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ABSTRACT
We model the apparent clustering anisotropy of luminous red galaxies (LRGs) in the Sloan
Digital Sky Survey using subhaloes identified in cosmological N-body simulations. We first
conduct a Markov chain Monte Carlo analysis on the parameters characterizing subhaloes
hosting LRGs assuming a specific � cold dark matter cosmology on which we run the
simulations. We show that simple models with central and satellite subhaloes can explain
the observed multipole moments of the power spectrum up to hexadecapole on large scales
(k � 0.3 h Mpc−1). A satellite fraction of 20–30 per cent is favoured weakly depending on
the detail of the model. The fraction is shown to be robust when we adopt a more refined
model based on the halo occupation number from the literature. We then vary cosmological
parameters controlling the anisotropy in redshift space effectively by deforming the simulation
box (the Alcock–Paczynski effect) and changing the amplitude of the velocities (the redshift-
space distortions). We demonstrate that we can constrain the geometry of the Universe, the
structure growth rate and the parameters characterizing LRGs simultaneously. This is a step
towards cosmological analysis with realistic bias description beyond empirical bias functions
with nuisance parameters.

Key words: methods: numerical – cosmology: theory – large-scale structure of Universe.

1 IN T RO D U C T I O N

Understanding the nature of a population of galaxies is the key to
derive unbiased cosmological constraints using their spatial cluster-
ing pattern. This issue of galaxy bias is one of the biggest obstacles
in the modern cosmology (Kaiser 1984). In other words, selecting
a controlled sample of galaxies whose environmental properties are
well understood is an appropriate way for this purpose. Luminous
red galaxies (LRGs) collected by the Sloan Digital Sky Survey
(SDSS; York et al. 2000) are believed to be such a galaxy sample
(Eisenstein et al. 2001): a population mostly composed of central
galaxies associated with massive haloes. This understanding can be
inferred from a number of observational facts such as a low number
density, a large fraction of single-LRG systems (Reid & Spergel
2009) and a high bias factor at large scale relative to the clustering
amplitude of the underlying matter distribution (Eisenstein et al.
2005). All these observed features make them useful for cosmo-
logical applications, and indeed a lot of important cosmological
implications have been derived using this sample including the first
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clear detection of baryon acoustic oscillations (BAOs) by Eisenstein
et al. (2005).

One of the most popular analytical approaches to model the
clustering of galaxies is so-called the halo occupation distribution
(HOD) approach based on the halo model (e.g. Ma & Fry 2000;
Peacock & Smith 2000; Seljak 2000; Scoccimarro et al. 2001;
Berlind & Weinberg 2002). One assumes that all the observed
galaxies live in haloes, and one can calculate the clustering proper-
ties once the probability of having N galaxies in a halo with mass
Mhost is given. One usually assumes a simple functional form for
the (mean) halo occupation number as a function of the halo mass,
and determines the model parameters by fitting to some observed
properties. In particular, the HOD parameters have been investi-
gated for LRGs based on the spatial clustering on relatively small
scales (Kulkarni et al. 2007; White et al. 2007; Blake, Collister &
Lahav 2008; Wake et al. 2008; Padmanabhan et al. 2009; Zheng
et al. 2009), galaxy–galaxy lensing (Mandelbaum et al. 2006; Hik-
age et al. 2013) or a direct measurement of the number distribution
of LRGs forming groups (Ho et al. 2009; Reid & Spergel 2009).
LRGs may also be able to be modelled with simulated subhaloes
employing abundance matching schemes (e.g. Conroy, Wechsler &
Kravtsov 2006; Masaki et al. 2013).
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On another front, there have been a lot of attempts to model the
statistics of galaxy spatial clustering at the scale of BAOs based
on perturbation theory (PT; see Bernardeau et al. 2002 for a thor-
ough review of the standard PT and also Jeong & Komatsu 2006;
Eisenstein, Seo & White 2007; Nishimichi et al. 2007; Jeong &
Komatsu 2009; Padmanabhan & White 2009; Sherwin & Zaldar-
riaga 2012; McCullagh et al. 2013 for its application to BAOs)
beyond linear theory in the light of ongoing/near future galaxy
redshift surveys. Since these survey projects aim at a precise de-
termination of cosmological distances, the required accuracy in the
theoretical modelling is highly demanding. In such a situation, a
number of ‘renormalized’ PT techniques have been developed to
have a better convergence of perturbative series expansions on sta-
tistical quantities at the scale of interest (Crocce & Scoccimarro
2006a,b, 2008; McDonald 2007; Matarrese & Pietroni 2007, 2008;
Valageas 2007; Bernardeau, Crocce & Scoccimarro 2008; Mat-
subara 2008a,b; Pietroni 2008; Taruya & Hiramatsu 2008; Hira-
matsu & Taruya 2009; Anselmi, Matarrese & Pietroni 2011; Oka-
mura, Taruya & Matsubara 2011; Sugiyama & Futamase 2012a,b;
Bernardeau, Van de Rijt & Vernizzi 2013; Sugiyama & Spergel
2013; Valageas, Nishimichi & Taruya 2013). It is also worth men-
tioning the importance of cosmological N-body simulations in de-
veloping these analytical models. Since all the perturbative schemes
involve some approximation, ansatz or truncation, and moreover,
there are fundamental limitations of perturbative approaches such as
the breakdown of the single-stream approximation after shell cross-
ing (Valageas 2011, 2013), one has to confirm the validity of one’s
scheme and determine with care the applicable range in wavenum-
ber and redshift by testing with fully non-linear predictions based on
simulations (Crocce & Scoccimarro 2008; Carlson, White & Pad-
manabhan 2009; Nishimichi et al. 2009; Taruya et al. 2009; Sato
& Matsubara 2011; Valageas & Nishimichi 2011). Recently, some
codes to evaluate the non-linear power spectrum of the cosmic den-
sity field very rapidly based on new perturbative approaches have
been made publicly available (Crocce, Scoccimarro & Bernardeau
2012; Taruya et al. 2012). These tools are practically useful
in confronting the analytical predictions with observational data.

Despite all the recent progress, galaxy bias is still difficult to
implement into these new techniques in a consistent manner with-
out losing the non-perturbative properties in those theories (some
recent attempts along this line can be found in e.g. McDonald 2006;
Matsubara 2008b; Nishizawa, Takada & Nishimichi 2013). Also,
the effect of one-halo term (or, equivalently, satellite galaxies) could
be significant on the power spectrum especially in redshift space
as recently suggested by Hikage & Yamamoto (2013), which is be-
yond the scope of PT calculations. Thus it is not straightforward to
analyse galaxy clustering with renormalized PT techniques and ex-
tract cosmological information robustly, even if the environmental
properties of the observed galaxy sample, such as those of LRGs
mentioned above, are very well understood.

The purpose of this study is to see whether the current state-of-
the-art N-body simulations can explain the clustering of galaxies
(LRGs, more specifically) in redshift space on large scales where
most of the cosmological information exists. Also, we explore the
possibility of extracting cosmological information by confronting
simulations with observation instead of using an analytical model.
Studies along this line are not straightforward for various reasons.
One is from the fact that we simulate one realization of the cos-
mological random field in finite volume drawn from an assumed
cosmological model while we observes another realization under
the correct cosmology. Another is the high computational cost to
cover the multidimensional cosmological parameter space with sim-

ulations. Since this parameter space has typically as many as six
dimensions in the standard � cold dark matter (�CDM) model (and
even more when one wishes to test some non-standard models), this
is not realistic with high-resolution simulations with sufficient vol-
ume. Studies on the rescaling of the simulation outputs to different
cosmological models can be found in e.g. Tormen & Bertschinger
(1996), Cole (1997), Angulo & White (2010), Mead & Peacock
(2013), and its applications to extract cosmological information or
to infer the cosmological model dependence from galaxy properties
are performed in Simha & Cole (2013) and Guo et al. (2013).

We partly overcome these difficulties in this study by employing
the following methodology. First, by taking an ensemble average
over different random realizations of simulations whose total vol-
ume is much larger than the observed volume, we obtain a well
converged prediction that can directly be compared with observa-
tion as one does with analytical models. We next introduce three
parameters, which affect the apparent anisotropy of the clustering
and are closely related to some cosmological parameters, and float
them to see their impact on the power spectrum without re-running
new simulations starting from new initial conditions.

Our new parameters are responsible for the growth rate of the cos-
mic perturbations, the Hubble parameter and the angular diameter
distance at the effective redshift of the observed galaxies. The first
one can be observed through the redshift-space distortions (RSDs)
caused by peculiar velocities of galaxies (Kaiser 1987). Our first pa-
rameter, that scales the amplitude of velocities in simulation outputs,
amplifies or suppresses the magnitude of RSDs. Since the signifi-
cance of the anisotropy induced by RSDs is a good indicator of the
growth rate of the cosmic structure, fσ 8, where f ≡ d ln D+/d ln a
with D+ being the linear growth factor, we can test the underlying
gravity theory by measuring it (e.g. Percival et al. 2004; Guzzo et al.
2008; Linder 2008; Yamamoto, Sato & Hütsi 2008; Song & Perci-
val 2009; Blake et al. 2011a; Beutler et al. 2012; Reid et al. 2012;
Samushia et al. 2013). The other two parameters deform the simu-
lation box and induce apparent anisotropy to the clustering of the
mock galaxies. By doing this, we simulate the Alcock–Paczynski
(AP) effect (Alcock & Paczynski 1979), which should be there
in the observed clustering if the cosmological model assumed in
the conversion of redshifts to the three-dimensional positions has a
mismatch with the true one. One can determine the Hubble param-
eter, H, and the angular diameter distance, DA, through this effect
combined with the characteristic scale of BAOs (e.g. Ballinger,
Peacock & Heavens 1996; Matsubara & Suto 1996; Hu & Haiman
2003; Okumura et al. 2008; Padmanabhan & White 2008; Shoji,
Jeong & Komatsu 2009; Blake et al. 2011b, 2012; Taruya, Saito &
Nishimichi 2011; Chuang & Wang 2012, 2013a,b; Reid et al. 2012;
Kazin et al. 2013; Sánchez et al. 2013; Xu et al. 2013; Anderson
et al. 2014). Although more involved approaches such as one in An-
gulo & White (2010) may rescale the simulations more accurately,
our simple method is computationally very easy to implement and
can be safely applied as far as one focuses on the anisotropy of the
clustering.

