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ABSTRACT
To study the impact of sparsity and galaxy bias on void statistics, we use a single large-volume,
high-resolution N-body simulation to compare voids in multiple levels of subsampled dark
matter, halo populations, and mock galaxies from a halo occupation distribution model tuned
to different galaxy survey densities. We focus our comparison on three key observational
statistics: number functions, ellipticity distributions, and radial density profiles. We use the
hierarchical tree structure of voids to interpret the impacts of sampling density and galaxy bias,
and theoretical and empirical functions to describe the statistics in all our sample populations.
We are able to make simple adjustments to theoretical expectations to offer prescriptions
for translating from analytics to the void properties measured in realistic observations. We
find that sampling density has a much larger effect on void sizes than galaxy bias. At lower
tracer density, small voids disappear and the remaining voids are larger, more spherical, and
have slightly steeper profiles. When a proper lower mass threshold is chosen, voids in halo
distributions largely mimic those found in galaxy populations, except for ellipticities, where
galaxy bias leads to higher values. We use the void density profile of Hamaus et al. to show
that voids follow a self-similar and universal trend, allowing simple translations between voids
studied in dark matter and voids identified in galaxy surveys. We have added the mock void
catalogues used in this work to the Public Cosmic Void Catalog at http://www.cosmicvoids.net.

Key words: methods: data analysis – methods: numerical – cosmology: theory – large-scale
structure of Universe.

1 IN T RO D U C T I O N

The large, underdense structures that fill up most of the volume
of the universe – are a unique and potentially powerful cosmo-
logical probe (Thompson & Gregory 2011). Their size and shape
distributions are sensitive to the nature of dark energy (e.g. Biswas,
Alizadeh & Wandelt 2010; Bos et al. 2012; Li, Zhao & Koyama
2012; Shoji & Lee 2012; Jennings, Li & Hu 2013), their internal
dynamics are strongly altered by fifth forces and modified gravity
(e.g. Li & Zhao 2009; Clampitt, Cai & Li 2013; Spolyar, Sahlén
& Silk 2013), and the integrated Sachs–Wolfe effect offers con-
straints on cosmological parameters (Thompson & Vishniac 1987;
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Ilic, Langer & Douspis 2013; Planck Collaboration 2013). Their
statistical isotropy means that we can use stacked voids as a stan-
dard sphere for an Alcock–Paczynski test (Ryden 1995; Lavaux
& Wandelt 2012; Sutter et al. 2012b). Additionally, we may use
voids to test for the existence of primordial magnetic fields (Taylor,
Vovk & Neronov 2011; Beck et al. 2013) and study the effects of
environment on galaxy evolution (Gottlober et al. 2003; Ferreras &
Pasquali 2011; Ceccarelli et al. 2012).

Researchers typically use analytical calculations and N-body dark
matter simulations to predict and understand various void proper-
ties, such as number functions (Sheth & van de Weygaert 2004;
Furlanetto & Piran 2006; Paranjape, Lam & Sheth 2012; Achitouv,
Neyrinck & Paranjape 2013; Jennings et al. 2013), radial density
profiles (Fillmore & Goldreich 1984; Dubinski et al. 1993; Ben-
son et al. 2003; Colberg et al. 2005; Ceccarelli et al. 2006), and
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ellipticities (Lavaux & Wandelt 2010; Bos et al. 2012; Shoji & Lee
2012). However, absent direct measurements of dark matter under-
densities the only way to infer the characteristics of voids is with
large galaxy redshift the only way to infer the characteristics of
voids is with large galaxy redshift surveys (Pan et al. 2012; Sutter
et al. 2012a). These galaxy populations are sparse, biased tracers
of the underlying dark matter density field, which can potentially
impact void statistics.

There has already been some work to make the connection be-
tween galaxy and dark matter voids: Furlanetto & Piran (2006) and
Jennings et al. (2013) made parameter adjustments to the excursion
set formalism of Sheth & van de Weygaert (2004) to account for
void finding in galaxy populations, Ryden & Melott (1996) com-
pared voids in real and redshift space, Tinker & Conroy (2009)
looked at the impacts of the biasing of different galaxy populations,
and Schmidt, Ryden & Melott (2001) and Colberg et al. (2005)
made early assessments of the effects of different sparsity levels
on void reconstruction. When attempting to predict void statistical
properties, most authors find voids within the halo distribution, not a
mock galaxy population (e.g. Bos et al. 2012; Jennings et al. 2013).
We will discuss the validity of this assumption below. When at-
tempting to match observed void statistics, authors typically turn to
semi-analytic modelling (SAM; De Lucia 2009) to generate mock
galaxy populations (Benson et al. 2003; Padilla, Ceccarelli & Lam-
bas 2005; Ceccarelli et al. 2006; Pan et al. 2012; Tavasoli, Vasei &
Mohayaee 2013).

While it may be possible to link galaxy voids to dark matter voids
on a one-by-one basis, this is very difficult due to the complex inter-
nal hierarchical structure of voids (Aragon-Calvo & Szalay 2013;
Sutter et al. 2014). Instead, in this work, we take a holistic approach
and offer general prescriptions to translate from dark matter voids
to galaxy voids by examining voids in different tracer populations
sourced from the same cosmological simulation. We focus on three
key void observables: number functions, ellipticity distributions,
and radial density profiles. We take theoretical and empirically de-
rived fitting functions and adjust their parameters to move smoothly
among the different populations.

