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ABSTRACT

Oscillating shapes of the primordial bispectrum are present in many inflationary models. The Planck experiment has recently published
measurements of oscillating shapes, which were, however, limited to the efficient frequency range of the used analysis method. Here,
we study the Komatsu Spergel Wandelt (KSW) estimator for oscillations in the cosmic microwave background bispectrum, that
examines arbitrary oscillation frequencies for separable oscillating bispectrum shapes. We study the precision with which amplitude,
phase, and frequency can be determined with our estimator. An examination of the three-point function in real space gives further
insight into the estimator.

Key words. cosmic background radiation – inflation – early Universe – cosmology: observations

1. Introduction

The cosmic microwave background (CMB) provides the most
direct experimental access to the statistics of the primordial
curvature perturbations. In standard single-field, slow roll in-
flation, these perturbations are Gaussian to a very good ap-
proximation (Maldacena 2003). However, more complicated
models of inflation often predict detectable amounts of non-
Gaussianities of various shapes. In particular, the primordial bis-
pectrum B(k1, k2, k3) arising from the three-point correlations of
the curvature field 〈ΦΦΦ〉 is a sensitive probe to discriminate
among models of inflation (see e.g. the reviews Liguori et al.
2010; Komatsu 2010; Yadav & Wandelt 2010). High precision
measurements of the CMB recently provided by the Planck ex-
periment (Planck Collaboration XXIV 2014) have been consis-
tent with Gaussianity and set stronger limits on primordial non-
Gaussianities. However, the availability of such limits depend on
the specific shape of the bispectra under consideration.

A class of bispectra that has attracted attention in recent
years are oscillating shapes. Such bispectrum oscillations can
arise in a variety of theoretical models. The authors of Chen et al.
(2008) calculated the primordial bispectrum in the presence of
features in the inflaton potential of standard single field inflation.
They provided two analytical bispectrum shapes that approxi-
mate their results. The feature model oscillates linearly with the
scale and is induced by sharp features in the inflaton potential.
The resonance model includes oscillations with the logarithm of
the scale and is induced by periodic features in the inflaton po-
tential. More recently, the authors of Bartolo et al. (2010) used
the effective field theory of inflation to examine the influence of

sharp features in the inflaton potential, which also provide oscil-
lating bispectrum solutions. Periodical modulations of the infla-
ton potential appear, for example, in axion monodromy inflation
models (Flauger et al. 2010; Flauger & Pajer 2011). Certain bis-
pectrum shapes motivated by Non-Bunch-Davis vacua also in-
clude oscillations (e.g. Chen et al. 2007; Meerburg et al. 2009),
as do cascade inflation models (Ashoorioon & Krause 2006). A
transient reduction in the speed of sound also leads to oscilla-
tions (Achucarro et al. 2014b,a). Oscillations in the bispectrum
are usually accompanied by oscillations in the primordial power
spectrum. Recent searches for power spectrum oscillation were
presented in Pahud et al. (2009); Peiris et al. (2013); Planck
Collaboration XXII (2014); Easther & Flauger (2014); Meerburg
et al. (2014); Meerburg & Spergel (2014), but no statistically sig-
nificant result has been found. Combining power spectrum and
bispectrum measurements can improve the sensitivity.

In the present work, we focus on the feature model shape,
since it is simple and approximates some more complicated os-
cillating shapes. In particular, the feature model has the im-
portant property of separability. The Planck paper on non-
Gaussianities (Planck Collaboration XXIV 2014) already in-
cluded a targeted search for the feature and resonant shapes with
the modal expansion method. In this methodology, the bispec-
trum under consideration is expanded into a basis of separable
shapes (Fergusson et al. 2010), which allows an efficient numer-
ical estimation by the Komatsu Spergel Wandelt (KSW) estima-
tor (Komatsu et al. 2005). However, the separable basis functions
used by Planck did not allow to represent high frequency oscil-
lations, limiting the frequency range, which could be searched
for oscillations. The situation can be improved by using a set of
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oscillating basis functions for the modal expansion (Meerburg
2010). In this work, we follow a more direct approach by writing
the feature model bispectrum in separable form, which makes it
possible to search for oscillations of arbitrary frequency, which
are only limited by the resolution of the maps. The gain in com-
putational time with respect to the modal expansion is of the
order of the number of modes that would be necessary to ap-
proximate the shape. We study the properties of the estimator in
detail, including the precision with which phase and frequency
of the oscillation can be determined. We also give an illuminat-
ing interpretation of the KSW estimator for oscillations in posi-
tion space.

