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ABSTRACT

We present a non-parametric, model-independent method to reconstruct the spherical density
profiles of void stacks in real space, without redshift-space distortions. Our method uses the
expected spherical symmetry of stacked voids to build the shape of the spherical density
profile of cosmic voids in real space without any assumption about the cosmological model.
We test the reconstruction algorithm with a toy model, a dark matter simulation and a mock
galaxy catalogue. We present the result for the simulations: the reconstruction of the spherical
density profile for simulated stacked voids in real space. We also present a first application
of the algorithm to reconstruct real cosmic void stacks density profiles in real space from
the Sloan Digital Sky Survey. We discuss capabilities of the algorithm and possible future
improvements. Reconstructed density profiles from real voids open the way to the study of the
spherically averaged dynamical structure of voids.

Key words: dark energy —large-scale structure of Universe.

1 INTRODUCTION

In recent years, cosmologists developed an increasing interest in
cosmic voids (for a historical review see Thompson & Gregory
2011; Chincarini 2013). These structures shape the Universe at
large scales as a cosmic web (Bond, Kofman & Pogosyan 1996),
along with filaments and clusters of galaxies. Voids, discovered in
1978 (Gregory & Thompson 1978; Joeveer, Einasto & Tago 1978;
Tully & Fisher 1978; Kirshner et al. 1981; de Lapparent, Geller &
Huchra 1986), are under-dense regions in the Universe with sizes
from ten to hundreds of Mpc.

The appeal of cosmic voids is considerable: being nearly empty,
they might be mainly composed of dark energy (Bos et al. 2012).
Voids potentially are an important tool to study the effects of dark en-
ergy, but promise also to discriminate between different cosmolog-
ical models (including modified gravity models such as fifth force
models, as shown in Spolyar, Sahlén & Silk 2013 and Clampitt,
Cai & Li 2013; or coupled dark matter—dark energy models, as dis-
cussed by Sutter et al. 2014b). The simplicity of the evolution of
voids, compared to higher density zones of the Universe, is another
asset in favour of their study.

Cosmic voids have, generally, very different shapes. But in a
homogeneous and isotropic universe the average real-space shape
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of voids is spherical (Ryden & Melott 1996), and this feature is
fundamental for our work. In such a universe, there is no possible
reason that could ever give to the void an average shape following
preferred directions. The average shape of cosmic voids is obtained
through stacking. The work of Lavaux & Wandelt (2012), based on
numerical simulations and void stacking, suggests the existence of a
general stacked profile of cosmic voids, roughly independent of void
size and redshift. Real data of stacked voids (Sutter et al. 2012a)
from the Sloan Digital Sky Survey (SDSS) also seem to support
the hypothesis of a common shape for the profile. Furthermore,
the work of Hamaus, Sutter & Wandelt (2014) has investigated
the existence of a simple empirical function to universally describe
void profiles.

The density profile of a stacked cosmic void has a general shape
with an underdensity on the centre; the density then increases to-
wards its maximum value, reached at the overdense wall enclos-
ing the void. The stacked wall consists in clumps, filaments and
sheets. Outside the wall, the profile asymptotes to the mean density.
The spherically symmetric density profile of the stacked void only
depends on radius.

Redshift distortions affect the density profile of cosmic voids
obtained until now (both in simulations and observations). To fully
understand voids, it is of crucial importance to recover the shape of
the density profile without redshift distortions.

When observing galaxies in the universe, we do not have real-
space images. Surveys such as the SDSS measure the position in
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redshift space. Since our Universe is expanding, all galaxies are
redshifted due to the expansion of space. To this is added the redshift
caused by the peculiar motion of the galaxy. Only the line-of-sight
component of velocity affects the galaxy redshift (Hamilton 1998).
In the framework of cosmic voids, this would mean that the real-
space spherical shape of voids is distorted in redshift space (as it
emerges from both Lavaux & Wandelt 2012 and Sutter et al. 2012b).

If we consider only the study of the void itself, the peculiar
velocities of void galaxies are a measure of the evolution of the void.
As a general behaviour, cosmic voids should flow out (as quantified
by Patiri, Betancort-Rijo & Prada 2012 and Aragon-Calvo & Szalay
2013), with a motion of galaxies from the centre of the void towards
the wall. The non-linear part of peculiar velocities thickens the wall,
Ceccarelli et al. (2006) studied the behaviour of velocities near the
wall in mock catalogues (and in data, using the model of velocities
obtained from simulations to analyse real voids). Generally, the
effect of velocities is to increase the distortion of the void along the
line-of-sight direction.

The reconstruction of the spherical profile removes the effect of
peculiar velocities and gives us the first real-space profiles of stacked
voids. The reconstruction has two powerful assets: it does not make
any assumption about the cosmological model or the physics of the
void to get the real-space shape of voids (except for sphericity and
an overall physical scale) and it does not need to model the peculiar
velocity distortions to reconstruct the profile.

This new possibility to determine the density profile of stacked
voids in real space using the spherical symmetry opens the way to
many applications. These include the study of dark energy and the
constraint of cosmological parameters. Since dark energy should
strongly rule the evolution of cosmic voids (where matter is rare),
the physics of the voids is directly linked to dark energy (see Lee
& Park 2009; Bos et al. 2012). The determination of the density
profile of cosmic voids offers a promising avenue to probe their
contents.

The reconstruction of the spherical density profile of cosmic voids
promises also to improve the application of Alcock—Paczyriski test
(illustrated in Alcock & Paczynski 1979) to voids (first suggested
by Ryden 1995, studied and applied in Lavaux & Wandelt 2012;
Sutter et al. 2012b). It is not the purpose of this paper to illustrate
this method (see Sutter et al. 2012b), we will give only a brief
explanation to show the importance of a correct measure of the
spherical density for its application.

The Alcock—Paczynski test applied to cosmic voids compares
the shape of the distorted void in redshift space and of the spherical
void in real space (of course for stacked voids, otherwise sphericity
could not be assumed) to obtain information about the expansion of
the Universe; it uses the void as a standard sphere.

Since the distortion is a combined effect of the expansion of the
Universe and of the peculiar velocities of galaxies, the knowledge
of the spherical density profile of voids in real space would lead to
a more precise application of the Alcock—Paczynski test to measure
the expansion of the Universe. The determination of the density
profile of stacked cosmic voids in real space is the first step to a
model of the effect of peculiar motions and promises to improve
the application of the test.

