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We explicitly test the equal-time consistency relation between the angular-averaged bispectrum and the
power spectrum of the matter density field, employing a large suite of cosmological N-body simulations.
This is the lowest-order version of the relations between ðlþ nÞ-point and n-point polyspectra, where one
averages over the angles of l soft modes. This relation depends on two wave numbers, k0 in the soft domain
and k in the hard domain. We show that it holds up to a good accuracy, when k0=k ≪ 1 and k0 is in the linear
regime, while the hard mode k goes from linear (0.1hMpc−1) to nonlinear (1.0hMpc−1) scales. On scales
k ≲ 0.4hMpc−1, we confirm the relation within the statistical error of the simulations (typically a few
percent depending on the wave number), even though the bispectrum can already deviate from leading-
order perturbation theory by more than 30%. We further examine the relation on smaller scales with
higher resolution simulations. We find that the relation holds within the statistical error of the simulations at
z ¼ 1, whereas we find deviations as large as ∼7% at k ∼ 1.0hMpc−1 at z ¼ 0.35. We show that this can be
explained partly by the breakdown of the approximation Ωm=f2 ≃ 1 with supplemental simulations done
in the Einstein–de Sitter background cosmology. We also estimate the impact of this approximation on the
power spectrum and bispectrum.

DOI: 10.1103/PhysRevD.90.023546 PACS numbers: 98.80.-k

I. INTRODUCTION

The large-scale structure of the Universe provides us
with a wealth of information on the initial conditions of
the Universe as well as the underlying gravity theory that
governs the time evolution on sufficiently large scales [1,2].
A classic tool for discussing its statistical properties are the
polyspectra of the matter density field at a given time (the
Fourier transforms of the n-point correlation functions)
[3,4]. The power spectrum, the lowest-order polyspectrum,
has played a central role to test cosmological models and
determine their parameters precisely. Standard models of
the early Universe predict almost Gaussian initial condi-
tions, in agreement with a number of observational probes
(e.g., measures of cosmic microwave background anisot-
ropies [5]). However, even if the initial conditions are
perfectly Gaussian, the cosmic density field at late times
exhibits non-Gaussian features acquired through the
nonlinear gravitational dynamics.
The polyspectra induced by gravity can be analytically

derived order by order using standard perturbation-theory
techniques (see Ref. [4] for a review). In these calculations,
an approximate treatment is usually adopted that greatly
simplifies the structure of the basic equations. That is,
the combination Ωm=f2 is replaced with unity, where Ωm
is the time-dependent matter density parameter and f ≡
d lnDþ=d ln a is the linear growth rate, with Dþ being the
linear growing mode. This approximation is exact in the
Einstein–de Sitter universe and sufficiently accurate in

most other cosmological models based on general relativity
because i) one usually recovers Einstein–de Sitter at early
times and, ii) over the realistic range of cosmological
parameters, one has f ≃Ωγ

m with γ ≃ 0.5 [3]. When this
approximation is applied, all the dependence on the
cosmological parameters is absorbed by the linear growth
rate Dþ, and the time dependence of the solution is also
fully encapsulated in Dþ. This simplifies perturbative
computations because one can factor the time and scale
dependence of high-order diagrams (e.g., the contribution
of order n to the power spectrum scales as D2nþ ).
Beyond perturbation theory, several articles have

recently been devoted to the study of exact “consistency
relations” that remain valid in the nonperturbative regime,
independently of the small-scale physics (including baryon
or star-formation processes) [6–13]. They relate the
ðlþ nÞ-point correlation, with l modes in the linear
regime (soft domain) and n modes at much higher wave
numbers (hard domain) that can be in the nonlinear regime,
to the n-point correlation (with l linear power spectrum
prefactors). These results can be interpreted as the response
of small structures (i.e., each element in the cosmic web
such as walls, filaments, or halos) to an initial density
perturbation on much larger scales. More precisely, they
derive from the equivalence principle, which ensures that
all particles and structures fall in the same fashion in a
gravitational potential force with a constant gradient.
Then, at leading order, a large-scale perturbation of the
initial conditions merely transports smaller scale structures
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without distortions. Thus, a detection of a violation of
these consistency relations would signal a deviation from
Gaussian initial conditions, significant decaying modes, or
a departure from general relativity.
In the standard scenario, the kinematic consistency

relations discussed above vanish at equal times (because
equal-time statistics cannot distinguish a uniform trans-
lation of the system). By going to the next order, and taking
an angular average over the soft modes, Refs. [14,15]
derived angular-averaged consistency relations that remain
nontrivial even at equal times. Because this involves the
dynamics of small-scale structures in a gravitational poten-
tial with a uniform curvature (the order beyond a constant
gradient), this probes the physics beyond the equivalence
principle, and it is sensitive to the details of the dynamics.
In particular, the explicit relations one obtains only hold
for dark matter (i.e., they would be violated by nongravita-
tional processes) and within the approximationΩm=f2 ≃ 1,
which enables us to relate the dynamics associated with
different backgrounds (which correspond to different large-
scale curvatures). However, within these approximations,
they remain valid in the nonperturbative regime.
In this study, we examine the validity of these angular-

averaged relations by employing a large set of cosmologi-
cal N-body simulations. We focus on the lowest-order
consistency relation for the angular-averaged matter bis-
pectrum, which is the most interesting one in practice.
Reference [14] has already checked this relation for the
bispectrum explicitly at the leading order of perturbation
theory. The aim of this study is to see how higher-order
corrections enter both sides of the equation and how
accurately the relation is recovered on smaller scales
(i.e., whether and by how much nonlinearities amplify
the inaccuracy due to the approximation Ωm=f2 ≃ 1).
This paper is organized as follows. We briefly review the

angular-averaged consistency relations and their validation
at tree level in Sec. II. We then present the simulation
analysis in Sec. III, starting form the detail of the simu-
lations in Sec. III A and next showing our results for the
consistency relation in Sec. III D. We finally give a
summary of the paper in Sec. IV. The effect of binning
in the measurements of the spectra as well as a convergence
study of the simulations are respectively presented in
Appendixes A and B.

II. ANGULAR-AVERAGED CONSISTENCY
RELATIONS

We briefly summarize the angular-averaged consistency
relations in this section. We also review the perturbative
expressions for the relevant spectra here.