An important question that we would like to ask here is whether
we can distinguish these distortions with uncertainties in the mod-
elling of galaxies, in particular velocities of galaxies. Adopting
different prescriptions for the LRG–subhalo connection, we show
how much the resultant cosmological constraints are affected. In the
accompanying paper (Oka et al. 2014), we present a similar analysis
using the same observed data set but with an analytical model for the
non-linear galaxy power spectrum in redshift space. In the model,
the galaxy bias and the Fingers of God suppression of the power
spectrum (Jackson 1972) are modelled by rather simple functional
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forms with free parameters without much physical justification at
the quantitative level. On the other hand, we expect that our model
based on simulated subhaloes physically describes these effects in
a fully non-linear manner as long as the gravitational interaction
is concerned. Given these differences, it would also be interesting
to discuss the consistency between the cosmological parameters
derived with two fundamentally different prescriptions for LRGs.

This paper is organized as follows. We first briefly explain the
observed power spectrum in Section 2. We then discuss our methods
to model LRGs using simulated subhaloes in Section 3. Our main
results are presented in Section 4. We compare our cosmological
constraints with those in Oka et al. (2014) to check the consistency
of the two analyses in that section. A comparison with a model based
on the observed HOD is also discussed. We summarize the findings
of this study and add some discussion on the possible future gen-
eralization of our method towards a fully consistent cosmological
parameter estimation in Section 5.

2 DATA

In this section, we briefly explain the galaxy sample analysed in
this study and the measurement of the power spectrum done in
Yamamoto et al. (2010). The LRGs used in the measurement is
drawn from the SDSS Data Release 7 (Abazajian et al. 2009).
100 157 LRGs with spectra in the redshift range of 0.16 < z < 0.47
are selected from the Northern Galactic Cap covering ∼7150 deg2.
The anisotropic power spectrum is expanded into multipole mo-
ments:

P (k, μk) =
∑

�=even

P�(μk)P�(k), (1)

where μk is the directional cosine of the wave vector with respect to
the line of sight and P�(μk) denotes the Legendre polynomial. The
multipole moments of the power spectrum, P�(k), are measured with
the procedure developed in Yamamoto et al. (2006) at the effective
redshift of z = 0.3. We analyse the moments up to hexadecapole
(� = 4) on large scales (k ≤ 0.305 h Mpc−1). The estimation of
the statistical error on the measured spectrum is also described in
Yamamoto et al. (2006), in which they employ a method based on
Feldman, Kaiser & Peacock (1994) assuming Gaussianity of the
density field. Although different multipole moments have non-zero
cross-covariance even when the underlying density field obeys the
Gaussian statistics, we ignore it in this study for simplicity. At
leading order, this contribution is proportional to β = f/b, where
b is the linear bias factor, and is less important for highly biased
tracers (Taruya et al. 2011). Since the LRGs used in this analysis
have bias as large as ∼2, ignoring the cross-covariance would not
affect the final result significantly.

Although we basically analyse the power spectrum measured
from the same data set as in our accompanying paper, Oka et al.
(2014), we employ a different assumption in the underlying cos-
mology when redshifts of galaxies are converted to distances. In
this study, we adopt a flat �CDM cosmology with �m = 0.28 and
h = 0.7 that is exactly the same as in Yamamoto et al. (2010), while
Oka et al. (2014) re-measure the power spectrum with �m = 0.32
and h = 0.67 motivated by the recent Planck result (Planck Col-
laboration XVI 2013). Since the cosmological model used in the
simulations is closer to the former, we simply adopt the original
measurement by Yamamoto et al. (2010). See Table 1 for cosmo-
logical models discussed in this study. In Section 4, we discuss
the consistency between the derived cosmological parameters and
those assumed here (and in the N-body simulations) and propose a

possible iterative scheme to perform a fully consistent cosmological
analysis in Section 5.

3 MO D E L L I N G L R G s W I T H S I M U L AT I O N S

Here we describe our model of mock LRGs constructed from cos-
mological N-body simulations. After showing the detail of the sim-
ulations and subhaloes in Section 3.1, we explain how we connect
them and mock LRGs in Section 3.2. We then summarize the method
to measure the model power spectrum and to fit to the observed data
in Section 3.3. Our method to simulate the cosmological dependence
of the apparent anisotropy is described in Section 3.4.

3.1 Simulations and subhalo identification

The cosmological N-body simulations used in this study are per-
formed in Nishimichi & Taruya (2011). Employing 12803 col-
lisionless particles in periodic cubes with the side length of
1144.72 h−1 Mpc, we simulate the gravitational growth of structure
with a publicly available tree-PM code, GADGET2 (Springel 2005).
The initial conditions are set by a code developed in Nishimichi et al.
(2009) and parallelized in Valageas & Nishimichi (2011) based
on the second-order Lagrangian perturbation theory (2LPT; e.g.
Scoccimarro 1998; Crocce, Pueblas & Scoccimarro 2006). We
assume a flat �CDM universe with the parameters derived by
the 5-year observation by Wilkinson Microwave Anisotropy Probe
(WMAP) satellite (Komatsu et al. 2009; WMAP5+BAO+SNALL
in the reference, and see also Table 1) to compute the linear power
spectrum using CAMB (Lewis, Challinor & Lasenby 2000). 15 inde-
pendent random realizations are simulated and snapshots at z = 0.35
are stored.

Unfortunately, the spatial distribution of dark matter particles are
available only for 11 realizations out of 15 due to a problem in our
hard disc. Using the remaining 11 realizations, we identify sub-
haloes using an independent implementation of SUBFIND algorithm
(Springel et al. 2001). In the code, we first find friends-of-friends
(FoF; e.g. Davis et al. 1985) groups and then search for gravita-
tionally bound particles inside each FoF group. In this paper, we
conventionally refer to the most massive subhalo in a FoF group as
a central, while the rest of the subhaloes are called as satellites. We
keep all the subhaloes with mass larger than 5.5 × 1011 h−1 M�
(10 N-body particles) hosted by haloes larger than 1.8 ×
1012 h−1 M�. These subhaloes are used to reproduce the anisotropic
clustering of observed LRGs in what follows.

3.2 Connecting subhaloes to LRGs

Parameters describing the properties of galaxies such as the HOD
are often discussed using clustering measures on relatively small
scales or one-point statistics. They are discussed usually based on
a specific cosmological model. On the other hand, the large-scale
clustering, often aiming at extraction of cosmological information,
is expected to be insensitive to the detail of the nature of galaxies.
For example, a scale-independent linear bias model might be fine,
though not fully validated, at the large-scale limit. Since we here
discuss the clustering in linear to weakly non-linear regime, we
wish to avoid introducing many parameters and/or employing a
specific functional form for bias such as those for the HOD. The
determination of the detailed model parameters must be difficult
unless we extend the analysis to sufficiently smaller scales. We
employ rather simple models based on LRG–(sub)halo connection
and discuss the validity with the goodness-of-the-fit to the observed
data.
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Table 1. Summary of the cosmological parameters of flat �CDM model. The first row shows the model assumed
for the distance–redshift relation in the measurement of the power spectrum. The parameters in the second row are
adopted in the N-body simulations. The third to the sixth rows are the maximum likelihood parameters from CMB
observations without combining with other experiments, and they are plotted in Figs 11 and 13 to see the consistency
with our analysis.

�m h σ 8 ra
s Hb Dc

A f σd
8 Reference

Dist.–z rel. 0.28 0.7 – – 80.88 922.81 – Yamamoto et al. (2010)
Sim. 0.279 0.701 0.817 104.02 80.88 921.69 0.462 Nishimichi & Taruya (2011)
WMAP5 0.249 0.725 0.787 108.74 82.57 897.51 0.420 Komatsu et al. (2009)
WMAP7 0.271 0.703 0.801 105.08 80.88 920.91 0.448 Komatsu et al. (2011)
WMAP9 0.282 0.697 0.820 103.46 80.59 926.46 0.461 Hinshaw et al. (2013)
Planck 0.318 0.671 0.834 98.87 78.84 954.68 0.489 Planck Collaboration XVI (2013)

aThe sound horizon scale at the baryon drag epoch in h−1 Mpc.
bThe Hubble parameter in km s−1 Mpc−1 evaluated at z = 0.3.
cThe angular diameter distance in Mpc at z = 0.3.
dThe growth rate parameter, f, multiplied by σ 8. The value is computed at the redshift of the simulation output,
z = 0.35, for the model adopted in the simulations (second row), while this parameter is evaluated at z = 0.3, the
effective redshift of the survey, for the other models.

In this study, we examine several different descriptions of mock
LRGs using subhaloes identified above. In each of the five models
below, we have two options: the model ‘a’ assigns the centre-of-
mass position and velocity of a subhalo to a mock LRG, while in the
model ‘b’ we regard the most bound N-body particle in a subhalo
as a mock LRG. While the mock LRGs in these two models have
almost the same position, the velocity can significantly be different.
The modelling of velocities of mock LRGs is crucially important in
analysing the anisotropic clustering because it directly affects the
signal of RSDs, and the two models investigated here serve as the
two extreme cases; the motion of LRGs perfectly coincides with
that of their host subhaloes in model ‘a’, while the model ‘b’ takes
account of the relative motion of mock LRGs with respect to their
hosts. Naively, we expect that the velocity of a LRG aligns to that of
the host subhalo. However, assigning the centre-of-mass velocities
to mock LRGs (i.e. model ‘a’) is already a big assumption. We
thus supplementally infer the results of model ‘b’ to see the impact
of an unexpected velocity component, if exists, especially on the
cosmological constraints. In what follows we employ notations such
as ‘Model 3b’ to label the total of 10 models.

The five models we test in this study are as follows.
Model 1: centrals only. The first model assumes one-to-one cor-
respondence between a mock LRG and a FoF group in the simu-
lations. Mock LRGs populate only in the most massive subhaloes
(i.e. centrals) in the host FoF groups in this model. The only model
parameter is the minimum host halo mass, Mhost, min. This model is
motivated by the observational fact that about 95 per cent of LRGs
do not have close companions (Reid & Spergel 2009). Though this
model might be too naive, it is still interesting to see how well we
can reproduce the observed anisotropy of LRGs with the central
population alone.
Model 2: centrals + satellites. A natural extension of Model 1
is to add satellites on top of centrals. In addition to the param-
eter Mhost, min in Model 1, this model has the second parameter,
Msub, min, the minimum mass of subhaloes needed to host mock
LRGs. The former mainly controls the environment of mock LRGs
and thus the strength of bias, while the latter effectively determines
the fraction of satellites. Model 2 is the baseline model in this
study.