As pointed out by Verde, Jimenez & Feeney (2013), in light of
the recent results from the Planck satellite [see Ade et al. (Planck
Collaboration XVI) 2013] and of the tension risen with data from
Type Ia supernovae (Riess et al. 1998; Perlmutter et al. 1999), a
local cosmological-independent measure of the Hubble parameter
(potentially accessible with the Alcock—Paczyfiski test) assumes
great importance.
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The paper is organized as follows: in Section 2, we explain the
method to recover the profile in real space, we present the algorithm
for the reconstruction and we test it with a toy model of voids. In
Section 3, we apply the method to a full dark matter simulation
and obtain the shape of the spherical density profile of a simulated
stacked void in real space, independently from the cosmological
model. In Section 4, we further test the reconstruction algorithm on
stacked voids obtained from a mock galaxy catalogue. In Section
5, we present a first application of the algorithm to stacked cosmic
voids from SDSS data (Sutter et al. 2012a) and we discuss capabili-
ties of the algorithm. We finally conclude in Section 5 by a summary
and discussion on future purposes for the use of the algorithm and
possible improvements for further applications to data from real
surveys.

2 SPHERICAL DENSITY PROFILE
RECONSTRUCTION: THE METHOD

2.1 General approach for a standard sphere

For a large number of voids, the stacked voids of Sutter et al.
(2012a) can be considered standard spheres. Peculiar velocities and
the expansion of the Universe distort the standard sphere in redshift
space along the line of sight. The basic idea is that we would like
to remove the distortion to reconstruct the spherical shape in real
space. Our method uses the fact that the projection of the void stack
along the line of sight does not depend on redshift-space distortions.

If we are then able to reconstruct the sphere from the projection,
we will have the spherical density profile in real space, that is
without redshift distortions. We recall that the reconstructed density
profile for a stacked void will simply be a function of the radius,
since the void is spherically symmetric in real space. The idea is
shown in Fig. 1. We note that this can be done for voids of reasonable
size (smaller than 100 2~! Mpc) and at low redshift (z < 1), where
the angular distance is independent of redshift (at higher redshift
some angular effects can appear, depending if the galaxy is in front
of or behind the centre of the void).

Line of sight

Figure 1. Representation of the method to obtain the sphere in real space
from the distorted sphere in redshift space: the distorted void is projected
along the line of sight (velocities do not affect the projection). From the
projection, we reconstruct the sphere in real space. The red arrow represents
ry, the radius of the void in real space; the yellow arrow rp, the radius of the
projection.
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In the next subsection, we will briefly introduce redshift distor-
tions and explain how they affect the shape of the void.

2.2 Spherical density reconstruction

In order to understand correctly how to recover the spherical profile,
we need to give a description of redshift distortions.

2.2.1 Redshift distortions

For the purpose of this paper, we simply want to present the method
to recover the density profile, study its feasibility and show a first ap-
plication as a proof of concept. The analysis of redshift distortions
is simplistic and we leave for future work a more detailed anal-
ysis. We consider approximations valid at low redshift (z < 1)
and low curvature for an isotropic and homogeneous universe.
The redshift distance is obtained considering the real distance plus
the effect of peculiar velocities along the line of sight. Following
the notation in Hamilton (1998), along the line-of-sight direction,
we have: s = r + vcosf, where s is the redshift distance in velocity
units, equal to cz; ris the true distance; and v is the peculiar velocity,
projected along the line-of-sight direction by defining the angle 6
between the line-of-sight direction and the velocity. We then have

¢z = Hyd + vcosé, (D

where c is the speed of light, z is the redshift of the galaxy, Hy is
Hubble constant, and d is the distance of the galaxy. We will now
define the distorted, projected and spherical densities necessary to
apply the method.

2.2.2 Distorted, projected and spherical densities

In this section, we define some notation useful to the discussion of
the method. We consider the density of the void, where by density
we mean the number of galaxies per volume element (a number
density).

First, for a spherical void, the density function is spherically
symmetric. This is the density that we aim to reconstruct. We
write it as g(r,), where r, is the radius of the void, given by
ry = \/x% + y2 + 72 (see Fig. 1).

Secondly, for a distorted void, the density is not spherically sym-
metric, since the void is distorted along the line-of-sight direction,
z. For an isotropic structure, the coordinates x and y are invariant
if we consider a rotation around the axis of the line-of-sight direc-
tion. We can then define the radius of the projection on to a plane
perpendicular to the line of sight: r, = \/x2 + y? (see Fig. 1). The
distorted density is written: p(ry, 2).

Finally, we write the projected density as I(r;,), only depending
on the radius of the projection r,. This density can be thought as
a column density. We obtain the projected density by summing
galaxies in each r;, bin at all z (and normalized in the bin).

We will describe in the next section the method for density profile
reconstruction.

2.2.3 The method for density profile reconstruction

We briefly comment the steps of the method to reconstruct the
density profile of the stacked void in real space (see Fig. 1).

The first step is to project the distorted void density p(r,, z) along
the line of sight in order to obtain I(r;).

The second step is to reconstruct the spherical density g(r,) from
the projection I(r,). The densities /(r,) and g(r,) are related by the

MNRAS 443, 3238-3250 (2014)

Abel transform, that cylindrically projects g(r,) to obtain I(r;,) (Abel
1988; Bracewell 1999):

g(ryry

1(rp)—2/ \/ﬁ

By inverting this relation, it is possible to obtain the spherical
density g(ry) from I(rp,). The formula used for the reconstruction is
known as the inverse Abel transform (Abel 1988; Bracewell 1999):

')

g(rv)———/ \/ﬁ

The problem is that the Abel inverse transform, although well
mathematically defined by the formula, is strongly ill-conditioned:
if there is some noise in the input function I(r;,) (of which I'(r,,) is the
derivative with respect to r;,), the reconstruction will be dominated
by noise. To overcome the problem of ill-conditioning, we have
implemented for the case of voids the idea proposed in Abel (1988),
a polynomial regularization of the inversion. Durret et al. (1999)
applied in the case of clusters a similar idea for the use of Abel
inversion.

To check for consistency with the polynomial regularization
method for the reconstruction, we also developed another method
to obtain the spherical profile g(r,) using singular value decompo-
sition. We now illustrate the two methods.

The polynomial decomposition method approximates the Abel
inversion through integrals of the input function I(r), that is directly
using data. The method allows us to manage noise in the inversion
and gives good results in the case of voids, where the profile (r,)
is noisy.

We summarize the method as follows:

@

3

(i) expand the spherical density to be obtained g(ry) as a polyno-
mial series;

(ii) using the polynomial expansion of g(r,), re-write the Abel
equation relating the 2D projection I(r;,) and the spherical recon-
struction in order to obtain a system of equations with solution
g(rv);

(iii) solve the system of equations.

