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ABSTRACT
We revisit in one dimension the waterbag method to solve numerically Vlasov–Poisson equa-
tions. In this approach, the phase-space distribution function f (x, v) is initially sampled by an
ensemble of patches, the waterbags, where f is assumed to be constant. As a consequence of
Liouville theorem, it is only needed to follow the evolution of the border of these waterbags,
which can be done by employing an orientated, self-adaptive polygon tracing isocontours of f.
This method, which is entropy conserving in essence, is very accurate and can trace very well
non-linear instabilities as illustrated by specific examples. As an application of the method,
we generate an ensemble of single-waterbag simulations with decreasing thickness to perform
a convergence study to the cold case. Our measurements show that the system relaxes to a
steady state where the gravitational potential profile is a power law of slowly varying index β,
with β close to 3/2 as found in the literature. However, detailed analysis of the properties of
the gravitational potential shows that at the centre, β > 1.54. Moreover, our measurements are
consistent with the value β = 8/5 = 1.6 that can be analytically derived by assuming that the
average of the phase-space density per energy level obtained at crossing times is conserved
during the mixing phase. These results are incompatible with the logarithmic slope of the
projected density profile β − 2 � −0.47 obtained recently by Schulz et al. using an N-body
technique. This sheds again strong doubts on the capability of N-body techniques to converge
to the correct steady state expected in the continuous limit.

Key words: gravitation – methods: numerical – galaxies: kinematics and dynamics – dark
matter.

1 IN T RO D U C T I O N

The Vlasov–Poisson equations describe the evolution of the phase-
space distribution function of a self-gravitating, collisionless system
of particles in the fluid limit. In the proper units, they are given in
one dimension by

∂f

∂t
+ v

∂f

∂v
− ∂φ

∂x

∂f

∂v
= 0, (1)

∂2φ

∂x2
= 2ρ(x, t), (2)

ρ(x, t) ≡
∫

f (x, v′, t) dv′, (3)

where x is the position, v the velocity, t the time, f (x, v, t) the
phase-space density distribution function, φ(x, t) the gravitational
potential and ρ(x, t) the projected density.

Resolving Vlasov–Poisson equations is very challenging from
the analytical point of view. The long term non-linear evolution of a
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system following these equations is indeed not yet fully understood,
even in the simple one-dimensional case. In general, collisionless
self-gravitating systems, unless already in a stable stationary regime,
are expected to evolve towards a steady state after a strong mix-
ing phase, usually designated by violent relaxation (Lynden-Bell
1967). The very existence of a convergence to some equilibrium at
late time through phase-mixing is however not demonstrated in the
fully general case from the mathematical point of view (see, e.g.,
the discussion in Mouhot & Villani 2011). From the physical point
of view, there is no model able to predict the exact steady profile that
builds up as a function of initial conditions during their evolution.
The well-known statistical theory of Lynden-Bell (1967) provides
partial answers to this problem but its predictive power is limited.
For instance, although it is partly successful (see, e.g., Yamaguchi
2008), it fails to reproduce in detail the steady state of many one-
dimensional systems (see, e.g., Joyce & Worrakitpoonpon 2011),
due to the ‘core-halo’ structure1 that warm systems generally build

1 We use quotes because the core-halo terminology is usually employed in
the framework of gravothermal catastrophe while studying the thermody-
namics of self-gravitating spherical systems (see, e.g., Lynden-Bell & Wood
1968).
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during the course of the dynamics (see, e.g., Yamashiro, Gouda &
Sakagami 1992). Some promising improvements of the Lynden-
Bell theory have however been proposed to explain the structure of
three-dimensional dark matter haloes (see, e.g., Hjorth & Williams
2010; Carron & Szapudi 2013; Pontzen & Governato 2013), which
correspond to the case where the phase-space distribution function
is initially cold. Another track relies on the derivation of solutions of
the equations by conjecturing self-similarity (see, e.g., Fillmore &
Goldreich 1984; Bertschinger 1985; Alard 2013). Note that assum-
ing self-similarity is one thing, proving it is a much more challenging
matter.

The only way to understand in detail how a collisionless self-
gravitating system evolves according to initial conditions is there-
fore to resort to a numerical approach. The most widely used method
by far is the N-body technique in its numerous possible implemen-
tations (see, e.g. Bertschinger 1998; Colombi 2001; Dolag et al.
2008; Dehnen & Read 2011, for reviews on the subject), where the
phase-space distribution function is represented by an ensemble of
macroparticles interacting with each other through softened gravi-
tational forces. However, representing the phase-space distribution
function by a set of Dirac functions can have dramatic consequences
on the dynamical behaviour of the system (see, e.g., Melott et al.
1997; Melott 2007). The irregularities introduced by this discrete
representation, along with N-body relaxation, can eventually drive
the system far from the exact solution. For instance, in the one-
dimensional case, collisional relaxation is expected to drive even-
tually the system in thermal equilibrium (see, e.g., Rybicki 1971),
which is indeed obtained in N-body simulations after sufficient time
(see, e.g., Joyce & Worrakitpoonpon 2010, and references therein).
Such an equilibrium is clearly not a must in the continuous limit,
where there is an infinity of stable steady states to which the sys-
tem can relax (see, e.g., Chavanis 2006; Campa, Dauxois & Ruffo
2009). Such steady states, when different from thermal equilibrium,
are reached at best only during a limited amount of time when using
an N-body approach. Moreover, there is no guarantee that the steady
solution given by the N-body simulation is the correct one.

Fortunately, there are alternatives to the N-body approach, con-
sisting in solving numerically Vlasov–Poisson equations directly in
phase-space. For instance, in plasma physics, the most-used solver
is the so-called splitting algorithm of Cheng & Knorr (1976) – where
the phase-space distribution function is sampled on a grid – and its
numerous subsequent improvements, modifications and extensions
(see, e.g., Shoucri & Gagne 1978; Sonnendrücker et al. 1999; Filbet,
Sonnendrücker & Bertrand 2001; Alard & Colombi 2005; Umeda
2008; Crouseilles, Respaud & Sonnendrücker 2009; Crouseilles,
Mehrenberger & Sonnendrücker 2010; Campos Pinto 2011, but this
list is far from being exhaustive). In astrophysics, this method was
applied successfully to one-dimensional systems (Fujiwara 1981),
to axisymmetric (3D phase-space) and non-axisymmetric discs (4D
phase-space; Nishida et al. 1981; Watanabe et al. 1981) and to
spherical systems (3D phase-space; Fujiwara 1983). However, due
to limitations of available computing resources, its implementation
in full six-dimensional phase-space was achieved only very recently
(Yoshikawa, Yoshida & Umemura 2013). The main drawback of Eu-
lerian methods such as those inspired from the splitting scheme of
Cheng & Knorr (1976) is to erase the fine details of the phase-space
distribution at small scales as a result of coarse-graining due to fi-
nite resolution: on the long term, this coarse-graining might again
lead the system far away from the exact solution. In order to fix
this problem, it is possible to perform adaptive mesh refinement in
phase-space (see, e.g., Alard & Colombi 2005; Mehrenberger et al.
2006; Campos Pinto 2007; Besse et al. 2008).

Another way to preserve all the details of the phase-space distri-
bution function is to adopt a purely Lagrangian approach consisting
in applying literally Liouville theorem, namely that the phase-space
distribution function is conserved along trajectories of test particles
as

f [x(t), v(t), t] = constant. (4)

This property can indeed be exploited in a powerful way by de-
composing the initial distribution on small patches, the waterbags,
where f is approximated by a constant.2 From equation (4), it fol-
lows that inside each waterbag, the value of f remains unchanged
during evolution, which implies that it is only needed to resolve the
evolution of the boundaries of the patches. The terminology ‘wa-
terbag’ comes from the incompressible nature of the collisionless
fluid in phase-space, which reflects the fact that the area of each
patch is conserved. Therefore, their dynamics is analogous to that
of an infinitely flexible bag full of water. In one dimension, the
numerical implementation is therefore potentially very simple: one
just needs to follow the boundaries of the waterbag with a polygon,
which can be enriched with new vertices when the shape of the
waterbag gets more involved.

