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ABSTRACT
In this paper, we investigate the conditions required for the 3 and 17 M⊕ solid planets in the
Kepler-10 system to have formed through collisions and mergers within an initial population
of embryos. By performing a large number of N-body simulations, we show that the total mass
of the initial population had to be significantly larger than the masses of the two planets, and
that the two planets must have built-up farther away than their present location, at a distance
of at least a few au from the central star. The planets had to grow fast enough so that they
would detach themselves from the population of remaining, less massive, cores and migrate in
to their present location. By the time the other cores migrated in, the disc’s inner edge would
have moved out so that these cores cannot be detected today. We also compute the critical core
mass beyond which a massive gaseous envelope would be accreted and show that it is larger
than 17 M⊕ if the planetesimal accretion rate on to the core is larger than 10−6 M⊕ yr−1. For
a planetesimal accretion rate between 10−6 and 10−5 M⊕ yr−1, the 17 M⊕ core would not be
expected to have accreted more than about 1 M⊕ of gas. The results presented in this paper
suggest that a planetary system like Kepler-10 may not be unusual, although it has probably
formed in a rather massive disc.

Key words: planets and satellites: atmospheres – planets and satellites: formation – planets
and satellites: individual: Kepler-10 – planet -disc interactions - planetary system.

1 IN T RO D U C T I O N

Since the detection of the first rocky extrasolar planet (Corot 7b;
Léger et al. 2009; Queloz et al. 2009), a large number of similar
objects have been observed by Kepler (Borucki et al. 2011; Batalha
et al. 2013). As most of the planets detected by Kepler have not
been confirmed by radial velocity measurements, the mass is not in
general available and we have to rely on models linking the radius
to the mass to classify the planets. Buchhave et al. (2014) and
Marcy et al. (2014) have proposed that objects with radii smaller
than ∼1.5 Earth radius (R⊕), between ∼1.5 and ∼4 R⊕ and larger
than ∼4 R⊕ are, respectively, terrestrial planets, planets with a
rocky core and a hydrogen–helium envelope, and ice or gas giants.
According to this classification, the planet Kepler-10c, with a radius
of 2.35 R⊕, is expected to have a gaseous envelope. Yet, its mass
has been determined by radial velocity measurements, and being
about 17 M⊕, it indicates that the planet has a very high density of
7 g cm−3 and is likely to be solid (Dumusque et al. 2014).

Solid mass planets are believed to be formed through a process
starting with the sedimentation and collisional growth of dust grains
in a protostellar disc, followed by solid body accretion of km-sized
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objects (Lissauer 1993; Papaloizou & Terquem 2006, and references
therein) or cm-sized pebbles (Lambrechts & Johansen 2012). The
formation of massive solid cores, which are the nucleus of gas giant
planets, is believed to occur through collisions (also called giant
impacts) between embryos.

Once the planets reach a mass on the order of a tenth of an Earth
mass, they start migrating in the disc on a time-scale comparable to
or smaller than the planet formation time-scale (Ward 1997). Recent
hydrodynamical simulations (Pierens, Cossou & Raymond 2013)
have shown the difficulty of forming very massive cores through
giant impacts of terrestrial mass planets. Because of migration, the
evolution of a population of such planets tends indeed to result
in a resonant chain rather than in a single massive core (see also
Terquem & Papaloizou 2007). Very massive cores are found only
when starting with a population of planets of at least 2–3 M⊕.
Alternatively, massive cores could form by continuous accretion
of planetesimals, but the time-scale for forming a ∼10 M⊕ core
is usually found to be longer than the migration time-scale (see
Tanigawa 2008 and references therein).

The planetary system Kepler-10, which comprises at least two
planets, harbours the first rocky planet that was discovered by
Kepler. Radial velocity measurement from Keck–HIRES, made im-
mediately after the detection by Kepler, enabled the mass of Kepler-
10b to be determined (Batalha et al. 2011). More recent observations
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Formation of the Kepler-10 planetary system 1739

from HARPS-N have improved the precision on the mass of Kepler-
10b, and have allowed the determination of the mass of Kepler-10c:
the system has a super Earth of 3.3 M⊕ at 0.017 au, and a Neptune-
mass planet of 17.2 M⊕ at 0.24 au (Dumusque et al. 2014). With
a radius of 2.35 R⊕, the Neptune–mass planet therefore has a very
high density. It is the first known solid planet with a mass above
10 M⊕ (Kepler-131b may be similar to Kepler-10c, but its mass
has not yet been determined with certainty; Marcy et al. 2014). The
fact that Kepler-10c is solid has come as a surprise, as it is com-
monly believed that the critical core mass, above which accretion
of a massive gaseous envelope occurs, is ∼10 M⊕.

In this paper, we investigate the conditions required for two plan-
ets similar to those in the Kepler-10 system to form through col-
lisions and mergers within an initial population of embryos (Sec-
tion 2). We show that the total mass of the initial population has to
be significantly larger than the masses of the two planets, and that
the two planets must have built-up farther away than their present
location, at a distance of at least a few au from the star. We then com-
pute the critical core mass at the location where the Neptune-mass
planet formed (Section 3). We find that it is larger than 17 M⊕
if the planetesimal accretion rate on to the core is larger than
10−6 M⊕ yr−1. We finally discuss our results in Section 4.

2 FO R M AT I O N O F M A S S I V E S O L I D PL A N E T S

In this section, we investigate scenarii that could result in a planetary
system like Kepler-10, comprising two solid planets of about 3 and
17 M⊕ at 0.017 and 0.24 au, respectively.

