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ABSTRACT
We present and study cosmic voids identified using the watershed void finder VIDE in the Sloan
Digital Sky Survey Data Release 9, compare these voids to ones identified in mock catalogues,
and assess the impact of the survey mask on void statistics such as number functions, ellipticity
distributions, and radial density profiles. The nearly 1000 identified voids span three nearly
volume-limited samples from redshift z = 0.43 to 0.7. For comparison, we use 98 of the
publicly available second-order Lagrangian perturbation theory-based mock galaxy catalogues
of Manera et al., and also generate our own mock catalogues by applying a Halo Occupation
Distribution model to an N-body simulation. We find that the mask reduces the number density
of voids at all scales by a factor of 3 and slightly skews the relative size distributions. This
engenders an increase in the mean ellipticity by roughly 30 per cent. However, we find that
radial density profiles are largely robust to the effects of the mask. We see excellent agreement
between the data and both mock catalogues, and find no tension between the observed void
properties and the properties derived from �colddarkmatter simulations. We have added the
void catalogues from both data and mock galaxy populations discussed in this work to the
Public Cosmic Void Catalog at http://www.cosmicvoids.net.

Key words: methods: data analysis – cosmology: observations – large-scale structure of Uni-
verse.

1 IN T RO D U C T I O N

With the recent advent of large-scale comprehensive void cata-
logues (Pan et al. 2012; Sutter et al. 2012a), cosmological analysis
is beginning to fan out from probes solely focused on overdensities
such as galaxy correlations (Sánchez et al. 2012; Marı́n et al. 2013)
and baryon acoustic oscillations (Bassett & Hlozek 2010) to more
general studies based on alternative information sources available in
the cosmic web. Since the primary target of cosmological analysis
is often quantifying and understanding dark energy (Weinberg et al.
2013), exploiting the underdense voids in the matter distribution of

� E-mail: sutter@iap.fr

the universe is a natural choice: the interiors of voids are dominated
by dark energy (Goldberg & Vogeley 2004), so their shapes, sizes,
and growth histories are intimately tied to the global properties of
the large-scale universe (Thompson & Gregory 2011).

Already researchers have begun to exploit the public void cata-
logues. Ilic, Langer & Douspis (2013) correlated void positions with
Wilkinson Microwave Anisotropy Probe (WMAP) measurements of
cosmic microwave background temperature anisotropies (Komatsu
et al. 2011) to obtain a weak measurement of the integrated Sachs–
Wolfe effect (Thompson & Vishniac 1987). The Planck Collab-
oration followed up on this study to confirm a detection (Planck
Collaboration 2013a). Melchior et al. (2014) have performed a
measurement of gravitational weak lensing around voids in data
(theoretically predicted by Krause et al. 2013; Higuchi, Oguri &
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3128 P. M. Sutter et al.

Hamana 2013) to directly measure the underdensities in the dark
matter. Pisani et al. (2013) used a novel method to measure the
real-space radial density profiles within voids without assumptions
about cosmological or redshift-space distortion models. Finally,
Sutter et al. (2012b) began to measure cosmological parameters
by leveraging the statistical isotropy of stacked voids (Lavaux &
Wandelt 2012) to perform an Alcock–Paczynski test (Alcock &
Paczynski 1979; Ryden 1995).

Looking ahead, there are many more promising applications of
voids to cosmology and astrophysics. At the most simple level, the
size distribution of voids is sensitive to cosmological parameters
(Jennings, Li & Hu 2013) and modified gravity (Clampitt, Cai &
Li 2013), though these effects can be confused by uncertainties in
galaxy formation physics (Little & Weinberg 1994; Muller et al.
2000; Tinker & Conroy 2009). A measurement of the shapes of
voids as encoded by the mean ellipticity would shed light on dark
energy (Biswas, Alizadeh & Wandelt 2010; Bos et al. 2012) as
well as the two-point correlation of the void positions (Padilla,
Ceccarelli & Lambas 2005; Paranjape, Lam & Sheth 2012; Hamaus
et al. 2014a). The radial density profile, reconstructed in real space
using techniques such as those described in Pisani et al. (2013),
can also be used to constrain exotic dark energy models (Shoji &
Lee 2012; Spolyar, Sahlén & Silk 2013). Astrophysically, voids can
also be used to measure primordial magnetic fields (Taylor, Vovk &
Neronov 2011; Beck et al. 2013) and the effects of environment on
galaxy formation (Gottlober et al. 2003; Rojas et al. 2004; Hoyle
et al. 2005; Rojas et al. 2005; Ferreras & Pasquali 2011; Ceccarelli
et al. 2012; Hoyle, Vogeley & Pan 2012)

To support current and future void-based science efforts, we must
continue to identify voids in the latest galaxy surveys. This way
we can take advantage of deeper and wider surveys for a greater
redshift lever arm for cosmological parameter estimation and for
more volume for increasing the signal to noise of statistical void
properties. Also, even though current surveys such as the Baryon
Oscillation Spectroscopic Survey (BOSS; Dawson et al. 2013) may
not be optimal for void analysis due to their relatively low sam-
pling density, we can use void catalogues from data to test and
calibrate results against theoretical expectations in preparation for
larger volume surveys in the future such as Euclid (Laureijs et al.
2011), BigBOSS (Schlegel et al. 2011), and WFIRST (Spergel et al.
2013).

Ever since Peebles (2001) pointed out a potential discrepancy be-
tween the interior contents of voids in � cold dark matter (�CDM)
predictions and observations, there has been intense interest in com-
paring voids between simulations and observations. This has been
done for earlier void catalogues in the 2-Degree Field Galaxy Red-
shift Survey (2dFGRS; Benson et al. 2003; Hoyle & Vogeley 2004;
Ceccarelli et al. 2006) and the Sloan Digital Sky Survey (SDSS;
Strauss et al. 2002) Data Release 7 (Pan et al. 2012), and in ear-
lier surveys (Einasto et al. 1991; Weinberg & Cole 1992; Little &
Weinberg 1994; Vogeley et al. 1994) but in a very restricted con-
text: it is difficult to build simulations with high enough resolution
to capture all the survey galaxies and sufficient size to enclose the
entire survey volume. Rather than attempt to reproduce complex
observational details such as survey geometry, typically authors
take a limited volume within the survey and compare the statistical
properties of the remaining voids to voids identified in a galaxy pop-
ulation generated with semi-analytic modelling (e.g. Tavasoli, Vasei
& Mohayaee 2013). This common approach has several shortcom-
ings: it is difficult to precisely tune semi-analytic models to a given
survey (Baugh et al. 2003) and it does not take advantage of the full

survey volume. We can address any potential discrepancies in a
more robust way by building nearly identical survey-like popula-
tions in our simulations.