The equation of motion of the polygon vertices is the same as test
particles, where the acceleration a is given in one dimension by the
difference between the total mass Mright(x) at the right of position x
and the total mass Mleft(x) at the left of x as

a(x, t) = −∂φ

∂x
= Mright(x, t) − Mleft(x, t)

= Mtot − 2Mleft(x, t) (5)

for a total mass Mtot. We have

Mleft(x, t) =
∫

x′≤x

dx ′dv′f (x ′, v′, t). (6)

This can be rewritten, if f is approximated by a constant with value
fk within a patch, Pk, k = 1, . . . , Npatch, as

Mleft(x, t) =
Npatch∑
k=1

fk

∫
x′≤x, (x′,v′)∈Pk

dx ′dv′. (7)

Application of Green’s theorem reads

Mleft(x) =
Npatch∑
k=1

fk

∮
x′≤x,∂Pk

v(s) dx ′(s), (8)

where s is a curvilinear coordinate. This equation represents the
essence of the dynamical setting of waterbag method: if one de-
composes the phase-space distribution function over a number of
patches where it is assumed to be constant, resolution of Poisson
equation reduces to a circulation along the contours of each indi-
vidual patch.

The waterbag model was introduced by DePackh (1962) and its
first numerical implementation was performed in plasma physics
by Roberts & Berk (1967), followed soon in the gravitational case
by Janin (1971) and Cuperman, Harten & Lecar (1971a,b). We
sketched a modern implementation of the algorithm in Colombi &
Touma (2008) that we aim to present in detail below. Although this
numerical technique was one of the pioneering methods used to
solve Vlasov–Poisson equations, along with the N-body approach

2 Note thus that a representation of a smooth phase-space distribution func-
tion by a stepwise distribution of waterbags remains still irregular, but ob-
viously much less than a set of Dirac functions as in the N-body case.
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(see, e.g., Hénon 1964, and references therein), it has not been used
in astrophysics since the seventies, except in the cold case limit,
where some developments have just started (Hahn, Abel & Kaehler
2013).

Although fairly easy to implement for low-dimensional sys-
tems, this method indeed becomes very involved in six-dimensional
phase-space, as one has to model the evolution of five-dimensional
hypersurfaces. In the cold case, which corresponds to the initially
infinitely thin waterbag limit in velocity space, the problem re-
duces to following the evolution of a three-dimensional sheet in
six-dimensional space and remains thus feasible. Another caveat of
the waterbag method is that, due to mixing in phase-space induced
by the relaxation of the system to a steady state, the waterbags
get considerably elongated with time, which makes the cost of the
scheme increasingly large with time. This is the price to pay for
conserving entropy.

The purpose of this paper is to describe and to test thoroughly
a modern numerical implementation of the waterbag method in
one dimension. One goal is to prepare upcoming extensions of this
method to higher number of dimensions. As part of the tests, we
study in detail the evolution of single waterbags in an attempt to
perform a convergence study to the cold limit, particularly relevant
to cosmology in the framework of the cold dark matter paradigm.
We measure the scaling behaviour of the inner part of the system.
We compare it to theoretical predictions and to results obtained
previously in the literature with N-body simulations.

This paper is thus organized as follows. In Section 2, we present
the algorithm, of which the main ingredients were sketched briefly
in Colombi & Touma (2008). The performances of the algorithm
are tested thoroughly for systems with a carefully chosen set of
initial conditions: an initially Gaussian f (x, v), which is expected to
evolve to a quasi-stationary state through quiescent mixing (Alard
& Colombi 2005), an initially random set of warm haloes that will
be seen, on the contrary, to develop chaos and finally, an ensem-
ble of single-waterbag simulations, where the distribution function
is initially supported by an ellipse of varying thickness. In Sec-
tion 3, we examine in detail the set of single-waterbag simulations
and study the properties of the system brought about by relaxation
processes in the nearly cold regime. The cold limit was previously
studied in detail in one dimension with exact implementations of
the N-body approach (see, e.g., Binney 2004; Schulz et al. 2013).
It was found in particular by Schulz et al. (2013) that the projected
density relaxes to a singular profile of the form ρ(x) ∝ xβ − 2 with
β � 1.53. We check if this property is recovered with the waterbag
technique by performing a convergence study to the cold case. Our
analyses are supported by analytical calculations. Finally, Section 4
summarizes and discusses the main results of this paper. To lighten
the presentation, only the most important results are presented in
the core or the paper: technical details are set apart in a coherent set
of extensive appendices that can be found online.

2 T H E A L G O R I T H M

Integral (8) can be conveniently rewritten as

Mleft(x) =
∮

x′≤x,∂P
δf (s)v(s) dx ′(s), (9)

δf (s) ≡ f right(s) − f left(s), (10)

where f right(s) and f left(s) are the values of the phase-space distribu-
tion function when looking at the right and at the left, respectively,
of the contour when facing the direction of circulation defined by

Figure 1. The main steps of our waterbag algorithm.

the curvilinear coordinate s. The global contour ∂P passes through
a set of orientated loops (∂Pk in equation 8),3 but without repeating
twice the border common to two adjacent waterbags. In practice, it
is modelled with a self-adaptive orientated polygon composed of N
segments joining together N + 1 vertices following the equations
of motion.

Our algorithm is summarized in Fig. 1. Its important steps, al-
ready sketched briefly in Colombi & Touma (2008), define the
structure of this section. Section 2.1 explains the way the initial
phase-space distribution function is sampled with the orientated
polygon, which allows us to introduce the simulations performed
in this paper. Section 2.2 describes the dynamical component of
the algorithm and is divided in five parts: Section 2.2.1 and 2.2.2
comment briefly on our time integration scheme and on the way we
circulate along the orientated polygon to solve Poisson equation;
Section 2.2.3 deals with local refinement and questions the potential
virtues of unrefinement; finally, Section 2.2.4 discusses diagnostics,
calculation of the value of the time step and energy conservation.

2.1 Initial condition generation and presentation of the
simulations

A natural way to sample initial conditions consists in defining each
waterbag as the area enclosed between two successive isocontours
of the phase-space distribution function. The isocontours are chosen
such as to bound the mean square difference between the true and the
sampled (step-wise) phase-space distribution function weighted by
the waterbag thickness, which means that local intercontour spac-
ing roughly scales like 1/

√|∇f | where |∇f| is the magnitude of the
gradient of the phase-space distribution function. To draw the iso-
contours, we use the so-called marching square algorithm, inspired

3 The connecting parts between two isocontours do not contribute to the
dynamics.
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from its famous three-dimensional alter-ego (Lorensen & Cline
1987). Additional technical details can be found in Appendix B.

Note that at the end of initial conditions generation, we recast
coordinates in the centre-of-mass frame.4

Now, we introduce and comment on the three sets of simulations
performed in this paper, namely an initially Gaussian f (x, v) (Sec-
tion 2.1.1), an ensemble of random haloes (Section 2.1.2) and single
waterbags of varying thickness (Section 2.1.3). Additional details
can be found in Appendix A and its Table A1, which provides the
main parameters of the simulations. The large variety of these initial
conditions, as shown below, should be sufficient to test thoroughly
the performances of the waterbag method.

