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ABSTRACT

Aims. We aim to compute the mass and velocity anisotropy profiles of Abell 2142 and, from there, the pseudo phase–space density
profile Q(r) and the density slope − velocity anisotropy β − γ relation, and then to compare them with theoretical expectations.
Methods. The mass profiles were obtained by using three techniques based on member galaxy kinematics, namely the caustic method,
the method of dispersion-kurtosis, and MAMPOSSt. Through the inversion of the Jeans equation, it was possible to compute the
velocity anisotropy profiles.
Results. The mass profiles, as well as the virial values of mass and radius, computed with the different techniques agree with one
another and with the estimates coming from X-ray and weak lensing studies. A combined mass profile is obtained by averaging
the lensing, X-ray, and kinematics determinations. The cluster mass profile is well fitted by an NFW profile with c = 4.0 ± 0.5. The
population of red and blue galaxies appear to have a different velocity anisotropy configuration, since red galaxies are almost isotropic,
while blue galaxies are radially anisotropic, with a weak dependence on radius. The Q(r) profile for the red galaxy population agrees
with the theoretical results found in cosmological simulations, suggesting that any bias, relative to the dark matter particles, in velocity
dispersion of the red component is independent of radius. The β − γ relation for red galaxies matches the theoretical relation only in
the inner region. The deviations might be due to the use of galaxies as tracers of the gravitational potential, unlike the non–collisional
tracer used in the theoretical relation.

Key words. methods: observational – galaxies: clusters: general – galaxies: kinematics and dynamics – galaxies: general

1. Introduction

The measure of the mass of cosmological objects, such as clus-
ters of galaxies, has proven to be an important tool for cosmo-
logical applications. The mass is not a direct observable, and
many techniques have been developed to infer it by measuring
observable quantities. Two methods that are widely used to infer
the mass profile of galaxy clusters are the X-ray and the lens-
ing techniques. The former makes use of the observations of the
X-ray emission of the hot intracluster plasma (ICM). The lens-
ing technique makes use of the relativistic effect of distortion of
the trajectories of light emitted by distant background galaxies
caused by the mass of the observed cluster. These two methods
have some limitations either way. In the case of X-ray technique,
the limitation comes from the usual assumption that the plasma
of the cluster is in hydrostatic equilibrium, and the cluster ap-
proximately spherically symmetric (Ettori et al. 2002) with no
important recent merger activity (Böhringer & Werner 2010).
As for the lensing technique, its limitation is that it only allows
computing the projected mass, and this includes all the line-of-
sight (LOS) mass contributions. The complementarity of the dif-
ferent techniques is a strong advantage for reliably constraining
the mass of a cluster.

In this article, we use another kind of information that comes
from the kinematics of the galaxies belonging to the observed

cluster. In fact, the potential well of the cluster, due to the mass,
is the main driver of the orbital motion of the galaxies, which in
the absence of mutual interactions, can be treated as test parti-
cles in the gravitational potential of the cluster. The kinematics
of galaxies therefore carries the information about the mass con-
tent of the cluster. The motion takes place in a six-dimensional
phase space, but the observations are able to capture only three
of these dimensions, namely two for the position and one for
the LOS velocity. This is one of the most important limitations
of a mass estimate via observation of the kinematics of galax-
ies. To overcome this problem, most methods assume spherical
symmetry.

A spherically symmetric density profile following the uni-
versal relation provided by Navarro et al. (1996; 1997; NFW
hereafter) has often been adopted in these analyses. Such a pro-
file is characterized by its “scale radius” parameter, which is
the radius where the logarithmic slope of the density profile is
equal to −2. With the advent of simulations with increasingly
higher resolution, the universality of the NFW density profile has
been questioned (see e.g. Navarro et al. 2004; Vogelsberger et al.
2011; Ludlow et al. 2013). While the self-similarity of the den-
sity profiles of DM-only haloes may not hold as well as initially
thought, another physical parameter appears to have a quasi-
universal radial profile, the pseudo phase–space density (PPSD)
Q(r) = ρ/σ3, where ρ is the total matter density profile andσ the