We begin in Section 2 with our simulation setup, our process
for generating mock galaxy populations, and our void finding algo-
rithm. Next, in Section 3, we use the hierarchical tree structure of
voids to examine the consequences of reducing the tracer density
and introducing galaxy bias. Section 4 discusses the changes to num-
ber functions, ellipticity distributions, and radial density profiles. Fi-
nally, we conclude in Section 5 with a discussion of consequences
for interpreting voids in galaxy redshift surveys and comments on
future work.

2 N U M E R I C A L A P P ROAC H

2.1 Simulations and mocks

We source all samples and mock catalogues in this work from a sin-
gle � cold dark matter N-body simulation. We use the 2HOT code,
an adaptive treecode N-body method whose operation count scales
as Nlog N in the number of particles (Warren 2013). Accuracy and
error behaviour have been improved significantly for cosmological
volumes through the use of a technique to subtract the uniform
background density, as well as using a compensating smoothing
kernel for small-scale force softening (Dehnen 2001). We use a
standard symplectic integrator (Quinn et al. 1997) and an efficient
implementation of periodic boundary conditions using a high-order
(p = 8) multipole local expansion. We adjust the error tolerance
parameter to limit absolute errors to 0.1 per cent of the rms peculiar

acceleration. As an example, a complete 40963 particle simulation
requires about 120 wall-clock hours using 12 000 CPU cores. Ini-
tial conditions were generated using a power spectrum calculated
with CLASS (Blas, Lesgourgues & Tram 2011) and realized with a
modified version of 2LPTIC (Crocce, Pueblas & Scoccimarro 2006).

This particular simulation assumed WMAP 7-yr cosmological
parameters (Komatsu et al. 2011). The box size was 1 h−1 Gpc
on a side and contained 10243 particles, giving a particle mass
resolution of 7.36 × 1010 h−1 M�. All analysis in this work used
a single snapshot at z = 0. For the dark matter analysis, we take
successive random subsamples of the particles to achieve tracer
densities of 10−2, 4 × 10−3, and 3 × 10−4 particles per cubic
h−1 Mpc. These samples are labelled as DM Full, DM Dense, and
DM Sparse, respectively.

We use the ROCKSTAR halo finder (Behroozi, Wechsler & Wu
2013), a six-dimensional phase-space plus time halo finder, to iden-
tify spherical overdensity (SO) haloes at 200 times the background
density. We use the default ROCKSTAR parameters, except for requir-
ing strict SO masses which includes unbound particles and particles
which may exist outside of the FOF group for the halo. We use the
halo catalogue both for using the halo positions as a set of tracers
for void finding and as inputs for the halo occupation distribu-
tion (HOD) modelling. We take two halo populations: one, labelled
Haloes Dense, which uses all haloes down to the minimum resolv-
able halo mass of 1.47 × 1012 h−1 M� (20 particles), and the other,
labelled Haloes Sparse, which only includes haloes above 1.2 ×
1013 h−1 M�. These samples do not have exactly the same densi-
ties as the HOD mocks below; rather, we use these two thresholds
to approximate the minimum mass used in the HOD distribution
of central galaxies, thereby allowing us to compare voids found in
haloes to those found in galaxy populations.

We produce galaxy catalogues from the above halo population
using the code described in Tinker, Weinberg & Zheng (2006) and
the HOD model described in Zheng, Coil & Zehavi (2007). HOD
modelling assigns central and satellite galaxies to a dark matter halo
of mass M according to a parametrized distribution. In the case of
the Zheng et al. (2007) parametrization, the mean number of central
galaxies is given by

〈Ncen(M)〉 = 1

2

[
1 + erf

(
log M − log Mmin

σlog M

)]
(1)

and the mean number of satellites is given by

〈Nsat(M)〉 = 〈Ncen(M)〉
(

M − M0

M ′
1

)α

, (2)

where Mmin, σ log M, M0, M ′
1, and α are free parameters that must

be fitted to a given survey. The probability distribution of central
galaxies is a nearest-integer distribution (i.e. all haloes above a given
mass threshold host a central galaxy), and satellites follow Poisson
statistics.

Using the above model, we generate two mock catalogues. One
catalogue is matched to the number density and clustering of the
SDSS DR9 CMASS galaxy sample (Dawson et al. 2013) using
the parameters found by Manera et al. (2013) (σ log M = 0.596,
M0 = 1.2 × 1013 h−1 M�, M ′

1 = 1014 h−1 M�, α = 1.0127, and
Mmin chosen to fit the mean number density). We call this sample
HOD Sparse since we are using it to represent a relatively low-
resolution galaxy sample with density 3 × 10−4 particles per cubic
h−1 Mpc. Our second catalogue, named HOD Dense, is matched to
the SDSS DR7 main sample (Strauss et al. 2002) at z < 0.1 using
one set of parameters found by Zehavi et al. (2011) (σ log M = 0.21,
M0 = 6.7 × 1011 h−1 M�, M ′

1 = 2.8 × 1013 h−1 M�, α = 1.12).
While our simulation does not quite have sufficient resolution to

MNRAS 442, 462–471 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/442/1/462/1251320 by guest on 24 April 2022



464 P. M. Sutter et al.

have enough small haloes to fully capture the density of this survey,
we will still use it to represent relatively high-resolution galaxy
samples. The density here, 4 × 10−3 particles per cubic h−1 Mpc,
is roughly a factor of 2 lower than the full DR7 density at z < 0.1.