The polynomial expansion of g(ry) is characterized by an order,
n. The choice of the order n allows us to manage noise and control
the precision of the reconstruction. To determine the order that gives
the best reconstruction, we use the reprojection of the reconstructed
profile: we consider the order that minimizes the difference be-
tween the e (7p) from which we reconstruct and the Ireprojected (7p)
from the reconstruction. For the application of the algorithm to real
data, this test will also be possible: as we will discuss, the Jexaci(rp)
is the projected density from data. Generally, for increasing n, the
precision of the reconstruction increases and the only limitations
are numerical (Li, Huang & Huang 2007).

In order to avoid over- or underfitting, we implement a bootstrap
analysis to choose the order. Bootstrap analysis is more appropriate
in a case where noise strongly affects data (as suggested by Andrae,
Schulze-Hartung & Melchior 2010). For each profile, we create
bootstrap samples from the sample to reconstruct. We implement
the reconstruction and choose the order that gives the best fit for each
one of the samples. We then take the model chosen by the different
bootstrap samples. Also, to test if the choice of the order is robust,
we exclude one point at a time in the profile to reconstruct and check
if the chosen order is stable when redoing the analysis. Finally, we
also calculate the AICc information criteria (Akaike 1974; Burnham
& Anderson 2002) to test the order. For the analysis of voids, the
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bootstrap method remains the most adapted to choose the order: it
accounts for all the sources of errors such as the ill-conditioning of
the inversion procedure and the errors present in the data.

The method of Li et al. (2007) assumes the boundary condition
I(1) = 0 and is described for values of the radius between 0 and 1.
This is the case of the test function for the toy model, but is not the
case of voids: the density is not zero outside the void. We had to
adapt the method for voids by rescaling the void and considering
that, if I(r,) is different from O in r, = 1, the mean density must
be subtracted from the reconstruction. Also, the method described
in Li et al. (2007) worked for the projection of a circular profile on
a line, i.e. from 2D to 1D. We adapted it for our application of a
sphere (3D) to be reconstructed from a disk (2D).

To validate the polynomial reconstruction method, we control
that I(r,) and g(r,) have the same value at the edge of the void,
where the projection is equal to the value of the 3D function (since
the projection is done along a line tangent to the void, it considers
only the point at the very edge of the void). As a cross-check for the
reconstruction of the void, we reproject the spherical reconstructed
profile. The reprojection must match the projection of distorted
density profile.

We now illustrate the second method for the reconstruction, using
the singular value decomposition approach to overcome the ill-
conditioning of the Abel inverse. The singular value decomposition
relies on the consideration that, if we discretize the integration of
the inverse, projecting is like computing a matrix operation. We call
M the matrix of the projection. We can write:

I = MG, 4

where [ is the projected density (that is our data, with noise), G is
the spherical density and M is the matrix allowing for the transfor-
mation between / and G. We use singular value decomposition to
decompose M into U (a unitary matrix), W (a diagonal matrix) and
V (a unitary matrix). The Abel inverse can then be written as

G =VW'U"I. 3)

The use of singular value decomposition allows us to drop the
noisiest singular values, which are the smallest in matrix W. The
number of singular values that we keep must be discussed: we need
to drop enough to control noise, but not too much or we will lose
information.

The way we manage the choice of the number of dropped singu-
lar values is the same as the way we used to choose the order in the
polynomial regularization method: we reproject the reconstructed
profile and consider the order that minimizes the difference between
the Iexae(7p) from which we reconstruct and the Teprojecied(7p) from
the reconstruction. We use the calculation of AICc to determine the
number of dropped singular values for the reconstruction. In a cer-
tain way, the singular value decomposition method is the general-
ization of the first method without the assumption of the polynomial
form for the spherical density profile to reconstruct g(r).

There is a conceptual difference between the two methods. The
singular value decomposition method determines the basis that gives
the best reconstruction using all the points of /(rp) to calculate the
spherical density. Thus, it gives a more regular reconstructed density
profile for the first points. The determination is however strongly
dependent on data and might be more sensitive to noise. On the
other hand, the method with polynomial regularization of the Abel
inverse enforces polynomial smoothness and calculates the values
of the density g(r,) at each point, considering for the calculation
only the points of I(r;,) from the considered radius 7, to the edge of
the sphere (see Li et al. 2007 for details). A separate reconstruction

Real-space reconstruction of void stacks 3241

for each point of g(r,) gives a less regular profile for the first points
of the profile (due to the higher difficulty of disentangling the 3D
structure from a projection when considering all the radii from the
centre to the edge, as it is for the inner points) but might be useful
to control noise for the reconstruction of voids, where the presence
of clumps in the wall and noise in data is likely to affect the quality
of the reconstruction.

In the next sections, we apply the reconstruction to a toy model
and a dark matter simulation.

2.3 Testing the method with toy model

In order to test the feasibility of the method, we can simulate a dis-
torted profile by artificially adding a velocity along the line of sight
to a spherical profile. Since we know the initial spherical profile,
we can test our algorithm by trying to recover the correct initially
spherical density from the distorted one. We use the simplicity of
this toy model to illustrate the full method for the reconstruction
of the spherical density profile, so that in the next sections we can
directly present results for simulations and real voids.

From the presentation and explanation of the method in previous
sections, it can be understood that the following steps are neces-
sary: create a distorted profile, project it along the line of sight and
reconstruct the sphere from the projection.

In order to have an efficient test, we choose an example function
for which we can calculate the exact Abel inverse through mathe-
matical integration. These kinds of functions are called Abel pairs
(Abel 1988; Bracewell 1999). We test all the steps of the algorithm
with this function, considering that we know through analytic cal-
culation gexact(ry) and Iexae(rp), related through equation (3). We
have chosen the following test function:

Lexacr(rp) = 1 —r2(19 + 34r; — 125r) +72r7) (6)

8
105

1 2 4 6
Zexact(rv) = E(l + 10rv — 23VV + 12}"\,). (7

The function for the toy model needs to have an exact mathemat-
ical inversion, this is the only important constraint for its choice.
Additionally, it has a shape whose features roughly match those of
a void profile.

The first step is to create a distorted profile from the spherical
profile gexact(rv). We show the results of the distortion in Fig. 2
(right-hand plot), along with the spherical profile (left-hand plot).