Article published by EDP Sciences A68, page 1 of 13

http://dx.doi.org/10.1051/0004-6361/201322450
http://www.aanda.org
http://www.edpsciences.org


A&A 566, A68 (2014)

3D velocity dispersion of the tracers of the gravitational potential
(Taylor & Navarro 2001; Ludlow et al. 2010). Still, some doubts
have been raised about its universality (Ludlow et al. 2011). The
use of the radial velocity dispersion instead of the total one has
proven to be a valid and robust alternative for computing the
PPSD, in this case called Qr(r). The link between these two for-
mulations of the PPSD is constrained by the velocity anisotropy
(hereafter, anisotropy) of the system, which plays a non trivial
role in shaping the structure of a system. The density profile and
the anisotropy profile are in fact found to correlate. An empiri-
cal relation is provided by Hansen & Moore (2006) and Ludlow
et al. (2011), linking the logarithmic slope of the density profile
γ = dlnρ/dlnr and the anisotropy β(r) = 1 − (σt/σr)2, where σr
and σt are the velocity dispersions of the radial component and
of one of the two tangential components, respectively. Hereafter
we refer to anisotropy as β or the equivalentσr/σt = 1/

√
1 − β2.

We also denote the relation between anisotropy and logarithmic
slope of the density profile as the β − γ relation.

In this article, we study Abell 2142 (A2142 hereafter), a rich
galaxy cluster at z ∼ 0.09. The large number of galaxy mem-
bers allows us to derive the total mass profile, to test different
models, as well as to perform dynamical analyses in order to de-
rive the anisotropy of the orbits of galaxies that allows to com-
pute the pseudo phase-space density profile and the β − γ re-
lation. This cluster shows evidence of some recent mergers. In
fact, the X-ray emission appears to have an elliptical morphol-
ogy elongated in the north-west south-east direction (Markevitch
et al. 2000; Akamatsu et al. 2011). The merging scenario is
also supported by the presence of substructures of galaxies ly-
ing along the direction of the cluster elongation, as found in the
SZ maps by Umetsu et al. (2009), lensing analysis by Okabe
& Umetsu (2008), and analysis of the distribution of LOS ve-
locities of Owers et al. (2011). However, after analysing XMM-
Newton images to investigate the cold fronts of A2142, Rossetti
et al. (2013) argue that the mergers have intermediate mass ratios
rather than major ones.

Throughout this paper, we adopt a ΛCDM cosmology with
H0 = 70 km s−1 Mpc−1, Ω0 = 0.3, ΩΛ = 0.7. The virial quanti-
ties are computed at radius r200

1.

2. The data

The photometric information has been obtained from the SDSS
DR7 database2 after searching for the galaxies that have
238.◦983 < RA < 240.◦183, 26.◦633 < Dec < 27.◦834 and
petroMagr′ < 22. The spectroscopic information has been pro-
vided by Owers et al. (2011). The full sample is composed of
1631 galaxies with both photometric and spectroscopic infor-
mation. The cluster centre is assumed to coincide with the X-ray
centre provided by De Grandi & Molendi (2002).

Two algorithms have been used to select cluster members,
those of den Hartog & Katgert (1996) and of Mamon et al.
(2013), hereafter dHK and clean, respectively. Both identify
cluster members on the basis of their location in projected phase-
space3: R, vrest, using the spectroscopic values for the velocities.

1 rΔ is the radius within which the mean density is Δ times the critical
density of the Universe.
2 http://cas.sdss.org/astro/en/tools/chart/chart.asp
3 R is the projected radial distance from the cluster centre. We assume
spherical symmetry in the dynamical analyses. The rest-frame veloc-
ity is defined as v = c (z − z) / (1 + z). The mean cluster redshift z
is re defined at each new iteration of the membership selection, until
convergence.

Fig. 1. Distribution of the galaxies of Abell 2142 in the projected phase-
space of projected radii and LOS rest-frame velocities. Cluster mem-
bers, as identified by both dHK and clean algorithms, are denoted by
blue filled dots. The red diamond is the galaxy identified as member
by dHK but not by the clean algorithm. The purple solid lines are the
caustic, described in Sect. 3. The vertical dashed line locates the virial
radius of the combined model (see Sect. 4).