Model 3: different criteria for centrals and satellites (minimum
mass). The next model we consider treats centrals and satellites
differently. Since we expect that these two species of subhaloes
have different velocity structure, we expect that the fraction of
satellites might be important to explain the observed anisotropic
power spectrum in redshift space. In order to test the robustness of
the satellite fraction derived with Model 2, we introduce different
minimum subhalo masses for the two species: Mcen, min for centrals
and Msat, min for satellites. This model has three parameters in total
(Mhost, min, Mcen, min and Msat, min).
Model 4: different criteria for centrals or satellites (random sam-
pling). As in Model 3, the fourth model also assigns mock LRGs
to centrals and satellites in a different manner. This time, we assign
mock LRGs only to subhaloes randomly chosen out of those that
satisfy the condition set by Mhost, min and Msub, min. Although we
can in principle conduct a random sampling to both of centrals and
satellites with different probabilities, we do so only either popula-
tion at one time and keep all the subhaloes of the other population to
reduce the shot noise. This is because the resultant power spectrum
should be unchanged when we conduct a random sampling equally
to centrals and satellites, and the only effect is an amplified shot
noise, because this operation is a Poisson sampling. After some
tests, we find that we cannot find a better fit when we randomly
discard satellite subhaloes while assigning mock LRGs to all the
centrals. We thus conduct random sampling only to the central pop-
ulation. The probability of a central subhalo to host a mock LRG,
pcen, is the third parameter of this model.
Model 5: centrals + satellites, cosmology varied. Finally, we fit
the observed power spectrum varying the cosmological parameters.
We adopt a model similar to the baseline model, Model 2. In ad-
dition to the two parameters in Model 2, we simultaneously vary
three parameters that will be introduced shortly in Section 3.4. We
investigate with this model the robustness of the result obtained
with Model 2 for the parameters that characterize the properties
of LRGs. At the same time, we discuss the prospects to simulta-
neously determine the cosmological parameters together with the
model parameters in Model 2, and the possible systematic bias in
the derived cosmological parameters when we misunderstand the
nature of galaxies.
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3.3 Determining the model parameters with the Markov chain
Monte Carlo method

For a given mock LRG catalogue specified with the model param-
eters described above, we measure the multipole moments of the
power spectrum, evaluate the goodness of fit to the observed data
and finally put constraints on the parameters as described in this
section.

We first explain the measurement of the multiple moments of the
power spectrum. We adopt the distant observer approximation and
displace the mock LRGs as

s = x − f uzẑ, (2)

where x and s, respectively, denote the position of a mock LRG
in real and redshift space, uz = −vz/(aHf) is the z component of
the normalized velocity and ẑ is the unit vector along the line of
sight. We then construct a density field in redshift space on a regular
lattice with 10243 grid points using the nearest grid point (NGP)
interpolation scheme (Hockney & Eastwood 1981). We have 11
density fields, δ(n), from 11 random realizations given the model
parameters, where n = 1, . . . , 11. After applying the fast Fourier
transformation (FFT) to δ(n), we correct for the window effect aris-
ing from the NGP interpolation by dividing δ

(n)
k by an appropriate

window kernel (e.g. Jing 2005). We record the square of the density
contrast multiplied by an appropriate weight

P̂
(n)
� (k) ≡ 2� + 1

2
P�(μk)

∣∣∣δ(n)
k

∣∣∣2
(3)

for � = 0, 2 and 4. Note that we subtract the shot noise contribution,
the inverse of the number density of the mock LRGs, from the
monopole moment. We store all the modes up to k < 0.31 h Mpc−1,
and the total number of available modes from the 11 realizations
is about (3.77 × 105) × 11 � 4.15 × 106 in Models 1, 2, 3 and 4
where we do not consider the AP distortion, and it changes with the
model parameters in Model 5.

Once a set of P̂� is measured, we compare it with the observed
multipole moments. We fit P̂� with the cubic B-spline function (note
that this procedure is not an interpolation but a fit) to have smooth
predictions of the multipole moments of the power spectrum and
evaluate them at the exact wavenumbers where observational data
are available. The breakpoints to construct the B-spline function are
chosen so as not to smooth the multipoles too much to erase the
feature of BAOs (see Appendix A). This procedure greatly reduces
the artificial effect arising from the discrete sampling of modes in
Fourier space along the μk direction, which adds a significant noisy
pattern depending on the box size of the simulation especially to
the higher multipoles (i.e., � = 2 and 4; see Nishimichi & Taruya
2011; Taruya et al. 2012). See Appendix A for more detail.

After the multipole moments of the power spectrum are obtained,
we evaluate the goodness of fit defined as

χ2 ≡
∑

�=0,2,4

∑
k<kmax

[
P�,mock(k) − P�,obs(k)


P�,obs(k)

]2

, (4)

where P�, mock and P�, obs, respectively, denote the simulated and
observed power spectra, and 
P�, obs is the statistical error (i.e. the
standard deviation) on the observed spectrum. We simply neglect
the statistical error on the model power spectrum because it is small
(typically 10 per cent of 
P�, obs; see Appendix A).

We search for the parameter set that gives the smallest χ2 em-
ploying a Markov chain Monte Carlo (MCMC) method. Since we
have to perform the FFT to the 11 density fields and subsequently
the B-spline fitting to a lot of data points (∼O(106)) at each chain

of the MCMC, the computational cost is quite expensive. It takes
about 1 min with a processor (16 cores) in the Cray XC30 cluster
to evaluate the power spectrum for a given model parameter, and
we need up to 100 000 chains to have a converged result depend-
ing on the model. We can do this analysis in about 1 week using
10 processors parallelly.

3.4 Simulating the redshift-space distortions

If one wishes to constrain cosmological parameters, one may need
to prepare theoretical predictions for the whole parameter space of
interest. This is computationally unfeasible with N-body simula-
tions and, as a matter of fact, we have a converged prediction of
the power spectrum only for one cosmological model. However, we
can still simulate the anisotropy of the clustering expected for dif-
ferent cosmologies using that simulation data set for one particular
cosmological model.

We start with the positions and velocities of mock LRGs given a
set of model parameters described in Section 3.2. We then introduce
one parameter that controls the amplitude of RSDs. We denote it by
αv, and we map the positions of mock LRGs from real to redshift
space as

s = x − αv f uzẑ, (5)

instead of equation (2). The distribution of mock LRGs is still given
in a cube up to here. We then deform this periodic cube according to
two parameters, α‖ and α⊥. Namely, we stretch the simulation box
by a factor of α‖ (α⊥) along the line-of-sight (plane-of-sky) direction
under the distant observer approximation. We then measure the
multipoles of the power spectrum with the same procedure as before,
but from 11 rectangular cuboids instead of 11 cubes.

The parameter αv carries information about the growth rate as
explained in what follows. Adopting a theoretical template based
on general relativity (GR), one usually treats the parameter combi-
nation f (z)σ 8(z) as an independent free parameter that may differ
from the value for GR. This combination controls the amplitude
of the linear velocity field, and can be wavenumber dependent in
some modified gravity scenarios such as the f (R) gravity (Hu &
Sawicki 2007; Starobinsky 2007). In practice, a constant fσ 8 is
more tractable and thus usually adopted in the literature. What we
do with the parameter αv is the non-linear analogy of this proce-
dure. By selecting a value of αv different from unity, we change
the non-linear velocity field from what is expected for GR. On suf-
ficiently large scales where non-linear contamination is negligible,
this parameter can be identified with the following combination:

αv = (f σ8)(z = 0.3)

(f σ8)fid(z = 0.35)
. (6)

Note that we take into account in the above a small difference of the
redshift between the survey (z = 0.3) and the simulation (z = 0.35).
Here and hereafter, variables with a subscript ‘fid’ refer to those
assumed in the simulations or used in the redshift–distance relation
when the power spectrum is measured.

The AP distortion induced to the simulations with our procedure
is based on the mapping of wave vectors under the distant observer
approximation (Ballinger et al. 1996; Matsubara & Suto 1996):

Pobs(k) = [α‖α2
⊥]Ptrue(q),

q‖ = α‖k‖, q⊥ = α⊥k⊥, (7)

where q is the wave vector in the unknown true coordinate system
with q‖ and q⊥, respectively, being its components parallel and
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Table 2. 10 best-fitting models and their goodness of fit. Masses are given in unit of 1013 h−1 M�, while the number density ng is in 10−4 h3 Mpc−3. The
first column shows the name of the model. The best-fitting model parameters are shown in the second to the sixth column. The mean number density ng, the
fraction of satellite LRGs fsat and the fraction f ∗

sat when a different definition of satellites are adopted (see text) are listed in the seventh to the eleventh column.
We finally show the chi-squared statistics and the figure number in which the multipoles are shown.

Model Mhost, min Msub, min Msat, min Mcen, min pcen ng fsat ±(1σ ) ±(2σ ) f ∗
sat χ2

0,min χ2
2,min χ2

4,min χ2
red P�(k)

1a 2.50 – – – – 1.28 0 0 109.2 916.8 27.1 11.8 Fig. 1

1b 2.70 – – – – 1.16 0 0 119.0 656.5 34.6 9.10

2a 1.29 0.211 – – – 4.07 0.300 +0.017
−0.012

+0.032
−0.024 0.098 48.0 28.4 27.8 1.18 Fig. 2

2b 1.45 0.299 – – – 3.30 0.248 +0.015
−0.010

+0.029
−0.024 0.093 31.2 28.7 30.7 1.03

3a 1.29 – 0.216 1.27 – 3.76 0.316 +0.009
−0.019

+0.023
−0.033 0.099 39.9 28.6 26.3 1.09 Fig. 4

3b 1.47 – 0.316 1.46 – 2.97 0.259 +0.009
−0.019

+0.024
−0.033 0.094 26.7 29.2 29.1 0.976

4a 0.981 0.886 – – 0.149 0.740 0.260 +0.020
−0.006

+0.036
−0.019 0.073 26.8 26.8 21.6 0.865 Fig. 6

4b 1.16 1.13 – – 0.167 0.622 0.213 +0.019
−0.008

+0.038
−0.020 0.060 21.7 27.7 22.9 0.830

5a 1.81 0.427 – – – 2.85 0.214 +0.017
−0.030

+0.046
−0.050 0.089 21.6 31.1 26.4 0.930 Fig. 8

5b 1.87 0.465 – – – 2.67 0.201 +0.018
−0.027

+0.046
−0.049 0.088 20.5 29.5 30.8 0.950

perpendicular to the line of sight, while the observed coordinate is k
with k‖, k⊥ defined analogously. The pre-factor in the square bracket
represents the change in the volume element by the coordinate
transformation. This mapping formula derived for analytical models
of the power spectrum is automatically realized by measuring the
power spectrum from the deformed simulation boxes.