16
14
12

1

1.6
1.4
12

1

" 08 0.8
06 0.6

04 0.4

02 0.2

0 0

0 02 04 06 08
rp(h'lMpc)

0 02 04 06 08
r, (b Mpc)

Figure 2. 3D density spherical profile (right) and 3D density simulated
distorted profile (left) for the test function. Units for the density are arbitrary
in the toy model, since we use a test function.
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04

Tp
Figure 3. Projection from a 3D simulated distorted profile (red bars) and
theoretical projection (black line). As a sanity check: the projected profile
from the distorted sphere matches the profile from the theoretical projection
(the projection of the spherical profile), the projection cancels the deforma-
tion of the density profile.

1.2

0.6 1

g(r,)

04 r ]
Theoretical g(r,) ——
Reconstructed g(r,) nnninin

O L L L L
02 04 0.6 0.8 1

I,

0.2

Figure 4. Theoretical profile of the 3D density g(ry) (black line) and re-
constructed profile (red bars) in the case without noise (using the method of
polynomial regularization).

The void is distorted by adding an artificial velocity component to
the r, coordinate (as described in equation 1), which, as expected,
changes the value of the density.

The next step is the projection of the distorted profile. Peculiar
velocities contribute to redshift and distort the density profile; but,
since the distortion is along the line of sight, velocities do not affect
the projection. As a sanity check, we control that the projection
of the distorted density is the same as the projection ey,(r,) from
the non-distorted profile gexact(7v), €ven when using different kinds
of velocity to distort the profile (such as v(ry) = ary, or v(ry) =
ar?). Fig. 3 shows the result of the comparison: the profiles match
perfectly.

Once we have the projection, we can reconstruct the spherical
density profile of the stacked void, g(ry).

We show in Fig. 4 an example of the reconstruction of g(ry)
from the test function I(r,) without noise. To show the ability of
the algorithm to reduce noise in the reconstruction, we show the
reconstruction in the case of a 1 per cent Gaussian noise in the input
function and compare this to the direct calculation of Abel inverse,

MNRAS 443, 3238-3250 (2014)
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Figure 5. Theoretical profile of the 3D density g(ry) (black line) and re-
constructed profile (red) in the case with 1 per cent Gaussian noise in the
input function. The left-hand plot shows the Abel inversion without regu-
larization, the right-hand plot shows the reconstruction obtained with the
polynomial regularization of the inversion.

without methods to reduce the noise (see Fig. 5). The reconstruction
with regularization matches the theoretical gexact(7v)-

In this simple case, because the function can be inverted analyt-
ically, both the singular value decomposition and the polynomial
reconstruction method give very good results (the reconstruction
overlaps with the theoretical profile). We widely tested the spheri-
cal reconstruction with the methods for many known functions (not
only our test function), both without noise and with noise (we added
a 1 percent, 3 percent and 5 per cent noise to other test functions
and correctly reconstructed the 3D profile). In the next section, we
discuss the presence of noise in the profile and argue that a full
dark matter simulation is needed to correctly test the reconstruction
algorithm.

2.4 Noise in density profiles

In the case of the toy model, we have considered an arbitrary per-
centage of noise, aiming to assess the capability of the algorithm to
overcome noise in the reconstruction.

Despite of its capacity to show noise reduction in the inverse, the
toy model cannot account in a realistic and physical way for the
complex sources of noise that would be present in a full simulation.
The main source of noise in the density profiles is due to the sparsity
of data, specifically Poisson noise on galaxy counts in the bins for
the projected I(rp). The use of the stacking procedure allows us to
obtain well-populated stacks, thereby permitting the extraction of
cosmological information.

So, while the simpler case of the toy model is a proof of concept
to assess the capability of the algorithm to control noise in the recon-
struction procedure, the use of a simulated stacked void accounts
for a more complex and realistic situation, where noise is implicitly
taken into account. Furthermore, the use of a simulated void from a
full dark matter particle simulation naturally takes into account the
clustering of structures, serving the purpose of this paper to test the
reconstruction algorithm and show its first application as a proof of
concept.

The simulation provides us with a robust test for the reconstruc-
tion algorithm and for the impact of noise in the reconstruction.
More details are given in the next section.
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Figure 6. Distorted density profile of stacked void (left) from simulation and reconstructed spherical void in real space (right), both normalized to the mean
density. Black contours in both images are density contours at 0.8 (where we have normalized to mean density).

3 TESTING THE METHOD WITH A
SIMULATED STACKED VOID

We will now compare the reconstruction methods in a more realistic
case: a stacked void from a full dark matter simulation. We test the
reconstruction in the case of a full simulation (by comparison with
the known spherical profile from the simulation) and we show the
consistency between results from the two reconstruction methods.

The simulated stacked void contains voids with radii between 10
and 12 A~' Mpc from a dark matter particle simulation in a 500
h~" Mpc box with 5123 particles used in Lavaux & Wandelt (2012).
The void finder is also the same, based on Neyrinck (2008, zoBov).
We clearly see the void profile (Fig. 6, left-hand plot) in redshift
space, with a low density at the centre and a wall at 10-12 2~! Mpc.
As expected, the distortion is along the line-of-sight direction.

3.1 Reconstructed density profile of simulated stacked void

The spherical reconstructed profile is shown in Fig. 6 (right). To
test the quality of the reconstruction, we use the known spherical
profile from the real-space position of the particles. Fig. 7 shows
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Figure7. The polynomial reconstruction matches the spherical profile from
simulation within the error bars (except for the inner part of the profile, as
discussed in Section 3). A further confirmation of the agreement is given
by the match of the projection (see Fig. 10). The reconstruction is obtained
from a subsample of 200 000 dark matter particles of the total (about 10°
particles). The error bars are correlated.
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Figure 8. Reconstructed density for the simulated void from a smaller
subsample (100 000 dark matter particles of the total, about 10° particles).
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Figure 9. Choice of the order for the polynomial regularization method of
the Abel inverse, in the case of a simulated void. The solid black line is
the order chosen by bootstrap method, which also coincides with the order
chosen by the AICc information criterion and minimization of chi-squared.
The dashed black line shows the order chosen by minimizing the reduced
chi-squared.

the result of the reconstruction: it matches the spherical profile from
simulation, validating the reconstruction. It must be noted that the
reconstruction is obtained from a subsample of 200 000 dark matter
particles of the total (about 10° particles). Real stacked voids do
not have 10° galaxies as the simulated stacked void and, by taking
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only 200 000 of 10°, we crudely simulate the effect of subsampling
due to the fact that we are not able to observe all the galaxies that
shape voids. We also show in Fig. 8 a reconstructed profile obtained
from a sample of 100 000 particles in the same void stack: the
reconstruction is noisier and with higher errors, but we are still able
to reconstruct the void shape despite the smaller subsampling. This
shows the capability of the algorithm to work with a subsampled
number of galaxies, as in the case of real stacked voids. Furthermore,
the quality of the reconstruction can be assessed by checking the
reprojection of the profile.