We adopt the membership determination of dHK, resulting in
996 members. In fact, the clean algorithm removes one more
galaxy that is very close to the distribution of selected members
and therefore seems unlikely to be an interloper. Anyway, this
galaxy is ≈3 Mpc from the cluster centre, which should make no
difference in the analysis here. Figure 1 shows the location of
galaxies in projected phase-space with the identification of clus-
ter member galaxies using the two methods. We use the method
described in Appendix B of Mamon et al. (2013) to obtain a pre-
liminary estimate of the virial radius from the velocity dispersion
of the cluster members. The value we obtain is 2.33 Mpc. This is
used later as an initial–guess value for the virial radius, only to
be successively refined with more sophisticated techniques (see
Sect. 4.2).

The cluster mean redshift and LOS velocity dispersion, as
well as their uncertainties, have been computed using the bi-
weight estimator (Beers et al. 1990) on the redshifts and rest-
frame velocities of the members: 〈z〉 = 0.08999 ± 0.00013,
σlos = 1193+58

−61 km s−1.

2.1. The colour identification

We identify the red sequence iteratively by fitting the g′ − r′
vs. r′ colour−magnitude relation of galaxies with r′ < 19.5 and
g′ − r′ > 0.7, then selecting galaxies within ±2σ of the found
sequence (where σ is the dispersion around the best fit relation).
We refer to the cluster members within ±2σ of the red sequence,
and those above this range, as red sequece galaxies, and to the
cluster members more than 2σ below the red sequence as blue
galaxies, as shown in Fig. 2.

2.2. Removal of substructures

Owers et al. (2011) found some substructures in A2142, proba-
bly groups that have been recently accreted by the cluster. These
substructures can alter the kinematics of the system since they
still retain memory of the infall kinematics. For this reason, we
compute the mass profile of the system excluding the galax-
ies belonging to these substructures. In particular we consider
the largest substructures in this cluster, namely S2, S3, and S6,
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Fig. 2. Colour magnitude diagram g′ − r′ vs. r′. Red (blue) points are
relative to red (blue) member galaxies. Black points are galaxies for
which we have photometric information, that are not identified as mem-
bers. The red solid line locates the red sequence.

Table 1. Coordinates with respect to the cluster center, radii, and num-
ber of galaxies of the three main substructures, as found by Owers et al.
(2011).

xc [Mpc] yc [Mpc] r [Mpc] Ngal

S2 0.600 0.763 0.467 49
S3 2.007 1.567 0.700 54
S6 2.327 –0.180 0.812 53

following the nomenclature of Owers et al. (2011). Therefore,
we remove galaxies inside circles, the centres and radii of which
are reported in Table 1.

2.3. The samples

Some of the techniques (described in Sect. 3) that we use to
compute the mass profile of the cluster rely upon the assump-
tion of equilibrium of the galaxy population. Red galaxies are
more likely an older cluster population than blue galaxies, proba-
bly closer to dynamical equilibrium (e.g. Moss & Dickens 1977;
van der Marel et al. 2000). For this reason, red galaxies consti-
tute a better sample for such techniques. Among red galaxies,
those outside substructures (see Sect. 2.2) are the most likely to
be in dynamical equilibrium. We therefore use these galaxies for
determining the mass profile.

The three samples that are used hereafter are as follows. We
refer to the sample made of all the member galaxies to as the
ALL sample. BLUE is the sample made of blue galaxies, and
RED is the sample made of red galaxies not belonging to the
substructures described in Sect. 2.2. See Table 2 for a summary
of the number of galaxies belonging to each sample. The ALL
and BLUE samples do contain substructures.

3. The techniques

In this section, we briefly describe the main features of the three
different techniques used in this work to compute the mass pro-
file of A2142. Besides the virial values of radius and mass, we
obtain estimates of the mass scale radius, which is where the
logarithmic slope of the total density profile is equal to −2, from

Table 2. Number of galaxies in the three samples.

Sample ntot n200

ALL 996 706
RED 564 447
BLUE 278 162

Notes. For each sample, the total number of member galaxies and the
number of member galaxies within r200 are shown, the latter being the
value of the combined model (see Sect. 4).

which it is possible to recover the cluster mass profile. These
methods all assume spherical symmetry.