With a help of the BAO feature clearly visible in the observed
spectrum, we can conduct a geometrical test. The parameter α‖ is
related to the comoving distance along the line of sight, and thus
reflects the ratio of the Hubble parameter between the true unknown
cosmology and the one assumed when we convert the redshifts into
comoving distances. In addition, the parameter α‖ depends on the
acoustic horizon scale at the baryon drag epoch (Eisenstein & Hu
1998), since the true acoustic scale might be different from the one
realized in the simulations. We denote the acoustic scale at the drag
epoch by rs, and compute it with the CAMB code. Indeed, this quantity
computed for our fiducial cosmological model is larger than that for
the Planck cosmology by about 5 per cent when measured in units
of h−1 Mpc (this difference mainly comes from the difference in h;
see Table 1). Taking this difference into account, we have

α‖ = H (z)rs

Hfid(z)rs,fid
(8)

at the effective redshift of the measured power spectrum, z = 0.3.
Similarly, the angular diameter distance, DA, can be constrained
through the parameter α⊥:

α⊥ = DA,fid(z)rs

DA(z)rs,fid
(9)

at z = 0.3.
We simultaneously vary αv, α‖ and α⊥ as well as Mhost, min and

Msub, min to find the best-fitting parameter set for Model 5. We dis-
cuss the robustness of the constraints on the parameters for the
mock LRGs when the cosmological assumptions are relaxed by
comparing the results of Models 2 and 5. Also, we show the derived
cosmological constraints and compare them with those in the liter-
ature to demonstrate the prospect of analysing observational data
with theoretical predictions from simulations instead of analytical
models.

4 R ESULTS

Now we are in position to show the results of the MCMC analysis
explained so far. We first discuss the importance of the satellite
population to model the anisotropic clustering of LRGs by showing
the results of the fit with Models 1 and 2 in Section 4.1. We then
compare the satellite fraction derived with Model 2 and that with
Models 3 and 4 where centrals and satellites host mock LRGs with
different criteria in Section 4.2. We further discuss the robustness
of the results against cosmological uncertainties in Section 4.3.
Some cosmological implications are given in Section 4.4. We finally
compare the multiplicity function of our best-fitting models with
observation in Section 4.5. The best-fitting model parameters as
well as the goodness of fit are summarized in Table 2.

4.1 Importance of satellites

We start this section by showing the result of Model 1. The best-
fitting multipoles of the power spectrum are shown in Fig. 1 together
with the observation. The results of Models 1a and 1b are, respec-
tively, plotted in solid and dashed lines. It is clear from the figure that
we cannot simultaneously fit the three multipoles with the central
population alone. There exists a mismatch between the observed
and the model quadrupole at k � 0.1 h Mpc−1. The difference be-
tween the two models (Models 1a and 1b) is visible, but is much
smaller than the discrepancy between the observation and the two
models. Also, we can observe a difference in the broad-band shape
of the monopole moment. Since we have only one parameter in
Model 1 (i.e. the minimum mass of the host haloes), it might be
difficult to simultaneously adjust the amplitude and the shape of the
spectrum.

To be more quantitative, we show the minimum value of χ2 in
Table 2. The values for the three multipoles, χ2

�,min (� = 0, 2 and 4)
and their sum divided by the degree of freedom (the reduced chi-
squared, χ2

red) are listed in the table. Note that each multipole mo-
ment has 30 data points up to kmax = 0.305 h Mpc−1. Clearly, both
Models 1a and 1b give a poor fit to the observed data with Model 1b
being slightly better (χ2

red = 11.8 and 9.10, respectively), and most
of the discrepancy comes from the quadrupole moment.

We next discuss the result of Model 2 in which we assign mock
LRGs to both centrals and satellites. We can see in Fig. 2 a sub-
stantial improvement of fit over Model 1 plotted in Fig. 1. The
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1406 T. Nishimichi and A. Oka

Figure 1. Best-fitting power spectra against observation assuming one-to-
one correspondence between LRGs and haloes (Model 1). Symbols show
the observed multipoles of the power spectrum (open triangles: monopole;
filled circles: quadrupole; open diamonds: hexadecapole). The solid (dashed)
curves depict the result of Model 1a (b). Note that symbols for the quadrupole
(hexadecapole) moment are horizontally offset by +0.0015 (−0.0015) to
avoid overlap.

Figure 2. Same as in Fig. 1, but for Model 2.

values of χ2
red are 1.18 and 1.03 for Models 2a and 2b, respectively,

implying that the modelling is sufficient to explain the observed
multipole moments up to k � 0.3 h Mpc−1. The constraints on the
model parameters are shown in the left-hand panel of Fig. 3 with the
best-fitting values indicated by the plus (cross) symbols for Model
2a (2b). The two parameters, Mhost, min and Msub, min, show a posi-
tive correlation in both models, and the allowed regions for the two
models are significantly different.

We also plot in the right-hand panel the constraint on the fraction
of LRGs hosted by satellite subhaloes, fsat. A satellite fraction of
fsat ∼ 0.3 is favoured by the observed power spectrum for Model
2a, while a smaller value is derived for Model 2b (fsat ∼ 0.25;

Figure 3. Constraints on the parameters of Model 2. We plot 1σ and 2σ

allowed regions for parameters characterizing the mock LRGs (left), and
the posterior distribution of the fraction of satellites (right). In the left-hand
panel, Model 2a is shown by red contours while Model 2b is plotted with
blue. We depict by solid (dashed) line the result of Model 2a (2b) in the
right-hand panel.

dashed). The difference between Models 2a and 2b mainly comes
from the different velocity dispersion of mock LRGs. We have
seen that Model 1 cannot explain the suppress of the quadrupole at
k � 0.1 h Mpc−1. By adding a significant fraction of satellite LRGs,
Model 2 can explain the quadrupole thanks to a larger velocity
dispersion of the mock LRGs in satellite subhaloes than those in
centrals. Furthermore, since the mock LRGs in Model 2b have
a larger velocity dispersion than in Model 2a, the former needs a
smaller fraction of satellite LRGs to match the observed power spec-
trum. The result of this section highlights the importance of satellite
LRGs to understand the observed anisotropic clustering. Since the
χ2 values are very similar in these two models, we conclude that it
is difficult to constrain the additional velocity contribution in Model
2b from the large-scale analysis alone. This component is degener-
ate with the fraction of satellites, and thus we can put a constraint
only on the total velocity dispersion of centrals and satellites, which
determines the magnitude of the Fingers of God effect.

Our constraint on the fraction of satellite LRGs might be coun-
terintuitive given the small fraction of multiple LRG systems sug-
gested from observations (∼5 per cent). Indeed, the lower bound
on this parameter is given as fsat > 0.27 (0.22) at 95 per cent con-
fidence level (c.l.) in Model 2a (2b) from our analysis, while the
value is constrained to 6.36+0.38

−0.39 per cent (95 per cent c.l.) by Reid
& Spergel (2009) based on the observed multiplicity function of
LRGs. As discussed in more detail below, this apparent discrep-
ancy in the satellite fraction partly comes from different definitions
of satellites. Also, our result suggests that the central subhaloes in
our terminology do not always host a LRG. We reserve a thorough
discussion on the compatibility of our mock LRGs until Section 4.5,
and keep testing the robustness of our constraints against different
assumptions in the model of LRGs in what follows.

4.2 Extension of the simplest model

Now the important question to ask here is whether the seemingly
large satellite fraction obtained in the previous section using Model
2 is real or just a consequence of incorrect modelling of LRGs. We
here adopt Models 3 and 4 and allow additional parameters to float.
Since these parameters control the selection criteria of satellites and
centrals individually, we can check the robustness of the satellite
fraction derived in the previous section.

The result of Model 3 is plotted in Figs 4 and 5 for the best-
fitting power spectrum and the constraints on the model parameters,
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Anisotropic clustering of LRGs 1407

Figure 4. Same as in Fig. 1, but for Model 3.

Figure 5. Same as in Fig. 3, but for Model 3.

respectively. It is difficult to judge by eye, but the fit is slightly
improved over Model 2 as the values of χ2

red suggest (see Table 2).
The constraints in Mhost, min–Msat, min plane shown in the top left-
hand panel of Fig. 5 are very similar to those in the left-hand panel
of Fig. 3 for Mhost, min and Msub, min. This suggests that the satellite
LRGs in Model 3 are almost the same as in Model 2. By contrast,
we cannot put a stringent constraint on the other parameter, Mcen, min

(see top right- and bottom left-hand panel of Fig. 5). This is because
given Mhost, min, there are only small number of centrals having
mass much smaller than Mhost, min. The best-fitting parameter set,
indicated by the plus and cross symbols, suggests a large Mcen, min

compared with Msat, min. Thus the slightly improved fit compared
to Model 2 comes from a reduced number of the central LRGs.
As a result, the satellite fraction plotted in the bottom right-hand

Figure 6. Same as in Fig. 1, but for Model 4.

panel of Fig. 5 shows a slightly larger value than in Model 2 (right-
hand panel of Fig. 3), but the difference is much smaller than the
statistical uncertainty on that parameter.

Next, the best-fitting power spectrum of Model 4 is shown in
Fig. 6. Judging from the χ2

red listed in Table 2, this model gives a
better fit than Models 2 and 3 (χ2

red = 0.865 and 0.830 for Models
4a and 4b, respectively). Although the values themselves should
be used with caution because we ignored the off-diagonal compo-
nents of the covariance matrix, these values suggest a slight overfit
to the observational data. This might be explained as follows. In
Model 4, central subhaloes are randomly selected with a probabil-
ity pcen to host LRGs. Because of this random process, the resultant
multipole moments can be different from one time to another even
one employs exactly the same model parameters. In other words,
the increased shot noise in the model spectrum, which is not taken
into account in the MCMC analysis, can sometimes mimic the ob-
served noise pattern by chance and reduce the χ2 statistics. Indeed,
the best-fitting multipoles are less smooth than in previous figures
because of this effect.

The constraints on the model parameters are shown in Fig. 7.
Interestingly, the constraints in the Mhost, min–Msub, min plane shown
in the top left-hand panel are significantly different from that in
Model 2 (Fig. 3): the minimum host halo mass is smaller, and
the minimum subhalo mass is larger in Model 4. Because of the
smaller host halo mass, the number of centrals that pass the mass
criterion increases, but it is then reduced by random sampling. The
number of satellites is smaller because of a larger Msub, min, and
as a result, the mean number density of the final mock LRGs are
much smaller than in Model 2 (see Table 2). These differences
might suggest two possible different nature of LRGs inferred with
Model 2 and with Model 4. Nevertheless, looking at the bottom
right-hand panel of Fig. 7, the fraction of satellites is still high
and is in the range of 20–30 per cent. This is broadly consistent
with the result of Model 2 shown in the right-hand panel of Fig. 3.
Thus the anisotropic clustering on large scales serves as a good
probe of the fraction of satellites robustly against different assump-
tions in the model.