A. General cases

Because of statistical homogeneity, polyspectra contain a
Dirac factor δD that we can factor out by defining

h~δk1…~δkni ¼ δDðk1 þ…þ knÞh~δk1…~δkni0; ð1Þ

where h…i is the statistical average over the Gaussian
initial conditions and the prime in h…i0 denotes the average
in Fourier space without the Dirac factor. We denote the
nonlinear density contrast in Fourier space by ~δ, with a
wave vector shown by the subscript. In a similar fashion,
we also consider mixed spectra, h~δL;k0

1
…~δL;k0l

~δk1…
~δkni,

which cross-correlate the nonlinear density contrast ~δ with
the linear density contrast ~δL. Here, ~δL is the linear growing
mode that also defines the Gaussian initial conditions
(we assume as usual that decaying modes have had time
to become negligible).
Integrating over the direction of the linear wave

numbers k0j, we introduce the angular-averaged mixed
polyspectra by

Z Yl
j¼1

dΩk0j

4π
h~δL;k0

1
…~δL;k0l

~δk1…
~δkni0k0j→0

¼
D
~δL;k0

1
…~δL;k0l

~δk1…
~δkn

E0
k0j→0

; ð2Þ

where the limit k0j → 0 is taken for all the l wave numbers
with a prime, while obeying the constraint

P
jk

0
jþ

P
iki¼0

(associated with statistical homogeneity).
When the soft wave numbers satisfy the hierarchy

k0j ≪ k0jþ1 and within the approximation Ω=f2 ≃ 1, the
angular-averaged consistency relation at equal times states
that Eq. (2) can be expressed in terms of the nth-order
polyspectrum as [14,15]

D
~δL;k0

1
…~δL;k0l

~δk1…
~δkn

E0
k0j→0

¼ L0
1 � � �L0

l · h~δk1…~δkni0: ð3Þ

In the right-hand side, the operators L0
j are given by

L0
j ¼ PLðk0jÞ

�
1þ 13

21

∂
∂ lnDþ

−
1

3

Xl
m¼jþ1

∂
∂ ln k0m −

1

3

Xn
i¼1

∂
∂ ln ki

�
; ð4Þ

where PL is the initial matter power spectrum linearly
extrapolated to the time of interest. (Because these oper-
ators do not commute, the ordering in the above relation
only holds for the hierarchy of soft wave numbers
k01 ≪ k02 ≪ … ≪ k0l.) Because we take the limit k0j → 0
in Eq. (3) and we recover linear theory on large scales, we
can replace the linear density fields by the nonlinear ones
and write

D
~δk0

1
…~δk0l

~δk1…
~δkn

E0
k0j→0

¼ L0
1 � � �L0

l · h~δk1…~δkni0: ð5Þ
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B. Bispectrum

The simplest example of the relation (5) relates the
angular-averaged bispectrum to the power spectrum. This
corresponds to l ¼ 1 and n ¼ 2, namely,

B̄ðk0; kÞk0→0 ¼ PLðk0Þ
�
1þ 13

21

∂
∂ lnDþ

−
1

3

∂
∂ ln k

�
PðkÞ;

ð6Þ

where we denote

B̄ðk0;kÞ≡
D
~δk0 ~δk−k0=2 ~δ−k−k0=2

E0
; PðkÞ≡h~δk ~δ−ki0; ð7Þ

for the angular-averaged bispectrum and the power spec-
trum [taking care of the constraint

P
jk

0
j þ

P
iki ¼ 0

associated with the Dirac factor in Eq. (1) due to statistical
homogeneity]. Because of statistical isotropy, the spectra in
Eq. (6) no longer have any dependence on the direction
of k. Since higher-order polyspectra are increasingly noisy
in general, in practice, the main application of these
consistency relations is the lowest-order one (6), for the
angular-averaged bispectrum. We thus focus on the con-
sistency relation (6) in this study, and we test the low-k0
asymptotic behavior with a large set of cosmological
N-body simulations.

C. Tree-level perturbation theory

The relation (6) has been checked by Ref. [14] at leading
order of perturbation theory. At this order, all we need is the
second-order kernel of the matter density field [4],

Fs
2ðk1; k2Þ ¼

5

7
þ 1

2

k1 · k2
k1k2

�
k1
k2

þ k2
k1

�
þ 2

7

ðk1 · k2Þ2
k21k

2
2

; ð8Þ

where we applied the approximation Ωm=f2 ¼ 1. The
time dependence of the kernel function (8) is actually
very small [4] and, for instance, approximately given by
ðΩ−2=63

m − 1Þ in case of Ωm ≳ 0.1 for open universes
without a cosmological constant. At tree order, the bispec-
trum, B≡ h~δk1 ~δk2 ~δk3i0, can be written as

Bðk1; k2; k3Þ ¼ 2Fs
2ðk1; k2ÞPLðk1ÞPLðk2Þ þ ðcycÞ; ð9Þ

where (cyc.) stands for two more terms given as the cyclic
permutation over the three wave vectors. Then, taking
the angular average of the tree-level bispectrum (9) as in
Eq. (7) gives

B̄ðk0; kÞ ¼ PLðk0Þ
�
47

21
−
1

3

∂
∂ ln k

�
PLðkÞ þOððk0=kÞ2Þ:

ð10Þ

Using PLðk; tÞ ∝ DþðtÞ2, this confirms the consistency
relation (6) within the validity of perturbation theory at the
leading order.

III. SIMULATION ANALYSIS

We now describe the simulations that we analyze in
this study. We also present the method to measure the
relevant statistical quantities and discuss the reliability of
the measurements. We finally show how accurately the
consistency relation (6) is recovered in the simulations.