2.2 Void finding

We identify voids with a modified version of ZOBOV (Neyrinck
2008; Lavaux & Wandelt 2012; Sutter et al. 2012a). ZOBOV creates
a Voronoi tessellation of the tracer particle population, and uses the
watershed transform to group Voronoi cells into zones and voids
(Platen, van de Weygaert & Jones 2007). The watershed transform
identifies catchment basins as the cores of voids and ridgelines,
which separate the flow of water, as the boundaries of voids. The
watershed transform naturally builds a nested hierarchy of voids
(Bos et al. 2012; Lavaux & Wandelt 2012), and for the purposes
of this work – with the exception of Section 3, where we explicitly
discuss the void hierarchy – we will only examine root voids, which
are voids at the base of the tree hierarchy, and hence have no parents.
We also impose two density-based criteria on our void catalogue.
The first is a threshold cut within ZOBOV itself where voids only
include as members Voronoi cells with density less than 0.2 the
mean particle density. We apply the second density criterion as a
post-processing step: we only include voids with mean central den-
sities below 0.2 the mean particle density. We measure this central
density within a sphere with radius R = 1/4Reff, where

Reff ≡
(

3

4π
V

)1/3

. (3)

In the expression above, V is the total volume of the void. We also
ignore voids with Reff below the mean particle spacing of the tracer
population.

Additionally, for the analysis below, we need to define a centre for
the void. For our work, we take the barycentre, or volume-weighted
centre of all the Voronoi cells in the void:

Xv = 1∑
i Vi

∑
i

xiVi , (4)

where xi and Vi are the positions and Voronoi volumes of each
tracer i, respectively.

Table 1 summarizes the samples used in this work, their minimum
effective void radius, and the number of voids identified in the
simulation volume.

3 VO I D H I E R A R C H I E S

As discussed in Lavaux & Wandelt (2012) and Aragon-Calvo &
Szalay (2013), watershed void finders naturally group voids into a
nested hierarchy of parents and children. We may use this hierarchy

Table 1. Summary of sample void populations.

Data set type Sample name Reff, min (h−1 Mpc) Nvoids

DM DM Full 5 42 948

DM DM Dense 7 21 865
Haloes Haloes Dense 7 11 419
HOD HOD Dense 7 9503

DM DM Sparse 14 2611
Haloes Haloes Sparse 14 2073
HOD HOD Sparse 14 1422

Figure 1. Maximum tree depth in the void hierarchy for each sample. In
addition to the axis labels, bars are coloured by sample type: red for dark
matter, green for haloes, and blue for galaxies. Double-hatched bars repre-
sent Full resolution samples, Dense samples are shown with no hatching,
and Sparse samples are shown with single-line hatches. Subsampling of the
dark matter destroys the void hierarchy, while using biased tracers such as
galaxies and haloes reinforces the hierarchy.

to understand the effects of subsampling and biasing before we turn
to the observational consequences. We define the void tree such that
each void has only a single parent (or no parents at all), and can
potentially have many children. One void is considered a parent of
another if it shares all zones of the child plus at least one more.
Parents can then become children of even larger voids. Without any
density thresholds, there will be a single void that encompasses the
entire simulation volume and that serves as the root void for the
entire population. However, since we do apply a density threshold,
we have multiple root voids.

Fig. 1 shows the maximum tree depth for each sample. The maxi-
mum tree depth is the length from root to tip of the tallest tree in the
hierarchy, and gives a measure of the amount of substructure in the
most complex void in the sample. For comparison, the hierarchical
tree depth of voids in a Poisson distribution of particles is identically
zero. This follows from the high improbability of producing large
voids in a Poisson distribution, and from the fact that substructures
arise naturally from hierarchical formation.

We immediately notice the effects of lowering the sampling den-
sity: we completely erase any substructure information in the DM
Sparse sample. In contrast, even though the halo and galaxy popula-
tions have overall lower mean density, since they are biased tracers,
they naturally more strongly trace the substructure. Unsurprisingly,
lower density galaxy (and halo) populations have less substructure
than their high-density counterparts. Additionally, galaxy popula-
tions, which are based on their respective halo catalogues but have
more tracers, display more substructure.