MNRAS 444, 1400–1418 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/444/2/1400/1749480 by C
N

R
S - ISTO

 user on 25 April 2022



1408 T. Nishimichi and A. Oka

Figure 7. Same as in Fig. 3, but for Model 4.

4.3 Robustness of the parameters against cosmological
uncertainties

So far we have seen that the fraction of satellites is an important in-
gredient to understand the anisotropic clustering of LRGs in redshift
space. The discussion so far is, however, done keeping the underly-
ing cosmological model fixed to the one adopted in the simulations.
We relax the cosmological assumptions in this section, and discuss
the possibility of a simultaneous determination with cosmological
parameters. Here we focus on the constraints on the parameters that
describe the connection between LRGs and subhaloes, and leave
the cosmological implications to the next section.

We first show in Fig. 8 the best-fitting power spectrum of Models
5a and 5b. Compared to the results of Model 2, the goodness of fit is
improved (χ2

red = 1.18–0.93 for Model a and 1.03–0.95 for Model

Figure 8. Same as in Fig. 1, but for Model 5.

Figure 9. Constraints on the parameters describing the properties of LRGs
when cosmological parameters are varied (Model 5). We plot the 1σ and
2σ allowed regions for Mhost, min and Msub, min (coloured contours in the
left-hand panel) and the fraction of satellites (thick lines in the right-hand
panel). We also plot the results when cosmological parameters are fixed
(Model 2) by dotted contour lines in the left-hand panel and thin lines in the
right-hand panel.

b). Looking at each of the three multipoles, we can see that most of
the improvement comes from the monopole moment (see Table 2).
We discuss in more detail on this improvement in the subsequent
subsection.

The constraints on the parameters, Mhost, min and Msub, min are
shown in the left-hand panel of Fig. 9. We also show the result
of Model 2 in dotted contour lines. Compared to Model 2, the re-
sults are greatly altered in two ways: first, the best-fitting minimum
masses are shifted towards larger values and secondly the statistical
uncertainties on them are increased by a factor of about 5.

We plot in the right-hand panel of Fig. 9 the satellite fraction
derived with Model 5 (thick lines) and with Model 2 (thin lines).
Compared with the result in the left-hand panel, the statistical uncer-
tainty on the fraction of satellites does not increase so dramatically
when cosmological assumptions are relaxed, although a smaller
fraction is favoured for Model 5 (∼20 per cent). This basically
confirms that the fraction of satellites still play a dominant role to
explain the anisotropy of the apparent clustering pattern of LRGs
even when we introduce additional sources of anisotropy.

Another interesting difference compared to Model 2 is that the
difference between Models 5a and 5b is much smaller than that be-
tween Models 2a and 2b. As we will discuss shortly, the distortion
parameters introduced in Model 5 explain the observed anisotropy
of the clustering of LRGs partly, and the difference between Mod-
els 5a and 5b is somewhat absorbed by these new parameters.
Our final estimate of the 1σ (2σ ) allowed region of the satel-
lite fraction marginalized over cosmological uncertainties is fsat =
0.214+0.018

−0.030(+0.046
−0.050) for Model 5a and fsat = 0.201+0.018

−0.028(+0.047
−0.050) for

Model 5b.

4.4 Prospects to derive cosmological parameters
using N-body simulations

Now we turn to the cosmological constraints marginalized over
the parameters that describe the nature of LRGs. We first show
the constraints on our parameters that induce distortions to the
clustering of mock LRGs in Fig. 10. We plot the 67 and 95 per
cent confidence regions of αv and two parameter combinations,
α ≡ (α‖α2

⊥)1/3 and ε ≡ α‖/α⊥. The parameter α is responsible for
the mismatch between the true and assumed distance scale, and is
expected to be determined by the BAO feature in the monopole
moment. On the other hand, the other parameter, ε, determines the
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Anisotropic clustering of LRGs 1409

Figure 10. Constraints on the distortion parameters marginalized over
Mhost, min and Msub, min. We plot the 1σ and 2σ allowed regions of the
parameters, α = (α‖α2

⊥)1/3, ε = α‖/α⊥ and αv. We include wavenumbers
up to kmax = 0.305 h Mpc−1 into the analysis.

significance of the AP effect that induces a geometrical distortion,
and thus is sensitive to the higher multipoles.

Fig. 10 suggests that the different modelling of LRGs using sub-
haloes (i.e. Models 5a and 5b) leads to different values of the dis-
tortion parameters favoured by the observation. We can find that the
parameter α is the least affected among the three by the difference
in the prescription for mock LRGs. This is presumably owing to the
robustness of the distance determination using the feature of BAOs
against different bias models. In both models, α < 1 is strongly
suggested, and the best-fitting parameter is around 0.95. As we dis-
cussed in Section 3.4, the sound horizon scale, rs, in our fiducial
cosmology is larger than that recently suggested. Our constraint on
α is consistent with this expectation, and supports recent observa-
tional results. A value of α smaller than unity helps to reduce χ2

0,min

from that in Model 2, and we can actually observe an improved fit to
the BAO wiggles in the monopole moment in Fig. 8. Note also that
χ2

0,min is the smallest in Model 5b (and almost the same in Model 5a)
compared to more complicated descriptions for the LRG–subhalo
correspondence in Model 3 or 4.

The situation seems a bit different for the other two parameters.
They are more sensitive to the detail of the model and the confidence
regions for the two models, Models 5a and 5b, have some non-
negligible offset in the bottom right-hand panel of Fig. 10. In both
cases, αv > 1 and ε > 1 are suggested. In particular, Model 5a needs
a large velocity boost factor, αv ∼ 1.2. Since the mock LRGs in this
model have a smaller velocity dispersion than in Model 5b, a larger
value of αv is required to explain the observed power spectrum.
This situation is quite similar to the results of Models 2a and 2b:
we have shown that we need a larger satellite fraction for Model
2a than Model 2b (see Fig. 3). Instead of the fraction of satellite,
the parameter αv mainly absorbs the difference between the two
models in this case.

Since both αv and ε are related to the amplitude of the apparent
anisotropy in redshift space, it is natural to see that they are degen-
erate with each other. While a value of αv larger than unity squashes

Figure 11. Cosmological constraints. We assume the value of rs from the
Planck observation when we convert the constraints on α‖ and α⊥ to H
and DA. We also show by symbols the results of CMB experiments (W5,
W7, W9 and P respectively refer to WMAP5, WMAP7, WMAP9 and Planck;
best-fitting flat �CDM to the CMB data alone).

the apparent clustering pattern on large scales and elongates it on
small scales along the line-of-sight direction (the Kaiser and the
Fingers of God effect, respectively), a large ε always elongates the
apparent clustering independent of the distance scale. As we will
show later, the large velocity boost factor, αv, mainly comes from
the power spectrum on small scales (i.e. a prominent Fingers of God
suppression in the observed spectrum). Then, a large αv determined
on small scales might result in an overprediction of the Kaiser dis-
tortion on large scales. A large ε is chosen such that it partly cancels
the strong Kaiser effect. This way, the difference in the modelling
of velocities in the two models propagates to the derived distortion
parameter, ε.

It is worth noting that both models statistically exclude the fidu-
cial parameter set, αv = α = ε = 1. This suggests that the cosmolog-
ical model assumed in the simulations and in the redshift–distance
relation might be different from the underlying true cosmology: the
BAO scale in the simulation is too long, mock LRGs need larger
velocities and a geometrical distortion is induced in the observed
clustering to elongate the structure along the line of sight. Though it
might be too early to falsify the cosmological model from this anal-
ysis alone, our results are encouraging. We can tell the difference
between our model based on simulations and the clustering of LRGs
in the real Universe with the current accuracy of the observational
data. As we will outline in Section 5, it might be very interesting
to repeat the analysis with some additional cosmological simula-
tions and a new measurement of the power spectrum assuming a
cosmological model suggested by the current analysis.

We then derive the constraints on the parameters, fσ 8, H and
DA using the relations, equations (6), (8) and (9). In doing so,
we assume the value of rs derived from the Planck observation
(see Table 1). The results are shown in Fig. 11. For reference,
we also mark the best-fitting �CDM models from some cosmic
microwave background (CMB) observations by symbols (W5, W7
and W9 for WMAP, and P for Planck in the figure, and see Table 1
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Figure 12. Robustness of the results against the maximum wavenumber.
The 67 per cent confidence intervals of the derived cosmological parameters
are plotted as a function of the maximum wavenumber (bands in solid lines
for Model 5a, dashed lines for Model 5b). The best-fitting parameters are
shown as plus symbols for Model 5a and as cross symbols for Model 5b.

for detail). Our constraints in the H–DA plane (bottom right) are
broadly consistent with the CMB observations (interestingly, more
consistent to more recent results). On the other hand, the derived
growth rate parameter, fσ 8, is larger than the predictions of the
cosmological models favoured by CMB observations. We should
interpret this with extreme caution. The discrepancy between the
Models 5a and 5b in the parameter combination, fσ 8, is as large as
10 per cent, and thus our estimate might have a systematic error
of this size. As we will see shortly, the constraint on fσ 8 from this
analysis is likely to be contaminated significantly by non-linearity
of the velocity field, and the derived combination might not be a
linear growth rate but its non-linear counterpart.

For a deeper understanding of the situation, we change the
wavenumber range to be taken into account in the analysis, and
discuss the sensitivity of the results against the maximum wavenum-
ber, kmax. The resulting one-dimensional marginalized constraints
on the three cosmological parameters are shown in Fig. 12. We
show the 1σ confidence intervals in the bands (solid for Model 5a,
dashed for Model 5b). When we adopt a value of kmax as small
as ∼0.1 h Mpc−1, the intervals for the two models almost coincide
with each other. This suggests that the difference in the velocity
structure on small scales is not relevant for the anisotropy on very
large scales. The discrepancy between the two models grows with
kmax, and finally the two 1σ intervals become exclusive for fσ 8 when
kmax = 0.305 h Mpc−1, which is our fiducial value.