2.1 In situ formation

Let us first consider whether the planets could have formed in situ.
An embryo at 0.017 or 0.24 au from the star could in principle grow
through accretion of solid material in the form of either dust, plan-
etesimals or solid cores. However, in situ growth can only happen if
the embryo is prevented from migrating on to the central star, i.e. if
its orbit is inside the disc’s inner edge. Loss of contact with the disc
then makes it difficult for the embryo to accrete dust or planetesi-
mals migrating within the disc towards the star. The orbit of more
massive cores also migrating in could in principle cross that of the
embryo, resulting in collisions and growth. However, as we will see
in this section, incoming cores tend to be captured in mean motion
resonances rather than collide with cores already within the disc’s
inner edge. It is therefore unlikely that the planets in the Kepler-10
system have formed in situ.

We have assumed in the above discussion that the embryo would
stop migrating after entering the cavity. However, Masset et al.
(2006) have suggested that cores would be trapped at the edge of
the disc, rather than penetrating inside the cavity, due to the effect
of the corotation torque. In this context, the embryo would not lose
contact with the disc and could continue to accrete dust and/or
planetesimals migrating within the disc. However, it is not clear
that trapping of the cores would happen in the presence of MHD
turbulence, which is likely to have been present in the disc at the
location of the planets in the Kepler-10 system. Whether the disc
keeps the planet trapped or not depends strongly on the profile of the
surface density at the edge (Masset et al. 2006). Also, recent MHD
simulations indicate that planets with masses as small as ∼10 M⊕
can open up gaps in turbulent regions of discs with net vertical
magnetic flux (Zhu, Stone & Rafikov 2013). The corotation torque
acting on such planets would be much reduced, so that trapping
would not occur.

We now investigate whether the dynamical evolution of a popu-
lation of cores migrating inwards within the disc can result in the
formation of a super Earth (with a mass of a few Earth masses) and
a massive solid planet (with a mass similar to that of Neptune) at
0.017 and 0.24 au, respectively.

2.2 Numerical integration

To compute the evolution of a population of cores migrating through
a disc, we use the N-body code described in Papaloizou & Terquem
(2001) in which we have added the effect of the disc torques (see
also Terquem & Papaloizou 2007).

The equations of motion for each core are:

d2r i

dt2
= −GM�r i

|r i |3 −
N∑

j=1�=i

GMj

(
r i − rj

)
|r i − rj |3

−
N∑

j=1

GMj rj

|rj |3 + Γ i , (1)

where G is the gravitational constant and M�, Mi and r i denote
the mass of the central star, that of core i and the position vector
of core i, respectively. The third term on the right-hand side is
the acceleration of the coordinate system based on the central star
(indirect term).

Acceleration due to tidal interaction with the disc is dealt with
through the addition of extra forces as in Papaloizou & Larwood
(2000, see also Terquem & Papaloizou 2007):

Γ i = − 1

tm,i

dr i

dt
− 2

|r i |2te,i

(
dr i

dt
· r i

)
r i − 2

ti,i

(
dr i

dt
· ez

)
ez,

(2)

where ez is the unit vector perpendicular to the disc mid-plane
and tm, i, te, i and ti, i are the time-scales over which, respectively,
the angular momentum, the eccentricity and the inclination with
respect to the disc mid-plane of the orbit of core i change due to tidal
interaction with the disc. Note that the time-scale on which the semi-
major axis decreases is tm, i/2 (e.g. Teyssandier & Terquem 2014).
As here we are not interested in following the evolution of a core
after it gets close to the star, we will not include contribution from
the tides raised by the star nor from relativistic effects.

2.3 Type-I migration and collisions

The cores we consider here are small enough that they undergo type
I migration. Radiation-hydrodynamical simulations of disc/planet
interactions have shown that cores with masses between about 4
and 30 M⊕ and eccentricities below ∼0.015 undergo outward mi-
gration, due to the effect of the corotation torque (Paardekooper &
Mellema 2006; Kley, Bitsch & Klahr 2009; Bitsch & Kley 2010).
Planets more massive than about 30 M⊕ open up a gap, which re-
duces the corotation torque, so that the total torque is negative and
migration is inward. However, as mentioned above, recent MHD
simulations indicate that planets with masses significantly smaller
(by at least a factor of 3) than 30 M⊕ can open up gaps in turbulent
regions of discs with net vertical magnetic flux (Zhu et al. 2013).
Therefore, the range of planet masses for which outward migration
occurs may be much smaller than suggested by the hydrodynamical
simulations. In this context, we will assume in this paper that type
I migration is always inward. Note that our results would not be
significantly affected if cores with masses in a narrow range and
eccentricities below ∼0.015 were migrating outward.
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1740 C. Terquem

In the regime of inward type–I migration, Papaloizou & Larwood
(2000) have shown that tm, i and te, i can be written as:

tm,i = 146.0

[
1 +

(
ei

1.3H/r

)5
] [

1 −
(

ei

1.1H/r

)4
]−1

×
(

H/r

0.05

)2 M�
Md

M⊕
Mi

ai

1 au
yr, (3)

td
e,i = 0.362

[
1 + 0.25

(
ei

H/r

)3
]

×
(

H/r

0.05

)4 M�
Md

M⊕
Mi

ai

1 au
yr, (4)

and ti, i = te, i. Here ei is the eccentricity of core i, H/r is the disc
aspect ratio and Md is the disc mass contained within 5 au. The
equations above assume that the disc surface mass density varies
like r−3/2.