2.1.1 Gaussian initial conditions: Landau damping and
importance of initial waterbag sampling

Our Gaussian initial conditions correspond to a phase-space distri-
bution given by f (x, v) = 4 exp [−(x2 + v2)/0.08] smoothly trun-
cated at x2 + v2 � 1. The advantage of this setup is that it is not
very far from the thermal equilibrium solution.5 The smoothness
of the Gaussian function and the supposedly attractor nature of
thermal equilibrium should, according to intuition, make this sys-
tem quiescent. It was indeed previously shown numerically with a
semi-Lagrangian solver that this system converges smoothly to a
quasi-steady-state close to (but still slightly different from) thermal
equilibrium (Alard & Colombi 2005). Landau damping represents
in plasma physics a fundamental test bed case of Vlasov codes: our
Gaussian initial conditions allow us to study the analogous of it in
the gravitational case.

Fig. 2 shows the results obtained with our waterbag code for
these Gaussian initial conditions. It illustrates how important is the
initial condition generation step. In the first and third line of panels,
function f (x, v) is sampled with only 10 waterbags, while in the
second and fourth line, it is sampled with 84 waterbags. Although
both simulations coincide with each other at early times, a non-linear
instability soon builds up in the 10-waterbags simulation, at variance
with the 84 one, which remains quiescent. This is even clearer
in Action–Angle coordinates, as displayed in Fig. 3: in the left-
hand column of panels, the poorness of initial waterbags sampling
induces some oscillations, already visible at t = 25, which amplify
and create non-linear resonant instabilities. On the other hand, in the
right-hand column of panels, the 84-waterbags simulation presents
the typical signature of Landau damping. The quiescent nature of
the system is also confirmed by the fact that the total vertex number
and the total length of the waterbag contours augment linearly with
time (see Appendix C4). Even though the instability observed in
the 10-waterbags simulation might actually be present in the true
system at the microscopic level, its early appearance is clearly due
to the unsmooth representation of our waterbag approach. It can
be delayed by augmenting the contour sampling. This effect would
happen likewise in an N-body simulation (Alard & Colombi 2005).

2.1.2 Random set of warm haloes: a chaotic system

Fig. 4 shows the case of an initially random set of haloes, which
represents our second test. Each halo is supposed to be at thermal
equilibrium and is sampled with only three waterbags to minimize

4 Explicit expressions for the centre-of-mass coordinates are given in Ap-
pendix F3.
5 Equation (A4).

computational cost. As shown in Appendix C4, this simulation
soon builds up chaos with a Lyapunov exponent equal to 0.05 as
an effect of the gravitational interaction between the haloes (this
effect is dominant over other instabilities that might develop due to
the contour undersampling just discussed above). This numerical
experiment represents thus an important test of the accuracy of
the code in rather extreme conditions, somewhat opposite to the
quiescent case provided by the smooth Gaussian f (x, v) of previous
section.

2.1.3 Single waterbags with varying thickness: from warm to
nearly cold initial conditions

The single waterbag obviously corresponds to the simplest applica-
tion of the method. It was used for instance in the seminal works of
Janin (1971) and Cuperman et al. (1971a,b) but also subsequently in
many other studies. It represents a useful way to cover a large range
of initial conditions, from warm to nearly cold. The close-to-cold
case represents by itself a challenge to simulate due to the nearly
singular structures that build up in configuration space during the
course of dynamics.

The initial configurations we consider, abusively denoted by ‘top
hat’, are such that the waterbag boundary is an ellipse:

x2 + (v/�p)2 = 1, (11)

where �p is a parameter quantifying the initial thickness of the wa-
terbag. Modifying �p is equivalent to changing the initial velocity
dispersion while keeping unchanged the projected initial density
profile. The total mass of the system is chosen to be unity. We per-
formed a number of simulations with a large range of values of �p
in the interval [0.001, 1]. For �p = 0.003, we also performed sim-
ulations where the initial boundaries of the waterbag are perturbed
randomly. The visual inspection of these simulations (Figs 6–10)
will be discussed in Section 3.1.

2.2 Runtime algorithm and tests of its performances

2.2.1 Time integration

To move the sampling points of the waterbag contours, we use the
classic splitting scheme of Cheng & Knorr (1976) with a slowly
varying time step: our algorithm is thus equivalent to a predictor-
corrector scheme, as indicated in Fig. 1. It reduces to a symplectic
leap-frog’ when the time step is kept constant (see, e.g., Hockney
& Eastwood 1988).

Note that at the end of time integration, we recast coordinates in
the centre of mass frame.

2.2.2 Poisson equation resolution

This step, of which the technical details are given in Appendix F1,
is quite simple from the conceptual point of view, since it consists
in circulating along ∂P by performing a sum over the polygon edges
to compute integral (9), after a preliminary sort of the vertices of the
polygon. However, despite its apparent simplicity, it corresponds by
far to the most costly part of the code from the computational point
of view, because many segments of the polygon can contribute to
the force exerted on one point of space. Note that the circulation
technique used to compute the force can be generalized to the
calculation of other useful quantities, such as the projected density,
ρ(x), the mass profile, Mleft(x), the gravitational potential, φ(x),

MNRAS 441, 2414–2432 (2014)
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2418 S. Colombi and J. Touma

Figure 2. Simulations with Gaussian initial conditions. First and third line of panels: only 10 waterbags are used to sample initial conditions (simulation
Gaussian10 in Table A1). Second and fourth line of panels: 84 waterbags are used to sample initial conditions (simulation Gaussian84 in Table A1). At
early times, the two simulations agree very well with each other. At late times, an instability builds up in the 10-waterbags simulation, at variance with the
84 waterbags one which still presents the expected quiescent evolution. This numerical instability appears as well when f (x, v) is represented by particles as
illustrated by fig. 19 of Alard & Colombi (2005). Note that these phase-space pictures are drawn using the so-called parity algorithm described in Appendix I.
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Vlasov–Poisson in 1D: waterbags 2419

Figure 3. The simulations with Gaussian initial phase-space distribution function of Fig. 2 in Action–Angle space. The transformation from phase-space to
Action–Angle space is described in Appendix G.

the bulk velocity and the local velocity dispersion, as detailed in
Appendix F2.

2.2.3 Local refinement

When the shape of the waterbags contours becomes complex, it is
necessary to add points to the orientated polygon to preserve all its
details. Our refinement procedure is described in Fig. 5 (see also

Appendix C1). It consists of a geometric construct using arcs of cir-
cle passing through sets of three successive points of the polygon. It
is equivalent, in the small angle approximation, to linearly interpo-
lating local curvature given as the inverse of the radius of these arcs
of circles. This refinement procedure is stable in the sense that it is
‘Total Variation Preserving’ in terms of the small rotations between
successive segments of waterbags borders and that it makes these
borders less angular (Appendix C2).

MNRAS 441, 2414–2432 (2014)
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2420 S. Colombi and J. Touma

Figure 4. Evolution of an initially random set of ‘stationary’ haloes. This
system develops a chaotic behaviour with a Lyapunov exponent of 0.05
as a result of the gravitational interaction between the haloes. The simu-
lation used here corresponds to RandomU in Table A1, but other settings
(RandomUT, Random and RandomUS) would look exactly the same.

Figure 5. Interpolation method used for adding a new point P to the orien-
tated polygon. Top panel: using, respectively, the arcs of circle CA = ̂UAB

of radius RA and CB = ̂ABV of radius RB, the natural position of P would
be MA and MB. A compromise between these two solutions is taken to be
the intersection between the lines passing through segments [A, MA] and [B,
MB]. With this procedure, the local curvature estimated as the inverse of the
radius of the arc of circle CP = ̂APB is bounded by that measured at points
A and B. It converges to the usual interpolation 2/RP = 1/RA + 1/RB in the
small angle approximation. Bottom panel: if there is a change in the sign
of local curvature, the choice of point P is undefined. However, the smooth
curve approximated by the four points U, A, B and V should intersect with
segment [A, B]. We choose P to be at the locus of this intersection: similarly
as in top panel, one computes the point P̃ of intersection between the lines
passing through [A, MA] and [B, M̃B ], where M̃B is symmetric to MB with
respect to the segment [A, B]. Then, P is just the projection of P̃ on segment
[A, B]. This procedure does not interpolate anymore local curvature in the
small angle limit, but this is necessary to preserve the stability of refinement
in terms of small rotations between successive segments of the waterbag
borders. The panels of this figure are reprinted from Colombi & Touma
(2008) with permission from Elsevier.