An examination of the impacts of the survey mask is especially
important, since only selecting voids far away from the survey area
discards much useful information, and without rigorous void selec-
tion there may still be residual systematics. Also, since theoretical
work with voids is done in simulations with cubic volumes, un-
derstanding the role of the mask is essential for building the links
between theory and data. Since survey masks usually have compli-
cated shapes, their impact is highly non-trivial, non-obvious, and
different for each survey. von Benda-Beckmann & Mueller (2007)
noted differences between masked and unmasked void populations
in the 2dFGRS, although Pan et al. (2012) did not find significant
differences when examining the properties of voids with their void
finding algorithm in a low-redshift volume-limited sample of SDSS
galaxies. However, there has been no such examination in higher
redshifts of the SDSS with the VIDE algorithm (Sutter et al. 2014c),
which is the source of the current large void catalogues.

We explore another important link, the impacts of sparsity and
galaxy bias, in another work (Sutter et al. 2014a), while earlier works
such as Ryden & Melott (1996) have connected redshift-space voids
to those in real space.

In this work, we present voids in the SDSS Data Release 9
CMASS sample (Ahn et al. 2012), a survey covering 3000 deg2

from redshift 0.43 to 0.7, for a total volume of nearly 1.5 cubic
h−1 Gpc. We compare these voids to voids found in two sets of
mock catalogues: the published mocks of Manera et al. (2013) and
our own derived from a large-volume high-resolution N-body sim-
ulation. In the simulation, we are able to capture the entire survey
without overlapping or stitching simulation volumes, allowing us
to examine the systematic impacts of the survey mask on void sta-
tistical properties such as number functions, radial profiles, and
ellipticities. While the low galaxy density of this survey is not ideal
for void identification, the analysis of Sutter et al. (2014b) indicates
that voids found in surveys of this type still correspond to physical
underdensities in the dark matter, and thus are still useful probes
of cosmology and astrophysics. In addition, Sutter et al. (2014a)
shows that the universal density profile of Hamaus, Sutter & Wan-
delt (2014b) fits voids identified in all densities of samples, and that
there exist simple scaling relations between voids in different sam-
ples, which means that the objects identified even in low-density
surveys correspond to voids.

In the next section, we establish our coordinate system and briefly
discuss our void-finding method and strategies for handling masks
in the survey data. Section 3 introduces our galaxy survey samples
and the properties of the voids identified in them. In Section 4,
we present our mock galaxy populations and compare voids in
these masked and unmasked populations to the voids in the data.
Finally, Section 5 offers concluding remarks regarding implications
for future surveys and void-based science.

2 VO I D FI N D I N G

For each galaxy in the survey, we transform its sky latitude θ , sky
longitude φ, and redshift z, to a comoving coordinate system

x ′ = Dc(z) cos φ cos θ,

y ′ = Dc(z) sin φ cos θ,

z′ = Dc(z) sin θ,

MNRAS 442, 3127–3137 (2014)
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Voids in the SDSS DR9 3129

where Dc(z) is the comoving distance to the galaxy at redshift z. We
assume a �CDM cosmology consistent with WMAP 7-year results
(Komatsu et al. 2011): �M = 0.27, �� = 0.73, and h = 0.71.

We identify voids with a modified and extended version of ZOBOV

(Neyrinck 2008; Lavaux & Wandelt 2012; Sutter et al. 2012a).
called VIDE (Sutter et al. 2014c). VIDE creates a Voronoi tessellation
of the tracer particle population and uses the watershed transform
to group Voronoi cells into zones and voids (Platen, van de Wey-
gaert & Jones 2007). The watershed transform identifies catchment
basins as the cores of voids and ridgelines, which separate the
flow of water, as the boundaries of voids. The watershed trans-
form builds a nested hierarchy of voids (Bos et al. 2012; Lavaux &
Wandelt 2012), and for the purposes of this work we only examine
root voids, which are voids at the base of the tree hierarchy and
hence have no parents. We also impose two density-based criteria
on our void catalogue. The first is a threshold cut within VIDE itself
where voids only include as additional members Voronoi zones with
density less than 0.2 the mean particle density. If a void consists of
only a single zone (as they often do in sparse populations), then this
restriction does not apply. We apply the second density criterion
as a post-processing step: we only include voids with mean cen-
tral densities below 0.2 the mean particle density. We measure this
central density within a sphere with radius R = 0.25Reff, where

Reff ≡
(

3

4π
V

)1/3

. (1)

In the expression above, V is the sum of the Voronoi volumes of the
particles which comprise the void. We also ignore voids with Reff

below the mean particle spacing of the tracer population.
Additionally, for the analysis below we need to define a centre for

the void. For our work, we take the barycentre, or volume-weighted
centre of all the Voronoi cells in the void:

Xv = 1∑
i Vi

∑
i

xiVi, (2)

where xi and Vi are the positions and Voronoi volumes of each
tracer i, respectively.

As presented in Sutter et al. (2012a) and Sutter et al. (2014c),
VIDE includes modifications to ZOBOV to account for survey bound-
aries, internal masks, and redshift limits. To handle line-of-sight
boundaries and internal masks, we pixelize the survey region us-
ing HEALPIX (Gorski et al. 2005)1 and identify boundary pixels (i.e.
pixels with at least one non-survey region neighbour). We inject
particles along the line of sight within each boundary pixel with a
spatial density of 10−3(h−1 Mpc)−3. By giving these boundary par-
ticles essentially infinite density and breaking their degeneracies in
the Voronoi graph, we prevent the watershed algorithm from grow-
ing voids outside the survey region. Also, these boundary particles
serve as a marker for identifying voids near the edge. Fig. 1 shows
our identification of the SDSS DR9 (Ahn et al. 2012) survey bound-
ary pixels. To accurately capture the shape of the mask, we required
a resolution of Nside = 512 (∼2−3 h−1 Mpc at z = 0.7 in a �CDM
universe).