Collisions between cores are dealt with in the following way: if
the distance between cores i and j becomes less than Ri + Rj, where
Ri and Rj are the radii of the cores, a collision occurs and the cores
are assumed to merge. They are subsequently replaced by a single
core of mass Mi + Mj with the position and the velocity of the centre
of mass of cores i and j.

2.4 Initial set up

We start with a population of N cores on circular orbits in the disc
mid-plane spread between an inner radius Rin and an outer radius
Rout. The initial distance between a core and the star is chosen
randomly. The disc is assumed to be truncated at an inner radius
Rcav, which in some simulations will increase with time.

We assume that once a core reaches this radius Rcav it loses con-
tact with the disc and stops migrating. As indicated in Section 2.1,
it has been suggested that the cores may be trapped at the disc inner
edge rather than penetrate inside the cavity. When that happens,
if the disc inner edge then expands, the planet may stay coupled
to the disc and also move outward (Masset et al. 2006). However,
such a shepherding of the planet by the disc requires that the disc
can transfer enough angular momentum to the planet so that it can
move outward as fast as the disc radius (Lyra, Paardekooper &
Mac Low 2010). This cannot be satisfied if X-ray photoevaporation
is responsible for the expansion of the disc’s inner cavity (Owen,
Ercolano & Clarke 2011), as the surface density of gas in the vicin-
ity of the planet decreases to zero. Therefore, in the simulations
presented below, a planet reaching the disc inner radius will be as-
sumed to decouple from the disc and will stay at its location when
this radius moves out.

All the cores are supposed to have an identical mass density
ρ = 1 g cm−3. Note that this is smaller than the densities in the
Kepler-10 system, which are inferred to be 5.8 and 7.1 g cm−3 for
the 3 and 17 M⊕ planets, respectively. Therefore, the radii of the
cores in our simulations, which are given by Ri = [3Mi/(4πρ)]1/3,
are almost twice as large as they would be if we adopted those higher
values of the density. Thus, collisions between cores are favoured
in our model. This, however, does not affect our results, as we will
find that collisions are not efficient enough for the evolution of the
population of cores to result in a 17 M⊕ at 0.24 au.

In the simulations presented below, we have adopted M� = 1 M�,
Md = 10−3 M� and H/r = 0.05. For these values of the parameters,

equations (3) and (4) give tm, i � 105 yr and te, i � 4 × 102 yr,
respectively, for a 1 M⊕ planet on a circular orbit at 1 au.

We now describe the results of our simulations.

2.5 A super Earth at 0.017 au

To investigate whether the dynamical evolution of a population of
migrating cores could result in a 3 M⊕ planet at 0.017 au and a
17 M⊕ planet at 0.24 au, and nothing else, we have run a series of
simulations with a total mass of cores equal to 20 M⊕. We have
considered cores with initial masses between 1 and 3 M⊕, and N in
the range 7 to 20. In some simulations, all the cores have the same
mass, while in others, there is a mixture of different masses. The
inner edge of the disc is taken to be Rcav = 0.017 au to start with,
and is moved up to 0.24 au after a total mass of cores of a few M⊕
has reached it. The initial inner and outer radii of the population of
cores, Rin and Rout, are in the range 0.1–3 au and 1–5 au, respectively.

In Fig. 1, we plot the results of a simulation with N = 14 cores
initially spread between Rin = 1 au and Rout = 3 au in a disc with an
inner cavity below Rcav = 0.017 au. The six outermost cores have
a mass of 2 M⊕, while the eight innermost cores have a mass of
1 M⊕. Very quickly after the beginning of the simulation, a 5 M⊕
core builds up through collisions and migrates in. It reaches the
disc’s inner cavity at around t = 1.6 × 104 yr, while the other cores
are still beyond 0.5 au. After that time, the radius of the inner cavity
is moved up to 0.24 au. The other cores continue to migrate in,
and at around t = 2.5 × 104 yr, three cores with masses 4, 4 and
2 M⊕ reach the new inner cavity’s radius Rcav = 0.24 au. As two
last cores reach this radius at around t = 1.1 × 105 yr, collisions
occur, and finally two cores with masses 5 M⊕ and 10 M⊕ are left
at 0.22 and 0.18 au, respectively, in a 7:5 mean motion resonance.
After t = 1.6 × 105 yr, the disc is removed to make sure the system
is stable. The two outer planets, being in a resonance, have rather
large eccentricities, on the order of a few hundredth, whereas the
innermost planet has an eccentricity below 10−3.

In the simulation described above, the outer edge of the cavity
was assumed to move up rather quickly, on a time-scale of ∼104 yr.
However, this time-scale could be made longer by decreasing the
mass of the disc, so that migration would be slower, or by starting
the cores further away from the central star.

We have run 37 simulations with a total mass of cores of 20 M⊕,
an initial Rcav = 0.017 au and various Rin and Rout. In six of these
simulations, the eccentricity damping time-scale given by equation
(4) was increased by a factor of 2 or 5 to allow eccentricities to
reach higher values, which would promote collisions. In five of the
simulations, the initial masses of the cores were 3 or 4 M⊕, while
in all the others they were 1 or 2 M⊕.

We have obtained a single core close to Rcav = 0.017 au in seven
of these simulations. The mass of this planet was 1, 5, 5, 10, 6, 4 or
8 M⊕, with the three last cases corresponding to simulations with
increased eccentricity damping time-scale. An inner core with 1 M⊕
was obtained when one core in the initial distribution was detached
from the rest of the population and closer in than the others. In all
of the six other cases, the core that came to a halt close to 0.017 au
built up through collisions very early on in the simulations. Being
heavier than the others, it then migrated in faster and reached the
inner edge of the disc before the other cores had time to join.