The parameter fσ 8 appears to be monotonically increasing with
kmax, and Model 5a shows a more sensitive response to kmax than
Model 5b. As we have already discussed, our estimate of fσ 8 through
αv is affected by non-linearity of the velocity field, and indeed the
result indicates a scale-dependent velocity bias between our mock
LRGs and the observation. Larger velocities are required on smaller
scales. Our estimator of fσ 8 is expected to have no dependence on
kmax when the simulations are perfect (i.e. αv = 1 independent
of kmax). Since the amplitude of the velocity perturbations is ex-

Figure 13. Comparison between our cosmological constraints (coloured
contours) and those obtained by fitting the same data but with an analytical
model described in the accompanying paper (Oka et al. 2014; dotted con-
tours). We change the maximum wavenumber to kmax = 0.175 h Mpc−1 so
as to match with that in Oka et al. (2014).

pect to be linear at the large-scale limit and our two models give
almost the same answer at kmax = 0.105 h Mpc−1, the result at
kmax = 0.105 h Mpc−1 can be considered as a weak but reliable con-
straint on the linear growth rate. We will comment on a possible
solution for the non-linear contaminations to the estimation of fσ 8

later in Section 5, and leave further investigations of the reliability
of the constraint to future studies.

The other two parameters, H and DA, show a weaker dependence
on kmax. Although the situation seems to be better for these param-
eters than fσ 8, one should still take the results with caution. The
incompleteness of our modelling of the velocities can propagate
to these parameters. The parameters, H and DA, are determined
through α and ε. We show that α is robust against systematics in
Fig. 10. Nevertheless, a misestimation of fσ 8 propagates to ε, that
results in a systematic error on H and DA. It is of interest to further
test the constraints on these parameters with new simulations that
can reproduce the observed RSDs without a large velocity boost αv,
and a study along this line is now ongoing.

We have discussed so far the constraints on the cosmological pa-
rameters using N-body simulations and their possible systematics.
Now we compare our results with those obtained with an indepen-
dent method. We plot in Fig. 13 the constraints on the three cosmo-
logical parameters from our analysis (coloured contours) and those
by the accompanying paper (Oka et al. 2014) in which we adopt an
analytical model for the parameter estimation (contours in dashed
lines with the best-fitting values depicted by cubes). In this figure,
we adopt kmax = 0.175 h Mpc−1, which is the same as in Oka et al.
(2014).

Overall, the contours obtained by Oka et al. (2014) enclose the
allowed regions obtained by our analysis. Especially, the best-fitting
parameters obtained with different models are consistent with each
other at about 1σ level. This is encouraging since the two analyses
rely on totally different prescriptions for the non-linear growth of
structure, the RSDs and the galaxy bias. The weaker constraints by
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Oka et al. (2014) probably come from the fact that the analytical
model has free parameters to control the galaxy bias as well as
the velocity dispersion in the analytical model. These nuisance
parameters are effectively fixed in our analysis once the connection
between LRGs and subhaloes is assumed.

The result suggests that it is potentially possible to tighten the
constraints by adopting a reasonable prescription for galaxies using
subhaloes identified in simulations. Alternatively, giving a prior
information to the velocity dispersion based on simulations rather
than letting it float as a free parameter might be another way to obtain
tighter constraints. The best-fitting parameters derived from CMB
observations are in good agreement with the contours obtained by
Oka et al. (2014). If we believe the contours obtained in this study,
we can exclude some of the CMB results. This suggests that the
anisotropic clustering of galaxies have a strong statistical power if
one successfully models the non-linear growth of the velocity field
(velocity dispersion, in this particular case) and the galaxy bias.

4.5 Multiplicity function

So far we have focused on the clustering of LRGs in redshift space
on relatively large scales and discussed how well we can explain
the observational data with mock LRGs in cosmological simula-
tions. It is of course important to construct a mock galaxy catalogue
that has a mean number density consistent with observations. In-
deed mock galaxy catalogue is usually constructed based on HOD
or abundance matching techniques, in which one-point statistics
are directly drawn from observation or constrained from cluster-
ing information on small scales. In these methods, mock galaxies
are modelled so that the observed mean number density is recov-
ered automatically. It is interesting to check the compatibility of
our mock LRGs with observed one-point statistics. In this section,
we compare our best-fitting models with the multiplicity function
estimated by Reid & Spergel (2009).

Before making a comparison, we note some differences in the
LRG samples used in our study and in Reid & Spergel (2009).
As summarized in Section 2, our sample is based on the DR7
and we use LRGs only on the north cap in the redshift range of
0.16 < z < 0.47. By contrast, the sample analysed in Reid & Spergel
(2009) is based on DR4+ (Adelman-McCarthy et al. 2007) and they
include both caps but restrict the redshift range to 0.16 < z < 0.36.
They also supplementary add the imaging sample to correct for fibre
collisions, incomplete sky and complex angular masks. It is thus
not straightforward to directly compare our results with theirs, but
nevertheless the comparison is still meaningful to test our alternative
mock making scheme and infer the nature of LRGs.

First of all, the mean number density of mock LRGs in some of
our best-fitting models are significantly larger than the observation.
The sample in Reid & Spergel (2009) has ng � 9.7 × 10−5 h3 Mpc−3

(Zehavi et al. 2005), and this is two to four times smaller than the
results of Models 2, 3 and 5 (see Table 2). On the other hand, Model
4 has a slightly smaller number density than that from observation.

This discrepancy in the mean number density implies that the
mass of the haloes as well as that of subhaloes do not uniquely
determine whether a LRG can live there or not: our model simply
assumes that all the subhaloes above a mass threshold have LRGs,
and this assumption is so simple that lead the number density larger
than the observed. A simple way towards a more sophisticated
modelling of LRGs is to introduce a second physical parameter that
determines the habitability of a LRG. An example is the presence
of a massive halo at an earlier epoch (i.e. z = 2 or 3) adopted in the
abundance matching technique (Masaki et al. 2013). This approach

was shown to recover the HOD and the angular clustering very well
in addition to the number density, which is automatically adjusted
by the matching by construction.

Instead of pursuing along this direction, we adopt a simple statis-
tical approach to adjust the mean density in this study. We conduct
random sampling and reduce the number of mock LRGs assuming
that the observed LRG catalogue is a Poisson sample of our mock
LRGs. As we have already noted, this procedure does not affect the
expectation value of the power spectrum only resulting in a larger
shot noise and thus the successful fitting results in the previous sec-
tions are not diminished. Also, the fraction of satellites derived by
our analysis are not affected by random sampling.

We might be able to justify the adjustment of the number density
with random sampling as follows. Galaxy bias is a stochastic process
by nature and is difficult to connect simulated subhaloes to observed
LRGs deterministically (Dekel & Lahav 1999). In other words, there
might exist some unknown parameters to determine whether a sub-
halo hosts a LRG or not (Taruya & Suto 2000). Modelling LRGs
from the first principle is well beyond the scope of this study based
on N-body simulations that solves a purely gravitational system,
and baryonic physics must be essential in order to fully predict (i.e.
deterministically simulate) the clustering of LRGs or galaxies in
general (e.g. Somerville et al. 2001; Yoshikawa et al. 2001). We give
up a deterministic prediction of LRGs but instead effectively take
into account the stochasticity of galaxy bias by random sampling. In
what follows, we adjust the spatial density to ng = 10−4 h3 Mpc−3

for Models 2, 3 and 5, while we keep all the mock LRGs in
Model 4.

We now compare the multiplicity function with that measured by
Reid & Spergel (2009). We denote the number of LRGs in a host halo
by NLRG. In our case, the host haloes are simply the FoF groups while
Reid & Spergel (2009) identify groups with the count-in-cylinder
method. Then the multiplicity function, P(NLRG), is defined as the
fraction of LRG systems with NLRG members. Note that we do
not count FoF groups without a mock LRG in the denominator to
match the definition of the observed multiplicity function. We plot
in Fig. 14 P(NLRG) against NLRG. The overall decreasing trend of
P(NLRG) with NLRG seen in the observed data (histograms) is well

Figure 14. Multiplicity function of LRGs from our best-fitting models
(symbols) against observation (histogram). The triangles (circles) show the
result of Model a (b).
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1412 T. Nishimichi and A. Oka

Figure 15. Zoom of Fig. 14 for NLRG = 1 and 2. The filled part of the bars
show the contribution for systems with a central LRG and the open part is
responsible for the systems without a central LRG.

explained by all the models (symbols; triangles for Model a and
circles for Model b). This coincidence is notable since we construct
the catalogues guided only by the clustering pattern in redshift
space on large scales. Also, remember that the allowed regions of
the parameters characterizing the condition of subhaloes to host
LRGs are significantly different in different models. These results
suggest that the multiplicity function is an important ingredient that
determines the multipole moments of the power spectrum in redshift
space on large scales.

We plot in Fig. 15 the first two bins, NLRG = 1 and 2 in linear scale.
This time the models are shown in bars (Model 2a, 2b, . . . , 5b from
left to right), while the observational data are shown by horizontal
dashed lines. The filled part of the bars shows mock LRG systems
that contain a central LRG, while the open part indicates those
consisting of only satellites. The observational data as well as our
models suggest that most of the LRGs are distributed in a single-
or double-LRG system, and these two bins mostly determine the
clustering properties. The fraction of single-LRG systems ranges
from 90 to 95 per cent with our eight models, and this number is in
good agreement with the observed fraction, 93.8 per cent. Models
4a and 4b give the most consistent fractions to the observation, and
might be a better description of LRGs than other models. Indeed,
these models have the smallest χ2

red to the multipole moments (see
Table 2).

An important difference in the interpretation of the observed
multiplicity function in our study and in Reid & Spergel (2009)
is the definition of centrals and satellites. Our definition of central
LRGs are those hosted by subhaloes that have the largest mass in the
same host haloes, and the rest of LRGs are satellites. Consequently,
the most massive subhaloes sometimes do not host a LRG in our
model and a LRG system can be exclusively composed of satellite
LRGs. On the other hand, in Reid & Spergel (2009), only LRGs in
multiple LRG systems are considered as satellites and all the single-
LRG systems are regarded as central LRGs. The satellite fraction as
large as 20–30 per cent derived in our analysis mainly comes from
this difference. If we instead employ the same definition of satellites
as in Reid & Spergel (2009), the fraction becomes much smaller.
We list in Table 2 the fraction of satellites, f ∗

sat, derived with this

Figure 16. Mean halo occupation number as a function of the halo mass
derived from our eight models. Triangles and diamonds show the central
and satellite contributions, respectively, while the sum is plotted as circles
with error bars. Also shown by lines is the model described by equation (10)
with the parameters determined by Reid & Spergel (2009). Solid, dashed
and dotted lines show the total, central and satellite HOD, respectively.

definition. The values are now 6–10 per cent, and are roughly the
same as the observation. Thus the seemingly large satellite fraction
of our mock LRGs does not conflict with the result of Reid &
Spergel (2009), in which they derive a satellite fraction of 6.36+0.38

−0.39.
One can say that our definition is based on the kinematics of

LRGs: what matters to explain the feature of RSDs in observation
is how many LRGs have velocities relative to their host haloes.
One important lesson we have learned through this analysis is that
a non-negligible fraction of LRGs without a close companion (i.e.
single-LRG systems) are not located at the centre of the host haloes.
The situation is consistent with the result of a cross-correlation anal-
ysis of single-LRG systems with galaxy–galaxy lensing signal (and
also cross-correlation with the photometric galaxies) performed by
Hikage et al. (2013). Their result suggests that about 24 per cent
of these LRGs have offset from the true gravitational centre of the
systems (see fig. 10 in the reference).