A. Setup of the simulations

We use two sets of cosmological simulations in this
paper. The first set of simulations has already been used
in Ref. [16]. Employing 10243 particles, each of the 60
independent random realizations covers a comoving vol-
ume of ð2048h−1MpcÞ3. The total simulation volume of
515h−3Gpc3 enables precise measurements of statistical
quantities. These simulations are designed to calibrate
analytical models of the matter power spectrum based
on renormalized perturbation theory approaches on large
scales (i.e., k≲ 0.3hMpc−1), and the systematic error as
well as the statistical error are controlled very well on these
scales to meet the requirements (see also Refs. [17,18] for
more on the convergence).
However, because of their rather poor spatial resolution,

it is known that the power spectrum on smaller scales is
systematically smaller than it should be. Although this
systematic error is at most ∼2% at k ¼ 0.4hMpc−1, almost
independently of redshift, it increases toward smaller
scales. The error reaches 4% at k≃ 0.7hMpc−1. Since
our target accuracy in this study is about 5% and, what is
more, the consistency relation is less trivial on smaller
scales (where we go beyond lowest-order perturbation
theory), we decided to run new simulations with a better
spatial resolution. We ran 512 independent realizations
of 5123-particle simulations, each of which had a cubic
volume of ð512h−1MpcÞ3. This allowed us to double the
dynamic range in wave number toward smaller scales,
though the total simulation volume of these new simula-
tions was only about 13% of the low resolution simulations.
We examine in detail the convergence property of the
spectra of interest in Appendix B. Based on the result, we
adopt the simulations of Ref. [16] for the discussion on
scales k ≤ 0.4hMpc−1, while the new high-resolution
simulations are used on smaller scales.
The cosmological model in both set of simulations

is a flat-ΛCDM model with the parameters Ωm ¼ 0.279,
Ωb=Ωm ¼ 0.165, h ¼ 0.701, ns ¼ 0.96, and σ8 ¼ 0.816,
which is consistent with the five-year observation by the
WMAP satellite [19]. The combination Ωm=f2 in this
cosmology is shown in Fig. 1. The ratio is very close to
unity at high redshifts, z≳ 1, and reaches about 1.15 at
z ¼ 0. In this paper, we test the consistency relation in our
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simulations at the redshifts z ¼ 1 and z ¼ 0.35, at which
the ratio Ωm=f2 departs from unity by 2.7% and 7.5%,
respectively. However, the polyspectra at a given time are
affected not only by the value of Ωm=f2 at that time but by
its evolution history up to that epoch. This further decreases
the inaccuracy due to the approximation Ωm=f2 ≃ 1 on
the power spectrum and bispectrum, as found in previous
perturbative studies [4]. We explicitly show the impact of
the breakdown of this approximation in a fully nonlinear
manner in Sec. III E, by employing supplemental simu-
lations done in the Einstein–de Sitter background.

B. Left-hand side: Measurement of the bispectrum

We first describe our method to measure the angular-
averaged bispectrum in this subsection. We assign particles
onto 10243 grid points using the cloud-in-cells (CIC)
interpolation scheme (e.g., Ref. [20]) and apply the fast
Fourier transformation to obtain the density field in Fourier
space. We then correct the smoothing effect arising from
the grid assignment by dividing by the CIC kernel function.
We next take an average of cubic products of the density
fields to have an estimate of B̄ defined in Eq. (7),

B̂ðk0; kÞ ¼ V2

Ntri
k0;k

X
k0

X
k

Re½~δk0 ~δk−k0=2 ~δ−k−k0=2�; ð11Þ

where V stands for the simulation volume, Ntri
k0;k is the

number of triangles for the wave number bin specified
by k0 and k, and the summation is taken over modes k0
and k that satisfy k0 − Δk0=2 ≤ jk0j < k0 þ Δk0=2 and
k − Δk=2 ≤ jkj < kþ Δk=2, respectively. We choose
Δk0 ¼ 0.004hMpc−1 and Δk ¼ 0.02hMpc−1 for the
low-resolution simulations and Δk0 ¼ 0.005hMpc−1 and
Δk ¼ 0.02hMpc−1 for the high-resolution ones. Because
we are now working on a periodic system with finite
volume, the density field ~δk is dimensionless, unlike the

one in the previous section for continuous Fourier trans-
forms. In Eq. (11), note also that we take the angular
average not only over k0 but also over k, in order to increase
the statistics and suppress the statistical error level [21].
We finally take the average over different realizations to

obtain our final estimate of the angular-averaged bispec-
trum, and we record the variance among realizations,
divided by the square root of the number of realizations
minus unity (i.e., the standard error on the average values),
to estimate the statistical error.
The resultant bispectrum is plotted in Figs. 2 and 3 at

z ¼ 1 and 0.35, respectively. We plot in the top panels
the angular-averaged bispectrum, B̂ðk0; kÞ, as a function of
wave number k0 for several fixed values of k as written in
the legend. The filled symbols show the measurements
from the low-resolution simulations, while the open ones
depict those from the high-resolution simulations.
We also show with the solid line the perturbation-theory

prediction at the tree level [i.e., Eq. (9)] for k ¼ 0.1 and
0.2hMpc−1. The measured angular-averaged bispectrum at
k ¼ 0.1hMpc−1 shows good agreement with perturbation
theory, while the result at k ¼ 0.2hMpc−1 reveals a lack of
amplitude in the analytical curve. This discrepancy is more
important at z ¼ 0.35 (10% to 20% depending on k0, and
more evident at larger k0). We omit analytical curves at
k ≥ 0.3hMpc−1 to avoid making the plot busy, but the
discrepancy between the model and the simulations is even

FIG. 1. Ratio Ωm=f2 for our cosmological model.

FIG. 2 (color online). Angular-averaged bispectrum at z ¼ 1.
Top: measurements from N-body simulations (symbols) and the
analytical predication at the tree level (lines; only for k ¼ 0.1 and
0.2hMpc−1). The filled symbols depict the measurements from
lower-resolution simulations, while the open ones show those
from higher-resolution simulations. Bottom: fractional statistical
error on the angular-averaged bispectrum estimated from the
scatter among different random realizations.
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greater on these scales (a factor of 2 or more). Thus, we
conclude that the applicable wave number range of the tree-
level perturbation theory is limited to k≲ 0.1hMpc, both at
z ¼ 0.35 and 1. In the top panels, we plot both filled and
open circles at k ¼ 0.4hMpc−1 to check the consistency
between the two sets of simulations. They are in agreement
with each other from the comparison, and further con-
vergence tests are presented in Appendix B.
Finally, the bottom panels of Figs. 2 and 3 plot the

fractional error on B̂ðk0; kÞ measured from the simulations
(we adopt the same symbols as in the top panels). Since
we fix the bin width, Δk0 and Δk, the number of available
Fourier-space triangles increases with k0 and k, resulting
in a smaller error at smaller scale for filled symbols (i.e.,
low-resolution simulations). Also, the error level is higher
for high-resolution simulations, which cover a smaller
volume than the low-resolution ones. The decrement of
the error as a function of k for the same set of simulations
is only marginal, especially at z ¼ 0.35, due to significant
covariance among different modes on small scales.
Eventually, at k≳ 0.4hMpc−1, we do not observe clear
dependence of the statistical error on k for high-resolution
simulations (i.e., open symbols that are mostly overlapping
with each other). On these scale, the statistical error is
mostly determined by that in the soft mode ~δk0 , and one
does not gain much when one adds more hard modes ~δk.
The typical statistical error level on the angular-averaged

bispectrum is roughly 1%, which allows us a meaningful
test of the consistency relation. We are especially interested
in B̄ at the limit of small k0, and the low-resolution
simulations, which cover a total volume of 515h−3Gpc3,
provide us with measurements of the angular-averaged
bispectrum down to k0 ∼ 0.01hMpc−1 with an error level of
several percent. On the other hand, although the available

data points are limited, the high-resolution simulations
enable us to test the consistency relation with a statistical
error of ∼3% down to smaller scales where nonperturbative
corrections to the density field are important.