We compute error bars for the polynomial reconstruction method
considering Poisson noise on galaxy counts in the bins for the
projected I(rp) and use the bootstrap method to obtain the error
bars in the reconstruction and in the reprojection. The bootstrap
error analysis gives a realistic estimation of errors due to the finite
number of galaxies. We show in Fig. 9 the choice of the order for the
simulated void reconstruction (following the procedure discussed
in Section 2.2.3). The order selected by the bootstrap method is
the most realistic to choose, since the bootstrap analysis takes into
account all the errors affecting the reconstruction.

The estimates for the density profile reconstruction are corre-
lated. The error bars are higher at small radii of the void because
the algorithm of polynomial regularization is less precise for inner
points: the reconstruction is more complicated at the centre, where
the projection gets a major contribution from the outer shells of the
sphere.

Before concluding this section, we briefly comment the differ-
ences between the toy model and the simulation reconstructions.
In the toy model, the simplicity of the function used to roughly
represent a density profile of a void gives rise to regular contours
even after the distortions due to the added peculiar velocities. The
contours in Fig. 2 remain symmetric. On the contrary, the simulated
stacked void has all the complexity of a real stacked void, includ-
ing realistic noise in the projected shape of the void that we use to
reconstruct the spherical density profile in real space. The presence
of noise results in contours that have a slightly different extent in r;,
compared to the corresponding redshift profile (see Fig. 6).

Despite the presence of this kind of effect, arising in the realistic
case of the simulation, the reconstruction algorithm still dominates
the ill-conditioning of the inverse and is able to manage noise,
obtaining a profile that is coherent (as discussed in this and in the
next section) with the profile from the simulation, used to test the
reconstruction.

3.2 The reprojection, a quality test for the reconstruction

To further check for consistency, we also reproject the reconstructed
spherical void (Fig. 10). This is an important sanity check for the
reconstruction algorithm. In ill-conditioned problems, noise can
easily blow up and completely dominate the results.

For this particular problem of reconstruction, we have the pos-
sibility to re-invert the procedure by projecting the reconstructed
density profile to check if its projection matches the projected pro-
file I(rp) from which we made the reconstruction. In the case of
data with noise, the consistency test allows us to check results: the
match of the reprojection can be used to validate the reconstruction
for the profiles when applying the algorithm to real data, where the
ill-conditioning due to noise must be dominated. So, in addition to
the robustness of the method (that uses chi-square, AICc criteria
and also bootstrap analysis to obtain a profile acceptable within the
error bars), we have here an independent quality test validating the
reconstruction.
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Figure 10. For the simulated void, match between the I(rp) from simulated
data and the reprojection from the reconstructed profile from a subsample of
200 000 dark matter particles of the total (about 10° particles). The light-blue
bands are the errors on the reprojected /(r;,) (that is obtained by projecting
the reconstructed spherical density profile g(ry)).
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Figure 11. The singular value decomposition reconstruction matches the
spherical profile from simulation within the error bars (green bands corre-
spond to 1o, grey to 20), but is more affected by noise than the polynomial
regularization method. The reconstruction is obtained from a subsample of
200 000 dark matter particles of the total (about 10° particles). The error
bars are correlated.

Fig. 10 shows the result of this test for the simulated void: the
reprojection matches the initial projection /(rp) (within the error
bars), validating the reconstruction. The I(r,) is obtained from the
simulation, by projecting the positions of galaxies and counting
galaxies in radial bins on the plane of the projection. While the
inner points of the profile are noisier as expected, we get high-
quality information for the part of the void where the density rises
from low to high values near the wall.

3.3 The singular value decomposition method for the
simulated void

We also show in Fig. 11 the reconstruction with the singular
value decomposition method, in order to check for consistency. As
discussed, the profile obtained in the case of the singular value de-
composition method is more sensitive to the presence of clumps in
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the wall, because it considers all the points together to obtain the
profile g(ry). This might affect the quality of reconstruction. Fur-
thermore, the singular value decomposition method has larger error
bars since it does not use prior information (except the truncation
of the matrix of singular values); while the polynomial regulariza-
tion method enforced polynomial smoothness. For this reason, the
singular value method is less precise than the polynomial method.

As a conclusion, apart from the mentioned difference, both meth-
ods [polynomial regularization and singular value decomposition
(SVD)] allow us to manage noise in the Abel inverse transform and
show similar reconstructed profiles. For practical purposes, we have
chosen the polynomial regularization method, that is more adapted
in the case of voids, and use the second to check for consistency in
the reconstruction.

The reconstruction of the spherical profile for stacked voids in
the case of a dark matter particle simulation (Fig. 10) is completely
implemented and tested. As a further test of the quality of the
reconstruction and capability of the algorithm, we describe in the
next section a test with stacked voids from a mock galaxy catalogue.

4 TESTING THE ALGORITHM WITH
STACKED VOIDS FROM A MOCK GALAXY
CATALOGUE

To further test the capability of the reconstruction algorithm, we
use a mock galaxy catalogue matching the properties of the SDSS
DR?7. The mock catalogue is sourced from a high-resolution N-body
dark matter simulation with Acold dark matter cosmology, 1024°
particles and 1 1~'Gpc side (also used in Sutter et al. 2013) and part
of the Public Cosmic Void Catalog.! The cosmological parameters
of the simulation assume a Wilkinson Microwave Anisotropy Probe
7-year cosmology, the initial conditions of the simulation were
obtained through a power spectrum calculated with cLass (Blas,
Lesgourgues & Tram 2011) and realized with a modified version
of 2LpTIC (Crocce, Pueblas & Scoccimarro 2006). The simulation is
used as a source for a halo occupation distribution model (Tinker,
Weinberg & Zheng 2006; Zheng, Coil & Zehavi 2007) to produce
the galaxy catalogue. The model assigns to each dark matter halo
of mass M a central galaxy and satellite galaxies, the mean number
of central galaxies and satellites is described by

logM — logMyi,
1+erf<°g°gﬂ ®)

OlogM

(NealD)) =

N = (Nomii) [ M0 ©)
(W) = (V) | =7

where we have o'1og41, Min, Mo, M| and « as free parameters which
are set to match the properties of a given galaxy population. Namely,
we match the galaxy population to the main sample of SDSS DR7
(Strauss et al. 2002; Zehavi et al. 2011).