2. Oscillations in the primordial bispectrum

2.1. Bispectrum shape and experimental constraints

The general translation and rotation invariant primordial bispec-
trum of the curvature potential Φ can be written as

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δ(k1,2,3) fNLBΦ(k1, k2, k3), (1)

where the bispectrum BΦ is a function of the magnitude of the
wave numbers ki and fNL is the amplitude of the bispectrum. The
feature model bispectrum that we are primarily interested in is

Bfeat
Φ (k1, k2, k3) =

6∆2
Φ

fNL

(k1k2k3)2 sin
(

2πK
3kc

+ φ

)
. (2)

It oscillates linearly with the mean, K = 1
3 (k1 + k2 + k3), of the

wave numbers. Here ∆Φ is the primordial power spectrum am-
plitude and the 1/k6 factor compensates for the phase space fac-
tor. The bispectrum is parametrised by the amplitude fNL by the
oscillation scale kc and by the phase φ. The oscillation scale kc
implies an efficient multipole periodicity of lc ' kc [τ − τrec],
where τ − τrec is the conformal distance to recombination.

Planck has searched for the feature bispectrum shape for
sample frequencies in the range 0.01 < kc < 0.1 at four dif-
ferent phases φ = 0, π/4, π/2, 3π/4 Planck Collaboration XXIV
(2014). Here, kc = 0.01 corresponds to an effective multipole pe-
riodicity lc = 140. The best fit model has kc = 0.0185 (lc = 260)
and phase Φ = 0 with a significance of 3σ. This may correspond
to weak hints for oscillation in the full bispectrum reconstruc-
tion, which were found for l < 500. However, the statistical sig-
nificance becomes much lower when one takes the number of
statistically uncorrelated feature models into account that were
searched. We note that the range of the oscillation frequency was
constrained because of the limitations of the analysis method.
With the present work, we target the unexplored range kc < 0.01
in particular.

2.2. Separability

For convenience, we rewrite the feature model (2) as a sum of
sine and cosine contributions as

Bfeat
Φ (k1, k2, k3) =

6∆2
Φ

(k1k2k3)2

[
f1 sin

(
2πK
3kc

)
+ f2 cos

(
2πK
3kc

)]
, (3)

where fNL =

√
f 2
1 + f 2

2 and Φ = arctan ( f2
f1

). This can be written
in separated form as

Bfeat
Φ (k1, k2, k3) = 6 f1

[
− X(k1)X(k2)X(k3) +

(
X(k1)Y(k2)Y(k3)

+ 2 perm.
)]

+ 6 f2
[
Y(k1)Y(k2)Y(k3)

−
(
X(k1)X(k2)Y(k3) + 2 perm.

)]
, (4)

where we have defined

X(k) =
∆

2/3
Φ

k2 sin
(

2πk
3kc

)
and Y(k) =

∆
2/3
Φ

k2 cos
(

2πk
3kc

)
· (5)

This separability property allows efficient computation and esti-
mation of the bispectrum. One may also include an exponential
decay factor of the form exp

(
−K
µ

)
, while retaining separability

with identical formulas up to trivial replacements.

3. Oscillations in the CMB bispectrum

From the separable expression (4) for the primordial bispectrum,
one can calculate the CMB bispectrum with the standard line-
of-sight integration method Seljak & Zaldarriaga (1996). The
reduced bispectrum is then

bl1l2l3 = 6 f1

∫
dr r2 [

− Xl1 (r)Xl2 (r)Xl3 (r) + (Xl1 (r)Yl2 (r)Yl3 (r)

+ 2 perm.)
]
+ 6 f2

∫
dr r2 [

Yl1 (r)Yl2 (r)Yl3 (r)

− (Xl1 (r)Xl2 (r)Yl3 (r) + 2 perm.)
]
. (6)

where we have defined the functions

Xl(r) =
2
π

∫
dkk2X(k) jl(kr)∆l(k)

=
2
π

∫
dk∆

2/3
Φ

sin
(

2πk
3kc

)
jl(kr)∆l(k), (7)

Yl(r) =
2
π

∫
dkk2Y(k) jl(kr)∆l(k)

=
2
π

∫
dk∆

2/3
Φ

cos
(

2πk
3kc

)
jl(kr)∆l(k), (8)

and where jl are spherical Bessel functions and ∆l are the
CMB transfer functions that we evaluate numerically with
CAMB Lewis et al. (2000). We note that these functions depend
on kc and have to be evaluated for each oscillation frequency of
interest. Both the transfer functions ∆l(k) (in k space) and the
Bessel functions jl are highly oscillatory integrals, which must
be evaluated with sufficient sampling. Examples of the X(r) and
Y(r) functions are given in Fig. 1.