3.1. Methods

DK: the dispersion kurtosis technique, hereafter shortened to
DK, first introduced by Łokas (2002), relies upon the joint
fit of the LOS velocity dispersion and kurtosis profiles of the
cluster galaxies. In fact, fitting only the LOS velocity disper-
sion profile to the theoretical relation coming from the pro-
jection (see Mamon & Łokas 2005b for single integral for-
mulae for the case of simple anisotropy profiles) of the Jeans
(1904) equation (see e.g. Binney & Mamon 1982; Binney
& Tremaine 1987) does not lift the intrinsic degeneracy be-
tween mass profile and anisotropy profile determinations (as
Łokas & Mamon 2003 showed for the Coma cluster). This
technique assumes dynamical equilibrium of the system, and
it allows us to estimate the virial mass, the mass scale radius
and the value of the cluster velocity anisotropy, considered
as a constant with radius4.

MAMPOSSt: the MAMPOSSt technique, recently developed
by Mamon et al. (2013), performs a maximum likelihood
fit of the distribution of galaxies in projected phase space,
assuming models for the mass profile, the anisotropy pro-
file, the projected number density profile and the 3D velocity
distribution. In particular, for our analysis we used different
NFW models for the mass and the projected number density
profiles, either a simplified Tiret profile (Tiret et al. 2007)
or a constant value for the anisotropy profile and a Gaussian
profile for the 3D velocity distribution. As in the DK method,
MAMPOSSt assumes dynamical equilibrium of the system.
By this method we estimate the virial mass, the scale radius
of the mass density profile, and the value of anisotropy of the
tracers.

Caustic: the caustic technique, introduced by Diaferio & Geller
(1997), is different from the other two methods because
it does not require dynamical equilibrium. As a result,
this technique also provides the mass distribution beyond
the virial radius. In projected phase space (see Fig. 1),
member galaxies tend to lie in a region around vlos =
0 km s−1. Measuring the velocity amplitudeA of the galaxy
distribution gives information about the escape velocity
of the system. In turn, the escape velocity is related to
the potential, hence the mass profile: M(r) = M(r0) +
(1/G)

∫ r

r0
A2(s)Fβ(s) ds, where Fβ(r) = −2πG (3− 2β)/(1 −

β) r2ρ(r)/Φ(r) (Diaferio 1999). Because Fβ is usually ap-
proximated with a constant value (Diaferio 1999; Serra et al.
2011), it is customary to call it a “parameter”.

4 Richardson & Fairbairn (2013) have recently extended the DK
method to more general anisotropy profiles.
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Since the DK and MAMPOSSt techniques make use of the as-
sumption of dynamical equilibrium of the system, the use of the
RED sample allows a more correct application of those tech-
niques, since this sample is likely to be the most relaxed sam-
ple. In fact these methods just need a tracer that obeys the Jeans
equation. As long as we consider a collisionless tracer, spherical
symmetry, no streaming motions, and a stationary system, DK
and MAMPOSSt are able to reliably recover the mass content of
the cluster. On the other hand, we use the ALL sample for the
caustic technique.

As discussed in Sect. 1, some studies suggest an elliptical
morphology of the system, with evidence of some recent in-
termediate mass-ratio mergers. Although this might violate the
assumptions of both spherical symmetry and equilibrium re-
quired in DK and MAMPOSSt, and the spherical symmetry
alone for the Caustic technique, these methods are not strongly
affected by this. In fact, they have been tested on ΛCDM haloes
extracted from simulations. Although these haloes are neither
spherical nor fully relaxed, and they present substructures, the
DK (Sanchis et al. 2004), MAMPOSSt (Mamon et al. 2013)
and Caustic (Serra & Diaferio 2013; Gifford et al. 2013) tech-
niques provide reliable estimates of halo masses. As we see be-
low (Sect. 4), the fairly close results of these dynamical meth-
ods with those from the weak lensing analysis (which does not
assume equilibrium) of Umetsu et al. (2009) suggest that this
cluster cannot be far from dynamical equilibrium.