Following the procedure of Sutter et al. (2012a), we generate
two void catalogues for each sample, which we call all and central
catalogues. Naturally, the all sample contains every identified void
which satisfied the density cutoff criteria, even voids near the survey
edge. On the other hand, central voids do not touch any boundary
particle (i.e. the most distant void member particle is closer than any

1 http://healpix.jpl.nasa.gov

Figure 1. HEALPIX map in a Mollweide projection of identified boundary
zones (black) around and within the SDSS DR9 survey area where we inject
boundary particles.

boundary particle), and thus are not near any survey boundary or
internal mask. The central sample is designed to ensure that we have
a fair distribution of void shapes and alignments within the survey
volume. To handle survey high-redshift caps, we simply exclude
from all catalogues any void which extends beyond the redshift
limits of a given sample. This is a more restrictive approach than
the procedure discussed in Sutter et al. (2012a), since it is difficult
to construct stable tessellations on cospherical points. To evaluate
this, if the distance from the void barycentre to the redshift edge is
closer than the distance to any void member particle, we reject the
void.

3 VO ID S IN DATA

3.1 Galaxy populations

We take our galaxy sample from the CMASS selection of SDSS
DR9 (BOSS) spectroscopic targets (Ahn et al. 2012). This is the
same sample of galaxies used in the analysis of Reid et al. (2012).
The 455 281 galaxies in this selection of the survey extend from
z = 0.43 to 0.7. As before in our catalogue of voids in SDSS DR7
(Sutter et al. 2012a), we take volume-limited samples to ensure sta-
tistical uniformity and constant shot noise and galaxy bias around
our identified voids. Also, we require volume-limited samples in
order to compare to our mocks based on Halo Occupation Distribu-
tion (HOD) models, which are constructed around volume-limited
surveys (Berlind & Weinberg 2002).

We apply simple evolution and K-corrections of the form

ze = −2(1 − z + 0.1)(z − 0.1) (3)

zk = −0.242659 + 1.38731z, (4)

and compute absolute magnitudes Mr assuming the cosmological
parameters noted above. We choose three redshift bins. Each red-
shift range is characterized by a typical galaxy luminosity, which
we differentiate by the labels dim, mid, and bright. Our redshift bins
are: 0.43 < z < 0.5, which we label CMASS Dim, 0.5 < z < 0.6,
labelled as CMASS Mid, and 0.6 < z < 0.7, called CMASS Bright.
Table 1 lists the sample name, limiting absolute magnitude, redshift
bound, comoving volume, number of galaxies, and the mean galaxy
separation in that sample. The mean galaxy spacing is (ng/V )−1/3,
where ng is the number of galaxies within each sample and V is the
sample volume.

Fig. 2 shows the galaxy number density as a function of redshift
for each of our samples. These plots show that a simple luminosity
cut does not produce a truly volume-limited sample due to the

MNRAS 442, 3127–3137 (2014)
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3130 P. M. Sutter et al.

Table 1. Volume-limited galaxy samples used in this work.

Sample name Mr, max zmin zmax Volume Ngal n̄−1/3

(h−3 Gpc3) (h−1 Mpc)

CMASS Dim −20.1 0.43 0.5 0.29 61 249 16.76
CMASS Mid −20.1 0.43 0.6 0.82 188 300 16.29

CMASS Bright −20.8 0.43 0.7 1.48 205 732 19.29

Figure 2. Density of galaxies as a function of redshift in our three nearly
volume-limited samples.

Table 2. Summary of voids in data.

Sample name zmin zmax Volume Nvoids

(h−3 Gpc3)

CMASS Dim, all 0.43 0.5 0.29 283
CMASS Dim, central 0.43 0.5 0.29 151

CMASS Mid, all 0.5 0.6 0.53 570
CMASS Mid, central 0.5 0.6 0.53 242
CMASS Bright, all 0.6 0.7 0.66 283

CMASS Bright, central 0.6 0.7 0.66 137

complex target selection procedure in CMASS. The density in the
Dim sample varies by a factor of ∼4, in the Mid sample by a
factor of ∼2, and in the Bright sample by a factor of ∼3. While we
can account for redshift dependence in the densities by weighting
individual galaxies in the VIDE code (Neyrinck 2008), our testing
has shown that this does not strongly impact void properties, for
two reasons. First, only the largest voids will span a deep enough
redshift range to be sensitive to changes in the underlying density,
and since the number of large voids are exponentially suppressed
(and they are more likely to be removed from consideration because
they intersect an internal boundary), varying galaxy number density
will only affect a small percentage of voids. Secondly, the nature of
the watershed algorithm naturally guards against effects of varying
density: since each particle has on average 17 adjacent particles
(Neyrinck 2008), we must reduce the local density of a wall by a
large factor before it is no longer identified as a void boundary.

Table 2 summarizes the data samples used in this work, the red-
shift ranges used to produce the void samples, their respective vol-
umes, and the total number of voids identified in each sample. In
total, we identify nearly 1000 voids in the all sample, while the
central sample produced ∼480 voids.

Figure 3. Distribution of voids within the CMASS samples. We plot void
effective radius Reff (equation 1) versus redshift. We show the voids in the
volume-limited samples CMASS Dim (red), CMASS Mid (blue), and CMASS
Bright (green). All voids are marked with a cross, and voids in the central
catalogue are marked by filled circles.