To calculate the resulting CMB bispectrum, we perform the r
integral in Eq. (6). We choose a quadrature of about 2000 points
in r with a higher sampling in the range of recombination. The
contribution of different values of r is examined in more detail
in Sect. 6. To plot the bispectrum, it is convenient to normalise
by the constant bispectrum with natural k−6 scaling, as proposed
in Fergusson & Shellard (2009). The constant primordial bispec-
trum is given by

Bconst
Φ (k1, k2, k3) =

1
(k1k2k3)2 , (9)

and its large angle Sach-Wolfe CMB solution is Fergusson &
Shellard (2009)

bconst
l1l2l3 =

(
1
3

)3 1
(2l1 + 1)(2l2 + 1)(2l3 + 1)

×

[
1

l1 + l2 + l3 + 3
+

1
l1 + l2 + l3

]
· (10)

In Fig. 2, we show a simple 1-dimensional visualisation, the
equal l bispectrum blll normalised by bconst

lll for different frequen-
cies and phases of the feature model.
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Fig. 1. Function X and Y of the feature model for kc = 0.01 (top) and
kc = 0.001 (bottom) as a function of l for r = τ0 − τrec. X and Y have
units of Mpc−1.
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Fig. 2. Equal l reduced bispectrum normalised by the large angle so-
lution of the constant bispectrum for feature models with different
parameters.

4. The KSW estimator for the oscillating bispectrum

4.1. KSW estimator

The optimal KSW estimator for a sum of bispectra bi in the pres-
ence of a mask and non-uniform noise is (Komatsu et al. 2005;
Babich 2005; Komatsu 2010)

fi =
∑

j

(
F−1

)
i j

S j, (11)

with

S i =
1
6

∑
lm

Gm1m2m3
l1l2l3

bi
l1l2l3

[
(C−1a)l1m1 (C−1a)l2m2 (C−1a)l3m3

− 3
(
C−1

)
l1m1,l2m2

(C−1a)l3m3

]
(12)

and with the Fisher matrix given by

Fi j =
1
6

∑
lm

∑
l′m′

Gm1m2m3
l1l2l3

bi
l1l2l3 (C−1)l1m2,l′1m′1 (C−1)l2m2,l′2m′2

× (C−1)l3m3,l′3m′3 b j
l′1l′2l′3

Gm′1m′2m′3
l′1l′2l′3

. (13)

In the present case of an oscillation with a single scale kc, the bis-
pectrum is a sum b = f1b1 + f2b2 of sine and cosine components,
as given by Eq. (6).

To numerically evaluate the KSW estimator terms S i we
need the weighted maps

MX(r, n̂) =
∑
lm

(C−1a)lmXl(r)Ylm(n̂),

MY (r, n̂) =
∑
lm

(C−1a)lmYl(r)Ylm(n̂). (14)

The cubic KSW estimator, which is exact in the case of a full
sky observation, is given in terms of these maps by

S cub
1 =

∫
r2dr

∫
dΩ

[
−M3

X(r, n̂) + (3MX(r, n̂)MY (r, n̂)MY (r, n̂))
]
,

S cub
2 =

∫
r2dr

∫
dΩ

[
M3

Y (r, n̂) − (3MX(r, n̂)MX(r, n̂)MY (r, n̂))
]
.

(15)

Partial sky coverage can be taken into account by incorporating
the linear term of the KSW estimator, so that S i = S cub

i + S lin
i

with

S lin
1 = − 3

∫
r2dr

∫
dΩ

[
−MX(r, n̂)

〈
M2

X(r, n̂)
〉

+ MX(r, n̂)
〈
M2

Y (r, n̂)
〉

+ 2MY (r, n̂) 〈MX(r, n̂)MY (r, n̂)〉
]
,

S lin
2 = − 3

∫
r2dr

∫
dΩ

[
MY (r, n̂)