C. Right-hand side: Measurement of the power
spectrum and its derivatives

We next describe our method to measure the right-hand
side of Eq. (6). The three terms are explained one by one in
the following, and we then summarize the accuracy of the
measurements of the sum of them.

1. Nonlinear power spectrum

The measurement of the nonlinear power spectrum is
rather straightforward after we have given the explanation
for the bispectrum. The procedure is exactly the same as in
Sec. III B up to the density field in Fourier space with the
correction of the smoothing effect. This time, we take

PðkÞ ¼ V
Nmode

k

X
k

j~δkj2; ð12Þ

where Nmode
k stands for the number of Fourier modes in the

k bin. In the summation, we consider modes k − Δk=2 ≤
jkj < kþ Δk=2, and we adopt Δk ¼ 0.005hMpc−1 for
both sets of simulations. The results are shown by thin solid
lines in the top panels of Figs. 4 and 5 at z ¼ 1 and 0.35,
respectively. We here plot the results of the low-resolution
simulations, but the high-resolution simulations almost

FIG. 3 (color online). Same as Fig. 2, but at z ¼ 0.35.

FIG. 4 (color online). Power spectrum and its derivatives at
z ¼ 1. We plot the spectra from the low-resolution simulations in
the top panel, and the statistical error is shown in the middle and
the bottom panels, respectively, for the low- and high-resolution
simulations.
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coincide with the low-resolution simulations (see
Appendix B for the convergence of the power spectrum).
The statistical error on the measured power spectrum is

plotted in the middle and the bottom panels for the low-
resolution and high-resolution simulations, respectively.
Similarly to the bispectrum, the error level decreases with
wave number since we fix the bin width Δk, and thus we
can access more Fourier modes at larger k. Since the
covariance between different modes grows with k and time,
the k dependence of the fractional error is shallower than
k−1 expected for uncorrelated measures.

2. Time derivative

Estimating the time derivative of the power spectrum
from the simulation data is less trivial. We adopt the
following procedure in this study. Instead of preparing
multiple snapshots at slightly different redshifts, we work
on a single snapshot of the positions and velocities of
simulation particles. We slightly displace the positions of
particles according to their velocities,

xðtþ ΔtÞ ¼ xðaþ ΔaÞ ¼ xðtÞ þH−1ðtÞvðtÞΔa; ð13Þ

where x and v are the position and velocity of a particle
in comoving coordinate and H ¼ da=dt. We repeat the
same procedure as before and measure the power spectrum
after applying the above displacement. We finally take the
combination to estimate the derivative term:

dPðkÞ
d lnDþ

¼ Pðk; aþ Δa=2Þ − Pðk; a − Δa=2Þ
lnDþðaþ Δa=2Þ − lnDþða − Δa=2Þ : ð14Þ

This procedure can be justified as long as Δa is small, and
we adopt Δa ¼ 0.02, which gives a converged result.

The measurement and its error are plotted in Figs. 4
and 5 with the dashed line. This term dominates the other
terms over the whole range of wave numbers plotted in
the figures. The fractional error plotted in the bottom two
panels behaves similarly to that on the nonlinear power
spectrum at small k and is slightly larger on small scales
reflecting the stronger nonlinearity in the momentum field
than in the density field [22].

3. Wave number derivative

We compute the last term in the right-hand side of Eq. (6)
using the cubic spline fitting to the power spectrum
measured above. Our choice of Δk ¼ 0.005hMpc−1 is
fine enough to evaluate the derivative without introducing a
severe interpolation error. The measured derivative term
shown with the dashed line in Figs. 4 and 5 exhibits a clear
feature of baryon acoustic oscillations. Note that we show
the absolute value of this term as it is negative over most of
the plotted wave number range. The fractional error on this
term estimated from the scatter among realizations is the
largest among the three terms probably because this term
involves an interpolation and the derivative operation is not
local in k, but the error level is still several percent over the
most part of the plotted wave number range thanks to the
large statistics.

4. Sum of the three terms

Adding up the three terms already discussed and
multiplying by the linear power spectrum, we finally obtain
an estimate of the right-hand side of Eq. (6). We plot the
sum of the three terms as the bold solid lines in Figs. 4
and 5. The statistical error estimated from the scatter among
realizations shown in the bottom two panels is controlled
below 1% level both in the low- and high-resolution
simulations on k≳ 0.05hMpc−1. This error level is in
between that on the wave-number-derivative term (dotted)
and the time-derivative term (dashed). Since the former is
the smallest among the three terms, its large error does not
ruin the quality of the sum of the three terms. Thus, the
statistical error on the left-hand side (i.e., the angular-
averaged bispectrum) of Eq. (6) dominates over that in
the right-hand side in checking the consistency relation in
what follows.
In testing the relation (6), we have to carefully take

account of the effect of binning. The left-hand side of the
relation is binned both in k and k0, while the right-hand side
is written as a product of a k-binned quantity and the linear
power spectrum PLðk0Þ. Since the power spectrum has
less statistical error than the bispectrum, it can be measured
in a finer binning as is done here. Then, we can basically
interpolate the measured power spectrum and evaluate it
at any k without introducing a severe systematic error. On
the other hand, the linear power spectrum PLðk0Þ could be
obtained either from the definition of the cosmological
model, without any measure from the simulations, or from

FIG. 5 (color online). Same as Fig. 4, but at z ¼ 0.35.
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the simulations. In Appendix A, we explicitly show how
this affects the comparison of the two sides, and we find
that measuring all terms in the right-hand side from the
simulations, with a binning similar to the one used for the
left-hand side, gives less noisy results (because both sides
now follow in the same manner the stochastic fluctuations
of power from one realization to another). Based on these
results, we properly account for the binning both in k and k0
for the right-hand side to be consistent with that for the
left-hand side.