3.2 Void properties

Fig. 3 shows the distribution of void sizes as a function of redshift
for all the galaxy samples. We show both all and central voids. We
see that though a few voids in CMASS Mid and CMASS Bright reach
an effective radius of ∼80 h−1 Mpc, most – especially in the central
catalogue – are below 50 h−1 Mpc. For Mid and Bright samples,
voids pervade the low-redshift boundary, because here we keep the
population of galaxies below that boundary and only reject voids
whose centres fall below the redshift cutoff. On the other hand, we
see a tapering in the distribution at the high-redshift caps: here,
we reject any void that might intersect the cap, and we are more
likely to cut progressively larger voids. We remove even more of the
largest voids when creating the central samples, since these voids
are more likely to lie nearby the mask line-of-sight boundaries. We
observe a distinct lack of small voids in the Bright sample, which is
a consequence of its slightly lower mean galaxy spacing. While we
expect to see smaller voids at higher redshift, the effects of sparsity
and biasing lead to larger observed voids (D’Aloisio & Furlanetto
2007).

We show another way of expressing the size distribution in Fig. 4.
This is a plot of the cumulative number function: the total number
of voids in each sample above a given effective radius. The number
function is a potentially powerful probe of cosmology with voids
(Sheth & van de Weygaert 2004). All samples have roughly the
same number density of the largest voids, but the lack of smaller
voids in the CMASS Bright sample manifests as a uniformly reduced
number function for small- and medium-scale voids. In all samples,
the central catalogues host roughly half as many voids as the all
catalogues. This is a consequence of the relatively large surface-to-
volume ratio of the current CMASS survey. The relatively narrow
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Voids in the SDSS DR9 3131

Figure 4. Cumulative void number function for CMASS Dim (red), CMASS
Mid (blue), and CMASS Bright (green). The number functions of all voids,
including those near survey boundaries and internal masks, are shown as
solid lines, while central catalogue voids are shown as dotted lines.

angular extent especially impacts our void populations; the small
internal holes do little disruption. As future data releases fill in the
central regions of the expected coverage area, we should approach
the higher fraction of central voids seen in earlier surveys (Sutter
et al. 2012a).

Though voids have complex shapes, we can assign them a unique
ellipticity. This simple scalar captures most of the shape information
of the void, and its distribution is a sensitive cosmological probe
(Park & Lee 2007; Biswas et al. 2010; Lavaux & Wandelt 2010; Bos
et al. 2012). To compute the ellipticity, for a given set of galaxies
within a void, we first construct the inertia tensor

Mxx =
Np∑
i=1

(y2
i + z2

i )

Mxy = −
Np∑
i=1

xiyi, (5)

where Np is the number of galaxies in the void, and xi, yi, and zi

are coordinates of the particle i relative to the void barycentre. The
other components of the tensor are obtained by cyclic permutations.

Given the inertia tensor, we compute the eigenvalues and form the
ellipticity

ε = 1 −
(

J1

J3

)1/4

, (6)

where J1 and J3 are the smallest and largest eigenvalues, respec-
tively. Note that this definition differs from that of Bos et al. (2012).

Fig. 5 shows the distribution of ellipticities for each of our sam-
ples. The ellipticities for all the samples are remarkably consistent,
with means ∼0.2 and a slight skew in the distribution favouring
slightly more elliptical voids. The central catalogue of the CMASS
Bright voids contains a few highly elliptical voids. While similar
voids exist in all samples, the limited number of total voids in this
sample leads to a highly lopsided distribution. In the same figure,
we also show the mean ellipticity and the standard error on the
mean (i.e. σ/Nv, where σ is the standard deviation and Nv is the
number of voids) for each sample. The means broadly agree, with
the CMASS Mid sample favouring slightly more spherical voids.
The ellipticities in the central catalogues are different than those
in the all catalogues. We will see below that the mean ellipticity
is sensitive to the distribution of void sizes in a particular sample.
Since the mask affects the void size distribution in a non-trivial way
for each sample, depending on the relative surface-to-volume ratio
in the sample, we should not be surprised to measure slightly differ-
ent mean void ellipticities. Fortunately, this does not appear to be a
large effect from sample to sample, and we conclude that we only
need to understand mask effects for a particular survey geometry,
not for individual volume-limited samples within that survey.

In Fig. 6, we give a visual impression of some of the identified
voids. We chose the particular slices randomly but selected a rep-
resentative sample from the range of scales in the void catalogue.
We represent the selected void as collections of overlapping cir-
cles, where each circle is a void member galaxy with radius equal
to the effective radius of each Voronoi cell. We overplot these cir-
cles on slices from the galaxy distribution. We see that voids at all
scales indeed sit within underdensities in the galaxy distribution,
though in some samples the sparsity makes it difficult to clearly
distinguish the surrounding walls and filaments. However, our anal-
ysis in Sutter et al. (2014a) and Hamaus et al. (2014b) show that
these objects share common features with voids in high-density
surveys.

Fig. 7 shows one-dimensional radial density profiles of stacked
voids in each sample. To compute the profiles, we take all voids in
a sample of a given size range (e.g. 20−25 h−1 Mpc), align all their

Figure 5. Ellipticity distributions ε (equation 6) with 68 per cent (dark grey) and 95 per cent (light grey) ranges for each sample (left), and mean ellipticities
with 1σ and 2σ uncertainties on the mean (right). For the mean ellipticities (right), error bars are calculated with a bootstrap method.
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3132 P. M. Sutter et al.

Figure 6. Void and galaxy density slices. We select three locations in each sample centred on a representative void. We show voids from CMASS Dim (left),
CMASS Mid (middle), and CMASS Bright (right). We represent the void member galaxies as small circles with radii equal to the effective radii of their
corresponding Voronoi cells. The width of each galaxy slice along the z-axis is the entire sample for CMASS Dim and 300 h−1 Mpc for CMASS Mid and CMASS
Bright. To avoid unnecessary overlap from projection, we take void particles from a thinner slice: 10 h−1 Mpc for CMASS Dim, 75 h−1 Mpc for CMASS Mid,
and 150 h−1 Mpc for CMASS Bright. The galaxies are binned into pixels with the number of pixels varied to best highlight the surrounding structure: 64 bins
for CMASS Dim, 128 for CMASS Mid, and 64 for CMASS Bright. The projected galaxy density is coloured from 0.0 (white) to 1.5 (black) and is shown on a
logarithmic scale. Axes are marked in units of h−1 Mpc.