〈
M2

Y (r, n̂)
〉

− MY (r, n̂)
〈
M2

X(r, n̂)
〉
− 2MX(r, n̂) 〈MX(r, n̂)MY (r, n̂)〉

]
,

(16)

where the expectation values have to be evaluated by
Monte Carlo averaging over Gaussian realisations drawn with
the same beam, mask, and noise properties as expected in the
data. To make the KSW estimator optimal for a non-uniform
sky coverage, it is necessary to perform an inverse covariance
weighting with the non-diagonal covariance matrix. This is a
computationally challenging problem (Smith et al. 2009; Elsner
& Wandelt 2012). It was noted in Planck Collaboration XXIV
(2014) that one can also achieve excellent results by assuming
a diagonal covariance matrix Ĉl = Cl + Nl, where Nl assumes
homogeneous noise, and by using a diffusive inpainting on the
masked areas. In this approximation, the Fisher matrix scales
proportionally to the visible fraction of the sky fsky.

For the remainder of this paper, we assume full sky coverage
so that

S i =
1
6

∑
lm

Gm1m2m3
l1l2l3

bi
l1l2l3

Cl1Cl2Cl3
al1m1 al2m2 al3m3 ,

Fi j =
1
6

∑
l

Il1l2l3

bi
l1l2l3

b j
l1l2l3

Cl1Cl2Cl3
, (17)

where Il1l2l3 =
∑

all m

(
Gm1m2m3

l1l2l3

)2
.

From the inverse Fisher matrix (i.e. the covariance), one ob-
tains the correlation between the sine and cosine terms. For ex-
ample, for l = 1000 and kc = 0.01, the correlation matrix is

corr(bi, b j) =
F−1

i j√
F−1

ii F−1
j j

=

(
1 −0.04
−0.04 1

)
(18)

which shows a weak correlation as expected. From f1 and f2 of
Eq. (6), we can calculate the amplitude and phase of the oscilla-
tion. The variance of the quantities fNL and Φ can be calculated
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Fig. 3. Fisher forecast of σ fNL for the feature model for different kc,
assuming a noiseless full sky experiment.

by error propagation from f1 and f2. For example

σ2
f =

f 2
1

f 2σ
2
f1 +

f 2
2

f 2σ
2
f2 + 2

f1 f2
f 2 cov( f1, f2). (19)

In the approximation of a diagonal covariance matrix and σ f1 =
σ f2 , this gives σ f = σ f1 . In this approximation the sensitivity on
the phase depends on f as σΦ =

σ f1√
f
.

The Fisher matrix allows us to forecast the precision that
can be obtained on the bispectrum parameters f1, f2. With the
approximation that the f1, f2 covariance matrix is a multiple of
the unit matrix, the Fisher forecast on f1, f2 equals the forecast
on fNL. The precision on fNL is then given by σ fNL = 1

√
F

. For a
noiseless full-sky experiment, the Fisher forecast for the feature
model is shown in Fig. 3 for a number of different oscillation
frequencies.

4.2. Estimating the frequency

The estimator described above explicitly estimates the ampli-
tude fNL and phase φ of the oscillation for a fixed frequency kc.
To estimate the oscillation frequency kc, it is necessary to sam-
ple the frequency space with the KSW estimator and search for
peaks in the significance of the estimated amplitude. We assume
the primordial bispectrum to be given by a single oscillation fre-
quency and not a spectrum of contributions. We consider only
the sine component of the bispectrum first, meaning that the
phase is φ = 0 (see below for the generalisation to the phase). In
this case, the estimator for a frequency ki is

f̂i = (F−1)iiS i (20)

with covariance (in the usual Gaussian approximation)

cov( f̂i, f̂ j) =
〈

f̂i f̂ j
〉
−

〈
f̂i
〉〈

f̂ j
〉

(21)

=
Fi j

FiiF j j
· (22)

The Fisher matrix is given by Eq. (13), where the index i now
goes over frequency sampling points. An example of the Fisher
matrix Fi j is shown in Fig. 4 (top). The corresponding correla-
tion matrix is corr( f̂i, f̂ j) =

Fi j√
FiiF j j

, shown in Fig. 4 (middle).

A one-dimensional slice of the correlation matrix is shown in
Fig. 4 (bottom) for kc = 0.005. The plot shows strong anti-peaks
to both sides of the maximum and several small secondary peaks.
This is not an artefact of the chosen estimator, but the physical
overlap of the CMB bispectra induced by different primordial

10-2
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0.2

0.0

0.2
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0.6

0.8

1.0

C
or
r(
k
,k

=
0.