Refinement is performed when the variation of phase-space area
S induced by adding a refinement point exceeds some threshold Sadd

or when the distance between two successive points of a contour
exceeds some threshold dadd, e.g.

S( ̂APB) > Sadd, (12)

dAB > dadd, (13)

MNRAS 441, 2414–2432 (2014)
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Vlasov–Poisson in 1D: waterbags 2421

in top panel of Fig. 5, where S( ̂APB) is the area of the triangle
̂APB and dAB is the distance between A and B.6 The way Sadd and
dadd should be chosen is discussed in Appendix C3. Table A1 gives
their values for the simulations we did: we have Sadd ∈ [10−10, 10−7]
and dadd = 0.01 or 0.02.

To make the algorithm more optimal, we also propose an unre-
finement scheme, similarly as in Cuperman et al. (1971a): in Fig. 5,
points P with

S( ̂APB) ≤ Srem, (14)

min(dAP , dPB ) ≤ drem (15)

are removed, if not violating conditions (12) and (13), of course, and
if there is no local curvature sign change. In practice, Srem = Sadd/2
and drem = dadd/2. More technical details are given in Appendix C3.

Despite its potential virtues, same accuracy for smaller compu-
tational cost, allowing unrefinement is not optimal in our 1D case
if one aims to follow a system during many dynamical times. It
is indeed possible to show that vertex number dynamics changes
dramatically when unrefinement is activated (Appendix C4). In
particular, unrefinement is susceptible to introduce long-term noise
after multiple orbital times, due to the fact that pieces of waterbag
contours are alternatively refined and unrefined many times. The
effects of this long-term noise can evidenced by measurements of
total energy conservation violation, as discussed below.

2.2.4 Diagnostics

Diagnostics include, of course, calculation of the value of the next
time step used in the time integrator described in Section 2.2.1. To
follow accurately the evolution of the system during many orbital
times, we use a classic dynamical constraint on the time step mod-
ulated by two important conditions to limit excessive refinement
of the polygon due to curvature generation and contour stretching
(Appendix D). Our main constraint for the time step is

dt ≤ dtdyn ≡ C√
ρmax

, C
√

Norbits � 1, (16)

where ρmax is the maximum value of the projected density calculated
over all the vertices and Norbits is the number of orbital times. This
dynamical criterion can be derived in a simple fashion by studying
the particular case of the harmonic oscillator (Appendix D1; see
also Alard & Colombi 2005). Since C is inversely proportional to
the square root of the number of dynamical times at play, it depends
strongly on the type of system studied. Table A1 shows that C ranges
from 5 × 10−4 to 0.025 for all the simulations we did. Because of
our rather conservative choices for the values of C, the two other
constraints on the time step related to polygon refinement, which are
derived in Appendix D2, were found in practice to be subdominant
compared to equation (16), but it is definitely possible to construct
setups where it is not the case.

Diagnostics also consist of performing sanity tests. Energy con-
servation represents a crucial test. In addition, we also tested conser-
vation of total mass as well as the area of each individual waterbag.7

6 For the bottom panel, we use S(ÂP̃B) instead of S(ÂPB) in equation
(12).
7 The expressions for total kinetic and potential energy as well as waterbag
area are given in Appendix F3.

In the latter case, it is interesting to focus on the worse waterbag
at a given time, because this can be used to bound violation to
conservation of any casimir.8 However, we found in practice that
total energy conservation represents the strongest test. As studied
in detail in Appendix E, energy conservation remains excellent for
all the simulations we did, better than ∼2 × 10−4 in warm cases
and than ∼10−3 in colder configurations, except for one of the ran-
domly perturbed waterbag simulations with unrefinement allowed.
As already discussed in Section 2.2.3, unrefinement does indeed
introduce long-term noise that worsens energy conservation after a
number of dynamical times. With unrefinement inhibited, energy
can in fact be conserved at a level better than ∼5 × 10−5 and
∼2 × 10−4 in warm and cold cases, respectively.

3 A C O N V E R G E N C E S T U DY TO TH E C O L D
C A S E : S I N G L E WAT E R BAG S

In this section, we focus on the single-waterbag simulations. The
main purpose of this analysis is to study the relaxation of the profile
to a quasi-stationary state in the limit when the waterbag becomes
infinitely thin, corresponding to the cold case. After a detailed vi-
sual inspection of the simulations (Section 3.1), we analyse, in the
nearly cold case, the properties of the inner profile that is built dur-
ing relaxation, starting first with the gravitational potential and its
logarithmic slope (Section 3.2), then proceeding with the phase-
space energy distribution function (Section 3.3). In a final discus-
sion (Section 3.4), we compare our results to previous works, paying
particular attention to measurements in N-body simulations.

3.1 Visual inspection

Figs 6 and 7 display, for each value of the thickness parameter
�p in the range [0.01, 0.1], the phase-space distribution function
of the single-waterbag simulations at various times, showing the
well-known building up of a quasi-stationary profile with a core
and a spiral halo (e.g. Cuperman et al. 1971a,b; Janin 1971). The
appearance of the halo arises from the filamentation of the external
part of the waterbag, while a compact core survives. Fig. 8 allows
one to distinguish the core for the smallest values of �p. Null
for �p = 1, where the waterbag keeps a well-defined oscillating
balloon shape,9 the fraction of the mass feeding the halo increases
with 1/�p, leaving a core of which the projected size varies roughly

8 A casimir is given by

C[c] ≡
∫

c[f (x, v, t)] dx dv =
∑

k

c[fk]Vk, (17)

where c is a function assumed here to take finite values at fk and Vk is the
phase-space area of waterbag k. As a consequence of Liouville theorem,
casimirs do not depend on time. With c[f] = f and −f ln f, one obtains two
notorious casimirs, respectively, the total mass and the Gibbs entropy. The
violation on conservation of c[f] can be written as

|�C[f ]| ≤ maxk |�Vk | ×
∑

l

|c[fl]|, (18)

and can thus be bounded in terms of violation to area conservation of the
worse waterbag.
9 This is due to the fact that initial conditions are very close to a stable single-
waterbag stationary solution (see, e.g., Severne & Kuszell 1975); hence, the
waterbag contour oscillates with a small amplitude around this solution.
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2422 S. Colombi and J. Touma

Figure 6. The phase-space distribution function of single-waterbag simulations at various times. Times increases from top to bottom, while the initial velocity
dispersion, traced by the parameter �p, decreases from left to right. The values t = 1.25 and 6.5 correspond approximately to collapse time and fourth crossing
time, respectively, in the cold case (�p = 0).
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Vlasov–Poisson in 1D: waterbags 2423

Figure 7. Fig. 6, continued, for smaller values of �p. For �p = 0.01, we show the simulation Tophat0.010 in the nomenclature of Table A1, but the other
simulation (Tophat0.010U) would not differ from this one at the level of zoom we are looking at.
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2424 S. Colombi and J. Touma

Figure 8. A zoom in phase-space on the central part of the system at final time, for �p = 0.01 (left), 0.003 (middle) and 0.001 (right). The simulations adopted
here are Tophat0.010, Tophat0.003 and Tophat0.001 in the nomenclature of Table A1. With the same initial conditions but slightly different parameters
for performing the simulations (as listed in Table A1), some small differences can be sighted. They simply indicate a shift in effective dynamical time due to a
slight change in the energetic state of the system from one simulation to another.

with �p0.8 for �p � 0.1.10 In all the cases except for �p = 1, there
is a region between the halo and the core where the system presents
an unstable behaviour. The extension of this region is of the same
order of that of the core. Note also, from inspection of Fig. 8, that
the shape of the spiral remains the same whatever �p � 0.01 when
far enough from the centre: in agreement with intuition, the details
of the shape of the central region in the vicinity of the core do
not influence the dynamics of the outer spiral. The shape of this
spiral can be computed analytically under the assumption of self-
similarity (Alard 2013), which, as discussed in next section, applies
at least to some extent to our cold waterbags.