D. Results

Now, we are in a position to discuss the validity of
the consistency relation (6) between the angular-averaged
bispectrum and the power spectrum of the matter density
field. We consider the ratio of the two sides of Eq. (6),
measure this combination from each realization, and then
take the average over realizations, which is plotted in
Figs. 6 and 7, respectively, at z ¼ 1 and z ¼ 0.35.
The left four panels in each of the two figures show the

measurements from the low-resolution simulations covering
a larger volume (0.1hMpc−1 ≤ k ≤ 0.4hMpc−1), while the
right panels show those from high-resolution simulations

(0.4hMpc−1 ≤ k ≤ 1.0hMpc−1), as a function of the soft
wave number k0. We also plot the ratio expected from the
tree-level perturbation theory (9) (solid lines) and the ratio
of the measured bispectrum to the tree-order prediction (9)
in the left upper two panels (dashed lines). The filled circles
correspond to the bispectrum obtained from the nonlinear
density fields measured at the redshift of interest,

h~δk0 ~δk−k0=2 ~δ−k−k0=2i0 as in Eq. (7), whereas the empty
triangles correspond to the mixed bispectrum

h~δL;k0 ~δk−k0=2 ~δ−k−k0=2i0, where we cross-correlate two non-
linear fields with one linear field, as in Eq. (3).
In agreement with Figs. 2 and 3, the dashed lines

show that tree-level perturbation theory only gives an
accurate prediction for the bispectrum for k0 and k below
∼0.1hMpc−1. When k ¼ 0.2hMpc−1, it underestimates the
bispectrum by about 10%, and for higher k, the discrepancy
becomes greater and can reach a factor of 2 or more (it no
longer appears in these panels because it is out of range).
This shows that the panels with k ≥ 0.3hMpc−1 are beyond
the lowest-order perturbative regime and that we test the
consistency relation (6) in a nontrivial regime, beyond the
perturbative check of Sec. II C.
Even though lowest-order perturbation theory cannot

predict the bispectrum itself for k≳ 0.2hMpc−1, higher-
order corrections partly cancel in the ratio between both
sides of Eq. (6), and this ratio remains well described by
lowest-order perturbation theory up to k0 ∼ 0.07hMpc−1 in
all panels, where k ≤ 1hMpc−1. This also agrees with
previous studies that found that the reduced bispectrum,
defined as Bðk1; k2; k3Þ=½Pðk1ÞPðk2Þ þ ðcycÞ�, is more
robust and shows smaller deviations from the perturbative
prediction than the bispectrum itself [4]. In particular, for

FIG. 6. Ratio of the two sides of Eq. (6) at z ¼ 1. Each panel
plots the ratio as a function of k0 for a fixed k shown in the legend.
The symbols are the results from low-resolution simulations (left
panels) and high-resolution simulations (right panels). Filled
circles correspond to measures of the bispectrum from Eq. (11),
whereas for empty triangles, we use for the soft mode the linear
density contrast ~δL;k0 instead of the nonlinear density contrast ~δk0
as in Eq. (3). The solid lines show the predictions of the tree-level
perturbation theory for this ratio, whereas the dashed lines in the
left upper two panels show the ratio of the measured bispectrum
to its tree-order prediction (9). FIG. 7. Same as Fig. 6, but the results at z ¼ 0.35.
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k≲ 0.3hMpc−1, lowest-order perturbation theory is able to
reproduce the first deviations from unity of the consistency-
relation ratio, at k0 ∼ 0.06hMpc−1, which may be either
positive or negative, depending on scales. In terms of the
consistency relation (6), these departures signal that the
ratio k0=k is not small enough to reach the low-k0 asymp-
totic behavior. At higher k0, the behavior is the same in all
panels, and the ratio grows with k0. On the other hand, on
large scales, k0 ≲ 0.04hMpc−1, the ratio is consistent with
unity. We basically confirm the validity of the consistency
relation (6) within the statistical error of the simulations, ∼1
to 5%, depending on the scales (see the leftmost data points
in left panels).
Then, the results of the high-resolution simulations

shown in the right panels, though we can sample a smaller
number of data points, show a similar trend as that at
k ¼ 0.3 or 0.4hMpc−1 found in the low-resolution simu-
lations. At the joint wave number, k ¼ 0.4hMpc−1, the
overall k0 dependence is consistent with the low-resolution
ones: the ratio is an increasing function of k0 and gradually
deviates from unity at k0 ≳ 0.07hMpc−1. At z ¼ 1, the k0
dependence in the other three panels is quite similar to that
in the top right panel. The coherence of the zigzag pattern
among the four panels might be explained by the fact that
we always use the same set of soft modes ~δk0 for different
hard wave numbers. However, we observe a systematic
deviation from unity at small k0 at z ¼ 0.35. The deviation
is more prominent on larger k and reaches up to ∼7% at
k ¼ 1hMpc−1 at that redshift.
Note that on these scales nonperturbative corrections

such as shell crossing or the one-halo term in the halo
model start to kick in (see, e.g., Refs. [18,23–25]).
However, in agreement with theoretical expectations, they
do not lead to an increasingly large deviation from unity of
the low-k0 limit at z ¼ 1. Indeed, the consistency relation
(6) only relies on the approximate symmetry associated
with the approximation Ωm=f2 ≃ 1, and within this
approximation, it remains valid beyond shell crossing on
highly nonlinear scales for k. Nonlinearities might amplify
the sensitivity to this approximation, but this seems not to
be the case in the range of scales shown in Figs. 2. We will
examine this issue more explicitly in the next subsection,
using additional simulations done in the Einstein–de Sitter
background at z ¼ 0.35.
The auto and mixed bispectra are consistent on large

scales (i.e., small k0) as we recover linear theory. The
differences that appear for k0 ≳ 0.06hMpc−1 show that the
soft mode density contrast ~δk0 begins to receive non-
negligible nonlinear corrections. These contributions vio-
late the consistency relation because the latter is actually
derived for the mixed polyspectra, as in Eq. (3), and the
form (5) makes use of the additional approximation
~δk0 ≃ ~δL;k0 . Therefore, we would expect that the consistency
relation is better satisfied when we do not introduce
this additional approximation and consider the mixed