This allows us to have a mock galaxy catalogue exactly matching
the real data to which we will apply the reconstruction algorithm.
We thus run the void finder vipe described in Sutter et al. (2014a)
and obtain void stacks on which we run the reconstruction with
polynomial regularization.

With the methodology described in the previous section, we ap-
ply the algorithm to stacked voids obtained from the mock galaxy
catalogue matching the properties of the SDSS DR7. To assess the

Uhttp://www.cosmicvoids.net
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Figure 12. Reconstruction for a 10-15 4~ Mpc stacked void from the
mock galaxy catalogue: left-hand plot shows the match between the profile
in real space from the mock catalogue (dashed blue line) and the recon-
structed profile g(ry)(black line); right-hand plot shows the match between
the I(rp) from the mock catalogue (black line) and the reprojection from
the reconstructed profile g(ry) (dashed blue line). The light-blue bands are
the errors on the reprojected /(r;,) (that is obtained by projecting the recon-
structed spherical density profile g(ry)). Here, we have normalized to mean
density for g (while I(r,) units are number of galaxies per (h~! Mpc)z).
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Figure 13. Reconstruction for a 4045 h~! Mpc stacked void from the
mock galaxy catalogue. Construction and colouring is identical to Fig. 12.

capability of the algorithm, we compare the reconstructed profile
with the real-space profile of the stacked void from the mock cat-
alogue. Furthermore, we use the reprojection of the profile as a
quality test for the reconstruction, as described in Section 3.2. This
independent test is a further validation of the reconstruction.

We show in Figs 12 and 13 the reconstructions for stacked voids
of, respectively, 10-15 h~! Mpc and a 40-45 h~! Mpc radii from the
mock galaxy catalogue: in both cases, the reconstructed real-space
stacked void profile matches the profile of the stacked void from the
mock catalogue. The sanity check of the reprojection serves as an
additional consistency check for the quality of the reconstruction.
We notice that the first points are less precise: the error bars are
higher at small radii.

As discussed in the previous section, the reconstruction with the
algorithm is more complicated at the centre, where the projection
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gets a major contribution from the outer shells of the sphere, re-
sulting in an increased precision for the profile when the radius
increases. As expected, this is correctly captured by the test with
the reprojection, which also shows that the reconstruction is able to
overcome the ill-conditioning and to recover the real-space density
profile of the stacked voids.

The reconstruction of the spherical profile of stacked voids ob-
tained from a mock galaxy catalogue targeted to match the prop-
erties of the SDSS DR7 sample (Figs 12 and 13) has been suc-
cessfully tested. The set is now ready for a first application to real
data: reconstruct spherical density profiles of stacked voids from
the SDSS.

5 RESULTS: DENSITY PROFILES FOR REAL
STACKED VOIDS

In this part, we will present the results of a first application of
the algorithm to the most recent real stacked voids catalogue from
Sutter et al. (2012a). The catalogue is divided in data sets based on
redshift and radius of stackings. More precisely, the data sets are:
diml (z = 0.0-0.05), dim2 (z = 0.05-0.1), bright1 (z = 0.1-0.15),
bright2 (z = 0.15-0.20), Irgdim (z = 0.16-0.36) and Irgbright (z =
0.36-0.44). The first application shows that consistent results can
be obtained from real data, for the purpose of this paper, we focus
on showing the general shape of profiles in a subset of the data sets
of stacked voids.

It is clear that good reconstruction requires void stacks with a
large number of voids (to converge to an isotropic stack) and galax-
ies (to lower Poisson noise). We will present a few first examples of
real-space void profile reconstructions where these conditions hold
at least approximately.

At first glance, considering the need of many voids and galaxies
in the stack, we might think that stacked voids including a large
range of radii for the voids sizes would give better results. This is
not the case: if the range of radii for voids in the stack is too large
compared to the size of the smallest voids in the stack (for example
a stacking of 5-25 h~! Mpc), the wall of the stack is very thick,
and the density profile noisy, since we are stacking voids with very

different wall sizes and with a small common volume. Very large
bins would then be undesirable since they would mix too many void
scales, the lack of rescaling in these cases would result in a very
broad profile.

Nevertheless, even if, on average the shape of voids is spherical,
each void of the stack can have a different shape and a different
wall thickness. Depending on the use to be done for the stacked
void, it might be preferable to consider a range of radii for voids
when stacking voids (instead of normalizing at the void radius).
The rescaling could indeed distort the profiles and affect their use,
it might thus be necessary to check whether the rescaling changes
or not the properties of the stack (as discussed in Sutter et al. 2012b,
where the rescaled and the non-rescaled case are compared).

For such cases, we want to assess the capability of the algorithm
to reconstruct the real-space shape even with extreme cases — which
mean larger and possibly unscaled bins — in the eventuality of a
non-rescaling choice. As we will further discuss, the example of the
5-15 h~! Mpc stack in Fig. 14 shows that the reconstruction works
well even in this more extreme case: the reconstructed void has, as
expected, a large wall — the physical properties are preserved in the
reconstruction.

We finally point out that, in the eventuality of choosing to work
with a range of radii for the stacks, the reconstruction algorithm
remains well performing, but a balance is generally needed between
too large radii stacks (to avoid poor populated voids) and too small
radii stacks (to avoid mixing too many scales).

Indeed, choosing a range of radii that is too small (for example
10-12 A~! Mpc) will not be adequate in the case of real data. In
such small ranges, the number of voids would be very limited, the
noise on projection high and the reconstruction poor. This radius
range is acceptable only for the simulation, where we have enough
particles and can get a sample of 200 000 particles in a void stack
with radius range of 10-12 2~' Mpc.

Globally, data sets with more galaxies have lower error, so for
data sets of voids with small radius (that have more voids), the error
is smaller in the I(r,) and consequently also in the reconstruction
g(ry). The projections of large voids have higher noise because
there are less voids (and less galaxies). Furthermore, data sets at

0 03 06 09 12 g(ry) I(t,)
110
14
12 105 —
210 100 i
o
£ 8 95 ]
< 6
X 90 i
4
2 85 I I(r,) ——
Reprojected I(r)) -
0 go L o P,
0 2 4 6 8 10 12 14 024 6 8101214 0 2 4 6 8 10 12 14
-1 1
I'p (h-lMpC) rV (h Mpc) rp (h MpC)

Figure 14. Results for a 5-15 1~ Mpc stacked void of data set dim2: from left to right, we represent the density in redshift space p(rp, 2), the reconstructed
density g(ry) as a one-dimensional plot, and finally, the comparison between initial /(rp) (column density) and the reprojected /(r;,) from the reconstruction.
The light-blue bands on the right-hand plot are the errors on the reprojected /(r,) obtained by projecting the reconstructed spherical density profile g(ry). Here,
we have normalized to mean density for g and p (while /(r},) units are number of galaxies per (! Mpc)z).
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Table 1. Stacked cosmic voids from SDSS data.