In the other 30 simulations, several cores of a few Earth masses
ended up in mean motion resonances close to 0.017 au. In most
cases, the cores would grow on their way in, at the same time as
they were migrating.
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Formation of the Kepler-10 planetary system 1741

Figure 1. Evolution of the semi-major axes (in units of au and in logarithmic scale; upper plot) and of the eccentricity (lower plot) of the 14 cores in the system
versus time (in units of years). Initially, the six outermost cores have a mass of 2 M⊕, while the others have a mass of 1 M⊕. The solid lines correspond to the
different cores. A line terminates just prior to a collision. On the upper plot, the dotted lines indicate the location of the inner cavity (Rcav = 0.017 au initially,
0.24 au after 1.6 × 104 yr). The disc is removed after 1.6 × 105 yr. There are three cores left at the end of the simulation. Their masses are indicated on the
upper plot.

These simulations therefore indicate that, if a single core of a
few M⊕ at 0.017 au has grown by collisions and mergers of smaller
cores, most likely it has assembled further away. It grew and de-
tached itself from a population of other smaller cores at a distance
of at least a few au from the central star.

2.6 A massive planet at 0.24 au

We now investigate how a massive core which comes to a halt at
0.24 au could have formed.

In the seven simulations described above where a single core
ended up close to 0.017 au, the other cores would still be beyond
0.5 au when the inner core reached Rcav. We therefore subsequently
moved Rcav up to 0.24 au to investigate whether a single other
core could be obtained at this location. In none of these simu-
lations did we obtain a single other core. At least two cores in
mean motion resonances were left close to 0.24 au, as observed in
Fig. 1.

To study more generally whether a single core could grow through
collisions and mergers within a population of cores with a total
mass of 17 M⊕, we performed another 29 simulations starting with
cores with masses between 1 and 3 M⊕, N in the range 6 to 17
and Rcav = 0.24 au initially. The initial inner and outer radii of the
population of cores, Rin and Rout, were in the range 1–3 au and

2–5 au, respectively. In six of the simulations, the initial spacing
between two cores was set to be 4 or 4.5 times their mutual Hill
radius (as in Pierens et al. 2013). In all the other simulations, the
location of the cores was chosen randomly between Rin and Rout.
Migration and eccentricity damping time-scales were computed
from equations (3) and (4). In 10 cases, the simulation ended with
two cores in mean motion resonance close to the disc inner edge.
In the other cases, there were at least three cores left. None of the
simulations ended with only one core.

We then performed another 14 simulations with a larger total mass
of cores, to study whether a massive core could build-up through
collisions and migrate quickly to the inner edge before the others
had time to join. In some of the simulations, the edge of the outer
cavity was assumed to increase linearly with time so that Rcav = 1 au
after 105 yr. In two of the simulations, we obtained a rather massive
core (9 or 10 M⊕) at around 0.3 au. In Fig. 2, we plot the results of
one of these simulations. It starts with N = 14 cores spread between
2 and 4 au. Initially, the five outermost cores have a mass of 3 M⊕,
the innermost core has a mass of 1 M⊕ and the others have a mass
of 2 M⊕, so that the total mass is 32 M⊕. The edge of the inner
cavity starts at Rcav = 0.24 au and increases to 1 au after 105 yr. We
terminate the simulation after 5 × 104 yr, when there is a 9 M⊕ core
at 0.34 au, 2 cores in mean motion resonance close to 0.5 au and
still two cores between 1 and 2 au migrating in.
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1742 C. Terquem

Figure 2. Evolution of the semi-major axes (in units of au and in logarithmic scale) of the 14 cores in the system versus time (in units of years). Initially, the
five outermost cores have a mass of 3 M⊕, the innermost core has a mass of 1 M⊕ and the others have a mass of 2 M⊕. The solid lines correspond to the
different cores. A line terminates just prior to a collision. The dotted line indicates the location of the inner cavity. At the end of the simulation, there is a 9 M⊕
core at 0.34 au, two cores in mean motion resonance close to 0.5 au and still two cores between 1 and 2 au migrating in.

The simulation described above results in a core less massive than
the one detected in the Kepler-10 system at 0.24 au, and there are
two other massive cores rather near by. However, it does illustrate
that it is possible to get a massive core at a few tenths of an au
starting with a massive population of cores further away. The mass
of the core reaching the inner edge could be increased by increasing
the total mass of the population of cores. Also, if it grew further
away from the central star and detached itself from the rest of the
population, it would reach the inner edge while the other cores
would still be far away, so that at the end of the evolution no other
core would be found near by. Note that the time-scale over which the
edge of the cavity is moved is rather fast, so that we could perform
a large number of simulations, but again this time-scale could be
made longer by starting the cores further away.

Here again, we note that the core that comes to a halt at around
0.3 au has assembled very early on in the simulation, at a distance
of ∼1 au from the central star.

3 C R I T I C A L C O R E M A S S

The results presented in the previous section indicate that the planets
have formed at a distance of at least a few au from the central star
before migrating in. We therefore calculate what the critical core
mass is at this location and all the way down to 0.24 au. Because
the planets in the Kepler-10 system are very dense, they have not

accreted much gas, and therefore should not have attained the critical
core mass (see the discussion at the end of Section 3.4). In the section
below, we study the conditions which are required for the critical
core mass to be above 17 M⊕ within a distance of a few au from the
central star.