bispectrum, shown by the empty triangles. The left panels
do not show that the range of validity of the consistency
relation is extended when we use the mixed bispectrum,
but this could be due to the fact that the condition k0 ≪ k is
violated. On the other hand, the right panels at z ¼ 1, with
a lower scale ratio k0=k, show a broader range of validity
of the consistency relation when we use the mixed
bispectrum, in agreement with these theoretical expect-
ations. The right panels at z ¼ 0.35 also show a broader
plateau, as expected, but with a small negative offset.
Convergence studies presented in Appendix B show that
this offset is not likely due to numerical error. We thus
conclude here that there exists a sign of a breakdown of
the consistency relation (6) on small scales at low redshift
within the reliability of the present numerical simulations.
We will examine possible causes of the offset in the next
subsection.
Note finally that we can see in some of the panels that

filled circles are more consistent with unity than empty
triangles. However, this is just a coincidence: the downturn
of the ratio is compensated by the nonlinear correction
to the soft mode ~δk0 by chance. The mixed bispectrum is
always a more direct measure of the consistency relation
though it is not an observable quantity. What we can do in
practice is to push the measurement to the larger scale
with larger surveys to avoid nonlinear corrections to the
soft mode.

E. Effect of Ωm=f 2 ≠ 1

One possible cause of the breakdown of the relation,
which we find on small scales at z ¼ 0.35, is the approxi-
mation Ωm=f2 ≃ 1 employed in deriving the consistency
relations. For instance, this combination deviates from
unity by ∼7.5% at that redshift for the cosmological
model we consider here, as already discussed in Fig. 1.
We conduct some supplemental simulations to understand
to what extent this affects the spectra of interest.
We run simulations with the same linear density field

(i.e., the matter transfer function, the spectral tilt ns, and the
amplitude of the linear fluctuations σ8 at z ¼ 0) as the one
we used in the main discussion, but adopting the cosmic
expansion for the Einstein–de Sitter universe (i.e., Ωm ¼ 1;
EdS hereafter, where we also have Ωm=f2 ¼ 1). We
simulate four random realizations of 10243 particles in a
cubic box with 2048h−1 Mpc a side with the same random
seeds as the first four realizations of the low-resolution
simulations in the main discussion.
Although these supplemental simulations are not self-

consistent in a sense that they still adopt the transfer
function calculated for a ΛCDM model, they are useful
to single out the effect of the breakdown of the approxi-
mation Ωm=f2 ≃ 1, by following the time evolution of the
spectra starting with exactly the same initial values but in
different backgrounds that probe different ranges of the
ratio Ωm=f2.
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Note that, even though the EdS universe satisfies
Ωm=f2 ¼ 1 at all times, at the background level, this is
not sufficient to ensure the angular-averaged consistency
relation is exact. Indeed, this relation assumes that
Ωm=f2 ≃ 1 for all cosmologies close to the background
one (as large-scale density fluctuations are identified
with local changes of Ωm). Nevertheless, by changing
the background cosmology, we change the reference point
along the Ωm=f2 ratio as a function of density fluctuations,
and the comparison between the ΛCDM and EdS cases
gives an indirect probe of the effects associated with the
approximation Ωm=f2 ≃ 1.
Since the function DþðzÞ is different between the two

models, we choose the initial and output redshifts of the
simulation in the EdS background such that they give the
same linear growth rate: Dþ;EdSðzEdSÞ ¼ Dþ;ΛCDMðzΛCDMÞ.
If the approximation is accurate enough, in the sense that
the nonlinear power spectrum only depends on the linear
growth rate, these simulations should give spectra indis-
tinguishable to those from the simulations in the main
discussion. Also, we expect that the impact of any
numerical error is almost the same in the two models since
we are simulating exactly the same stage of structure
formation with the choice of redshifts above.
We first show the ratio of the right-hand side of the

relation (6) in Fig. 8. We plot the ratio of the sum of the
three terms by triangles and circles, respectively, at z ¼ 1
and z ¼ 0.35. Although these symbols have vertical error

bars estimated from the scatter among the four random
realizations, they are hardly visible by eye: they are
typically 10−5 to 10−4 level. This ensures the robustness
of our estimate of the effect of Ωm=f2 ≠ 1 using a rather
small number of independent random realizations.
The plot shows that the effect is at most subpercent

level at z ¼ 1, while a significant correction is observed
at z ¼ 0.35. The correction is an increasing function of k
and reaches to ∼7.5% at k ¼ 1hMpc−1. We also show
the ratio for each of the three terms separately by lines
(solid, dashed, and dotted for the first, second, and the
last terms, respectively). The solid line for the nonlinear
matter power spectrum should be compared to similar
analyses in the literature based on perturbation theories
(e.g., Refs. [26–28]). Our simulation result is quantita-
tively in good agreement with these predictions in the
literature on small scales (i.e., k≲ 0.4hMpc−1). The
wave-number-derivative term, depicted by the dotted
line, is also affected by the non-EdS background at a
similar level as the solid line but toward the opposite
direction. The largest effect lies in the time-derivative
term (dashed).
We now turn to the bispectrum and plot the ratio similar

to the previous one in Figs. 9 and 10. We plot the ratio as a
function of the soft wave number k0 for seven values of hard
wave number k shown in the figure legend. Again, the ratio
is always close to unity at z ¼ 1, and the deviation is at
most ∼1% (at k ¼ 1hMpc−1). On the other hand, the ratio
can be as large as ∼1.05 at z ¼ 0.35 on small scales. The
size of the deviation from unity increases with the hard

FIG. 8 (color online). Ratio of the right-hand side of the
consistency relation (6) in ΛCDM and EdS background cosmol-
ogy (triangles: z ¼ 1, circles: z ¼ 0.35). We also plot the
contribution from each of the three terms by lines at z ¼ 0.35:
solid, dashed, and dotted lines, respectively, show the first,
second, and the last terms.