Figure 7. One-dimensional radial density profiles of stacked voids. Each profile is normalized to the mean number density n̄ of that sample and Reff corresponds
to the median void size in the stack. We only show profiles from stacked central voids. Void profiles do not necessarily reach the mean density because of the
influence of boundary particles and empty regions outside the survey volume. The caption lists the number of voids stacked in each profile.
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Voids in the SDSS DR9 3133

barycentres, and measure the density in thin spherical shells. We
normalize each density profile to the mean number density of the
sample and show all profiles as a function of relative radius, R/Reff.
We only show profiles from the central voids of the samples. We
show four stacks: 20–25, 30–35, 40–45, and 50–55 h−1 Mpc.

The smallest stack, 20–25 h−1 Mpc, is very close to the mean
galaxy separation for the samples, and this manifests in an ex-
tremely steep profile. While these small voids may be unreliable
due to Poisson shot noise, we do not assess statistical significance
in this work. We believe that the common technique used with wa-
tershed algorithms (comparing to voids in a Poisson distribution
of equal number density) is inadequate because small voids tend
to appear in higher density regions, and thus are more likely to
be real voids than one would expect. We are currently developing
a more robust significance criteria based on Bayesian analysis of
constrained realizations of a given sample.

As we progress to larger stacks, the profiles become more shal-
low and the overdense region surrounding the voids becomes less
pronounced, as also seen in Ceccarelli et al. (2013). However, as
before in the voids of SDSS DR7 (Sutter et al. 2012a), we see a qual-
itatively universal profile across all void sizes and redshift ranges:
an underdense centre, a steep power-law slope at the wall of the
void, a slightly overdense ‘compensation’, and a steady declining
to the mean density. We see here that there is a larger difference
among the samples than in the DR7 voids. A significant reason for
this is the smaller survey area: while we guarantee central voids to
sit completely within the survey, these profiles extend beyond the
void effective radius. Since the survey area is relative small, the pro-
file quickly reaches into volumes beyond the survey mask. There
are also boundary particles at the edges. Depending on the rela-
tive density of the boundary particles and the location of stacked
voids relative to the boundary, we see different profiles at larger
radii. Within Reff, we see strong consistency among the samples,
as expected. The number of voids in the stack strongly affects the
smoothness of the profile. In particular, the 50–55 h−1 Mpc stack
in CMASS Mid contains only five voids, which leads to a highly
irregular profile shape.

4 VO I D S I N M O C K S

4.1 Mock galaxy populations

We take several avenues for comparison to the voids in the survey
data. For the first set of mocks, we compute a single �CDM dark
matter N-body simulation, extract haloes from the simulation, and
use the haloes positions and masses as inputs for an HOD model.
For the simulation we use the 2HOT code, an adaptive treecode N-
body method whose operation count scales as N log N in the number
of particles (Warren 2013). Accuracy and error behaviour have been
improved significantly for cosmological volumes through the use
of a technique to subtract the uniform background density, as well
as using a compensating smoothing kernel for small-scale force
softening (Dehnen 2001). We use a standard symplectic integrator
(Quinn et al. 1997) and an efficient implementation of periodic
boundary conditions using a high-order (p = 8) multipole local
expansion. We adjust the error tolerance parameter to limit absolute
errors to 0.1 per cent of the rms peculiar acceleration. As an example,
a complete 40963 particle simulation requires about 120 wall-clock
hours using 12 000 CPU cores. Initial conditions were generated
using a power spectrum calculated with CLASS (Blas, Lesgourgues &
Tram 2011) and realized with a modified version of 2LPTIC (Crocce,
Pueblas & Scoccimarro 2006).

This particular simulation assumed Planck first-year cosmolog-
ical parameters (Planck Collaboration 2013b). The box size was
4 h−1 Gpc on a side and contained 40963 particles, giving a particle
mass resolution of 7.36 × 1010 h−1 M�. All analysis in this work
used a single snapshot at z = 0.53. We identified haloes in the sim-
ulation volume using the ROCKSTAR halo finder (Behroozi, Wechsler
& Wu 2013), a six-dimensional phase-space plus time halo finder,
to identify spherical overdensity (SO) haloes at 200 times the back-
ground density. We use the default ROCKSTAR parameters, except for
requiring strict SO masses which includes unbound particles and
particles which may exist outside of the FoF group for the halo.

We produce galaxy catalogues from the halo population using the
code described in Tinker, Weinberg & Zheng (2006) and the HOD
model described in Zheng, Coil & Zehavi (2007). HOD modelling
assigns central and satellite galaxies to a dark matter halo of mass
M according to a parametrized distribution. In the case of the Zheng
et al. (2007) parametrization, the mean number of central galaxies
is given by

〈Ncen(M)〉 = 1

2

[
1 + erf

(
log M − log Mmin

σlog M

)]
(7)

and the mean number of satellites is given by

〈Nsat(M)〉 = 〈Ncen(M)〉
(

M − M0

M ′
1

)α

, (8)

where Mmin, σ log M, M0, M ′
1, and α are free parameters that must

be fitted to a given survey. The probability distribution of central
galaxies P(Ncen|〈Ncen〉) is a nearest-integer distribution, and satel-
lites follow a Poisson P(Nsat|〈Nsat〉). Central galaxies are given the
peculiar velocities of the host halo, and satellite galaxies are given an
additional random velocity drawn from a Maxwellian distribution
with the halo velocity dispersion. Using the HOD parameters found
in Manera et al. (2013, σ log M = 0.596, M0 = 1.2 × 1013 h−1 M�,
M ′

1 = 1014 h−1 M�, α = 1.0127, and Mmin chosen to fit the mean
number density of our sample), we generate the mock galaxy pop-
ulation. Although the HOD fitting of Manera et al. (2013) assumed
a slightly different cosmology, we found that this did not affect our
results. To simplify comparison, we will only target the CMASS
Mid sample.