4.6 Halo occupation distribution

The HOD is a useful approach to connect galaxies to dark matter
haloes frequently adopted in the literature. This function is closely
related to the multiplicity function presented in the previous sub-
section. Indeed, Reid & Spergel (2009) give a tight constraint on the
HOD by fitting the observed multiplicity function. We here com-
pare the HOD of our models with that in the literature and discuss
the compatibility of a model based on the observed HOD to explain
the anisotropic clustering of LRGs.

Fig. 16 shows the HODs measured from our mock catalogues
with the best-fitting parameters. Centrals and satellites are, respec-
tively, plotted by triangles and diamonds, while the sum of the two
populations is shown as circles with error bar showing the scatter
among different random realizations. Also shown by lines are the
functions,

Ntot = Ncen(1 + Nsat), (10)

Ncen = 1

2

[
1 + erf

(
log10 Mhost − log10 Mmin

σ

)]
, (11)

Nsat =
(

Mhost − Mcut

M1

)α

, (12)
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Anisotropic clustering of LRGs 1413

Figure 17. Mean halo occupation number as a function of the halo mass for
models based on the HOD by Reid & Spergel (2009) (lines). We follow the
central HOD in equation (11) and then assign satellites to subhaloes more
massive than 1013 h−1 M� whose host haloes have a central LRG to obtain
almost identical HOD in the left-hand panel. We scale the masses by 15
per cent to adjust the mean number density in the middle panel. We finally
replace centrals with satellites randomly following the procedure described
in the text in the right-hand panel.

with the parameters, Mmin = 5.796 × 1013 h−1 M�, Mcut = 3.6 ×
1013 h−1 M�, M1 = 3.564 × 1014 h−1 M�, σ = 0.7 and α = 1.035
determined by Reid & Spergel (2009) based on the observation. The
dashed and dotted lines are the central and satellite contribution and
the sum is depicted by the solid line.

Overall, the total HOD is very similar among our eight models,
and its slope is close to that by Reid & Spergel (2009). There exists,
however, an offset in the overall amplitude. This is likely to be
due to the difference in the halo mass function between ours and
that in Reid & Spergel (2009): the halo finder [FoF and spherical
overdensity (SO)], output redshifts (z = 0.35 and 0.2) and a different
cosmological model (WMAP 5- and 3-year) can give a noticeable
change in the halo mass function. With a different mass function,
the HOD that gives the correct mean number density should be
different. Another difference in the HOD can be seen at the low-
mass end. It is natural for our models to have a rather sharp cut
because we impose a minimum halo mass to host a LRG. We need
a more elaborate model to have a smoother HOD.

When focusing on each of the central and satellite contributions,
the difference among the models are clearer. The central contri-
bution is smaller for models in which we randomly discard more
central subhaloes (i.e. Model 4), while the observed HOD is unity
when the host halo mass is large. As already discussed in the previ-
ous subsection, an important point is that it is the HOD of the sum
of the two populations that is directly constrained from observation,
and the contributions from each population strongly depends on the
definition of central and satellite LRGs. We thus do not consider
the different HOD for each population problematic.

Given the similar but different HODs, we next examine whether
the HOD derived from observation can explain the anisotropic clus-
tering on large scales at the same time. We do this by employing
again the subhaloes found in the simulations, but enforcing that the
HOD is the same as that in Reid & Spergel (2009). We here consider
the centre-of-mass positions and velocities for simplicity. We first
assign LRGs to central subhaloes with the probability of equation
(11) depending on the mass of the host haloes. We then consider
haloes with a central LRG and assign satellite LRGs to other mem-
ber subhaloes. We empirically find that we can recover the HOD for
satellites given by equation (12) almost perfectly when we assign
satellite LRGs to subhaloes with mass larger than 1013 h−1 M�. The
resultant HOD is shown in the left-hand panel of Fig. 17. Despite
almost the same HOD, the mean number density of these mock
LRGs is about 20 per cent larger than the observed one. This is

Figure 18. Multipole moments of the power spectrum measured from the
mock LRGs constructed based on the observed HOD. The three panels
correspond to those in Fig. 17.

again because of the difference in the halo mass function. We adjust
the mean number density by scaling the masses, Mmin, Mcut and M1

in the HOD function by 15 per cent (middle panel).
We compare the multipole moments of the power spectrum in

redshift space measured from these new mock LRGs in the left-
hand and middle panels of Fig. 18 before and after the mass scaling,
respectively. We can see in the left-hand panel that the amplitude and
the slope of the monopole and quadrupole moments are somewhat
different from observed moments. Indeed the χ2 statistics for these
mocks is 222.1 for 90 data points, which is significantly larger than
what we find for our other mock catalogues discussed so far. After
the mass scaling, the amplitude of the monopole moment is now
closer to the observation on large scales (k � 0.15 h Mpc−1) at the
cost of larger gap on smaller scales as well as on the quadrupole
moment (middle panel). The value of χ2 gets larger, 405.1, after
shifting the masses.

The middle panel of Fig. 18 suggests that the observed multipole
moments are affected more strongly by the Fingers of God suppres-
sion than the mock LRGs constructed based on the observed HOD.
Motivated by the high satellite fraction derived from the main analy-
sis, we consider the following simple model. Starting from the mock
catalogues with the HOD shown in the middle panel of Fig. 17, we
randomly select a central LRG and reassign it to the most massive
satellite subhalo without a LRG in the same host halo. Note that the
total number of LRGs within a host halo is conserved throughout
this process. We repeat this procedure to 23 per cent of the haloes
with a central LRG to finally have a satellite fraction of 30 per cent
without changing the total HOD (see right-hand panel of Fig. 17).
We now have some LRG systems, which have only satellites. Note
that such systems do not exist in the other two mock catalogues
discussed in this subsection, nor in the model described by equation
(10) by construction. We finally show the power spectrum measured
from the mock LRGs with increased satellite fraction in the right-
hand panel of Fig. 18. We now have an excellent agreement with
observation with the χ2 statistics being 82.0. This is comparable to
the other models discussed in previous subsections.

We conclude that the large satellite fraction is always necessary to
explain the multipole moments of the power spectrum independent
of the detail of the model. This subsection also demonstrates that
one needs a statistical procedure such as random sampling to reduce
the total number or random swapping of centrals to satellites to
explain both the mean number density (and also the HOD) and the
clustering in redshift space, as long as we rely only on the mass
of haloes and of subhaloes. Although more involved models with
further physical inputs such as the formation epoch of the subhaloes
(Masaki et al. 2013) would be an interesting next step, we leave
it to a future investigation given the already successful fit to the
observation.
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5 SUMMARY AND DISCUSSIONS

The clustering statistics of galaxies on large scales provides us
with a wealth of cosmological information. A simple parametric
approach is usually adopted to absorb the uncertainty of galaxy
bias. This simple treatment is still expected to work well as long
as one restricts the analysis to sufficiently large scales where the
nature of galaxies does not affect the statistics significantly. We
consider in this study a bias model for LRGs based on subhaloes
identified in a series of cosmological N-body simulations to pursue
more realistic bias model for analyses on large scales. We determine
the parameters that characterize the condition of subhaloes to host a
LRG by directly fitting the first three non-zero multipole moments
of the power spectrum in redshift space on scales k � 0.3 h Mpc−1.
We find that models employing both central and satellite subhaloes
successfully reproduce the clustering pattern within the statistical
error, while a model with the central population alone clearly fails
to do so.

An important ingredient in the model is the fraction of the satellite
LRGs, and this parameter is constrained to 20–30 per cent slightly
depending on the detail of the model. Though the large-scale clus-
tering alone cannot constrain the detail of the model such as the
HOD, the fraction of satellites is shown to be robust against the
assumptions in the model. Indeed, we cannot explain the multipole
moments unless we increase the satellite fraction by hand to 30 per
cent even when we adopt the observed HOD of LRGs.

Since our model for LRGs is rather simple relying only on the
mass of the host haloes and of subhaloes, it is difficult to explain the
clustering and number density simultaneously without a statistical
procedures such as random sampling or the random conversion of
LRG hosts from centrals into satellites. We definitely need a more in-
volved model or eventually need proper account of baryonic physics
to have a prediction without random processes. We expect that these
complications are more responsible for the clustering properties on
small scales where the one-halo contribution is dominant. Although
the range of wavenumber that we consider here is naively expected
to be in a regime where the impact of non-linear physics is mild, it
would be important to test the compatibility of these models against
observation based on a proper statistical argument.

Although we use the simulation output obtained for one particu-
lar cosmological model, we induce additional anisotropic clustering
signal by deforming the simulation box and changing the magni-
tude of RSDs. By doing this, we demonstrate that we can determine
cosmological and LRG parameters simultaneously. The constraints
on the distances (H and DA) are found to be more robust against
different prescriptions for LRGs thanks to the clear signal of BAOs
in the observed spectrum, while non-linear corrections can give a
systematic correction to the measurement of the growth rate param-
eter fσ 8, when the modelling of the velocities of LRGs is imperfect.
We here propose a possible extension of the current analysis and a
solution to the non-linear contamination to the measurement of the
growth rate.

Our constraints on the parameters αv, α‖ and α⊥ suggest that
the cosmological model adopted in our simulations is slightly dis-
favoured by the observation. The most significant deviation from
the fiducial value is seen in the parameter αv especially on small
scales. A simple step to go beyond the present analysis is to re-
simulate the clustering of LRGs with the best-fitting cosmological
model obtained here and repeat the same analysis again. Also, we
suggest to repeat the measurement of the power spectrum from
the observation assuming a new distance–redshift relation. When
the cosmological model adopted in the simulations as well as in

the distance–redshift relation is close enough to the true underly-
ing model, these deformation parameters should be consistent with
unity (i.e. no deformation, no velocity bias). We can iterate the anal-
ysis until this condition is satisfied. Although it is computationally
too expensive to simulate the clustering over a cosmological pa-
rameter space, several times of iterations are well within reach of
the current power of supercomputers. Since we wish to constrain
the growth rate parameter in the linear regime, it might be help-
ful to introduce one more parameter in our model which controls
the motion of mock LRGs relative to the host haloes. The growth
rate parameter less affected by non-linearity may be derived af-
ter marginalizing over this new parameter in return for a looser
constraint in the fraction of satellites.