We can understand these results by looking at the density con-
trasts of the void populations. We define the density contrast of a
void as the ratio between the mean density of particles along the
wall to the density of the least-dense (or ‘core’) particle. In ZOBOV,
particles along the void wall are easy to identify: they are adjacent
to at least one non-void particle. Fig. 2 shows the density contrast
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Figure 2. Void density contrast (ratio between the mean density of particles
along the wall to the density of the least-dense particle) versus void effective
radius. Solid lines are the mean of the density contrast in thin bins of Reff

and dark (light) grey bands are 1σ (2σ ) ranges of the distribution in those
bins. All samples show a trend of increasing density contrast with void size.
Haloes and galaxies produce very high-density contrasts since many tracers
are placed along the filaments and walls.

versus void effective radius for each sample. While there is consid-
erable scatter in the relations, the density contrasts of our highest
density sample, DM Full, clearly show steep dependence on void
radius. We might naively expect the opposite trend, because smaller
voids tend to have higher walls due to the void-in-cloud process
(Sheth & van de Weygaert 2004). However, even though the larger
voids contain significant substructure, they tend to have very deep
underdense subregions inside them, thus producing larger maxi-
mum contrasts. As we lower the sampling density, we find larger
voids (which we will discuss in more detail below) but also much
shallower voids: the maximum density contrast in the DM Sparse
sample is only ∼1/3 the maximum contrast in the DM Full sample.
This behaviour is entirely expected: as we remove particles, we
‘thin out’ the walls that define the void boundaries, and thus reduce
the overall density at the edges.

However, both the halo and HOD samples, even though they
contain fewer tracers than the high-resolution dark matter cases,
have comparable – and even higher – density contrasts than the low-
resolution dark matter samples. We expect this because of biasing:
we generally make the walls thinner by switching to haloes and
galaxies, leading to larger voids, but the walls that survive are
more densely concentrated with tracers, leading to high-density
contrasts. The relationship between density contrast and radius is
nearly identical between voids in galaxies and haloes, since they
are both already biased tracers.

We may also consider the position of the void in the tree hierarchy.
All root voids have a broad range of density contrasts, since these
include isolated small voids with low-density contrasts and large
voids that serve as parents of subvoids. On the other hand, for all
samples, the most deeply nested voids exclusively have low-density
contrasts. Thus, we clearly see that as we lower the sampling density,
we puncture lower density walls, allowing the watershed algorithm
to join adjacent basins, and more preferentially erase smaller, deeply
nested voids. Voids that happen to have high-density walls tend to
survive. The HOD and halo samples are able to recover substructure
by selectively placing tracers along the walls and filaments that
separate voids.

Figure 3. Cumulative void number function. The dotted lines are measured
number functions in each indicated sample, and the thin grey lines are
theoretical predictions of the SVdW function with the δv parameter adjusted
to the indicated value. The best-fitting parameter value is shown in each
subplot.

4 VO ID STATISTIC S

4.1 Number functions

Perhaps the most fundamental void statistic is the void number
function: the number of voids of a given size per unit volume. Since
the growth of voids is intimately tied to the growth of structure,
which is itself controlled by the nature of dark energy and the
amount of dark matter in the universe, the void number function
is sensitive to cosmological parameters (e.g. Jennings et al. 2013).
Since different cosmologies affect the number function in different
ways (e.g. by suppressing the formation of larger voids and thereby
tilting the distribution), we must disentangle the effects of sparsity
and biasing, which can modify the number function in similar ways.

Fig. 3 shows our cumulative void number function for each sam-
ple. As previous authors (Colberg et al. 2005; Jennings et al. 2013;
Watson et al. 2014) have noted, voids in lower density samples tend
to be larger, and there tend to be fewer small voids. This is due to two
causes. Firstly, the walls and filaments are thinner in low-density
samples, leading to the same population of voids as in high-density
samples, but the individual voids are just larger. Secondly, if a lower
density wall separating two voids loses too many particles due to
subsampling, the watershed method will merge the two basins with-
out first identifying them as separate voids. In Sutter et al. (2014),
we examine the relative importance of these two effects for different
galaxy sampling densities. For this work, we ignore the underlying
causes and focus on the observational consequences.

We see that the void number functions from halo catalogues
closely follow that of the mock galaxy catalogues, as we expected
from the discussion in the previous section. The difference between
the DM Sparse and HOD Sparse is due to the interaction between
biasing and our central density cut. At fixed tracer density, a more
biased tracer will lead to a sharper density contrast for a given size
of void. Biasing concentrates tracers along the walls enhancing the
density contrast, see Fig. 2 and the associated discussion. Therefore,
large voids found in biased tracers will tend to survive a central den-
sity cut in spite of the voids being partially filled with dark matter.
The corresponding shallow underdensities in the dark matter sample
have more substructure, and will therefore not survive the density
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cut. In the high-resolution cases, the substructure remains even in
the biased tracers, rendering this effect much less pronounced.

To provide theoretical number functions, we turn to the analysis
of Sheth & van de Weygaert (2004, hereafter SVdW), who employ
the excursion-set formalism to develop a void number function of
the form

n(M) = ρ̄

M2
νf (ν)

d ln ν

d ln M
, (5)

where ρ̄ is the background matter density, M the void mass,
ν = δ2

v/σ
2(M) with δv being the critical underdensity for void

formation and σ 2(M) the variance of the density field on a scale
R 	 (3M/4πρ̄)1/3, and

νf (ν) =
√

ν

2π
exp

(
−ν

2

)
exp

(
−|δv|

δc

D2

4ν
− 2

D4

ν2

)
. (6)

Here, D ≡ |δv|/(δc + |δv|) is the so-called void-and-cloud param-
eter, which determines the relative importance of halo and void
formation. The value for the critical overdensity of collapse δc 	
1.686 is tightly constrained by the spherical collapse model, but
Furlanetto & Piran (2006) pointed out that the value of δv must be
adjusted to account for the sampling density of the tracers used to
identify voids.