In all three methods, we consider the scale radius of the
galaxy distribution and the scale radius of the mass distribution
as two separate and independent parameters.

3.2. Practical implementation

To compute the parameter values with the MAMPOSSt tech-
nique, we have considered the galaxies of RED sample within
the “first guess” virial radius, presented in Sect. 2. As dis-
cussed in Mamon et al. (2013; in particular see their Table 2),
MAMPOSSt does not critically depend on this choice5. We then
performed a Markov chain Monte Carlo (MCMC) procedure
(see e.g. Lewis & Bridle 2002), using the public CosmoMC code
of A. Lewis6. In MCMC, the parameter space is sampled follow-
ing a procedure that compares the posterior (likelihood times
prior) of a point in this space with that of the previous point,
and decides whether to accept the new point following a crite-
rion that depends on the two posteriors. We use the Metropolis-
Hastings algorithm. The next point is chosen at random from
a hyperellipsoidal Gaussian distribution centred on the current
point. This procedure ensures that the final density of points in
the parameter space is proportional to the posterior probability.
MCMC then returns probability distributions as a function of a
single parameter, or for several parameters together. Here, the
errors on a single parameter are computed by marginalizing the
posterior probabilities over the other two free parameters.

For the caustic technique, we use the ALL sample, since the
equilibrium of the sample is not required, also considering the
galaxies beyond the virial radius. To apply the caustic technique,
the Fβ parameter (Diaferio 1999) must be chosen. The choice
of the parameter is quite arbitrary, so we tested three different
choices: the constant value 0.5, as first suggested in Diaferio
(1999); the constant value 0.7 as suggested in Serra et al. (2011);

5 However, beyond ≈2.5 r200, the infall streaming motions are impor-
tant enough that the usual Jeans equation is inadequate for determining
the radial velocity dispersion (Falco et al. 2013).
6 http://cosmologist.info/cosmomc

Fig. 3. Fβ parameter as a function of clustercentric distance for an NFW
model. Black solid line refers to the isotropic case, while red dashed line
refers to an ML anisotropy (Mamon & Łokas 2005b) with ranis = rs.
Blue dash dotted line refers to the Fβ by Biviano & Girardi (2003). The
dotted vertical line locates the virial radius of the combined model (see
Sect. 4).

and the profile described in Biviano & Girardi (2003). The last
is a smooth approximation of the Fβ(r) derived from numeri-
cal simulations by Diaferio (1999). The actual values of Fβ are
not likely to be very different from these we decided to test. In
fact, Fig. 3 shows that an NFW model leads to Fβ = 0.6 at
r = 4rs 	 r200 for isotropic orbits, while for orbits with ML
(Mamon & Łokas 2005a) anisotropy, it produces Fβ = 0.7 at
r = 4rs 	 r200. As a comparison, in Fig. 3 the profile by Biviano
& Girardi (2003) is shown. It has higher values in the centre, but
rapidly falls in the outer regions. The value 0.5 allows us to take
both the innermost region, where the values of Fβ are very low,
and the outer part, where the values are larger and closer to 0.7
into account.

When using Fβ = 0.7 and the anisotropy profile of Biviano
& Girardi (2003), the estimated virial masses are much greater
than those obtained with the other techniques that rely on the dy-
namics of galaxies, as well as the results coming from the X-ray
and the weak lensing analysis (see below). Therefore we decided
to consider only the caustic technique with Fβ = 0.5 (the same
value has been recently adopted by Geller et al. 2013). Given
that for rs < r < 4rs ≈ r200 one can approximate Fβ 	 cst typ-
ically to ±11% accuracy, the mass profile returned by the caus-
tic method changes normalization but not the shape for different
values of Fβ. Therefore this method turns out to be very useful
for constraining the mass profile shape, since it does not assume
a parametric profile like an NFW, so that we can check whether
the assumption of NFW for the mass profile is a good one. We
adopt r0 = 0, which relieves us from the choice of a mass at
some finite radius r0. Once we have computed the mass profile,
we fit it with an NFW profile to obtain an estimate of the mass
scale radius.