Figs 9 and 10 focus on the perturbed waterbag, with a comparison
to its unperturbed counterpart in phase-space and in Action–Angle
space, respectively. The presence of random perturbations induces
the formation of substructures and also makes the extension of the
unstable region in the centre of the system much larger, as illustrated
by the four right-hand panels of Fig. 9. Another interesting property
is that filaments tend to pack together in phase-space, leaving larger
empty regions than in the unperturbed case: this is particularly
visible when comparing the two bottom panels of Fig. 10.

Fig. 11 displays the total length of the waterbag as a function
of time for small values of �p.11 Without perturbation, the length
behaves soon as a power law of time of index 1.28 for t � 10, a
result which might again be interpreted in terms of a self-similar
spiral (Alard 2013). In the perturbed case, the length seems, not
surprisingly, to increase faster than a power law although we could
perform an indicative fit at late time with a logarithmic slope of 3.2.

3.2 The gravitational potential

The gravitational potential is shown at various times in the
�p = 0.001 case in the top-left panel of Fig. 12. The initial condi-
tions correspond to an approximately harmonic potential with φ(x)
− φmin ∝ x2 (green line). As discussed further in Section 3.3, in
the pure cold case, the projected density presents a singularity in
the centre such that φ(x) − φmin ∝ x4/3 at collapse time and subse-

10 Such a power-law behaviour can be derived from the visual examination
of top-right panel of Fig. 12.
11 As a complement, bottom panel of Fig. ?? gives the total number of
vertices as a function of time for the all single-waterbag simulations we did.

quent crossing times. This is indeed the case for our measurements
if one stays sufficiently far away from the centre (blue line, which
superposes well the dotted curve). However, the system relaxes very
rapidly to a quasi-stationary state. The overall profile of the latter
follows rather well a power law of the form φ(x) − φmin ∝ x3/2

(Binney 2004, red dots). There are some noticeable deviations from
such a power law, which we discuss now.

To examine more in detail the scaling behaviour of the potential,
one can study its logarithmic slope, which can be defined as

β(x) = |a(x)|
φ − φmin

, (19)

where φmin is the minimum of the potential. Because it depends on
the acceleration and on the potential, the quantity β(x) is a well-
behaved estimator. It is expected be a smooth function of x as shown
in top-right panel of Fig. 12 for �p ≤ 0.1. In our waterbag case, it
should tend to 2 in the limit φ → φmin as a test of robustness, which
is indeed the case. Finally, it is rather insensitive to the presence of
the core in the region where this latter should not contribute, as the
superposition of the curves in top-right panel of Fig. 12 demonstrate.

Using several simulations with different values of �p allows us
to perform a convergence study to the cold case and in particular
to figure accurately where the measurements are influenced by the
core. For instance, for �p = 0.001, it is reasonable to state that
the presence of a core does not affect the measured slope when
x � 0.01, φ � 10−3, for which we find β � 1.57. With the available
dynamic range at our disposal, there is no clear convergence of
function β(x) to a constant at small x. The parameter β seems
indeed to continue slowly increasing in magnitude while reaching
the smallest scales. The lack of a well-defined power law for the
gravitational potential reminds us of the results obtained in the
three-dimensional case, where the density profiles of dark matter
haloes are found in the most accurate N-body simulations to follow
an Einasto profile (see, e.g., Merritt et al. 2006; Navarro et al. 2010).
We can only set a firm lower bound for β for small values of x as

β(x) > 1.54, x � 1, (20)

by using the lowest possible value of x � 0.02 for which the solid
and the dotted curves still coincide in upper-right panel of Fig. 12.

In the randomly perturbed simulations, the results, shown in the
two bottom panels of Fig. 12 for two different times, are analogous
to the unperturbed case, except that they are much more noisy and
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Vlasov–Poisson in 1D: waterbags 2425

Figure 9. The effect of random perturbations. The left-hand column of panels shows, similarly as in Figs 6 and 7, the evolution of a waterbag with �p = 0.003.
The middle column is alike, but when random perturbations have been added on to the waterbag. The four right-hand panels correspond to successive zooms
on the central part of the system (top panel), the core (second panel) and two ‘subhaloes’ (bottom panels). If initial conditions would be actually cold, it is
reasonable to postulate that the substructures would present an exactly similar shape in phase-space to the unperturbed case. The simulations used here are
Tophat0.003 and Perturbed in the nomenclature of Table A1. Note as discussed in the previous figure captions, other simulations would give a very similar
result, except for a very slight dynamical shift.
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2426 S. Colombi and J. Touma

Figure 10. Representation in Action–Angle space of the simulations of Fig. 9. On the left, the unperturbed single-waterbag simulation with �p = 0.003 and
on the right, the randomly perturbed waterbag.
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Vlasov–Poisson in 1D: waterbags 2427

Figure 11. The total length of the waterbag contour as a function of time. We
consider here our coldest setups, with �p = 0.001 and 0.003, as well as the
randomly perturbed �p = 0.003 waterbag. In the unperturbed case, the total
length soon behaves roughly like a power law as indicated by the red line.
Random perturbations induce the appearance of numerous substructures
and increased filamentation: the length soon augments much faster with
time than for the unperturbed case. The blue line shows a late-time power-
law fit, but this is obviously only indicative, as it seems clear that the length
increases with time faster than a power law. The measurements have been
made for the simulations Tophat0.001, Tophat0.003 and Perturbed

in the nomenclature of Table A1, but would not change for other runs we
performed with the same initial conditions.

that the system builds a much larger ‘core’ than in the unperturbed
simulations. We use quotes, because this region of approximate con-
stant projected density is in fact quite intricate in phase-space and
rather ‘chaotic’. Its projected size seems to range between those of
the �p = 0.01 and 0.1 unperturbed simulations. Our measurements
in the perturbed case are however inconclusive, because we were
unable to follow the system during sufficiently many dynamical
times to have reached an actually quasi-steady-state and we tested
only one specific kind of perturbations. So from now on, unless
specified otherwise, we discuss the unperturbed case corresponding
to the top panels of Fig. 12.

3.3 The phase-space energy distribution function

To understand more deeply the establishment of a steady state after
relaxation, it is useful to study the phase-space energy distribution
function, fE(E), as

fE(E) ≡ lim
δE→0

∫
E(x,v)∈[E,E+δE] f (x, v) dx dv∫

E(x,v)∈[E,E+δE] dx dv
, (21)

which provides the average of the phase-space density per energy
level. For systems where the phase-space density depends only on
energy, the equality f (x, v) = fE[E(x, v)] stands. The way we compute
function fE(E) is detailed in Appendix H.

Fig. 13 displays the phase-space distribution function measured
in our thinnest waterbags. The upper-left panel shows function fE(E)
at various times. Except for t = 0 and 50, which correspond, re-
spectively, to initial conditions and final time, the other snapshots
considered have been chosen carefully to coincide with crossing
times, that is, to moments when the central part of the curve sup-
porting f (x, v, t) is vertical in phase-space, such as in the two middle
panels of the left-hand column of Fig. 9. The first striking result is
that function f (E) presents a remarkable power-law behaviour at
small energies, which is already present at collapse time (t = 1.25)!