We note that we only fit the mean density of the galaxy sample;
we make no attempt to model the variation of the number density
as a function of redshift. However, even with this restriction, we
will see below that we find excellent agreement between the mocks
and data for all void statistics. While ignoring the density variation
may not be adequate for precise modelling, at the current level of
statistical uncertainty we only wish to make an initial comparison,
and save a more detailed treatment for future work.

For the full-volume simulation analysis, we use the entire three-
dimensional volume of the simulation box and perturb each galaxy
according to its peculiar velocity. We call this full-volume set of
mock galaxies the N-body Mock sample. Even though we analyse
only a single realization, the large volume produces over 90 000
voids.

To provide a more direct comparison to the data and to understand
the effects of the mask on void properties, we apply the same survey
geometry to mock galaxies as is used in the SDSS DR9 samples.
Instead of placing galaxies in redshift space along the z-axis of the
simulation box as we do above, we place an observer at the centre of
the volume and measure each galaxy position as its radial distance
from that observer. We also perturb the galaxies according to the
peculiar velocities in all directions. We project all galaxies on to
the sky and apply the mask in Fig. 1. Since we wish to compare
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3134 P. M. Sutter et al.

Table 3. Summary of voids in mocks.

Sample name Volume # Mocks Nvoids

(h−3 Gpc3)

N-body Mock 64.00 1 91 711
Masked N-body Mock, all 0.53 5 3336

Masked N-body Mock, central 0.53 5 1313
Masked 2LPT Mock, all 0.53 98 56 096

Masked 2LPT Mock, central 0.53 98 25 299

solely to the CMASS Mid sample, we only take mock galaxies
within 0.43 < z < 0.5. For void finding, we treat this sample
exactly as data: we deploy boundary particles and we build all and
central catalogues of voids. While it is very expensive to compute
multiple realizations with this volume and resolution, we can take
advantage of the relative narrowness of the current DR9 survey by
rotating our mask orientation within the same simulation volume.
We take five separate orientations. Even though these samples are
not quite independent, and we are likely to not capture enough of
the very largest voids due to finite-volume effects, this technique
still provides a good proxy for multiple realizations and allows us
to gauge the range of void statistics predicted from simulations.
We call these samples Masked N-body Mock. Taken together, we
find ∼3 300 voids in the all samples of all orientations, and ∼1300
voids in the central samples.

Since high-resolution N-body simulations are very expensive, and
the galaxy correlation analysis of Reid et al. (2012) required many
mocks for estimating shot noise, the BOSS team produced many
mock catalogues based on second-order Lagrangian perturbation
theory (2LPT) with a WMAP 7-year cosmology and the same HOD
prescription described above (Manera et al. 2013). We used 98 of
these publicly available mock catalogues to validate our N-body
simulation results and to further estimate the uncertainties in the
predicted void statistics. We denote these mock samples as Masked
2LPT Mocks and process them identically to real data. With the 98
mocks we find over 56 000 voids in the all sample and over 25 000 in
the central sample. However, these mocks were only made available
with the survey mask already in place; thus we will only use our
N-body Mocks for interpreting the effects of the mask.

Finally, to evaluate the significance of our ellipticity measure-
ments, we identify voids in a single random realization provided
by the CMASS team. In this realization, galaxies are randomly
distributed with Poissonian statistics within the survey volume.

Table 3 summarizes the mock samples used in this work, their
respective volumes, the number of independent mock samples, and
the total number of voids identified in each sample.

4.2 Comparison to data

Our first point of comparison is the cumulative number function.
In Fig. 8, we compare the number function of voids in the CMASS
Mid data sample to all our mocks. First, the unmasked N-body Mock
simulation hosts roughly three times as many voids per unit volume
than the data, even though they have similar galaxy populations.
This occurs at all scales, though there are ∼4 times as many small
voids in the unmasked mock as in the data. We can understand this
disruption by considering the effects of the mask on a particular
void: it will slice the void, making it appear as a smaller void. So
after the mask is applied large voids become medium voids, medium
voids become small voids, and so on. Since the number function
falls steeply with void size, if we consider a given void size range,

Figure 8. Comparison of cumulative void number function between mocks
and data. The solid (dotted) line corresponds to the all (central) void pop-
ulation of the CMASS Mid galaxy sample. The green solid line shows the
number function of the full-volume N-body Mock sample. The light blue
shaded region shows the full range of number functions from the 98 Masked
2LPT Mock runs, while the dark blue shaded region shows the full range of
the five Masked N-body Mock runs. For the shaded regions, solid indicates
all voids and hatched indicates central voids. The solid black line is the
theoretical expectation from the Sheth & van de Weygaert (2004) number
function with δv = −0.07.

then there are far fewer voids being added to that range (by being
sliced and becoming smaller) than voids that are lost to smaller
ranges. This leads to a systematic reduction in the number density
of voids. For larger survey areas and more complete coverage, we
expect less drastic impacts.

In the same figure, we plot the theoretical number function of
Sheth & van de Weygaert (2004), which was derived from an ex-
cursion set formalism. As found in Sutter et al., (2014a), the best
match to voids in low-density galaxy surveys comes from adjust-
ing the ‘void parameter’ δv to −0.07. While the number function
roughly agrees with the order of magnitude of the full N-body
Mock void population, it does not fall off as steeply as in the
mocks, though this might be influenced by finite-volume effects.
Still, the correspondence of these curves shows that theoretical
modelling can qualitatively match unmasked void populations, but
further adjustments must be made to match void statistics from
masked volumes.

When we apply the DR9 survey geometry to our mock catalogues,
we see excellent agreement in the number functions for both all and
central catalogues. The 2LPT mocks show much less variance at
small void sizes and reach larger void sizes than the N-body mocks,
since there are many more 2LPT simulations and they are each
drawn from independent realizations. The different orientations of
the N-body mocks are limited by the cosmic variance of a single
simulation, so it is not surprising that we are not able to match the
void number function at the largest void sizes. However, with the
2LPT mocks, we are able to capture the very largest voids. Tavasoli
et al. (2013) first pointed out a potential tension between �CDM
model and data, but we see no indication of this tension in our
results.