3.3. The scale radius of galaxy distribution

The NFW scale radius of the galaxy distribution is used as in-
put for the DK and MAMPOSSt analyses, therefore it has been
computed for the RED sample. The number density profile of
the spectroscopic sample is affected by the incompleteness is-
sue. We need to known the distribution of tracers along the LOS.
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Fig. 4. Surface number density profiles for the ALL, RED, and BLUE
samples, along with their best-fit projected NFW profiles. The dashed
vertical line locates the virial radius of the combined model (see
Sect. 4).

Assuming spherical symmetry, we can adopt the deprojection
of the tracer surface density profile, but we must first correct
for spectroscopic incompleteness. Owers et al. (2011, see their
Fig. 2) have measured their spectroscopic incompleteness in var-
ious magnitude bins. Since their incompleteness depends rather
little on magnitude, we adopt their cumulative incompleteness
measured for R ≤ 20.5. This completeness has then been cor-
rected in order to take into account the artificial reduction of the
number of galaxies due to the presence of a bright star in the
cluster field. Also, since we do not wish to consider galaxies
inside substructures, we also have to correct the completeness
to account for the removal of the substructures. We divided the
cluster in radial bins and counted the galaxies inside each bin.
In the bins where the presence of the star and the removal of
substructures causes a lack of detection, the area of the bin is ar-
tificially reduced, and the mean density of galaxies is computed
in the remainder of the bin. This value is then assigned to the
whole bin.

The RED galaxy number density profile is well fitted by
a projected NFW profile (Bartelmann 1996; Łokas & Mamon
2001). The fit is an MLE fit performed on all RED members that
provide a scale radius 0.95 ± 0.14 Mpc. The ALL and BLUE
samples are less concentrated, the values of the scale radius be-
ing 1.84 ± 0.25 Mpc for the ALL sample and 16 ± 11 Mpc for

Fig. 5. Velocity dispersion profiles for the ALL, RED, and BLUE sam-
ples. For the RED sample we also show the best-fit profile coming from
the DK analysis (black), and the profile computed after the MAMPOSSt
analysis (dashed red). The dashed vertical line locates the virial radius
of the combined model (see Sect. 4).

the BLUE sample. A KS test (e.g. Press et al. 1993) provides an
estimate of the reliability of these fits. The probabilities of ob-
taining greater discrepancy by chance for the RED and BLUE
samples are P = 0.95 and 0.20, respectively, indicating that the
model adequately fits the data. However, for the ALL sample, the
corresponding probability is only P = 0.05, indicating that the
model only marginally fits the data. In Fig. 4 the surface number
density profiles for the different samples are shown. The scale
radius for the BLUE sample is very high and is due to a very flat
distribution of these galaxies.

4. Mass profiles

4.1. Mass profiles obtained from the different methods

We used the velocities of the galaxies within the “first guess”
virial radius (see Sect. 2) to compute the mass profile of A2142.
In Fig. 5, the velocity dispersion profiles are shown, along
with the best-fit profiles coming from the DK and MAMPOSSt
analyses.

The DK technique assumes a constant value for the
anisotropy, while we have chosen two profiles for the anisotropy
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Table 3. Virial quantities of Abell 2142 obtained from different techniques.