00
5)

Fig. 4. Top: fisher matrix Fi j for 100 logarithmically spaced frequen-
cies between kc = 0.002 and kc = 0.01. Middle: corresponding corre-
lation matrix corr( f ′i , f ′j ). Bottom: correlation matrix one-dimensional
slice corr( fi, f j) for ki = 0.005.

oscillation frequencies. The frequency sampling must be at least
sufficient to resolve the peak structure of this plot. However, the
width of the central peak does not directly limit the precision σk
with which the primordial frequency can be determined.

To evaluate the precision with which kc can be estimated,
we note that the correlation matrix is identical to the bispectrum
correlator,

C(B, B′) =
1

N(B)N(B′)

∑
l

Bi
l1l2l3

B j
l1l2l3

Cl1Cl2Cl3
, (23)

which is the usual measure to discriminate bispectra (see
e.g. Fergusson & Shellard 2009). It gives the estimated propor-
tion of f that is recovered when estimating a spectrum B′ when
the true underlying spectrum is B. If the underlying bispectum
is fkc Bkc , the expectation value of the estimated amplitude at
a different frequency k is thus

〈
f̂ (k)

〉
= fkc Corr(Bkc , Bk). The

variance at each data point is independent of the signal. Thus,
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the correlation matrix approximates the estimates in the k range
where the signal dominates the variance (compare Fig. 4 with
the estimation example in Fig. 6).

Knowing the means f (k) and the covariance matrix
Cov(k1, k2) and using the property that each estimator f̂ (k) is
Gaussian distributed, we can write the continuum likelihood for
the estimated amplitudes f̂ (k), if the true bispectrum is fkc Bkc :

−2 ln L( f̂ (k)| fkc , kc) = ln |Cov|

+

[∫
dk1dk2 ( f̂ (k1) − µ(k1)) Cov−1(k1, k2) ( f̂ (k2) − µ(k2))

]
,

(24)

with mean

µ(k) = fkc Corr(Bkc , Bk). (25)

This likelihood could be explored by Monte Carlo to find max-
imum likelihood estimates of fkc and kc if a significant peak of
fNL is found in the spectrum. The Fisher matrix to forecast opti-
mal precision on the estimated parameters is

Fθθ′ =

〈
∂L

∂θ∂θ′

〉
=

∫
dk1dk2

∂µ(k1)
∂θ

Cov−1(k1, k2)
∂µ(k2)
∂θ′

, (26)

where θ ∈ { fkc , kc}. This can be integrated numerically for any
given fiducial parameters.

In the above discussion, we assumed that the bispectrum
only has a sine contribution. The generalisation of Eq. (24) to
a free phase is

− 2 ln L( f̂ 1,2(k)| f1, f2, kc) = ln |Cov|

+
∑
i=1,2
j=1,2

∫
dk1dk2 ( f̂ i(k1) − µi(k1)) Cov−1

i j (k1, k2) ( f̂ j(k2) − µ j(k2)),

(27)

with the mean

µi(k) = fkc Corr
(

f1B1
kc

+ f2B2
kc
, Bi

k

)
. (28)

The correlation matrix can be split into terms of f1 and f2 for
efficient evaluation of the likelihood.

As we have seen, the estimation of the frequency requires
to run a large number of estimators (around 100 to cover the
frequency interval kc = 0.001 to kc = 0.01). For each of these
estimators, it is necessary to calculate the linear term in Eq. (16)
via a Monte Carlo averaging procedure over Gaussian map reali-
sations with the same mask and noise properties as present in the
experiment. Convergence of the linear term is usually achieved
with 100 Monte Carlo realisations, although several hundreds
can be used to improve accuracy. After the optimisation of the
conformal distance integral, that is reviewed in Sect. 6, one can
expect, with an angular resolution of lmax = 2000, a calculation
time of about one day on a single cpu for a single frequency, in-
cluding the Monte Carlo averaging. On a computation grid, one
can thus easily cover the frequency range of interest.

