total decay rate of Hð4Þ amounts to ΓHð4Þ ¼ 3.1 GeV
when Λ ¼ 5=R.

2. Bð1ÞBð1ÞHð2kÞ effective vertices

In Sec. B 1 we exploited the fact that electroweak
symmetry breaking provides us with a tree-level
Bð1ÞBð1ÞHð2Þ coupling when obtaining the Bð1ÞBð1Þ →
γγðγZÞ annihilation rates. Such a coupling does not exist
for, say, Bð1ÞBð1ÞHð4Þ in the classical theory since it violates
KK-number symmetry. However, the same arguments from
the previous section apply here and we find couplings of
this kind at the loop-quantum level which are localized at
the fixed points of the orbifold.
To obtain these effective vertices, we shall just as

previously consider the master five-dimensional radiative
terms

δL ⊃ L

�
δðx5Þ þ δðx5 − LÞ

2

�
g02v
2

fS
64π2

log
Λ2

μ2
HBμBμ

ðC9Þ

and the kinetic and mass mixing terms

δL ⊃ L

�
δðx5Þ þ δðx5 − LÞ

2

�
1

64π2
log

Λ2

μ2

×

�
−aB1

1

4
BμνBμν−aB2

1

2
ðBμ∂2

5B
μÞ

þ c1
1

2
ð∂μHÞ2 þ c2

1

2
H∂2

5H

�
: ðC10Þ

The coefficients in the previous expression have already
been computed in Ref. [21], while the coefficient fS in (C9)

can easily be computed by isolating the divergent terms of
the Feynman diagrams in Fig. 7 and adding them up. In the
Feynman gauge the result reads

fS ¼
3

4
g02 þ 9

4
g2 þ 12λh: ðC11Þ

To check the correctness of this result, one can obtain the
corresponding effective vertices and mixing terms for the
A3 field—which must be done with care due to additional
types of Feynman diagrams (ghosts, W loops, etc)—and

verify that terms like Að0Þ
μ Zð0ÞμHð2kÞ or Að0Þ

μ Að0ÞμHð2kÞ do not
exist as required by gauge invariance (Aμ represents the
photon field).

APPENDIX D: DETAILS ON THE PHOTON
FLUX FROM DM COLLISIONS IN

SCHWARZSCHILD BHS

The derivation and solutions of photon geodesics in the
Schwarzschild metric can be found, e.g. in [128]. Here we
discuss the case relevant for the gamma ray line signature
we present in this work.
A nonrotating BH is described by the Schwarzschild

metric, which in spherical coordinates is

ds2 ¼ −
�
1 −

rS
r

�
dt2 þ

�
1 −

rS
r

�
−1
dr2

þ r2ðdθ2 þ sin2θdφ2Þ; ðD1Þ
where we have set c ¼ G ¼ 1 and rS ¼ 2MBH is the
Schwarzschild radius. The four-velocity of a massive object
is uμ ¼ dxμ=dτ ¼ ðut; ur; 0; uφÞ (when referring to the
three-component velocity of a DM particle, v denotes
the module of the velocity, while vrel and vtan denote the
radial and tangential velocities). We indicate with kμ the
photon four-velocity.
As usual, the geodesics are defined as

d2xα

dτ
þ Γα

βγ

dxβ

dτ
dxγ

dτ
¼ 0; ðD2Þ

with Γγ
αβ being the Christoffel symbols and τ the proper

time (replaced with the affine parameter λ for massless
particles).
The three-velocity components and the module of the

velocity of one DM particle, from Eqs. (D1) and (D2), are

vtot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2rS þ rSl2 − rl2

p
r

ffiffiffi
r

p ;

vrel ¼
l
r

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rS
r

r
;