Method Sample M200 [1015 M�] r200 [Mpc] rs [Mpc] c σr/σt β

Caustic (Fβ = 0.5) ALL 1.26+0.54
−0.42 2.17+0.27

−0.28 0.58+0.12
−0.10 3.7 ± 0.9

DK RED 1.32+0.11
−0.21 2.20+0.06

−0.12 0.93+0.39
−0.10 2.4 ± 0.6 1.0+0.20

−0.04 0.0+0.3
−0.1

MAMPOSSt RED 1.28+0.14
−0.49 2.18+0.08

−0.32 0.83+1.73
−0.35 2.6+2.0

−1.9 1.0+0.50
−0.20 0.0 ± 0.6

Kinematics 1.31+0.26
−0.23 2.19 ± 0.14 0.64 ± 0.17 3.4 ± 0.9

X-ray 1.11+0.55
−0.31 2.08+0.30

−0.22 0.74 ± 0.31 2.8 ± 1.1
WL 1.24+0.18

−0.16 2.16 ± 0.10 0.51 ± 0.08 4.3 ± 0.7

Combined model 1.25 ± 0.13 2.16 ± 0.08 0.54 ± 0.07 4.0 ± 0.5

Notes. Values of virial mass, virial radius, mass scale radius, concentration, and two measures of the velocity anisotropy, for different techniques.
Also shown are the average value of the kinematical techniques after symmetrizing the errors and the value of the combined model, obtained as
the result of the average of all the values coming from the different techniques (see Sect. 5 for the average procedure). X-ray values come from
Akamatsu et al. (2011), weak lensing (WL) from Umetsu et al. (2009). Both for X-ray and WL we had the values and the errors of the virial radius
and the concentration: we have symmetrized these errors and propagated them to obtain the estimates of the errors on the mass scale radii.

model in MAMPOSSt, a constant value and a Tiret profile β(r) =
β0+(β∞−β0) r/(r+ranis). Here, we set β0 = 0 (inner isotropy) and
set ranis to the scale radius of the galaxy’s number density profile.
The maximum values of the likelihoods are similar when using
the two anisotropy models, therefore for the sake of simplicity
we consider only the case of a constant velocity anisotropy. In
Sect. 5, we compute the anisotropy profile for the RED sample
and find that indeed it is compatible with a constant value.

We also tried to assume different mass profiles and velocity
anisotropy models in MAMPOSSt, namely a Burkert (Burkert
1995), a Hernquist (Hernquist 1990) and a softened isothermal
sphere profile (e.g. Mamon 1987; Geller et al. 1999), all with
both constant and Tiret anisotropy profiles. However our data-
set is not large enough to allow us to distinguish between these
different models. All provide acceptable fits. As a consequence,
the resulting estimates of virial mass and mass profile concen-
tration are very similar to the case of NFW mass profile with
constant anisotropy, with differences of very few percent. We
therefore only considered the NFW model for the mass profile.

The results are summarized in Table 3. Figure 6 shows the
detailed results of our MAMPOSSt MCMC analysis. The mass
scale radius is not well constrained by MAMPOSSt. This does
not affect the subsequent analysis, since in Sect. 4.2, we perform
a weighted mean of the results from the different methods.

In Fig. 7, we show the mass profiles obtained from the dif-
ferent methods, along with the virial values of mass and radius.
The results coming from the X-ray (Akamatsu et al. 2011) and
weak lensing (WL, Umetsu et al. 2009) analysis are also shown.

4.2. Combined mass profile

We combined the constraints from the different mass modelling
methods to build a combined mass profile, assuming again an
NFW density profile. We attempted to give the same weight to
kinematics, X-ray, and WL in the final estimate of the param-
eters, so we computed single values coming from kinematical
techniques for the mass scale radius and virial radius. For this,
we took the mean of the values rs and r200 of the different meth-
ods, inversely weighting by the symmetrized errors. Since the
measures of these two quantities by the various methods are not
independent (as they are based on essentially the same data sets),
we multiplied the error on the average by

√
3, 3 being the num-

ber of values used to compute the average. In fact, the usual error

on the weighted average decreases like the square root of the
number of values.

The mean value and its error are shown in the left panels
of Fig. 8. In the right panels of Fig. 8, we plot the values of
mass scale and virial radius obtained from the three indepen-
dent methods: kinematics, X-ray, and WL. The average error-
weighted value and its error, this time computed without multi-
plication factor (since the three measures are independent), are
r200 = 2.16 ± 0.08 Mpc, rs = 0.54 ± 0.07 Mpc.