5. Map making

To verify the implementation and unbiased nature of the estima-
tor, it is useful to be able to generate maps with the bispectrum
signature of interest. The authors of Smith & Zaldarriaga (2011)
introduced an algorithm that generates maps for arbitrary bispec-
tra in the weak non-Gaussian limit. A map is constructed from a
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Fig. 5. Parameter estimation histograms for 100 maps with linear model
non-Gaussianity with kc = 0.01 and lmax = 1000. The maps were cre-
ated with fNL = 500 and φ = 0◦ (first two rows) and φ = 45◦ (rows three
and four). Top: reconstructed f1 (green) and f2 (blue) amplitudes for
φ = 0◦. Second row: corresponding reconstructed amplitudes fNL and
phases φ. Third and fourth row: same as above but with phase φ = 45◦.

linear combination of a Gaussian and a non-Gaussian contribu-
tion as alm = aL

lm + fNLaNL
lm . The straightforward implementation

of the algorithm gives a non-Gaussian contribution of the form

aNL
lm = f1

∫
r2dr

[
−Xl(r)

∫
dΩ Y∗lmM2

X(r, n̂)

+

(
Xl(r)

∫
dΩ Y∗lmMY (r, n̂)MY (r, n̂) + 2perm.

)]
+ f2

∫
r2dr

[
Yl(r)

∫
dΩ Y∗lmM2

Y (r, n̂)

−

(
Yl(r)

∫
dΩ Y∗lmMX(r, n̂)MX(r, n̂) + 2perm.

)]
. (29)

It is thus easy to create maps of arbitrary phase from the sine and
cosine terms.

An example of two sets of 100 maps, created and then esti-
mated with the algorithms presented here, is shown in Fig. 5. The
means and variances in these histograms are compatible with
their Fisher forecast. We note that the distribution of fNL is not
Gaussian but follows a Rayleigh distribution, since fNL repre-
sents the magnitude of the vector of the two directional compo-
nents f1 and f2.
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Fig. 6. Left: frequency sweep over a map with kc = 0.005 and fNL =
2000. Right: as left but in units of σ fNL .

An example of a frequency sweep can be found in Fig. 6 for
the phase ϕ = 0◦. It shows the secondary peaks that are expected
from the correlation of different frequencies.

6. Computational speed improvement
by optimisation of the r-integral

Due to the large number of frequencies that have to be sampled
with the corresponding estimator, the search for oscillations is
computationally challenging. The time critical steps are the cal-
culation of the Fisher matrix and the necessity of calculating
a large number of r dependent KSW filtered maps. The latter
problem becomes even more severe if one has to estimate many
Monte Carlo generated maps for the calculation of the linear
term. The situation can be improved by an analysis of the Fisher
matrix, as shown in Smith & Zaldarriaga (2011).

For a separable shape, the Fisher matrix can also be ex-
pressed by a sum over contributions of different r sampling
points that arise when numerically evaluating the bispectrum in-
tegral in Eq. (6). The total Fisher matrix is then given as a sum
F =

∑Nfact
i, j=1 Fi j, where Fi j is the Fisher matrix element between

the sampling points i and j and Nfact is the number of sampling
points. The Fisher matrix elements are then given by

Fi j =
1
6

∑
l1l2l3

(2l1 + 1)(2l2 + 1)(2l3 + 1)
4π

×

(
l1 l2 l3
0 0 0

)2 bi
l1l2l3

b j
l1l2l3

Cl1Cl2Cl3
· (30)

We now explicitly consider the sine term of the linear model (the
cosine term is analogous), where the contribution of a distance
ri is given by

bi
l1l2l3 = (∆ri)r2

i
[
− Xl1 (ri)Xl2 (ri)Xl3 (ri)

+
[
Xl1 (ri)Yl2 (ri)Yl3 (ri) + 2 perm.

] ]
. (31)

To give an impression of the bispectrum contribution of differ-
ent distances ri, we plot the diagonal elements Fii in Fig. 7. The
plots show the contribution of recombination (r = 14 000 Mpc),
reionisation (r ' 10 500 Mpc), and ISW (r > 5000 Mpc). As ex-
pected, the dominant contribution comes from the time around
recombination, and one can get a good approximation to the in-
tegral by sampling only a window around recombination. This
is particularly useful to quickly scan a parameter space, in the
present case the oscillation frequency, kc.

In Smith & Zaldarriaga (2011), it was shown that one can
go further and optimise the r sampling points to find a quadra-
ture with surprisingly few sampling points that give an almost
identical estimator. Their algorithm constructs a new bispectrum
B′ from the original bispectrum B by choosing a subsample of
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Fig. 7. Fii as a function of conformal distance ri. Top: kc = 0.01, bottom:
kc = 0.005.

points and weighting them so that the Fisher distance between
the two is minimised:

F(B, B′) =
1
6

∑
l1l2l3

(Bl1l2l3 − B′l1l2l3
)2

Cl1Cl2Cl3
· (32)

This means that bispectrum values with a small signal-to-noise
are allowed to be very different. Using this algorithm, as an ex-
ample, we obtain an approximate bispectrum B′ consisting of
30 sample points leading to a separability between B and B′ of
0.1σ assuming kc = 0.01 and fNL = 1000.