Furthermore, convergence to a steady state is very fast: at the second
crossing time (t = 3.6), the energy distribution at small E is already
converged. The third crossing is enough to get nearly the correct
shape for the full final energy spectrum.

At this point, since collapse time seems to provide an interesting
power-law slope for the energy, we might try to compute it analyti-
cally. Given the properties of the initial projected density profile,

ρ0(x) ≡ ρ(x, t = 0) = 2

π

√
1 − x2, (22)

� ρ̄0

(
1 − 3ax2

)
, x � 1, (23)

with ρ̄0 = 2/π and a = 1/6, we can easily calculate the phase-space
energy distribution function in the small energy limit to under-
stand both the power-law behaviours observed in upper-left panel
of Fig. 13 at t = 0 and at collapse time, t ≡ tc. Details of this
calculation are provided in Appendix J.

Initial conditions correspond to an approximately harmonic po-
tential

φ − φmin � 1

2
ρ̄0x

2, x � 1 (24)

(green line in upper-left panel of Fig. 12), and

fE(E, t = 0) =
√

ρ̄0a√
2π

[
a(E − Emin)

ρ̄0

]−1/2

, (25)

� 0.143(E − Emin)−1/2, (26)

for E − Emin � 1, where Emin = φmin is the minimum of energy.
This result agrees perfectly with our measurements, as shown by
the orange dashed line in upper-left panel of Fig. 13.

At collapse time, the projected density becomes singular,
ρ(x) ∝ x−2/3, corresponding to a potential of the form

φ − φmin � 3

2

ρ̄0

a
(
√

ax)4/3, x � 1 (27)

(blue line in upper-left panel of Fig. 12), and

fE(E, tc) = (3/2)3/4 	(5/4)
√

ρ̄0a

4
√

π 	(7/4)

[
a(E − Emin)

ρ̄0

]−3/4

, (28)

� 0.168(E − Emin)−3/4, (29)

in the limit E − Emin � 1, again in very good agreement with
our measurements as shown by the grey line in upper-left panel of
Fig. 13. Note that the power-law index of −3/4 in equation (28)
should be obtained for small values of E − Emin at each crossing
time.

Now, suppose that mixing happens in such a way that the sys-
tem relaxes to a stationary state preserving the phase-space energy
distribution function obtained at crossing time:

f (x, v) = fE[E(x, v)] = A [E(x, v) − Emin]−γ . (30)

This implies, by solving Poisson equation,

φ = Emin + φ0 xβ (31)

with

β = 4

1 + 2γ
, (32)

φ0 =
(π

2

)− 1
1+2γ

[
A(1 + 2γ )2	(−1/2 + γ )

(3 − 2γ )	(γ )

] 2
1+2γ

. (33)
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2428 S. Colombi and J. Touma

Figure 12. The gravitational potential properties in the cold case. In the top-left panel, the potential is plotted for the �p = 0.001 case as a function of scale at
various times, starting from initial conditions. Except for the last snapshot of the simulation, t = 50, the curves with t > 0 correspond to the first four crossing
times. The green and the blue line stand for analytic predictions of Section 3.3, respectively, for initial conditions and collapse time. The red power law is the
result of assuming an average phase-space density per energy level proportional to that obtained at collapse time, as discussed in Section 3.3, while the dotted
one corresponds to a conjecture of Binney (2004) based on measurement on N-body simulations. The top-right panel displays the logarithmic slope of the
gravitational potential, for various values of �p in order to be able to perform a convergence study. The bottom and top grey lines correspond, respectively, to
the index predicted by Binney and the one expected when a core dominates at the centre. The two bottom panels show the logarithmic slope measured in the
perturbed case, at two different times. There is a grey shaded area bordered by a green and a red contour. These two contours correspond to the measurement
of the potential on each side of its minimum, while the black curve is the average between them. In addition, the measurements displayed in top-right panel are
shown as dotted curves. This figure uses simulations Tophat0.001, Tophat0.003, Tophat0.010, Tophat0.100U and Perturbed in the nomenclature of
Table A1, but it would not change significantly for other runs we performed with the same initial conditions.

Fitting the form (30) with the power-law index γ = 3/4 on the
low-energy part of the final stage of our thin waterbag simulations
(top-right panel of Fig. 13) gives A = 0.105 and indeed agrees to a
great accuracy with the measured function fE(E) at small energies
over about a decade. This in turns implies

β = 8/5 = 1.6, (34)

and φ0 = 1.473, in excellent agreement with our measurements of
the potential at small scales, as indicated by the red line in top-left
panel of Fig. 12 and consistent with the direct measurements of the
logarithmic slope of the potential performed in Section 3.2, which
indicated β(x) > 1.54 for x � 1. This result is clearly non-trivial
when examining right-hand panel of Fig. 8 in regions of interest
not contaminated by the core, e.g. 0.01 � r � 0.05, where mixing
is very strong in the form of a dense spiral structure. Note however
that even though the value β = 8/5 represents a good candidate
for the asymptotic logarithmic slope of the gravitational potential

at small scales, our measurements do not present yet the required
dynamic range to provide a firm numerical proof of this.

To complete this analysis, bottom-right panel of Fig. 13 shows the
phase-space energy distribution function for the randomly perturbed
waterbag with �p = 0.003. Modulo the large amount of fluctuations
induced by substructures, it is interesting to note that the energy
spectrum agrees with that of the unperturbed case. However, as
mentioned in Section 3.2, we did not follow this randomly perturbed
system for sufficiently long time to make any definitive conclusions.

3.4 Discussion

Our measurements of the logarithmic slope β(x) of the gravitational
potential suggest a slowly running power-law index with β(x) >

1.54 in the limit x � 1. They are consistent with a theoretical
asymptotic value β = 1.6 computed by assuming that the average
phase-space density per energy level remains conserved between
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Vlasov–Poisson in 1D: waterbags 2429

Figure 13. The phase-space energy distribution function in our close-to-cold waterbag simulations with �p = 0.001 and 0.003. In the upper-left panel, the
function fE(E) is shown for �p = 0.001 at various times, corresponding to initial conditions, first to fourth crossing times and final time. The dashed orange and
the solid grey line correspond to analytic predictions (25) and (28). In the upper-right panel, the function fE(E) is shown at last time, t = 50, for �p = 0.001 and
0.003 and fitted with power laws of index −3/4 and −5/6, the latter value corresponding to the conjecture of Binney (2004). The bottom-left panel is analogous
to the upper-right one, but a linear scale has been chosen for E − Emin to emphasize the exponential behaviour of function fE(E) at largest energies. The
bottom-right panel compares measurements of fE(E) in the randomly perturbed �p = 0.003 at two different times to the unperturbed case. The measurements
are shown for the simulations Tophat0.001, Tophat0.003 and Perturbed in the nomenclature of Table A1, but would not change significantly for other
runs we performed with the same initial conditions. Note also, as explained in Appendix H, that the measurements are performed in 1023 bins spaced linearly
between the minimum and maximum of the energy. This means that function fE(E) plotted in each panel represents a smoothed version of the actual energy
spectrum which has much more structure. Note also that the first bin, corresponding to E − Emin ∼ 10−3 is expected to be spurious, because it corresponds to
the smallest energy bin, which does not have a ring shape in phase-space, but is homeomorphic to a disc. The measurements should thus be examined for E �
2 × 10 − 3, which correspond to energy shells in phase-space that are not affected by the central core in the unperturbed cases.