Before presenting the final estimate of the cosmological param-
eters with these modifications to the analysis, several issues must
be carefully treated. One of our approximate treatments is in the
estimate of the statistical error. We ignore here the off-diagonal
components of the covariance matrix of the observational data and
also the statistical error in the template power spectrum measured
from the simulations in finite volume. We discuss the current level
of accuracy of the error estimation in Appendix A. Another is the
effect of fibre collisions which is ignored in measuring the power
spectrum analysed in this study. Although this effect is smaller than
the current statistical accuracy on large scales (see Appendix B),
it should be properly included in the construction of mock LRGs
when we extend the analysis to smaller scales. Finally, the result of
the analysis may depend on the subhalo finder (Pujol et al. 2013).
We naively expect that the dependence is most prominent in the
parameters that describe the nature of galaxies (e.g. the minimum
halo mass to host a galaxy). However, the constraints on the cos-
mological parameters should also be verified carefully especially
when the statistical error becomes very small with future ambitious
survey projects.

We believe that this study is an important first step towards cos-
mological analyses using simulations as a theoretical template. The
use of simulations allows us to take into account the non-linear
and non-local nature of galaxy bias at full order. Also, our anal-
ysis demonstrates that we can break the degeneracy between the
uncertainty in the nature of galaxies and the cosmological model.
An important ingredient in this analysis is the fraction of satellite
LRGs, and we show that we can still put a meaningful constraint
on this parameter when we relax the assumption of the cosmolog-
ical model. This is encouraging to us to continue along this line
and apply our methodology to some future galaxy surveys targeting
galaxies whose environmental properties are not understood very
well.
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A P P E N D I X A : C A L C U L ATI O N O F TH E M O D E L
M U LTI P O L E S A N D T H E I R STAT I S T I C A L
E R RO R

In this appendix, we show the accuracy of the multipole moments of
the power spectrum measured from N-body simulations and discuss
the validity of our approximate treatment of the covariance matrix.

First, we discuss the estimator of the multipoles used in their
measurement from N-body simulations. One of a simple estima-
tor adopts a binning scheme and assigns each wave vector to a
wavenumber bin:

P̂
(n)
�,binned(ki) = 1

Ni

2� + 1

2

∑
k∈ith bin

P�(μk)
∣∣∣δ(n)

k

∣∣∣2
, (A1)

where Ni stands for the number of modes available in the ith
wavenumber bin. This estimator, however, suffers from an artificial
effect caused by the discreteness of wave vectors in finite volume.
On large scales, the number of modes Ni is usually small, and there-
fore we cannot sample modes efficiently along the μk direction.
Note that this effect cannot be mitigated even when we increase
the number of independent random realizations, since we sample
exactly the same wave vectors from all the simulations unless we
change the box size for different realizations. Higher multipole mo-
ments (� = 2 and 4 in our case) are more sensitive to this effect since
the kernel P�(μk) strongly depends on the argument, μk. This effect
is discussed e.g. in Nishimichi & Taruya (2011), Taruya, Nishimichi
& Bernardeau (2013) and its impact on the hexadecapole is shown
to be significant even when the simulation box size is as large as
∼2 h−1 Gpc.

In this study, we thus implement a different estimator of the mul-
tipole moments. As outlined in Section 3.3, we apply the B-spline
fitting to the unbinned weighted square of the density contrast (i.e.
equation 3). This is demonstrated in the top panel of Fig. A1. We
explain the detail of this procedure here. We choose 13 breakpoints
equally spaced from 0 to 0.31 h Mpc−1 to construct the basis func-
tion (vertical dashed lines). This is chosen so that the resultant curve
is smooth enough but the wiggles of BAOs are not degraded signif-
icantly. We employ a cubic B-spline function and fit the data points
shown by points.

With this procedure, the aforementioned artificial noise in the
multipoles is greatly reduced. We show the model power spectrum
based on the B-spline fitting described above and compare it with
the binned power spectrum adopting the best-fitting parameters of
Model 5a. The error bars on the binned power spectrum indicate
the 1σ statistical error of the data points expected from the scatter
among different realizations. Higher multipole moments, especially
the hexadecapole moment, show a notable noisy pattern larger than
the typical size of error bars. On the other hand, the multipoles based

Figure A1. Measurement of the power spectrum based on the cubic B-
spline fitting. We plot in the top panel a random sample of 1000 data points,
|δ(n)

k (k)|, out of 3 880 650 fitted to compute the monopole moment (points)
and the result of the fit (solid line). The vertical dashed lines show the
positions of breakpoints used to construct the basis function. The bottom
panel shows a comparison of multipole moments of the power spectrum
calculated from different estimators. Lines show the multipoles based on the
cubic B-spline fitting while the results of the binned estimator are depicted
by symbols with error bars.

on the B-spline fitting are much smoother. We can still find clearly
by eye the baryon acoustic signature on the monopole moment even
after the B-spline fitting.

We next discuss the statistical accuracy of the model power spec-
trum. One of an approximate treatment in this study is that we take
account of the statistical error only on the observed power spectrum
but neglect that on the model power spectrum estimated from finite
simulation volume. Even though the total volume of 11 realizations
(16 h−3 Gpc3, and can be slightly different when we consider the
AP distortion) is larger than the observed volume (1.39 h−3 Gpc3 in
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our fiducial cosmological model), the accuracy of the model power
spectrum should carefully be checked.

We plot in Fig. A2 the statistical error on the simulated multipole
moments of the power spectrum divided by that on the observational
data. In the plot, we again adopt the best-fitting parameters of Model
5a and estimate the statistical error on the model power spectrum
by

[
P�,sim(k)]2 = 1

Nr − 1

∑
n

[
P̂

(n)
� (k) − P̄�(k)

]2
, (A2)

where Nr = 11 is the number of independent realizations and P̂
(n)
�

and P̄�(k) denote the �th multipole moment of the power spectrum
measured from the nth realization and that averaged over Nr real-
izations, respectively. We plot in Fig. A2 
P�, sim(k) divided by the
statistical error on the observed multipoles.

Overall, the ratio is 10–30 per cent depending on the wavenumber
and is almost independent of multipoles. We can roughly estimate it
from the fact that the error bar scale as volume−1/2, and this gives a
29 per cent smaller error on the model multipoles. This is consistent
with the result of Fig. A2 on large scales (k ∼ 0.03 h Mpc−1). On
smaller scales since our mock LRGs have a larger number density
than the observed LRGs, the mock multipoles are less affected by
shot noise. That is why the ratio decreases with wavenumber.

On the other hand, the estimate of the covariance matrix of the
observed multipoles adopted in this study is expected to be similarly
accurate. For example, the cross-covariance between the different
multipoles, which we ignore in this study, can be evaluated by
linear theory, and the correlation coefficient for the monopole–
quadrupole cross-covariance is ∼20 per cent for β = f/b ∼ 0.28
(see fig. 4 of Taruya et al. 2011). Also, the non-Gaussian component
of the covariance matrix is �30 per cent in redshift space on the
scale of our interest according to Takahashi et al. (2009) in which
they perform 5000 cosmological N-body simulation to estimate the
covariance matrix (see figs 2 and 3 in the reference). We thus expect
that the final error ellipses of the model parameters is accurate at
this level (10–30 per cent).

Figure A2. Statistical error on the model power spectrum compared with
the measured one.

APPENDIX B: IMPAC T O F FIBRE COLLIS IO NS

We discuss the possible impact of the fibre collisions on the mul-
tipole moments of the power spectrum in this appendix. The LRG
sample analysed in Yamamoto et al. (2010) suffers from spectro-
scopic fibre collisions, and some targeted LRG candidates do not
have spectra when they have a close companion within 55 arcsec.
Although both of close pairs have redshifts thanks to multiple obser-
vations in some region of the sky, the redshifts about 7 per cent of the
targeted objects are not measured. In the measurement of the power
spectrum, Yamamoto et al. (2010) do not make a correction for fibre
collisions for simplicity. However, since fibre collisions occur pairs
of galaxies that are very close in the plane-of-sky direction, they
can be a source of apparent anisotropy of the clustering of galax-
ies. This effect is studied in Guo, Zehavi & Zheng (2012) for the
multipole moment of the two-point correlation function. Although
they find that it is significant only on small scales (�10 h−1 Mpc),
its impact on the Fourier counterpart is not trivial. Here we give a
rough estimate of this effect using the mock LRGs.

We use mock LRGs in our simulation and simulate this effect
by searching for fibre collision pairs and randomly discarding one
of two galaxies subject to a fibre collision. There are small number
of mock LRGs that have more than one companions that are closer
than 55 arcmin, and we discard these mock LRGs preferentially
to reduce the total number of discarded mock LRGs. We keep the
distant observer approximation and convert the separation of pairs
perpendicular to the line of sight to the observed angle assuming the
angular diameter distance at the effective redshift of observation,
z = 0.3. We do not take into account of multiple observations of
plates to assess the maximum impact of fibre collisions. Strictly
speaking, we should redo the analysis by including this effect into
the MCMC analysis to be more consistent. However, we simply take
the best-fitting mock catalogue explained in the main text (Model
5a) and then implement the effect of fibre collisions since a MCMC
analysis with this effect is time consuming.

We show the result in Fig. B1. Notice that we plot a wider
wavenumber range than in the main text to see the impact of fi-

Figure B1. Impact of fibre collisions on the power spectrum in redshift
space. We plot the multipole moments measured from our best-fitting mock
LRGs (Model 5a) with (solid) and without (dashed) fibre collisions.
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bre collisions down to smaller scales, but the fitting range is same
as before (i.e. kmax = 0.305 h Mpc−1). The figure shows the mul-
tipole moments with or without fibre collisions (solid and dashed
lines, respectively). We also plot the observational data by symbols
with error bars. Fibre collisions suppress the monopole and hex-
adecapole, and amplify the quadrupole moment. The effect is more
prominent on smaller scales. However, at k � 0.3 h Mpc−1, the dif-
ference between the solid and the dashed lines is typically much
smaller than the statistical error on the observational data. Thus we
expect that fibre collisions do not affect the parameter constraints

significantly as long as we focus on relatively large scales. Since
our fitting procedure using N-body data is in principle applicable
to non-linear scales unlike perturbation theory based models that
break down on certain scales where non-linearity is very strong, a
proper inclusion of fibre collisions in the analysis might be impor-
tant to enlarge the wavenumber range from which we can extract
cosmological information robustly.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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