3.1 Structure of the protoplanet atmosphere

Because the critical core mass corresponds to the mass of the core
above which no atmosphere can exist at equilibrium around it, we
solve the equations describing an atmosphere at equilibrium as a
function of the core mass. The critical core mass is reached when
these equations no longer have a solution.

The equations governing the structure of the protoplanet atmo-
sphere at hydrostatic and thermal equilibrium have been presented
in Papaloizou & Terquem (1999) and we recall them below.

We assume that the protoplanet is spherically symmetric and
non-rotating. We denote � the radius in spherical coordinates in a
frame with origin at the centre of the protoplanet. The equation of
hydrostatic equilibrium is:

dP

d�
= −gρ. (5)

Here, P is the pressure, g = GM(� )/� 2 is the acceleration due
to gravity, with M(� ) being the mass interior to radius � (this
includes the core mass if � is larger than the core radius) and G
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Formation of the Kepler-10 planetary system 1743

is the gravitational constant. The mass M(� ) is related to the mass
density per unit volume ρ through:

dM

d�
= 4π� 2ρ. (6)

We use the equation of state for a hydrogen and helium mixture
given by Chabrier et al. (1992) for mass fractions of hydrogen
and helium of 0.7 and 0.28, respectively. The luminosity Lrad that
is transported by radiation through the atmosphere is related to
the temperature gradient dT/d� through the standard equation of
radiative transport:

dT

d�
= −3κρ

16σT 3

Lrad

4π� 2
, (7)

where κ is the opacity, which in general depends on both ρ and T,
and σ is the Stefan–Boltzmann constant.

The total luminosity is transported by both radiation (in the outer
parts of the atmosphere) and convection (in the inner parts). Here,
the only energy source for the atmosphere that we consider comes
from the planetesimals that are accreted by the protoplanet and
release their gravitational energy as they collide with the surface of
the core. The corresponding total core luminosity Lc is:

Lc = GMcṀc

rc
, (8)

where Mc and rc are, respectively, the mass and the radius of the
core, and Ṁc is the planetesimal accretion rate.

The radiative and adiabatic temperature gradients, ∇ rad and ∇ad,
are given by:

∇rad =
(

∂ ln T

∂ ln P

)
rad

= 3κLcP

64πσGMT 4
, (9)

and

∇ad =
(

∂ ln T

∂ ln P

)
s

, (10)

where the subscript s indicates that the derivative has to be evaluated
at constant entropy.

When ∇ rad < ∇ad, there is stability to convection and therefore all
the energy is transported by radiation, i.e. Lrad = Lc. In the regions
where ∇ rad > ∇ad, there is instability to convection and therefore
part of the energy is transported by convection, i.e. Lc = Lrad + Lconv,
where Lconv is the luminosity associated with convection. Using the
mixing length theory (Cox & Giuli 1968), we obtain:

Lconv = π� 2Cp�
2
ml

[(
∂T

∂�

)
s

−
(

∂T

∂�

)]3/2

×
√

1

2
ρg

∣∣∣∣
(

∂ρ

∂T

)
P

∣∣∣∣, (11)

where �ml = |αmlP/(dP/d� )| is the mixing length, αml being a
constant of order unity, (∂T /∂� )s = ∇adT (d ln P/d� ), and the
subscript P denotes evaluation at constant pressure. The different
thermodynamic parameters needed in the above equation are given
by Chabrier et al. (1992), and we fix αml = 1.

3.2 Boundary conditions

As we solve the above equations for the three variables P, M and T
as a function of � , we need three boundary conditions.

We take for the mass density of the core ρc = 7 g cm−3, which
is approximately the value inferred for the 17 M⊕ planet in the
Kepler-10 system (Dumusque et al. 2014).

We can then calculate the inner boundary of the atmosphere,
which is equal to the core radius rc, given by:

rc =
(

3Mc

4πρc

)1/3

. (12)

The first boundary condition is that M(rc) = Mc.
The outer boundary of the atmosphere is taken to be at the Roche

lobe radius rL of the protoplanet, which is given by:

rL = 2

3

(
Mp

3M�

)1/3

r, (13)

where Mp = Mc + Matm is the planet mass, Matm being the mass of
the atmosphere, and r is the orbital radius of the protoplanet in the
disc.

We denote the disc mid-plane temperature, pressure and mass
density at the distance r from the central star by Tm, Pm and ρm,
respectively.

At � = rL, we have M(rL) = Mp and the two boundary conditions
P = Pm and T given by:

T =
(

T 4
m + 3τLLc

16πσr2
L

)1/4

. (14)

This equation expresses the fact that the radiative flux at the surface
of the protoplanet, σT4, is the sum of the radiative flux coming
from the disc above the protoplanet, σT 4

m, and the radiative flux
coming from inside the protoplanet, 3τLLc/(16πr2

L). This latter
term takes into account the fact that the luminosity escaping from
the surface of the protoplanet, Lc, is radiated after passing through
an additional optical depth τL above the protoplanet atmosphere. In
other words, T must be larger than Tm at � = rL for the luminosity
to be radiated away from the protoplanet into the surrounding disc.
We approximate τL by:

τL = κ (ρm, Tm) ρmrL. (15)

As pointed out by Papaloizou & Terquem (1999), the structure
of the atmosphere is sensitive to the value of T at � = rL only
when a significant part of the envelope is convective. This occurs
in the hot inner parts of the disc, below ∼0.1 au. Therefore, at
the location of the 17 M⊕ in the Kepler-10 system and beyond, the
critical core mass is not sensitive to the boundary condition given by
equation (14).