The most computationally demanding task in the estimation
pipeline remains the calculation of the Fisher matrix in Eq. (30).
It was also shown in Smith & Zaldarriaga (2011) that one can
factorise this equation by inserting the integral representation of
the Wigner symbol

(
l1 l2 l3
0 0 0

)2

=
1
2

∫ 1

−1
dzPl1 (z)Pl2 (z)Pl3 (z). (33)

The integral over z can be computed efficiently by Gauss
Legendre integration. However, even with this expression, the
calculation of Fi j needs many CPU hours depending on the cho-
sen initial quadrature point number. If one does not want to cal-
culate an optimised quadrature at every frequency points, but
only wants to know the normalisation F(kc) of the estimators,
one can calculate this normalisation on a much wider frequency
spacing and interpolate in between. This can be seen from the
frequency dependent Fisher matrix in Fig. 4, where the diagonal
elements vary slowly.
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Fig. 8. Ring estimate Ering
NG − E

ring
G . Top left: kc = 0.01. Top right: kc =

0.005. Bottom: kc = 0.001. The kernel width in all plots was ∆θ =
0.005, fNL was 10−20 times the optimal Fisher error. The red line shows
the expected position of the maximum.

7. A position space interpretation of the KSW
estimator for oscillations

In Appendix A, we show that the three-point function of the fea-
ture model in position space peaks for configurations n̂1, n̂2, n̂3
that lie on a circumcircle of radius sin(θ) = 1/(2k0η), where
2k0 = 3

2πkc in the convention of Eq. (2). This suggests search-
ing for bispectrum oscillations in real space by convoluting the
CMB map with a ring kernel of varying radius.

For a radially symmetric kernel, the convolution can be done
efficiently in harmonic space as slm = Klrlm, where the kernel is
given by the Legendre transformation,

Kl = 2π
∫ 1

−1
K(z)Pl(z)dz, (34)

and K(z) is a narrow window function in z = cos(θ). The esti-
mate Ering(z) is given by the sum over the pixels of the cube of
the convoluted map,

Ering(z0) =

∫
dΩ

∑
lm

KlalmYlm

3

. (35)

Figure 8 shows an example of this estimator for a map that
was simulated with the algorithm of the preceding section. The
plots show Ering

NG − E
ring
G , which means that the estimate from the

Gaussian map was subtracted. The red line shows the predicted
position of the maximum. We note that this maximum would
be harder to locate in real data where the Gaussian contribution
cannot simply be subtracted.

It is interesting to compare the “intuitive” ring kernel K(θ)
with the KSW kernel that is known to give optimal results. The
KSW estimator is of form,

EKSW(a) ∝
∫

r2dr
∫

dΩ

∑
lm

Xlalm

Cl
Ylm

3

+ .... (36)

The largest contribution to this integral comes from decoupling
at rrec. We plot the KSW kernel function at decoupling Xrec(θ) in
Fig. 9. It shows the maximum at the expected position and has
roughly the expected window shape.
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Fig. 9. KSW kernel X(θ) at decoupling radius rrec. Top left: kc = 0.01.
Top right: kc = 0.005. Bottom: kc = 0.001. The red line is the predicted
maximum of the kernel.

8. Conclusion

In this paper, we have presented and extensively studied the
KSW estimator for linear bispectrum oscillations. The main
motivation for this approach is that the oscillating bispectrum
shapes are difficult to represent with a modal expansion and,
thus, have not yet been constrained at high oscillation frequency.
We have provided the equations for estimation and map mak-
ing and validated them with Monte Carlo simulations. Unlike
many of the well know bispectum shapes, oscillations have two
free parameters in addition to the common amplitude parame-
ter fNL. We have developed the methodology to estimate and
constrain the oscillation phase φ and the frequency kc. Our work
will therefore allow one to explore a parameter space that was
not previously accessible for a theoretically well-motivated bis-
pectrum shape. Finally, we have found an interesting position
space interpretation of the KSW estimator for oscillations, based
on an approximate evaluation of the corresponding three-point
function.
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Appendix A: Angular correlation function
of the feature model

In this appendix, we show that the linear feature model bispec-
trum peaks in real space for a special class of three-point func-
tion configurations. A similar analysis was presented in Adshead
et al. (2012). The corresponding calculation for logarithmic os-
cillations can be found in Jackson et al. (2014).