Stack radius Redshift Dataset Galaxies  Voids
5-15 0.05-0.10 dim2 173929 173
1015 0.05-0.10 dim2 43 527 41
20-25 0.10-0.15  brightl 21241 17
25-45 0.15-0.20  bright2 51913 37

large redshift have higher noise, because less galaxies are detected
at larger redshift.

So we limit the choice to low redshift and to small voids: we ex-
clude data sets Irgbright, Irgdim and large sizes of voids (larger than
45 h~' Mpc) since they have noise-dominated projected densities.

Finally, from the analysis of the full data set, it empirically
emerges that even data sets with many voids need to have an average
of at least 1000 galaxies for each void to have an acceptable signal to
noise. We found that both data sets with many low populated voids
and data sets with few highly populated voids have noise-dominated
profiles. Only data sets well populated in number of voids and in
number of galaxies per void can give acceptable profiles.

Following these considerations, to illustrate a first application of
the method, we have chosen stacked cosmic voids with an average
of 1000 galaxies per void and (for some of them) at least 35 voids
per stack. The number of voids in the stack must indeed allow the
assumption of sphericity, this is why it cannot be too low. For the
considered cases, the algorithm controls noise in the reconstruction
and gives an acceptable spherical density profile.

We consider the stacked voids in Table 1.

In this first application, we show for each stack the distorted den-
sity profile of the stacked void in the plane (ry, z), the reconstructed
spherical profile in real space (as a function of the radius of the void
ry, since the profile is spherical) and the projection from which the
reconstruction is done.

We also show, for each reconstructed profile, the reprojected
density obtained from the reconstruction. In each plot of the repro-
jected density (right-hand plot of Figs 14, 15, 16 and 17), the light-
blue bands represent the errors on the reprojected I(r,) obtained by
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projecting the reconstructed spherical density profile g(ry). As dis-
cussed, we compute errors using bootstrap samples, in order to fully
take into account the effects contributing to errors. The shape of the
reconstructed profiles generally reaches gently the mean density.
The reprojected density shown in Figs 14, 15, 16 and 17 generally
peaks at the radius of voids since it sums all the galaxies along
the line of sight, which at that radius includes the wall. As pointed
out in Section 3.2, the comparison of the reprojected density with
the initial /(r,) from data allows us to check the quality of the
reconstruction, so we use the reprojected I(r,,) as a diagnostic.

The reconstructions show the capability of the algorithm to obtain
the spherical profile in real space even in the case of real noisy
projections. All the profiles show the characteristic shape of the
void: underdensity in the centre, wall and then return to mean density
of the stack. As noted in the simulated stacked void, the first few
points are noisier. After those initial points, the reconstruction is
acceptable.

The fact that a good reconstruction can be obtained even in the
case of very noisy data is an important asset of the algorithm. The
noise reduction of the Abel inversion is critical in the case of high
noise in the initial projection of the stacked void, i.e. for real stacked
cosmic voids. The reconstruction also validates the stacking radius,
since it is now possible to check the radius of the void stacks in real
space.

We now briefly comment on the profiles. For data set dim2
(Figs 14 and 15), we choose to represent stacks with two different
radii ranges for the stacking, in order to show the effect of the differ-
ent, overlapping ranges on the reconstruction. The first (see Fig. 14)
is a stacking of voids with radii in the range 5-15 h~! Mpc, the
second is a stacking of voids with radii in the range 10-15 4~! Mpc.
We immediately see in the reconstruction that the wall for the stack
5-15 h~! Mpc (see Fig. 14) is thicker and the slope of the density
profile is higher compared to the 1015 42~! Mpc stacked void (see
Fig. 15). This is because for the 5-15 h~! Mpc stack, we include
very small voids (with 5 h~! Mpc of radius), so the wall starts at
smaller radius. The stacking with larger bins will contain more
galaxies, but the resolution for the shape of the wall will be lower
and will result in a different shape. If we consider the stacking of
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Figure 15. Results for a 10-15 2~! Mpc stacked void of data set dim2: from left to right, we represent the density in redshift space p(rp, 2), the reconstructed
density g(ry) as a one-dimensional plot, and finally, the comparison between initial /(rp) (column density) and the reprojected I(rp) from the reconstruction.
The light-blue bands on the right-hand plot are the errors on the reprojected /(r,) obtained by projecting the reconstructed spherical density profile g(ry). Here,
we have normalized to mean density for g and p (while I(r) units are number of galaxies per (h~"Mpc)?).

MNRAS 443, 3238-3250 (2014)

220z ludy Gg uo Jasn O1S| - SUND Ad 6968101/8EZE/P/E Fi/a101UE/SEIUW/WOD dNO"DlWaPEDE//:SdRY WOl POPEOJUMOQ



3248  A. Pisani et al.

0 03 06 09 12 g(ry) Ir,)
14 5
1.2 48 t ]
1 46 t AN
0.8 44
0.6 142t
: 2
0.4 il
02 136t
0 34t
-0.2 3o |
04 3 he di(r") —_
0.6 » g LReprojected [(rp), -
0O 5 10 15 20 25 0 51015202530 0 5 10 15 20 25 30
-1 1
rp (3 Mpe) ry (b Mpe) & (0" Mpo)

Figure 16. Results for a 20-25 A~! Mpc stacked void of data set bright1: from left to right, we represent the density in redshift space p(rp, 2), the reconstructed
density g(ry) as a one-dimensional plot, and finally the comparison between initial /(r;,) (column density) and the reprojected /(1) from the reconstruction.
The light-blue bands on the right-hand plot are the errors on the reprojected /(r,) obtained by projecting the reconstructed spherical density profile g(ry). Here,
we have normalized to mean density for g and p (while /(r,) units are number of galaxies per (h~" Mpc)?). Low sampling leads to biases at small radii.
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Figure 17. Results for a 25-45 h~! Mpc stacked void of data set bright2: from left to right, we represent the density in redshift space p(rp, 2), the reconstructed
density g(ry) as a one-dimensional plot, and finally the comparison between initial /(r,) (column density) and the reprojected /(rp,) from the reconstruction. The
light-blue bands on the right-hand plot are the errors on the reprojected /(r;,) obtained by projecting the reconstructed spherical density profile g(rv). Here, we
have normalized to mean density for g and p (while /(r,) units are number of galaxies per (h~" Mpc)?). Low sampling leads to biases at small and large radii.

voids with radii in the range 10-15 h~! Mpc, the compensation in
the profile is narrower, since the wall does not include the wall of
the voids with 5 A~! Mpc radius.