3.3 Kelvin–Helmholtz time-scale

For a fixed Ṁc and at a given radius r, there is a critical core
mass Mcrit above which no solution to the above equations can
be found. As long as Mc < Mcrit, the energy lost by the envelope
through radiation is compensated for by the gravitational energy
which the planetesimals entering the atmosphere release when they
collide with the surface of the core. The atmosphere is then in
quasi-static and thermal equilibrium. However, when Mc > Mcrit,
the atmosphere can no longer be supported at equilibrium. It has
to contract gravitationally to supply part of the energy which is
radiated away. Rapid accretion of the gas in the surrounding nebula
then occurs.

How fast this accretion process is depends on how fast the enve-
lope can radiate away the energy which is produced by its gravita-
tional collapse. This is given by the Kelvin–Helmholtz time-scale,
which can be estimated as:

tKH = |ET|
Lc

, (16)
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1744 C. Terquem

where ET is the total internal and gravitational energy of the gas
in the atmosphere when the core reaches the critical mass. The
luminosity that appears in equation (16) is Lc as this is roughly the
luminosity of the core when it becomes critical.

3.4 Calculations

We compute the disc mid-plane temperature Tm, pressure Pm and
mass density ρm assuming a standard steady-state α disc model
(see Papaloizou & Terquem 1999 for the details of the computation).
Such a model is completely characterized by two parameters, which
we take to be α and the gas accretion rate Ṁgas through the disc.

For a particular disc model, at a fixed radius r in the disc, for a
given core mass Mc and planetesimal accretion rate Ṁc, we solve
equations (5), (6) and (7) with the boundary conditions described
above to get the structure of the envelope. The opacity is taken from
Bell & Lin (1994) and has contributions from dust grains, molecules,
atoms and ions. The value of Mc above which the equations have
no solution is the critical core mass Mcrit.

In Table 1, we give the values of Mcrit, Mp = Mcrit + Matm and of
the Kelvin–Helmholtz time-scale tKH for disc models with Ṁgas =
10−8 M� yr−1 and α = 10−3 or 10−2, at the radii r = 0.24 and 1 au
in the disc, and for a planetesimal accretion rate Ṁc = 10−7, 10−6

or 10−5 M⊕ yr−1. By comparing Mp and Mcrit we see that, when the
core reaches the critical mass, Mp � 1.5Mcrit (in agreement with
Bodenheimer & Pollack 1986).

Fig. 3 shows Mcrit and tKH as a function of Ṁc in the range
10−6–10−5 M⊕ yr−1 at r = 0.24 and 1 au and for disc models with
Ṁgas = 10−8 M� yr−1 and α = 10−3 or 10−2.

As was already noted by Papaloizou & Terquem (1999), Mcrit is
essentially independent of r for r larger than about 0.1 au. This is
because Mcrit depends on the boundary conditions only when a large
part of the envelope is convectively unstable, which happens only
for the highest values of Tm and Pm, i.e. in the disc’s inner parts. The
values of Mcrit beyond 1 au can therefore be taken as being roughly
the same as at 1 au.

From Table 1 and Fig. 3, we see that Ṁc has to be larger than
10−6 M⊕ yr−1 for Mcrit to be larger than 17 M⊕ beyond 0.24 au.

For such values of Ṁc, a 17 M⊕ core forming at a few au from the
star and migrating in would not be expected to accrete a massive
atmosphere of gas. However, the core could still accrete an envelope
that would stay at equilibrium at its surface. The mass of an envelope
at equilibrium on to a 17 M⊕ core depends on Ṁc. The largest value
is attained when the core is very close to being critical, and in that
situation Mp = Mcrit + Matm � 1.5Mcrit, which gives Matm = 8.5 M⊕.
From Table 1, we see that a 17 M⊕ core is close to being critical
if Ṁc = 10−6 M⊕ yr−1, and the corresponding Kelvin–Helmholtz
time-scale is tKH � 106 yr at r ≥ 0.24 au. If Ṁc = 10−5 M⊕ yr−1,
we calculate that the mass of the atmosphere at equilibrium on to
a 17 M⊕ core is much smaller, being Matm � 1 M⊕, and for such
an atmosphere tKH � 2 × 104 yr at r ≥ 0.24 au in a disc with either
α = 10−2 or α = 10−3.

Therefore, if Ṁc = 10−6 M⊕ yr−1, as the Kelvin–Helmholtz
time-scale is much longer than the migration time-scale, the core
may not have had time to accrete the 8.5 M⊕ of gas that could be
supported at equilibrium before it reached the disc’s inner cavity. In
contrast, if Ṁc = 10−5 M⊕ yr−1, the Kelvin–Helmholtz time-scale
is much shorter than the migration time-scale, so the core can ac-
crete the whole atmosphere that can be supported at equilibrium,
but that would only be about 1 M⊕. Therefore, in both cases, we
may expect an atmosphere at most on the order of an Earth mass on
top of the core.