While there have been attempts to improve this basic relation
(Paranjape et al. 2012; Achitouv et al. 2013; Jennings et al. 2013),
they still require parameter adjustments to translate between void
populations in dark matter and galaxies. Until the development of
a robust dynamics-based prediction for the void number function
that automatically accounts for sparsity and biasing, we should
take these models as a basis for phenomenologically fitting to void
populations in dark matter and mock galaxy catalogues.

In that spirit, we employ the fixed radial rescaling of 1.7 described
in Jennings et al. (2013), and adjust the δv parameter to attempt to
fit our measured void number functions. Attempts to rescale the
radii beyond the fixed valued of 1.7 did not produce better fits. We
show these best-fitting values in Fig. 3. While the simple functional
form of equation (5) matches the rough order of magnitude and
approximate shape for each sample, it misses the detailed shape,
and thus we do not evaluate a goodness of fit.

Although we are unable to match the detailed shape of the number
function with the SVdW functions, we do match the gross properties
and overall number counts with surprising ease: a single parameter
adjustment allows us to approximate the number functions in both
high- and low-resolution samples of all tracer types, although it is
more difficult to account for the effect of biasing on large voids. We
see that the void number function is more dependent on the density
of tracers rather than the type of tracers, and that we can divide our
samples into low- and high-resolution groups.

The values of δv shown in Fig. 3 stand in contrast to the expected
δv = −2.8 based on shell-crossing criteria for spherical underden-
sities (SVdW; Biswas et al. 2010). Two factors contribute to this
difference: our void finder discovers the full non-spherical shape
of the underdensity, so the spherical approximation breaks down,
and the assumption of complete shell-crossing across the entire void
surface is too restrictive in general (Falck, Neyrinck & Szalay 2012;
Neyrinck, Falck & Szalay 2013).

4.2 Ellipticity distributions

There has been considerable interest recently in the dependence of
void shapes on the nature of dark energy (e.g. Lee & Park 2006;
Park & Lee 2007; Biswas et al. 2010; Bos et al. 2012). The shape

distribution of voids is the inverse of the growth of structure: as
matter collapses to form galaxies, groups, and clusters, the shapes
of the evacuated regions will necessarily change. Since measure-
ments of voids are largely unaffected by systematics due to baryonic
physics, the redshift evolution of the void shape distribution poten-
tially serves as a powerful tracer of dark energy. In addition, the
mean stretch of voids along the line of sight may be used for an ap-
plication of the Alcock–Paczynski test (Alcock & Paczynski 1979;
Ryden 1995; Lavaux & Wandelt 2012; Sutter et al. 2012b).

We will simplify the discussion of void shapes by focusing on
the ellipticity. To compute the ellipticity, for a given set of tracers
within a void we first construct the inertia tensor:

Mxx =
Np∑
i=1

(y2
i + z2

i )

Mxy = −
Np∑
i=1

xiyi, (7)

where Np is the number of particles in the void, and xi, yi, and zi

are coordinates of the particle i relative to the void barycentre. The
other components of the tensor are obtained by cyclic permutations.
Given the inertia tensor, we compute the eigenvalues and form the
ellipticity:

ε = 1 −
(

J1

J3

)1/4

, (8)

where J1 and J3 are the smallest and largest eigenvalues, respec-
tively.

Fig. 4 shows the ellipticity distribution for each sample. We con-
trasted these ellipticities to the ellipticities of voids founds in a
random Poisson distribution of particles with density 10−2 tracers
per cubic h−1 Mpc. Voids in all samples are more elliptical and have
broader distributions than voids in random particles. For each type
of tracer, the amount of ellipticity of the voids correlates with the
density of the underlying tracer population: lower density tracers
produce more spherical voids. This is mainly due to the loss of the
smallest voids, which tend to have higher ellipticities (Sutter et al.

Figure 4. Measured ellipticity distributions (points) for each sample and
best-fitting theoretical distributions (thin grey lines). To produce the the-
oretical distributions we use DIVA with the rescaling parameter shown in
each subplot. This rescaling parameter α (equation 9) sets the scaling from
Eulerian to Lagrangian scales.
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2013) than medium-scale voids, which survive at lower sampling
density.

Comparing samples at fixed density against each other, we see
that haloes produce more spherical voids, while galaxies recover
similar ellipticities as the original dark matter samples, although for
the Sparse samples the ellipticities are largely indistinguishable. The
halo populations produce more spherical voids because of the lack of
tracers for the smallest void populations. However, the presence of
satellites in the HOD galaxy populations generally adds more tracers
along the void boundaries giving better shape measurements, and
hence higher ellipticities. This same phenomenon – that of increased
hierarchical structure in the HOD population – gives rise to the more
substantial tree structure in Fig. 1. Thus, results such as Bos et al.
(2012), which use voids in halo populations to assess the power of
void ellipticities in galaxy surveys to constrain exotic dark energy
models, may be too pessimistic.