v ¼
ffiffiffiffiffi
rS
r

r
: ðD3Þ

FIG. 7. Divergent Feynman diagrams participating in Eq. (C9).
Additional diagrams are obtained by charge conjugation or leg
exchange of the initial Bs. Particles running on the loops include
(correspondingly) all vector bosons and all scalars.Notice that there
are no fermion loops sinceH couples tomixed doublet and singlets.
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The vtot component, which is the velocity of the collided
DM system, shows that the maximum allowed angular
momentum for a particle falling into the BH is jlj ¼ 4;
otherwise dr=dt has a turning point before reaching the
horizon. This demonstrates Eq. (26) and is shown
in Fig. 6.
Let us consider now the photons, with both radial and

angular motion, emitted by the DM system. Since both
energy and angular momentum are conserved but γs are
massless it is useful to introduce the impact parameter
b ¼ L=E. The photon geodesics are given by

dt
dλ

¼ 1

b

�
1 −

rS
r

�
−1
;

dr
dλ

¼ � 1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

b2

B2ðrÞ

s
;

dφ
dλ

¼ 1

r2
; ðD4Þ

where B−2ðrÞ ¼ 1=r2ð1 − rS=rÞ. The three-velocity com-
ponents of the photons are

kr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

b2

B2ðrÞ

s
and kt ¼

b
B
; ðD5Þ

such that k2r þ k2t ¼ 1. Notice that only photons satisfying
the following conditions can escape from the BH and reach
far observers:

ð1Þ r < 3

2
rS; kr > 0; sin δ <

3
ffiffiffi
3

p

2
rSðBðrÞÞ−1;

ðD6Þ

ð2Þ r > 3

2
rS; kr > 0; ðD7Þ

ð3Þ r < 3

2
rS; kr < 0; sin δ >

3
ffiffiffi
3

p

2
rSðBðrÞÞ−1;

ðD8Þ

where δ≡ arccos kr ≡ arcsin kt. Since the Schwarzschild
BH can only provide a significant enhancement of CMS
energy close to r ¼ rS, only Eq. (D6) is relevant. Notice
that if the photon is emitted exactly at r ¼ rS, it has only a
radial trajectory and the escape condition does not depend
on its energy but only on the position r.
The initial conditions for the photon emitted from DM

annihilation are given by Eq. (26) and by its velocity
β ¼ vrel, equivalent to the relative velocity of the DM
system. Let us first assume an observer which is comoving
with the center-of-mass energy of the collision, hence

stationary with respect to the collided system of two
DM particles so that ut ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − rS=rÞ
p

. The photon
energy Eγ observed far away by the comoving observer is
given by the gravitational redshift:

Eγ ¼ E0
γ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rS
r

r
: ðD9Þ

We can then consider a stationary observer very far away
from the BH, that sees the center-of-mass frame moving
with velocity β, which gives the doppler shift effect added
on top of the gravitational redshift. The frequency of the
observed photon is

ω ¼ kαuα ¼ gαβuαkβ ¼ gttutkt þ grrurkr; ðD10Þ

where the gαβ are the components of the Schwarzschild
metric. Equivalently, the observed photon energy is

Eγ ¼ E0
γ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rS
r

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
1þ β

: ðD11Þ

More generally the Doppler shift can be a function of the
angle δ [defined in Eqs. (D6)–(D8)] between the emitted
photon and the velocity of the source term

Eγ ¼ E0
γ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rS
r

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
1þ vtot cos δ

: ðD12Þ

Note that the Doppler factor and the gravitational redshift
factorize.
To account for all photons that can actually escape from

the BH and reach the far observer along the line of sight on
a small angle cone, we define a mean total redshift as

R̄tot ¼
1

4π

Z
ð2πdδ sin δÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rS
r

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
1þ vtot cos δ

× Θ
�
3

ffiffiffi
3

p

2

rS
r

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rS
r

r
− sin δ

�
; ðD13Þ

where the Θ function satisfies Eq. (D6). This can be
rewritten as a function of cos δ ¼ x,

R̄tot ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rS
r

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q Z
1

xmin

dx
1

1þ vtotx

¼ 1

2vtot

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rS
r

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
log

�
1þ vtot

1þ vtotxmin

�
; ðD14Þ

where xmin is determined by the Heavyside function. The
mean redshift factor enters in the photon flux emitted by the
BH, Eq. (31), and acts as a smearing factor.
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