As this atmosphere is not detected today, it has been stripped
away. Let us first show that Jean’s escape at 0.24 au from the cen-
tral star cannot account for the disappearance of the atmosphere.
The escape velocity from a core with mass Mc and radius rc is
vesc = (2 GMc/rc)1/2. With Mc = 17 M⊕ and rc given by equa-
tion (12), in which we take ρc = 7 g cm−3, we obtain vesc �
3 × 104 m s−1. As the luminosity of the star in the Kepler-10
system is similar to that of the Sun, the temperature of the planet
atmosphere due to stellar irradiation, after the disc has disappeared,
is T = [L�/(4πσ r2)]1/4, where r is the distance between the star
and the planet. As this assumes that the atmosphere behaves like
a blackbody, the derived temperature is only a crude estimate. At
r = 0.24 au, we obtain T � 574 K. This gives the thermal velocity of
a hydrogen molecule, vth = (kT/mp)1/2 � 2 × 103 m s−1, where k is

Table 1. Critical core mass and Kelvin–Helmholtz time-scale.

α r Tm Pm Ṁc Mcrit Mp tKH

(au) (K) (erg cm−3) (M⊕ yr−1) (M⊕) (M⊕) (106 yr)

10−2 0.24 1001.1 41.0 10−5 25.8 38.9 0.16
– – – – 10−6 18.4 27.4 1.3
– – – – 10−7 13.1 19.5 11.0
– 1 273.0 1.1 10−5 24.3 36.3 0.13
– – – – 10−6 16.7 24.6 0.96
– – – – 10−7 11.2 16.6 7.1

10−3 0.24 1180.8 359.8 10−5 24.6 36.2 0.14
– – – – 10−6 17.5 26.4 1.2
– – – – 10−7 12.5 18.7 9.9
– 1 480.7 8.5 10−5 23.9 35.6 0.12
– – – – 10−6 16.6 24.6 0.95
– – – – 10−7 11.4 16.5 7.3

Listed are the parameter α used in the disc models (Column 1), the orbital radius
r of the core in au (Column 2), the disc mid-plane temperature in K (Column 3)
and pressure in erg cm−3 (Column 4) at this radius, the planetesimal accretion rate
on to the core Ṁc in M⊕ yr−1 (Column 5), the critical core mass Mcrit in M⊕
(Column 6), the total mass of the planet Mp = Mcrit + Matm in M⊕ (Column 7)
and the Kelvin–Helmholtz time-scale tKH in Myr for a core with the critical mass
(Column 8).
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Formation of the Kepler-10 planetary system 1745

Figure 3. Critical core mass Mcrit in units of M⊕ (upper panels) and Kelvin–Helmholtz time-scale tKH in units of 106 yr for a core with the critical mass
(lower panels) as a function of the planetesimal accretion rate on to the core Ṁc in M⊕ yr−1 at r = 1 au (solid lines) and r = 0.24 au (dotted lines) for a disc
model with α = 10−2 (left panels) and 10−3 (right panels). The values of Mcrit beyond 1 au are roughly the same as at 1 au.

the Boltzmann constant and mp is the mass of the proton. As vth is
an order of magnitude smaller than vesc, Jean’s escape cannot have
operated for the 17 M⊕ core at 0.24 au. An alternative for stripping
away the atmosphere would be stellar wind (as has been proposed
for Mars), giant impacts or planetesimal accretion (see Schlichting,
Sari & Yalinewich 2014, and references therein) or mass loss due
to the stellar XUV flux (Rogers et al. 2011).

In the above discussion, we have assumed that the mass of the
planet had to be smaller than the critical core mass for a large quan-
tity of gas not to be accreted. In principle though, the planet could be
more massive than the critical mass if the Kelvin–Helmholtz time-
scale were longer than the migration time-scale. The planet would
then reach the disc inner edge and lose contact with the disc before
a significant amount of gas could be accreted. We now briefly show
that this actually cannot be achieved. If the planetesimal accretion
rate were Ṁc = 10−7 M⊕ yr−1, the critical core mass at 1 au would
be about 11 M⊕. The Kelvin–Helmholtz time-scale on to a core
reaching that mass being ∼7 × 106 yr, such a core would enter the
disc inner cavity without having accreted a significant amount of
gas. However, in the case of the Kepler-10 system, the core would
have to grow up to 17 M⊕ before reaching the disc inner edge. A
core of that mass embedded in a disc with Ṁc = 10−7 M⊕ yr−1 has
an atmosphere which cannot be at equilibrium, and which therefore
is detached from the Roche lobe. Papaloizou & Nelson (2005) have
computed the evolution of a core embedded in a disc and which
atmosphere is detached from the Roche lobe. They found that such
a protoplanet can accrete gas at any rate that may be supplied by the
disc without expansion. Therefore, for typical gas accretion rates,

a significant atmosphere would be accreted on to the core before it
entered the disc inner cavity.

4 SU M M A RY A N D D I S C U S S I O N

The simulations we have performed indicate that the planets in a
system like Kepler-10 have formed much further away from the
central star than the location at which they are detected today.
They cannot have assembled through collisions and mergers of a
population of low-mass cores with a total mass of 20 M⊕ migrating
in. This is because the eccentricity damping time-scale is much
shorter than the migration time-scale, so that the cores in such a
population end up in a resonant chain rather than collide which
each other until only two cores are left at 0.017 and 0.24 au.