crossing times. They thus disagree unarguably with the conjecture
β = 1.5 of Binney (2004) as well as with the value β = 10/7 �
1.43 obtained by Gurevich & Zybin (1995) by assuming adiabatic
invariance from collapse time. Although we do not have sufficient
dynamical range to make strong claims, this result also seems to
contradict the measurements of Schulz et al. (2013) in N-body
simulations, who find a well-defined power-law behaviour of the
projected density profile at small x corresponding to β � 1.53.
Measuring ρ(x) is a difficult task for us, because of the near-caustic
structures that the projected density is subjected to. Schulz et al.
(2013) also used the interior mass profile, that is, the acceleration
modulus |a(x)| to measure the slope, but they argue that this integral
quantity is contaminated by the core up to rather large values of
x. Note that their measurements using this estimator give slightly
larger values of β, so are more consistent with ours. They also
propose a Lagrangian estimator using the Action � as a function
of enclosed mass inside the surface inside contours of constant
energy. This estimator, as constructed by the authors, can be used

as long as � remains a monotonic function of particle rank. With
this estimator, they find β � 1.59, in very good agreement with
our theoretical predictions and consistent with our measurements!
They however argue that measurements of β based on this estimator
are not determinant because they can be performed only at early
times of the simulations: they prefer at the end to emphasize on
the value of β obtained from ρ(x), which is measured at late times.
We believe that the logarithmic slope of the gravitational potential,
equation (19), remains a robust estimator, even if applied to an N-
body simulation. It would be interesting to use such an estimator in
the N-body simulations of Schulz et al. (2013) to see if it leads to
the same conclusions as their density-based estimator or if it would
agree better, in fact, with their Action-based estimator.

Besides the fact that we are using a different estimator for mea-
suring the inner slope of the profile, another plausible explanation
of our disagreement with Schulz et al. (2013) is that the noise intro-
duced by their particle-based approach might lead, after sufficient
time, to the wrong numerical attractor. A clue to this is that they
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2430 S. Colombi and J. Touma

found some gaps in phase-space in their simulations, which might
be the signature of a resonant instability induced by the discreteness
of the representation, similarly as what we found in the Gaussian
simulation of Fig. 2 when only a few waterbags were used to rep-
resent the phase-space distribution function. Our single-waterbag
simulations present such features, but only in the very vicinity of
the core and with negligible consequence on the measurement of
the inner slope if a proper estimate of the trustable scaling range is
performed.

4 C O N C L U S I O N

In this paper, we have revisited with a modern perspective the
so-called waterbag method to solve numerically Vlasov–Poisson
equations in one-dimensional gravity, recasting in detail and testing
thoroughly the method we introduced briefly in Colombi & Touma
(2008). We have shown how to represent the phase-space distribu-
tion function with a set of waterbags sampled with an orientated
polygon, to compute in a self-consistent way its dynamical evolu-
tion and to analyse its properties with the appropriate treatment of
the polygonal structure.

The method is entropy conserving so it allows one to follow ex-
tremely accurately the evolution of a system, even in the presence
of highly non-linear instabilities. But because it aims at preserv-
ing all the details that appear in phase-space during the course of
the dynamics, the method is very costly: when there is mixing, the
computational cost increases at least linearly with the number of dy-
namical times and becomes exponential when the system is chaotic.
Our calculations were however limited by the fact that our code is
serial. Parallelization of the code and running it on supercomputers
might alleviate partly these limitations.

To preserve the increasing complexity of the waterbag contours,
we proposed a sophisticated and robust refinement scheme to add
vertices to the orientated polygon using a geometric construct inter-
polating local curvature, while our main refinement criterion was
based on phase-space area conservation. In two-dimensional phase-
space, this is exactly equivalent to enforcing conservation of the fol-
lowing Poincaré invariant, which can be defined in 2N-dimensional
phase-space as

I ≡
∮

v.dx(s), (35)

where the contour integral is performed on a closed curve in phase-
space composed of points following the equations of motion. This
Poincaré invariant thus provides a natural tool to extend our refine-
ment criterion to higher number of dimensions.

Unrefinement, which consists of removing vertices from the poly-
gon when they are not needed anymore, is potentially powerful,
because it can decrease the computational cost of the simulation
while preserving the same level of accuracy. However, we showed
that successive refinement/unrefinements of a waterbag contour el-
ement are unavoidable and introduce a long-term noise contribution
that can worsen significantly energy conservation when following a
system during many dynamical times. However, all our simulations
with unrefinement were still very accurate, except for one. Unre-
finement might become a must in higher number of dimensions,
due to the considerably larger contrasts in the various dynamical
states a contour element can go through. This will be examined in a
separate work on systems with spherical symmetry, which present
one more dimension of angular momentum in phase-space but can
also be approached with the waterbag method (Colombi & Touma
2008).

In six-dimensional phase-space, the waterbag method is very
challenging to implement in the warm case due to its extreme cost
in memory and computational time: indeed the waterbag contours
correspond to five-dimensional hypersurfaces. Cold initial condi-
tions, which are relevant in cosmology, seem on the other hand ap-
proachable. In this case, the phase-space distribution is supported
by a three-dimensional sheet evolving in six-dimensional phase-
space. An additional difficulty arises, however, from the fact that
it is needed to soften the gravitational force to avoid numerical
instabilities induced by the presence of singularities. A question
then is how well the true gravitational dynamics is described by its
softened counterpart.12 In current proposed implementation, which
does not yet include local refinement of the phase-space sheet (Hahn
et al. 2013), the three-dimensional phase-space sheet is sampled
with simplices (Abel, Hahn & Kaehler 2012; Shandarin, Habib &
Heitmann 2012). The method is thus analogous to the waterbag
method in the sense that it preserves connectivity. Again, in pres-
ence of very needed refinement, the computational cost of such
simulations will increase very quickly with the number of dynam-
ical times at play: it seems important to investigate optimal refine-
ment algorithms, which might include unrefinement as discussed
above and should take into account of the anisotropic nature of the
dynamics.

Behaviour of gravitational systems at large times in the contin-
uous limit is still badly understood except in some very partic-
ular cases (see, e.g., Mouhot & Villani 2011). Even in the one-
dimensional gravitational case studied in this paper, the long-term
properties of systems as functions of initial conditions remain an
open debate, because it is very challenging to follow them nu-
merically. Particle-based methods can rapidly introduce resonant
instabilities that drive the system to attractors far from the exact
solution. The cold case, where the initial projected density is lo-
cally of the form (23), represents a good example of this state of
facts. In this paper, by studying a set of single-waterbag simulations
with decreasing thickness, we performed a convergence study to
the cold case and analysed in detail the inner structure of the steady
state that builds up during relaxation. We measured the properties
of the gravitational potential and the energy spectrum of the system.
We found that the gravitational potential profile after relaxation is
consistent with a running power law as

φ(x) ∝ xβ(x), (36)

where β(x) is a slowly decreasing function of x, roughly averaging
to β � 3/2 in agreement with the conjecture of Binney (2004).
Close to the centre, we found

β > 1.54 (37)

in disagreement with recent results of the literature based on N-body
experiments (Binney 2004; Alard 2013; Schulz et al. 2013). In fact,
our measurement are consistent with

β = 8/5 = 1.6 (38)

at the centre of the system, a value which can be predicted explicitly
by assuming that the average phase-space density per energy level
is conserved between crossing times.