Fig. 9 shows the ellipticity distributions and mean ellipticities,
identically to Fig. 5. In this plot, we compare CMASS Mid ellip-
ticities to those found in mock samples. Voids in all mock and
data samples tend to be more elliptical than voids drawn from
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Voids in the SDSS DR9 3135

Figure 9. Comparing the ellipticity distributions (left) and mean ellipticities with their uncertainties (right) of the CMASS Mid sample to the various mocks.
Error bars are the same as indicated for Fig. 5. The violet-coloured distribution is the theoretical expectation from DIVA (Lavaux & Wandelt 2010) with the
rescaling parameter α set to 0.25. DIVA predicts the ellipticity distribution from the size distribution of voids in the CMASS Mid central sample.

Poissonian distributions (which give ε ∼ 0.12), confirming the anal-
ysis of Sutter et al. (2014b), which showed that ellipticity is a robust
measurement even in low-density samples such as SDSS DR9.

As we saw earlier for the cumulative number functions, we find
agreement between data and theoretical expectations in the form
of mock catalogues only when we apply the mask: then the distri-
butions are nearly identical. The all void samples agree among all
the masked mocks and data. The mean ellipticities of the central
Masked N-body Mock are slightly more than 2σ discrepant than
the data, while the Masked 2LPT Mocks have much better agree-
ment with the data. The differences between the N-body and 2LPT
mock populations are not surprising since they have slightly dif-
ferent cosmologies, and the ellipticity is a very sensitive probe of
cosmological parameters (Biswas et al. 2010; Bos et al. 2012). Also,
the 2LPT Mocks cover multiple realizations, whereas the N-body
mocks are restricted to a single simulation. With the exception of
the Masked N-body Mock, we see the same relationship between
all and central ellipticities as in the data: voids in central samples
less spherical. Indeed, the 90 000 voids in all the 2LPT mocks re-
duce the uncertainties to such a degree that this difference is easily
distinguishable.

Voids in the data and masked mocks are more elliptical than in
the full-volume simulation. We can understand the impact of the
mask by examining the relationship between ellipticity and void
size, as we show for the masked and unmasked N-body mocks in
Fig. 10. The cause of the shift in ellipticities when masking data is
readily apparent: larger voids tend to be more spherical, and their
exclusion from the masked catalogues increases the overall mean
ellipticity. The uncertainties in the N-body mocks are too large to
distinguish any differences.

We derive the theoretical ellipticity distribution from DIVA

(Lavaux & Wandelt 2010) with the rescaling parameter α = 0.25,
as discussed in the analysis of Sutter et al. (2014a). DIVA requires a
void size distribution as input, and we take the actual distribution
from the CMASS Mid central sample (i.e. Fig. 4). This choice of
rescaling parameter α provided good agreements with mock void
populations, and again here we see agreement with data, indicat-
ing a relationship between the sizes of voids identified with the
watershed transform and their dynamical cores.

Interestingly, we see almost no significant differences between
masked and unmasked radial density profiles, as we show in Fig. 11.
Here, we compare the unmasked N-body Mock and the Masked
2LPT Mocks to the CMASS Mid data sample. We do not plot stacks

Figure 10. Distribution of ellipticities ε in small bins of effective radius
Reff in the masked (green) and unmasked (red) N-body Mock simulations.
The solid line shows the mean, and the shaded region is the 1σ interval.

from the Masked N-body Mock since they simply overlap the ex-
isting curves but have larger scatter. The stacks shown here are the
same as before in Fig. 7. With very few exceptions, profiles from
both the data and the full-volume mock sit within the range of pro-
files constructed in the different realizations of the masked mock.
This agreement persists at all void scales. The two visible excur-
sions from the mocks are consistent with statistical expectations.
Since radial density profiles by definition probe the interiors and
immediate surroundings of voids, they naturally are more robust
against distortions due to the mask. Also, the process of stacking
turns sets of elliptical voids with different orientations into a roughly
spherical shape, regardless of the distribution of the individual el-
lipticities (Lavaux & Wandelt 2012; Pisani et al. 2013). Thus any
changes to the mean ellipticity due to the mask will not change the
radial profiles significantly.

With the enormous number of voids in the N-body Mock sample,
we begin to see the transition from over to undercompensated voids
(Hamaus et al. 2014a). However, this transition is not clear in the
data due to the lack of voids at these extreme scales.
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3136 P. M. Sutter et al.

Figure 11. Comparison of one-dimensional radial density profiles. The void stacks and normalizations are the same as in Fig. 7. The solid red lines are profiles
from CMASS Mid, the solid green lines are from the full-volume unmasked N-body Mock, while the shaded blue region shows the full range of profiles from the
98 realizations of the Masked 2LPT Mock simulations. The caption lists the number of voids stacked in each profile, except for Masked 2LPT Mock, where the
caption shows the mean number of voids in each realization for that stack. The number of excursions of the data from the mocks is consistent with expectations.

5 C O N C L U S I O N S

We have constructed a void catalogue from the SDSS DR9 CMASS
spectroscopic galaxy survey. Combined with the voids from DR7,
this is the largest void catalogue to date. We have used previously
established methods for removing voids near survey boundaries to
produce a catalogue of voids with a fair distribution of shapes. This
catalogue also provides the most distant voids ever detected, ex-
tending our knowledge of galaxy underdensities to redshift z = 0.7.
Our voids have effective radii between 20 and 70 h−1 Mpc, and
exhibit the same qualitatively universal radial density profile seen
in earlier works (Sutter et al. 2012a; Ceccarelli et al. 2013). We
used HOD modelling to produce mock catalogues for comparison
purposes.

We find that the effects of the mask are highly non-trivial and
can depend strongly on the relative surface area of the mask com-
pared to the volume, the depth of the survey, the number of inter-
nal holes, and the detailed shape of the boundary. Cosmological
statistics based on global void properties, such as number functions
and ellipticity distributions, are especially vulnerable to the prop-
erties of the mask. However, we find that probes based on void

interiors, such as radial density or velocity profiles, are generally
more robust. Also, cosmological applications which depend on the
statistical isotropy of voids, such as the Alcock–Paczynski test (Sut-
ter et al. 2012b), are resilient. In cases such as this, while the mask
may change the average void shape or size, as long as the mask pre-
serves a uniform sampling of their orientations then the methods are
sound.