To compare to theoretical expectations, we use the Lagrangian
model of Lavaux & Wandelt (2010) developed in the context ofDIVA
(DynamiCal Void Analysis), a Lagrangian void finder and charac-
terizer. DIVA is based on the capability to compute the Lagrangian
comoving coordinates of any particles or galaxies from solely its Eu-
lerian position. This capability is provided by the Monge–Ampere–
Kantorovitch (MAK) reconstruction (Brenier et al. 2003; Lavaux
et al. 2008). From the mass tracer distribution at a given redshift
z, MAK finds the proper change of coordinates to map the posi-
tion of the tracers at high redshift such that the density becomes
totally homogeneous. Through this transformation, we may model
very accurately the distribution and the evolution of ellipticity with
redshift.

Lavaux & Wandelt (2010) showed that to first order the inertial
tensor estimate of the ellipticity and its counterpart estimated from
dynamics are equivalent, though with large scatter. We compare the
analytical model of the evolution of the ellipticity to our measured
ones obtained from the inertial tensor method, neglecting the impact
of the scatter. To do so, we need to select a proper smoothing
scale for the Lagrangian calculation in DIVA, and the link between
this smoothing scale and the Eulerian radius that we measure in
simulations and data is not clear. For simplicity, we will assume a
simple scaling in which for a void of given radius Reff we choose a
smoothing scale

R0 = αReff, (9)

where α is a free parameter. As discussed in Lavaux & Wandelt
(2010), we may identify the Eulerian ellipticity ε with the La-
grangian eigenvalues λi of the gravitational shear tensor via

ε ∼= 1 −
(

1 + λ1

1 + λ3

)1/2

, (10)

where λ1 is the smallest eigenvalue and λ3 is the largest. For each
individual void, we choose the smoothing scale with equation (9)
and compute the distribution of ellipticities (equation 10). We then
draw an ellipticity from a Gaussian distribution with the same mean
and variance. This is simply for numerical convenience but ap-
proximates well the actual distribution. We take this randomly cho-
sen ellipticity as the predicted ellipticity of that void. Finally, we
build a distribution of the predicted ellipticities for comparison to
the distribution of ellipticities as measured in our simulation with
equation (8).

Fig. 4 shows the measured ellipticity distributions for each sample
as well as the theoretical distributions with best-fitting values of α.
We found that for higher resolution samples (DM Full and HOD
Dense), a choice of α = 0.5−0.6 produced theoretical distributions

in excellent agreement with the measured distributions: not only
do we match the mean ellipticities, but we also broadly recover
the shapes of the distributions. For sparse samples, a value of α

∼ 0.25 was more appropriate. This change in the parameter α to
accommodate low-resolution samples is analogous to the need to
change δv for number functions. In this case, lower values of α

indicate that the dynamical cores of voids in the Sparse samples
are smaller than in the higher resolution samples, in line with the
preceding number function analysis.

4.3 Radial density profiles

The radial density profiles of voids are exceptionally sensitive to
modified gravity and fifth forces, since the absence of matter allows
exotic forces to remain unscreened (Clampitt et al. 2013; Spolyar
et al. 2013). However, since the choice of mass tracer can also affect
density profiles (Benson et al. 2003; Colberg et al. 2005; Padilla
et al. 2005), we must first understand the impacts of sparsity and
biasing before using voids as probes of fundamental physics. If we
can provide a translation from theoretical predictions in dark matter
to observational radial profiles, we can forecast if modifications due
to exotic forces will persist when using galaxies to define voids.

Fig. 5 shows one-dimensional radial profiles for all samples in
a few selected radius ranges. To compute the profiles, we take all
voids in a sample of a given size range (e.g. 30−35 h−1 Mpc), align
all their barycentres, and measure the density in thin spherical shells.
We normalize each density profile to the mean number density of
the sample and show all profiles as a function of relative radius,
R/Rv, where Rv is the median void size in the stack.

Many authors have discussed and presented measured radial den-
sity profiles in data and simulations, and there appears to be a gen-
erally universal shape to the profile: a central underdense floor, a
steep wall, a slightly overdense compensation, and a declining den-
sity that asymptotes to the mean density (e.g. Benson et al. 2003;
Padilla et al. 2005; Ceccarelli et al. 2006; Lavaux & Wandelt 2012;
Sutter et al. 2012a). The internal density profiles of voids are nearly
identical across all samples, with lower density samples producing
slightly steeper slopes, lending further evidence for the existence of
this universal void profile and that sparsity and galaxy bias do not
impact this profile much.

However, the external void profile shows significant differences
among the samples. The height of the compensation bump depends
on the surrounding medium and is generally dependent on void size:
small voids are typically found in large overdense regions (the void-
in-cloud process) and large voids are typically found in underdense
regions (the void-in-void process). This separation of void types was
first discussed in SVdW and measured in SDSS voids by Ceccarelli
et al. (2013).