Our simulations do not present sufficient dynamical range to
demonstrate numerically that β = 8/5 corresponds to the expected

12 This is the reason why, in this work, we studied convergence to the cold
case with very cold but not infinitely thin waterbags.
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asymptotic singular behaviour of the gravitational potential profile
of cold systems in one dimension, but the disagreement of our
measurements with the thorough N-body experiments of Schulz
et al. (2013) is puzzling. These results are very worrying for the N-
body approach. Indeed, in three dimensions, many important results
on the structures of dark matter haloes are based on measurements
in N-body simulations (see, e.g., Navarro, Frenk & White 1996,
1997; Navarro et al. 2010; Diemand & Moore 2011, and references
therein). This definitely justifies the need for developing alternative
methods to solve Vlasov–Poisson without resorting to particles.
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Sonnendrücker E., Roche J., Bertrand P., Ghizzo A., 1999, J. Comput. Phys.,

149, 201
Spitzer L., Jr, 1942, ApJ, 95, 329
Umeda T., 2008, Earth Planets Space, 60, 773
Watanabe Y., Inagaki S., Nishida M. T., Tanaka Y. D., Kato S., 1981, PASJ,

33, 541
Yamaguchi Y. Y., 2008, Phys. Rev. E, 78, 041114
Yamashiro T., Gouda N., Sakagami M., 1992, Proc. Theor. Phys., 88, 269
Yoshikawa K., Yoshida N., Umemura M., 2013, ApJ, 762, 116

A P P E N D I X A : IN I T I A L C O N D I T I O N S A N D
SI MULATI ON SETTI NGS

In this appendix, we provide a full description of the initial con-
ditions of the simulations performed in this work, while Table A1
gives all the simulation settings.

(i) The Gaussian initial conditions are created as follows. Setting

G(x, v) ≡ ρG exp

(
−1

2

x2 + v2

σ 2
G

)
, (A1)

we write

f (x, v) = G(x, v), x2 + v2 ≤ R2, (A2)

= G(x, v) × max

[
1 + 2 th

(
R − √

x2 + v2

ηG

)
, 0

]
,

x2 + v2 > R2. (A3)

Our initial distribution function is thus a truncated Gaussian. The
practical choice of the parameters corresponds to R = 1, ρG = 4,
σ G = 0.2 and ηG = 0.02, which makes the total mass of the system
approximately equal to unity for a Gaussian truncated at 5σ .

(ii) The ensemble of stationary clouds initial conditions are cre-
ated as follows. Each of these haloes initially approximates the
stationary solution corresponding to thermal equilibrium (Spitzer
1942; Camm 1950; Rybicki 1971) as

fS(x, v) = ρS

[ch(
√√

2πρS/σSx)]2

exp

[
−1

2

(
v

σS

)2
]

. (A4)

MNRAS 441, 2414–2432 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/441/3/2414/1131192 by guest on 24 April 2022

http://arxiv.org/abs/1112.1859
http://arxiv.org/abs/0709.0745


2432 S. Colombi and J. Touma

Table A1. The designation of the simulations according to the important parameters used to perform them: type of initial conditions,
refinement/unrefinement criteria parameters introduced in Section 2.2.3 (equations 12–15) and the time-step parameter C introduced in
Section 2.2.4 (equation 16).

Designation Initial conditions Sadd Srem dadd drem C

Gaussian10U Gaussian, 10 contours, unrefinement allowed 10−8 Sadd/2 0.01 0.005 0.025
Gaussian10 Gaussian, 10 contours, no unrefinement, larger Sadd 2 × 10−8 0 0.01 0 0.025
Gaussian84U Gaussian, 84 contours, unrefinement allowed 10−8 Sadd/2 0.01 0.005 0.025
Gaussian84 Gaussian, 84 contours, no unrefinement, larger Sadd 2 × 10−8 0 0.01 0 0.025
RandomU Random set of haloes, unrefinement allowed 10−8 Sadd/2 0.01 0.005 0.005
Random Random set of haloes, nounrefinement, larger Sadd 2 × 10−8 0 0.01 0 0.005
RandomUT Random set of haloes, unrefinement allowed, smaller time step 10−8 Sadd/2 0.01 0.005 0.0025
RandomUS Random set of haloes, unrefinement allowed, smaller Sadd 10−9 Sadd/2 0.01 0.005 0.005
Tophat1.000U Waterbag, �p = 1, unrefinement allowed 10−7 Sadd/2 0.02 0.01 0.0025
Tophat0.750U Waterbag, �p = 0.75, unrefinement allowed 0.75 × 10−7 Sadd/2 0.02 0.01 0.0025
Tophat0.500U Waterbag, �p = 0.5, unrefinement allowed 0.5 × 10−7 Sadd/2 0.02 0.01 0.0025
Tophat0.250U Waterbag, �p = 0.25, unrefinement allowed 0.25 × 10−7 Sadd/2 0.02 0.01 0.0025
Tophat0.100U Waterbag, �p = 0.1, unrefinement allowed 10−8 Sadd/2 0.02 0.01 0.0025
Tophat0.010U Waterbag, �p = 0.01, unrefinement allowed 10−9 Sadd/2 0.02 0.01 0.0025
Tophat0.010 Waterbag, �p = 0.01, no unrefinement, larger Sadd 10−9 Sadd/2 0.02 0.01 0.0025
Tophat0.003U Waterbag, �p = 0.003, unrefinement allowed 0.3 × 10−9 Sadd/2 0.02 0.01 0.001
Tophat0.003 Waterbag, �p = 0.003, no unrefinement, larger Sadd 2.4 × 10−9 0 0.02 0 0.001
Tophat0.001U Waterbag, �p = 0.001, unrefinement allowed 10−10 Sadd/2 0.02 0.01 0.001
Tophat0.001 Waterbag, �p = 0.001, no unrefinement, larger Sadd 8 × 10−10 0 0.02 0 0.001
Tophat0.001S Waterbag, �p = 0.001, no unrefinement 10−10 0 0.02 0 0.001
PerturbedU Waterbag, �p = 0.003, perturbed, unrefinement allowed 10−10 Sadd/2 0.02 0.01 0.0005
Perturbed Waterbag, �p = 0.003, perturbed, no unrefinement, larger Sadd 8 × 10−10 0 0.02 0 0.0005
PerturbedS Waterbag, �p = 0.003, perturbed, no unrefinement 10−10 0 0.02 0 0.0005

The individual components are generated at random positions in a
phase-space disc of radius unity (prior to recasting with respect to
centre-of-mass). Their profile follows equation (A4) with ρS = 6 and
individual random values for the velocity dispersion σ S, ranging in
the interval [0.005, 0.1]. To make sure that the clouds do not overlap
too much with each other, we impose the distance in phase-space
between the centre of any two clouds i and j to be larger than 4[σ S(i)
+ σ S(j)]. Then, the components are added on the top of each other
in phase-space, to obtain the desired distribution function fr(x, v).
Finally, apodization is performed as follows.

f (x, v) = fr(x, v), fr(x, v) ≥ ηr, (A5)

= ηr max

{
1 + 2 th

[
fr(x, v) − ηr

ηr

]
, 0

}
,

fr(x, v) < ηr, (A6)

with ηr = 0.05.
(iii) Our single-waterbag simulations have the following initial

vertices coordinates for the orientated polygon:

xi = cos(2πi/N ), (A7)

vi = �p sin(2πi/N ), (A8)

with i ∈ [0, . . . , N] and a total mass unity, which implies fleft =
1/(π�p) and fright = 0 in equation (9). As listed in Table A1, we
consider several values of the thickness parameter �p ranging in
the interval [0.001, 0.1]. In all the cases, we take N = 1000.
For �p = 0.003, we also performed simulations where the initial
configuration is perturbed randomly as follows.

v → v + δv, (A9)

δv = 0.0006
50∑

k=−50

|k|−1/2[G2k cos(πkx)

+ G2k+1 sin(πkx)], (A10)

where Gi is a Gaussian random number of average zero and variance
unity. In this case, we take N = 10 000.
The simulations were run up to t = 50, except for the perturbed wa-
terbag simulations which ended earlier, due to their computational
cost.
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