Furlanetto & Piran (2006) and Tinker & Conroy (2009) hypothe-
sized that the so-called void phenomenon of Peebles (2001) can be
explained by galaxy bias. This has led to a general discussion in the
literature about potential discrepancies between the voids in theory
and voids in data. For the void definition we adopt, abundances,
ellipticity distributions, and radial profiles all indicate that voids in
simulations have the same sizes, shapes, and interior contents as
observed voids once galaxy bias, sparsity, and survey masks are ac-
counted for. Overall, we find no significant discrepancies between
observations of voids in the SDSS DR9 and �CDM mocks.

We have made all the SDSS DR9 voids, as well as all mock
catalogues used in this work, publicly available online at the Public
Cosmic Void Catalog at http://www.cosmicvoids.net.
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Krause E., Chang T.-C., Doré O., Umetsu K., 2013, ApJ, 762, L20
Laureijs R. et al., 2011, Euclid Definition Study Report, preprint

(arXiv:1110.3193)
Lavaux G., Wandelt B. D., 2010, MNRAS, 403, 1392
Lavaux G., Wandelt B. D., 2012, ApJ, 754, 109
Little B., Weinberg D. H., 1994, MNRAS, 267, 605
Manera M. et al., 2013, MNRAS, 428, 1036
Marı́n F. A. et al., 2013, MNRAS, 432, 2654
Melchior P., Sutter P. M., Sheldon E., Krause E., Wandelt B. D., 2014,

MNRAS, 440, 2922
Muller V., Arbabi-Bidgoli S., Einasto J., Tucker D., 2000, MNRAS, 318,

280
Neyrinck M. C., 2008, MNRAS, 386, 2101
Padilla N. D., Ceccarelli L., Lambas D. G., 2005, MNRAS, 363, 977
Pan D. C., Vogeley M. S., Hoyle F., Choi Y.-Y., Park C., 2012, MNRAS,

421, 926
Paranjape A., Lam T. Y., Sheth R. K., 2012, MNRAS, 420, 1648
Park D., Lee J., 2007, ApJ, 665, 96
Peebles P. J. E., 2001, ApJ, 557, 495
Pisani A., Lavaux G., Sutter P. M., Lavaux G., Wandelt B. D., 2013, MNRAS,

submitted
Planck Collaboration 2013a, preprint (arXiv:1303.5079)
Planck Collaboration 2013b, preprint (arXiv:1303.5076)
Platen E., van de Weygaert R., Jones B. J. T., 2007, MNRAS, 380, 551
Quinn T., Katz N., Stadel J., Lake G., 1997, preprint (astro-ph/9710043)
Reid B. A. et al., 2012, MNRAS, 426, 2719
Rojas R. R., Vogeley M. S., Hoyle F., Brinkmann J., 2004, ApJ, 617, 50
Rojas R. R., Vogeley M. S., Hoyle F., Brinkmann J., 2005, ApJ, 624, 571
Ryden B. S., 1995, ApJ, 452, 25
Ryden B. S., Melott A. L., 1996, ApJ, 470, 160
Sánchez A. G. et al., 2012, MNRAS, 425, 415
Schlegel D. et al., 2011, The BigBOSS Experiment, preprint

(arXiv:1106.1706)
Sheth R. K., van de Weygaert R., 2004, MNRAS, 350, 517
Shoji M., Lee J., 2012, preprint (arXiv:1203.0869)
Spergel D. et al., 2013, preprint (arXiv:1305.5422)
Spolyar D., Sahlén M., Silk J., 2013, Phys. Rev. Lett., 111, 241103
Strauss M. A. et al., 2002, AJ, 124, 1810
Sutter P. M., Lavaux G., Wandelt B. D., Weinberg D. H., 2012a, ApJ, 761,

44
Sutter P. M., Lavaux G., Wandelt B. D., Weinberg D. H., 2012b, ApJ, 761,

187
Sutter P. M., Lavaux G., Hamaus N., Wandelt B. D., Weinberg D. H., Warren

M. S., 2014a, MNRAS, 442, 462
Sutter P. M., Lavaux G., Wandelt B. D., Weinberg D. H., Warren M. S.,

2014b, MNRAS, 438, 3177
Sutter P. M. et al., 2014c, preprint (arXiv:1406.1191)
Tavasoli S., Vasei K., Mohayaee R., 2013, A&A, 553, A15
Taylor A. M., Vovk I., Neronov A., 2011, A&A, 529, A144
Thompson L. A., Gregory S. A., 2011, preprint (arXiv:1109.1268)
Thompson K. L., Vishniac E. T., 1987, ApJ, 313, 517
Tinker J. L., Conroy C., 2009, ApJ, 691, 633
Tinker J. L., Weinberg D. H., Zheng Z., 2006, MNRAS, 368, 85
Vogeley M. S., Geller M. J., Park C., Huchra J. P., 1994, AJ, 108, 745
von Benda-Beckmann A. M., Mueller V., 2007, preprint (arXiv:0710.2783)
Warren M. S., 2013, preprint (arXiv:e-prints)
Weinberg D. H., Cole S., 1992, MNRAS, 259, 652
Weinberg D. H., Mortonson M. J., Eisenstein D. J., Hirata C., Riess A. G.,

Rozo E., 2013, Phys. Rep., 530, 87
Zheng Z., Coil A. L., Zehavi I., 2007, ApJ, 667, 760

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 442, 3127–3137 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/442/4/3127/1354064 by C
N

R
S - ISTO

 user on 25 April 2022

http://arxiv.org/abs/e-prints
http://arxiv.org/abs/1110.3193
http://arxiv.org/abs/1303.5079
http://arxiv.org/abs/1303.5076
http://arxiv.org/abs/1106.1706
http://arxiv.org/abs/1203.0869
http://arxiv.org/abs/1305.5422
http://arxiv.org/abs/1406.1191
http://arxiv.org/abs/1109.1268
http://arxiv.org/abs/0710.2783
http://arxiv.org/abs/e-prints