From this, we can get two conclusions. The first is that the re-
construction of the density profile in real space correctly reflects
the physical properties of the stack: we recover a thicker wall if
we consider small radii voids in the stack. The second is that, if
we want to extract cosmological information from stacked voids,
it is necessary to be cautious in taking reasonable radius ranges
for the stacks and understand well the effects of the stacking on
the density profile for each application. This affects the shape of
the void (and the thickness of the wall, that is the compensation).
Further work with density reconstruction in real space and stacking
of reconstructed profiles might help to understand the dynamics of
voids and eventually study the existence of a universal profile.

MNRAS 443, 3238-3250 (2014)

We also note that the 1015 2~! Mpc stacked void has slightly
negative values for the first points of the profile. We did not use any
prior assumption for the density to be positive, and, as observed in
the case of the simulated void, the first points of the reconstruc-
tion are less precise, while the reconstruction gains in precision
when the radius increase. With less galaxies, the profile loses preci-
sion in the centre: the 5-15 4~! Mpc stack is less affected by errors
because of the high number of galaxies considered (173 929 galax-
ies, see Table 1). The match within the errors of the reprojected ()
with the density /(r,) from data (right-hand plot in Figs 14 and 15)
is a consistency check for the reconstruction of both profiles from
data set dim2.

We now analyse the results for bigger voids. The stacked void
from data set brightl with radius in the range 20-25 h~' Mpc (see
Fig. 16), is more affected by noise, as expected because of the small
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number of voids. The reconstruction is noisier at small radii (lower
than 10 2~! Mpc), but the algorithm still manages to reconstruct
the profile. Here, the density starts increasing after 10 2~' Mpc,
and its slope is higher. We observe that the inner part of the profile
has density values higher than expected. This might depend on the
feature of the algorithm (that gains in precision at a few points
from the centre) and on the assumption of sphericity: in the case
of large voids, the low sampling of galaxies might result in large
asymmetries and explain the observed higher densities in the centre
of voids.

Finally, the profile of the stacked void of 25-45 h~! Mpc of data
set bright2 (Fig. 17) shows a lower density for the wall compared
to other data sets.

We have shown as a proof of concept the first application of the
algorithm to real stacked voids. The use of our algorithm with well-
populated stacks of well-populated voids in the case of real data
allows us to control noise in the reconstruction and to obtain the
expected profile of stacked voids. In the next section, we conclude
and discuss limitations and future improvements of the algorithm.

6 CONCLUSIONS AND FUTURE WORK

We have presented a model-independent non-parametric algorithm
to reconstruct spherical density profiles of stacked voids. We have
tested the algorithm in the case of a simplistic toy model in order to
illustrate the method.

We compute the density profile in real space for a simulated
stacked void. We used different methods to implement the Abel
inverse with the aim of checking for consistency. The reconstruction
of the density profile for the stacked void matches the profile in
the simulation, showing the capability of the algorithm to obtain
a reliable profile. Furthermore, we have tested the algorithm with
a realistic mock galaxy catalogue mimicking data from the SDSS
DR?7. The mocks provide a validation of the algorithm in the case
of scenarios with realistic signal to noise, further enhancing its
reliability for the application to real data.

Finally, we showed a first application of the algorithm to real data
and obtained the spherical density profile of real, well-populated
stacked voids from the catalogue of Sutter et al. (2012a). We set
some constraints on the number of galaxies needed for each void of
the stack (at least 1000 galaxies per void) and on the number of voids
of the stack necessary to allow the algorithm to overcome noise (35
voids). We have shown the capability of the algorithm to control
noise in the reconstruction of the void density profile in real space
solely assuming (asymptotic) sphericity, i.e. without introducing a
prior on cosmological parameters or a dynamical model of voids.

The main limitation of the algorithm remains the high noise in
the projection for data sets at high redshift and for large voids. In-
troducing reasonable priors may improve the reconstruction at the
expense of giving up some of the explicit model independence. In
the reconstructed stacked void density profiles, the shape and value
of the overdensity of the wall (the compensation) has an important
role in understanding the physics of the void and is another factor
to be investigated in future work. The reconstructed density g(r,)
might allow in future to discriminate between different cosmologi-
cal models.

This first application of the algorithm on real voids is a proof
of concept, the first step to a better understanding of the shape of
voids. It is important to determine the reason of these differences in
the shape of voids, that might depend on many factors (on the ra-
dius, physics and evolution of the stacked void). Lavaux & Wandelt
(2012) and Sutter et al. (2012b) suggested the presence of a com-
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mon profile for stacked voids of different radii. The reconstruction
of density profiles in real space offers the possibility to analyse this
claim in observations and we assess for further work its detailed in-
vestigation. A future possible improvement of the algorithm would
be the rescaling of the reconstructed profile for different sizes of
voids to obtain statistical properties of profiles.

As for future applications, since the Alcock—Paczynski test re-
lies on the difference between the shape of void in redshift space
and in real space to measure the expansion of the Universe, the
cosmological-independent shape of the voids density profile in real
space can help to reduce the systematic error in the test (Sutter et al.
2012b): it would give the exact shape of the void to compare with
the distorted shape of the void in redshift-space data. Furthermore,
a complete knowledge of the real density profile of voids will allow
studying their evolution without being affected by redshift distor-
tions. Among other applications, we will consider the reconstruction
of the expansion of voids and their velocity profile.

Finally, Verde et al. (2013) argued that a local cosmological-
independent measure of the Hubble parameter (that can be pro-
vided by the Alcock—Paczyinski test) may help understanding the
discrepancy suggested by recent data for the value of Hy [see Riess
et al. 1998; Perlmutter et al. 1999, Ade et al. (Planck Collaboration
XVI) 2013 but also discussions in Fleury, Dupuy & Uzan 2013;
Marra et al. 2013]. Models of modified gravity (such as fifth force
models) and dark energy (e.g. Clampitt et al. 2013; Spolyar et al.
2013; Sutter et al. 2014b) could be constrained with our algorithm:
considering the shape of the density profiles on simulations with the
models and the shape of profiles obtained applying our algorithm
to observational data, we could discriminate between such mod-
els. The reconstruction method does not make any cosmological
assumption about the model, thus the density profile reconstruction
of stacked voids in real space opens the way to better constrain the
value of the Hubble constant and eventually cosmological models
and new physics on current and future data sets such as the Euclid
survey (Laureijs et al. 2011).
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