For a stack of voids of a given size range, low-density samples of
all types appear more overcompensated, and high-density samples
appear more undercompensated with shallower slopes and lower
compensation regions. Comparing samples at a given density, the
slopes of the profiles are very similar but with different compensa-
tion heights, due to the biasing of the galaxies and haloes relative to
the dark matter. This may seem counterintuitive given our measure-
ments of the density contrasts in Fig. 2. However, that measurement
was a comparison of the density of the core particle (not a spheri-
cally averaged volume as in these plots) to the density on the wall
of the void, which is just inside the compensation region.

As with the number functions, we see that haloes offer a
good proxy for the galaxy population. Interestingly, all halo and
galaxy populations, regardless of sampling density, produce very
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Figure 5. One-dimensional radial density profiles of stacked voids (points with error bars) and best-fitting curves (thin lines) using the profile discussed in
equation (11). For the fit, we ignore the first three bins, since these are artificially influenced by numerical effects in the simulation and the application of the
central density cut. Each profile is normalized to the mean number density n̄ of that sample and Rv corresponds to the median void size in the stack. Solid
coloured lines are from high-density samples, and dotted coloured lines are from low-density samples. Each tracer type is given a unique colour and symbol
as indicated in the legend. The best-fitting values are plotted in Fig. 6.

similar radial profiles. This is likely due to the fact that the radial
profile is more sensitive to the biasing of the tracers than to the
density. Indeed, in this context, we can understand biasing as just
another form of subsampling: biased but high-density populations
(e.g. HOD Dense) act very similarly to unbiased but low-density
populations (e.g. DM Sparse). This is in contrast with the effect on
number functions: there, sparsity was more important than biasing.
However, the number functions probe the interior contents of voids,
and this discussion has focused mainly on the compensation, which
is in the surrounding medium.

There is very little theoretical development into predictions for
the shapes of profiles. Given the lack of theoretical motivation,
authors generally attempt fits to the radial density profile using an
empirical formula that attempts to reproduce the profile shapes.
We use the recent profile described in Hamaus, Sutter & Wandelt
(2014b), which includes a functional form spanning both the interior
void slope and the compensation region:

n

n̄
(r) = δc

1 − (r/rs)α(rs )

1 + (r/Rv)β(rs )
+ 1, (11)

where Hamaus et al. (2014b) found that

α(rs) 	 −2.0(rs/Rv) + 4.0 (12)

β(rs) 	
{

17.5(rs/Rv) − 6.5 if rs/Rv < 0.91

−9.8(rs/Rv) + 18.4 if rs/Rv > 0.91.
(13)

There are two free parameters to this model: rs, the radius at which
the profile reached mean density, and δc, the underdensity in the
central core. Fig. 6 shows the best-fitting values of δc and rs for
all void stacks in all samples. This two-parameter model describes
nearly all voids very well, although we see that it has difficulty
reproducing the exact height of the compensation bump for the very
largest voids. This is due to the fact that equation (13) is tuned to
voids in high-resolution dark matter, and not necessarily appropriate
for these cases. Despite this, however, the fits agree remarkably well.

We can understand these differences in terms of the void size at
which the void bias changes sign (Hamaus et al. 2014a): the com-
pensation scale. This change in the bias represents a switch from
generally overcompensated to generally undercompensated voids.
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Figure 6. Best-fitting values and 1σ uncertainties for all void stacks in all
samples. Tracer types are distinguished by colours and densities by symbol,
as noted in the legend. The thin grey line depicts the compensation scale.

Voids in higher density tracers have a smaller compensation scale
than voids in low-density tracers. Thus, if we choose a stack of voids
with radii well below this compensation scale for all tracers, for ex-
ample 10−15 h−1 Mpc, then the profiles will look very similar.
Similarly, if we stack very large voids, we only see undercom-
pensated voids and again the profiles are similar. For intermediate
scales, high-density tracers such as DM Full will have switched
from over- to undercompensation, while low-density tracers will
remain overcompensated. This manifests in the different slopes and
compensation heights in the profiles from ∼20 to ∼50 h−1 Mpc.
Note that this is a continuous progression from over- to under-
compensation, so generally as we increase the stack size we see
gradually reduced compensations.

Thus, we can in principle rescale any void from any tracer pop-
ulation on to any other void from any other tracer population, and
Fig. 7 demonstrates such rescaling. In this figure, we plot each fit-
ting parameter separately as a function of void size for each sample.
By choosing a single fiducial parameter value, we rescale all void
radii in a sample with only a single scale factor. In other words,
we can pick any parameter–radius relationship from any sample
and shift all of the other relations on top of it by simply rescaling

Figure 7. Universal rescaling of voids. We show the fitting parameter δc versus void radius Rv in the top row, and the bottom row shows rs versus void radius
Rv for each sample. The left-hand column is the non-rescaled fitting parameters. On the right, we pick a fiducial point in the plane and rescale all voids in a
given sample by a single value so that the parameter-size curve passes through that point. After rescaling, the curves cluster around a universal relationship
between void size and the fitting parameters that is independent of tracer density and bias.
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each of their void radii by a single number. When this is performed
for each sample, the curves cluster around a universal relationship
between void size and the fitting parameters that is independent of
sample density and bias.