FIG. 9 (color online). Ratio of the angular-averaged bispectrum
[left-hand side of the consistency relation (6)] in ΛCDM and EdS
background cosmology at z ¼ 1.
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wave number k, while its k0 dependence is weak at both
redshifts.
An important observation here is that the correction from

the non-EdS background affects both sides of the consis-
tency relation (6), but its impact is quantitatively different
in the two sides, which do not cancel out when we take their
ratio. At k ¼ 1hMpc−1 at z ¼ 0.35, where we find that the
consistency relation holds the worst, the net effect to the
consistency relation is to lower the ratio of the left- to right-
hand side by about 2% to 3% (see also Fig. 11 below). This
qualitatively explains the ratio of the two sides smaller
than unity in Fig. 7, though it does not completely recover
the amplitude of the breakdown of the relation (∼7%).
However, this is not surprising because the comparison
between the ΛCDM and EdS cosmologies is only an
indirect probe of the approximation Ωm=f2 ≃ 1 (because
neither of the two cosmologies is an exact reference point
free from this approximation). These results suggest that a
percent-level breakdown of the relation is naturally
expected at z ¼ 0.35 on small scales for the ΛCDM
cosmology considered here at z ¼ 0.35.
We finally compare in Fig. 11 the consistency-relation

ratios obtained in the ΛCDM and EdS cosmologies,
focusing on the nonlinear scales (we plot the data points
from the four realizations for which the initial phases are
reused in the EdS simulations to make the comparison fair).
We obtain qualitatively similar results for both cosmolo-
gies. Moreover, in agreement with the previous figures,
we find that for k≲ 1hMpc−1 at z ¼ 1 and k≲ 0.4hMpc−1

at z ¼ 0.35 the consistency relation is valid, whereas for
≳0.8hMpc−1 at z ¼ 0.35, the measured ratio is a few
percent below unity, with a slightly smaller departure for
the EdS case. As expected, the departure from unity takes

place on scales where results from the EdS and ΛCDM
cosmologies start to deviate. To improve the theoretical
predictions at low redshifts and small scales would require
going beyond the approximationΩm=f2 ≃ 1, but we do not
investigate this problem here.

IV. SUMMARY

We have conducted a first numerical test of the angular-
averaged consistency relation (5) by exploiting a large suite
of cosmological N-body simulations. We focus on the
lowest-order example of the relation (l ¼ 1 and n ¼ 2),
which expresses the angular-averaged bispectrum in terms
of the soft-mode and hard-mode power spectra. The large
total volume of the simulations allows us to conduct a
quantitative discussion on the validity of this relation.
We confirm that the relation is recovered within the

statistical error of the simulations, beyond the validity range
of the tree-level perturbation theory (9), for k≲ 0.4hMpc−1

down to z ¼ 0.35. On the other hand, these scales remain
within the range of higher-order perturbation theories so
that the validity of the consistency relation is not surprising,
because it is well known that the approximation Ωm=f2

used in most perturbative schemes is sufficiently accurate
on these scales [4]. We indeed confirm that the breakdown
of this approximation gives at most ∼1% correction to the
spectra, and the effect on the power and bispectra mostly
compensate with each other.
Beyond this regime, we find that the validity range of

the consistency relation extends to smaller scales, up to
k ≤ 1hMpc−1 at z ¼ 1, where nonperturbative effects

FIG. 10 (color online). Same as Fig. 9, but at z ¼ 0.35. FIG. 11. Ratio of the two sides of the consistency relation (6) in
either ΛCDM (circles) or EdS (triangles) background cosmolo-
gies, as in Figs. 6 and 7. We focus on large values of k at z ¼ 1
(left column) and z ¼ 0.35 (right column).
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are not negligible [24,25]. We check that the condition
k0=k ≪ 1 is not sufficient for the consistency relation, and
the soft mode ~δk0 must be in the linear regime. Using the
mixed bispectrum provides a more direct connection with
the theory, and our results suggest that this also extends the
validity range of the consistency relation. However, such a
quantity can only be measured in numerical simulations
and not from observations of the real Universe.
We find, on the other hand, a statistically significant

breakdown of the relation at z ¼ 0.35, where the angular-
averaged bispectrum is smaller than what we expect from
the power spectrum. This feature is more prominent on
smaller scales reaching to ∼7% at k ¼ 1hMpc−1. We show
that this is at least partly explained by the breakdown of the
approximation Ωm=f2 ≃ 1. We present an extensive con-
vergence study of simulations in Appendix B, where we
show that the systematic error to the ratio of the two sides is
only mild if any. We thus conclude that the breakdown at
this level should exist in reality inΛCDM cosmologies with
parameters consistent with recent observations at low
redshifts.
We leave further discussions on, for instance, the effect

of nonlinear bias or the usefulness of the relation to detect
primordial non-Gaussianity to future studies. Also, it might
be interesting to see how baryonic effects alter the relation
between different spectra in hydrodynamical simulations.
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APPENDIX A: EFFECT OF BINNING

In practice, we have to adopt a binning in the wave
number when we measure the power spectrum and the
bispectrum. Consequently, the consistency relation can
only be tested between binned spectra. In this Appendix,
we briefly discuss the impact of binning and show the
importance of a correct account of this effect in testing the
relations.
The angular-averaged bispectrum is naturally binned

both in hard mode k and soft mode k0. On the other hand,
the right-hand side of the relation consists of two separable
factors, each of which is a function of k or k0. As for the
k-dependent part, the statistical error level on the power
spectrum and its derivatives are smaller than those on the
bispectrum even when we adopt a finer binning (compare
Figs. 2 and 3 with Figs. 4 and 5). This allows us to evaluate
their values at an arbitrary wave number without

introducing a severe interpolation error. Moreover, the
k0-dependent factor is simply the linear power spectrum
PLðk0Þ, which we do not need to measure since it is given
from the beginning. Thus, a simple way to evaluate the
right-hand side is first to find the effective wave numbers k
and k0 at which the left-hand side is measured and then to
evaluate the two factors composing the right-hand side at
those wave numbers.
The ratio of the two sides obtained this way is shown

as open triangles with dashed error bars in Fig. 12 at
k ¼ 0.4hMpc−1 at z ¼ 1 from the higher-resolution sim-
ulations. In doing so, we adopt the mean over the norm of
the wave vectors, k or k0, that are taken into account for
each bin and use the cubic spline interpolation to evaluate
the k-dependent factor at that representative k value. The
resultant data points exhibit rather noisy scatter around
unity for which the significance is larger than the statistical
error level shown as error bars.
We next consider a binning scheme to the right-hand

side, which is more consistent with the left-hand side. For
the k-dependent factor, we simply apply the same bin width
as in the bispectrum measurement and measure the binned
nonlinear power spectrum and its derivatives. In addition,
we now measure the linear power spectrum from the
random linear density fields used in setting up the initial
conditions of the simulations in consistent k0 bins instead of
evaluating the true spectrum defined as an ideal ensemble
average. Since the summation in Eq. (11) over k0 is taken
only for 2kf times integer vectors, where kf ¼ 2π=Lbox is
the fundamental wave number, such that k0=2 is available in