In the approximation of instantaneous CMB decoupling at
time η, the CMB temperature perturbation is given in terms of
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the potential φ as Bashinsky & Bertschinger (2001),

∆T (n̂)
T

=

∫
d3 k

(2π)3 ϕk(0−)Trad(k)e−iηk·n̂. (A.1)

The transfer function Trad(k) is generally a complicated function
of scale and cosmological parameters. For simplicity of an ana-
lytic answer, which accounts for finite resolution, we take it to
be Trad(k) ≈ e−k2/k2

D .
The position-space primordial bispectrum is given by〈

∆T (n̂1)
T

∆T (n̂2)
T

∆T (n̂3)
T

〉
=∫ 3∏

i=1

d3 ki

(2π)3 Trad(ki) exp (−iηki · n̂i) 〈ϕk1ϕk2ϕk3〉,

(A.2)

where the correlation is of the form,

〈ϕk1ϕk2ϕk3〉 ≡ Bϕ(k1, k2, k3)(2π)3δ3

 3∑
i=1

ki

 .
Since k1 + k2 + k3 = 0, the k-space correlations are categorised
by the triangle formed by the ki.

We now examine this integral for the linear model,

Bϕ =
B0

(k1k2k3)2 sin
(

k1 + k2 + k3

2k0

)
·

The delta function that couples the momenta can be written as

(2π)3δ3 (k1 + k2 + k3) = η3
∫

d3w e−iηw·(k1+k2+k3),

where the factor of η has been included for future convenience.
Writing the sine as exponentials and performing the integral over
angles, we obtain(
∆T
T

)3

osc
=

B0η
3

2i

∫
d3w

∑
±

3∏
i=1

∫
d3 ki

(2π)3k2
i

× ±e±iki/2k0 e−iηki·(w+n̂i)e−k2
i /k

2
D

=
B0η

3

2i

∫
d3w

∑
±

3∏
i=1

±1
(2π)2iη|w + n̂i|

×

∫ ∞

0

dki

ki
e±iki/2k0

(
e−ikiη|w+n̂i | − eikiη|w+n̂i |

)
e−k2

i /k
2
D .

Defining the dimensionless parameter xi ≡ kη, the momentum
integral is

2
∫ ∞

0

dxi

xi

(
cos

[
(ηk0)−1 + |w + n̂i|

]
xi

− cos
[
(ηk0)−1 − |w + n̂i|

]
xi

)
e−2x2

i /η
2k2

D .

This integral can be evaluated exactly in terms of a hypergeo-
metric function, but there is a simplifying limit we can take. The
low-momentum, long-distance approximation allows

cos
[
(k0η)−1 ± |w + n̂i|

]
x ≈ e−[(k0η)−1±|w+n̂i |]2 x2/2.

The integral then has the simple analytic solution(
∆T
T

)3

osc
≈

B0η
3

2i

∫
d3w

3∏
i=1

1
(2π)2iη|w + n̂i|

× ln


[
(2k0η)−1 + |w + n̂i|

]2
+ 2(ηkD)−2[

(2k0η)−1 − |w + n̂i|
]2

+ 2(ηkD)−2

 ·
In the ηkD � 1 limit, this maximally peaks when all three prod-
ucts peak near

(2ηk0)−1 − |w0 + n̂i| = 0, i = 1, 2, 3.

Squaring then subtracting, we obtain

w0 · Ni j = 0, Ni j ≡ n̂i − n̂j, i , j.

We can take the three vectors N12, N23, and N31 and arrange
them in the x̂ − ŷ plane, so that

n̂i = sin θ cos Θi x̂ + sin θ sin Θiŷ + cos θ ẑ,
w0 = (±ρ − cos θ) ẑ,

where

ρ =

√
(2ηk0)−2 − sin2 θ.

We now have the value of w for which the three factors are in
resonance for a given configuration (n1, n2, n3). The value of the
factor at the resonance point is largest when |w + n̂i| is at its
minimum, which is the case for ρ = 0. We conclude that the
three-point function peaks for triangle configurations (n1, n2, n3)
that lie on a circle with radius given by sin(θ) = 1

2k0η
.
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