5 C O N C L U S I O N S

By using direct subsampling, halo finding, and HOD modelling
on a single high-resolution, large-volume N-body simulation, we
have carefully investigated the impacts of tracer density and biasing
on void statistics. We have used the void tree hierarchy to under-
stand the impacts on number functions, ellipticities, and density
profiles. We find that sampling density is much more important for
measured void properties than galaxy bias. As we lower the tracer
density, voids become larger, small voids disappear, they become
more spherical, and their profiles become slightly steeper. The bi-
asing due to galaxy tracers recovers some of the loss of information
due to low densities: the tree hierarchy is restored and void walls
become steeper, leading to higher ellipticities. This kind of hierar-
chical tree analysis can be directly applied to voids in observations,
since it is a natural feature of the watershed algorithm and already
implemented in our approach described in Sutter et al. (2012a).
However, the limited survey volumes available in the SDSS prevent
a detailed examination at this time.

We have used theoretical and empirical formulas to model the
statistical void properties as a function of tracer type and density:

Number functions. The SVdW number function approximates
well the behaviour of measured number functions with simple ad-
justments to the ‘void parameter’ δv, although further work is needed
to model specific shapes. These adjustments make sense since the
δv parameter relates the size of a void to the central underdensity
in the dark matter. Since number functions of voids in low-density
samples are best fitted by lower values of δv, this tells us that the
voids discovered in low-density surveys, while still underdense,
represent very shallow, wide density perturbations, as seen in the
HOD modelling analysis of Sutter et al. (2014) and the ab initio
simulations of Ricciardelli, Quilis & Varela (2014).

Ellipticity distributions. Here, semi-analytic calculations are able
to describe with very high fidelity the statistics of void ellipticities.
One can take a mock void population (either produced from simu-
lations or from a theoretical distribution), rescale appropriately, and
estimate the resulting ellipticity distribution with methods such as
DIVA. The rescaling parameter α must be adjusted to account for
the sparsity of the survey: α ∼ 0.5 is appropriate for high-resolution
surveys, while α ∼ 0.25 is necessary for low-resolution surveys.
Once this single choice of parameter is made, there is remarkably
good agreement in both the mean and the shape of the distribu-
tions. This change in the required value of α is consistent with the
change in δv, since α connects the Eulerian size of a voids to its
Lagrangian size, and sparser samples will map out larger Eulerian
volumes around the same core underdensity.

Radial profiles. While there is limited theoretical motivation for
any particular void profile at all scales (although, as discussed in
Pápai, Szapudi & Granett 2011, for large enough scales the BBKS
formalism provides an expected profile), the function of Hamaus
et al. (2014b) describes all voids in all samples to a remarkable
degree of accuracy. Using this fit, we have shown that voids obey a
universal and self-similar relationship between central underdensity,
scaling radius, and size. Thus, voids in one sample or survey can be
immediately rescaled to match voids in another sample or survey,
even from high-resolution N-body simulations to a sparse galaxy
survey.

We have also judged the ability of haloes to approximate the
galaxy distribution, a common approach, since HOD and SAM are
subtle and computationally expensive. We found that for number
functions and radial profiles, this is a good approximation, but only
when an appropriate minimum mass threshold is chosen, specifi-
cally by matching the abundances of central galaxies. This is similar
to the conclusions of Padilla et al. (2005). Simulations have a variety
of volume and resolutions, and the minimum halo mass in a given
simulation may not correspond to any particular survey. Care must
be taken to make predictions for specific surveys. Also, we found
that voids in halo distributions are more spherical than in galaxy
distributions: for ellipticity predictions, either a constant shift to
account for galaxies or an approach like DIVA must be used.

This work is only a first step: we have looked at sparsity and
biasing, but ignored redshift space distortions and effects of survey
masks. In the case of radial profiles, we may use techniques such
as those described in Pisani et al. (2013) to translate from redshift
to real space and make contact with our results. The early work of
Ryden & Melott (1996) has looked at void shapes in real- versus
redshift-space, but a more comprehensive study is needed. Our
companion work (Sutter et al. 2013) includes a preliminary analysis
of the impact of survey masks.

We have made all populations (dark matter, haloes, and mock
galaxies) used in this work as well as the resulting void information
publicly available alongside our catalogue of voids in the SDSS DR7
and DR9 at http:www.cosmicvoids.net. The formatting of the cata-
logue follows that described in the appendix of Sutter et al. (2012a).
The catalogue contains a REAMDE with more detailed information.

While our recommendations obviously depend on specific survey
details, we have provided broad guidelines for judging the feasibility
of a particular void statistic to inform us about cosmology. By
quantifying the effects of sparsity and biasing, we can translate
between results in theory, high-resolution dark matter, and current
and future galaxy surveys. Also, our discovery of a simple rescaling
of void density profiles suggests that we may study voids in dark
matter and trivially make predictions for voids in galaxy surveys,
regardless of sampling density and bias. This allows future work
to disentangle these effects from cosmological signals, opening
the way for more effective and straightforward void cosmology
predictions.
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