FIG. 12. Effect of binning on the test of consistency relations.
We plot the consistency-relation ratios measured by two different
procedures: a) we take into account the binning in the right-hand
side consistently to the left-hand side (circles), or b) we evaluate
the right-hand side at the central wave number of each bin
(triangles).
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the simulations, we consider only these wave numbers
when we measure the binned linear power spectrum.
The resultant ratio of the two sides is plotted as filled

circles in Fig. 12. Now, the data points look cleaner than the
triangles obtained with unbinned right-hand side. Also, the
error bars on circles are significantly smaller than those on
triangles in most of the cases. This is because the random-
ness in the angular-averaged bispectrum arising from the
finite simulation box is partly cancelled by the linear power
spectrum, which now takes account of the same random-
ness in each of the realizations. From these considerations,
we adopt the latter binning scheme for the right-hand side
in the main text.

APPENDIX B: CONVERGENCE STUDY

We study the convergence properties of the power and
bispectrum measured from N-body simulations in this
Appendix. For this purpose, we have run extra simulations
with different spatial resolutions. We list the parameters for
these simulations (“sublow,” “subhigh,” and “ref.”) in
addition to the two sets of simulations presented in the
main text (“main low” and “main high”) in Table I. All the
three sets of supplemental simulations have the same
volume (5123h−3Mpc3) but have different spatial/mass
resolutions. We use them to understand the systematic
error caused by the finite resolution.
We also adopt different starting redshifts of the simu-

lations for these three. They are determined to minimize
the sum of the two systematic errors: the transient effect
caused by the initial conditions created with the Lagrangian
perturbation theory and the inaccuracy of the tree force in
the early stages of the simulations where particles are
distributed closely to a regular grid [16]. In other words, we
can safely start the simulations at a high redshift only when
the spatial resolution is sufficient to control the force
accuracy. Since the relative displacement of particles with
respect to the grid spacing depends on the spatial reso-
lution, the optimal redshifts vary with resolutions. Thus, we
are testing the combination of the transient effect and the
resolution effect by comparing different sets of simulations.
Note that the two simulations, sublow and subhigh,

respectively, have the same resolutions as main low and
main high simulations presented in the main text. Indeed,

subhigh is a subset of four realization from the main high
simulations. We are thus testing the systematic error in the
main two sets of simulations using the supplemental
simulations and comparing with the reference simulations
with resolution twice better than the higher-resolution
simulations.
We adopt exactly the same initial random phases for the

three sets of supplemental simulations, and we conduct four
realizations for each of them to estimate the statistical
scatter. We will show shortly that we can indeed achieve a
small statistical error on the ratio of the same spectrum from
different simulation setups with a rather small number of
independent realizations.
We first show in Fig. 13 the right-hand side of the

relation (6), the sum of the power spectrum and its
derivative terms measured from sublow and subhigh
simulations, divided by that from the reference simulations
that have the best spatial resolution. Shown by triangles are
the results of the low-resolution runs, while circles are the
results of the high-resolution runs. Filled (open) symbols
depict data from the outputs at z ¼ 0.35 (1).
We can learn from the figure that the systematic error

grows with wave number and decreases with time. This
indicates that the effect is transient and likely comes from
the inaccuracy in the initial condition set by second-order
Lagrangian perturbation theory (2LPT). The higher-reso-
lution simulations, which also start at a higher redshift, are
less affected by this systematics than the lower-resolution
ones. The error gets larger and reaches to ∼2% and 1% at
k ¼ 1hMpc−1 for the higher-resolution simulations, while

TABLE I. List of simulations for the convergence study. The
box sizes of the simulations are in units of h−1Mpc. Note that the
simulations subhigh are a subset of main high.

Name Box size Particles zin Realizations

Main low 2048 10243 15 60
Main high 512 5123 31 512
Sublow 512 2563 15 4
Subhigh 512 5123 31 4
Ref. 512 10243 63 4

FIG. 13 (color online). Convergence of the right-hand side of
the consistency relation (6) against resolution and the starting
redshift of simulations. We show the sublow (subhigh) simu-
lations divided by ref. simulations in triangles (circles). Filled
symbols are the ratio at z ¼ 0.35, while we plot the results at
z ¼ 1 by open symbols.
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the lower-resolution simulations can have a ∼5% error in
the worst case.
We then present the ratio between the same set of

simulations but of the angular-averaged bispectrum in
Fig. 14 at z ¼ 1 (left) and z ¼ 0.35 (right). Again, the
circles and triangles, respectively, show the result of the
high- and low-resolution simulations divided by the meas-
urement from the reference simulations. Also shown by
horizontal bands are the ratio of the right-hand side at the
wave number k indicated in the figure legend, which we
have just discussed in Fig. 13. Interestingly, the systematic
effect on the bispectrum (symbol) is at a similar level as that
on the combination of power spectrum (bands). Thus, this
effect is not likely to change significantly the relation
between the two sides of Eq. (6), and the possible net effect

on the relation is at most 1% (k ¼ 0.6hMpc−1 at z ¼ 1 for
the lower-resolution simulations). To be conservative,
however, we show only the higher-resolution simulations
on a smaller scale (k ≥ 0.6hMpc−1) in the main text.
The results so far indicate that the finite spatial

resolution as well as the transient effect caused by the
2LPT initial condition are not responsible for the break-
down of the consistency relation (6) seen in Fig. 7 at
z ¼ 0.35. Given that, the comparison between two sim-
ulations in different volumes and with different resolu-
tions allows us to test the effect of the finite simulation
volume, since the impact of the latter is shown to be rather
small. We plot the ratio of the two sides of the relation (6)
at z ¼ 0.35 in Fig. 15 measured from the two sets of
simulations used in the main discussion. The two symbols
(circles: main low, triangles: main high) mostly lie close
to each other. The difference between the two symbols is
typically a few percent level, which is similar to the size
of the statistical error. This shows that the finiteness of
the simulation volume does not severely affect the
consistency relation (6).
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the simulation volume at z ¼ 0.35. We plot “main low” (“main
high”) by circles (triangles).
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