Either (i) the planets grew all the way up by accreting planetes-
imals, or (ii) they grew through collisions among a population of
cores. In the first case, they had to gain their mass on a time-scale
shorter than the migration time-scale. In the second case, they had
to grow fast enough that they would detach themselves from the
population of remaining cores (which total mass had to be signif-
icantly larger than the mass of the two planets) and migrate in to
the disc’s inner edge faster than the other, less massive cores. By the
time the other cores migrate in significantly, the inner edge of the
disc has moved out, so that these cores are further away and cannot
be detected. In this situation, the 3 M⊕ core would have formed ear-
lier on and/or closer to the central star than the 17 M⊕, so that the
inner edge of the disc would have had time to move from 0.017 au
to 0.24 au out in between their respective arrival in the disc’s cavity.
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1746 C. Terquem

In both cases, the planets have essentially acquired their mass at
a distance of at least a few au from the central star. The physical
conditions at this location are then relevant to study the accretion
of an atmosphere on to the cores.

As pointed out in Section 2.3, we have assumed that the cores,
starting from the initial population, always migrated inward. More
specifically, to form a planetary system like Kepler-10, we need
the 3 and 17 M⊕ cores to migrate inward starting at a distance
of at least a few au. According to the radiation–hydrodynamical
simulations of disc/planet interactions (Bitsch & Kley 2010), the
17 M⊕ core would be expected to migrate outward, as its eccentricity
is damped below ∼0.015 by the interaction with the disc. Our results
therefore give support to the MHD simulations (Zhu et al. 2013)
which show that a 17 M⊕ may open up a gap in a turbulent disc
with a net vertical magnetic flux, thus reducing the contribution of
the corotation torque and enabling inward migration.

As the 17 M⊕ planet in the Kepler-10 system is very dense and
probably does not have an atmosphere (Dumusque et al. 2014),
it has not reached the critical mass. We have found that this re-
quires the planetesimal accretion rate on to the core to be larger
than 10−6 M⊕ yr−1. This value, although in the upper range, is not
unphysical and has commonly been used in studies of planet for-
mation (Tanaka & Ida 1999; Ikoma, Nakazawa & Emori 2000, and
references therein). A rather high value of the planetesimal accre-
tion rate during the planet formation phase is also consistent with
the existence of two rather massive solid planets in the Kepler-10
system, and suggests that this system has formed in a somewhat
massive disc. If a core builds up at a few au from the central star
and migrates in on a time-scale of ∼105 yr, it would accrete only
about 0.1 M⊕ of solid material on its way in if the planetesimal
accretion rate is uniform and equal to 10−6 M⊕ yr−1. As the critical
core mass does not depend much on the distance from the central
star beyond ∼0.1 au, the core would therefore remain subcritical. If
the planetesimal accretion rate were 10−5 M⊕ yr−1 instead, the core
would have built-up to about 16 M⊕ at a few au from the central
star and grown to its present mass on its way in. In that case, its
mass would be much smaller than the critical mass.

Even a subcritical core can accrete a gaseous envelope, which
stays at quasi-equilibrium around it. We have found that, for a
planetesimal accretion rate between 10−6 and 10−5 M⊕ yr−1, the
core would have accreted an envelope of at most ∼1 M⊕. This
envelope must have been stripped away as it is probably not present
today.

The results presented in this paper indicate that a planetary system
like Kepler-10 may not be unusual, although it has probably formed
in a rather massive disc. It is interesting to note that the observations
of both gas giant planets and massive solid planets are consistent
with the initial disc mass being a key parameter in determining
the final outcome of planetary systems. Massive discs favour the
formation of massive planets which migrate in fast and end up on
short orbits (as seen in the simulations by Thommes, Matsumura &

Rasio 2008). However, gas giant planets may not necessarily form
in those discs if the planetesimal accretion rate is high enough that
even rather massive cores remain subcritical.
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Léger A. et al., 2009, A&A, 506, 287
Lissauer J. J., 1993, ARA&A, 31, 129
Lyra W., Paardekooper S.-J., Mac Low M.-M., 2010, ApJ, 715, 68
Marcy G. M. et al., 2014, preprint (arXiv:1404.2960)
Masset F. S., Morbidelli A., Crida A., Ferreira J., 2006, ApJ, 642, 478
Owen J. E., Ercolano B., Clarke C. J., 2011, MNRAS, 412, 13
Paardekooper S.-J., Mellema G., 2006, A&A, 459, L17
Papaloizou J. C. B., Larwood J. D., 2000, MNRAS, 315, 823
Papaloizou J. C. B., Nelson R. P., 2005, A&A, 433, 247
Papaloizou J. C. B., Terquem C., 1999, ApJ, 521, 823
Papaloizou J. C. B., Terquem C., 2001, MNRAS, 325, 221
Papaloizou J. C. B., Terquem C., 2006, Rep. Progress Phys., 69, 119
Pierens A., Cossou C., Raymond S. N., 2013, A&A, 558, 14
Queloz D. et al., 2009, A&A, 506, 303
Rogers L. A., Bodenheimer P., Lissauer J. J., Seager S., 2011, ApJ, 738, 59
Schlichting H., Sari R., Yalinewich A., 2014, preprint (arXiv:1406.6435)
Tanaka H., Ida S., 1999, Icarus, 139, 350
Tanigawa T., 2008, P&SS, 56, 1758
Terquem C., Papaloizou J. C. B., 2007, ApJ, 654, 1110
Teyssandier J., Terquem C., 2014, MNRAS, 443, 568
Thommes E. W., Matsumura S., Rasio F. A., 2008, Science, 321, 814
Ward W. R., 1997, ApJ, 482, 211
Zhu Z., Stone J. M., Rafikov R. R., 2013, ApJ, 768, 143

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 444, 1738–1746 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/444/2/1738/1750307 by C
N

R
S - ISTO

 user on 25 April 2022

http://arxiv.org/abs/1404.2960
http://arxiv.org/abs/1406.6435