5. Velocity anisotropy profiles

Although with DK and MAMPOSSt we have assumed some
models for the velocity anisotropy profile, we now wish to de-
termine it in a non-parametric way using the Jeans equation.
For this, we use the mass profile we obtained by combining the
information coming from the three dynamical methods, X-ray
and WL. The Jeans equation contains four unknown quantities,
therefore to solve it we need three other relations, namely the
Abell integrals to relate the projected number density and veloc-
ity dispersion to the real ones and assume a mass profile for the
cluster. This anisotropy inversion was first solved by Binney &
Mamon (1982), but several other authors have provided simpler
algorithms. We follow the approach of Solanes & Salvador-Solé
(1990), and we tested the results by comparing them with those
obtained following the approach of Dejonghe & Merritt (1992).
Once the mass profile is specified, this procedure is fully non–
parametric. In fact, instead of fitting the number density pro-
file, we binned and smoothed it with the LOWESS technique
(see e.g. Gebhardt et al. 1994). We then obtained the 3D number
density profile by using Abel’s equation (e.g. Binney & Mamon
1982). In the same way, we smoothed the binned σlos profile.
This procedure requires the solution of integrals up to infinity.
Mamon et al. (2010) show that a 3σ clipping removes all the in-
terlopers beyond 19 virial radii. Therefore, an extrapolation up
to such a distance is enough to solve the integrals having infinity
as the integration limit. We used 30 Mpc as the maximum radius
of integration, and extrapolate the smoothed profiles up to this
limit. A factor–2 change in the upper limit of integration does
not affect our results in a significant way.

The result of the anisotropy inversion is shown in Fig. 9.
The confidence levels were obtained by estimating two error
contributions. One contribution comes from the uncertainties in
the surface density and σlos profiles. Since 80% of the relative
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Fig. 6. Parameter space and probability distribution functions for the virial radius, mass profile scale radius, and velocity anisotropy, as found by
MAMPOSSt. The coloured regions are the 1, 2, 3σ confidence regions, while the red stars and the red arrows locate the best-fit values. These are
based upon an MCMC analysis with 6 chains of 40 000 elements each, with the first 5000 elements of each chain removed (this is the burn-in
phase that is sensitive to the starting point of the chain). The priors were flat within the range of each panel, and zero elsewhere.

uncertainty of the product Σσ2
los comes from the uncertainty

of σlos (Trilling et al., in prep.), we only considered the error
contribution from the latter. It is virtually impossible to prop-
agate the errors on the observed σlos through the Jeans inver-
sion equations to infer the uncertainties on the β profile solu-
tion. We then proceeded to estimate these uncertainties the other
way around. We modify the β profile in two different ways:
1) β(r)→ β(r) + S + Tr, and 2) β(r)→ J β(r) + Y, using a wide
grid of values for the constants, respectively (S , T ) and (J, Y).
Using the mass and anisotropy profiles, it is then possible to de-
termine σr(r) and then the σlos profile (e.g. Mamon & Łokas
2005b). The range of acceptable β profiles is determined by a χ2

comparison of the resulting σlos profiles with the observed one.
In addition, another source of uncertainty on the β profile

solution comes from the uncertainty in the mass profile. This
is estimated by running the anisotropy inversion for four differ-
ent mass profiles corresponding to the combination of allowed
values of virial and mass scale radii within 1σ. The profiles ob-
tained modifying the mass profile (not shown) lie within the con-
fidence interval of the main result, so that the confidence interval
represents the uncertainty on the anisotropy profile well.

The ALL sample β(r) depends weakly on radius: the inner-
most region is compatible with isotropy, while the anisotropy is
increasingly radial at large radii. The RED sample is compatible
with isotropy at all radii. The difference between the two sam-
ples is almost entirely due to the BLUE galaxies, the anisotropy
of which is compatible with isotropy in the centre, then becomes
rapidly radially anisotropic, and finally flattens at radii >1 Mpc.

As a check, we compare the values of β obtained from
the anisotropy inversion with the best-fit results of DK and
MAMPOSSt. In these techniques, we assumed a constant value
of the anisotropy for the RED sample, which appears to be a
good assumption given the results of β after the inversion. The
value estimated by both DK and MAMPOSSt is β = 0.0, consis-
tent within the uncertainties with the β profile shown in Fig. 9.

6. Q(r) and β − γ relations

Since our anisotropy inversion provides us with the radial vari-

ations of σ(r) =
√
σ2

r + 2σ2
t , β(r) (from which σr(r) follows),

we can take advantage of the results just found for the galaxy
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Fig. 7. Mass profiles computed from the different methods. The black
dash-dotted line and the triangle with error bars refer to DK technique,
the dashed blue line and blue square to the caustic method, the solid red
line and red point to MAMPOSSt. The symbols with error bars refer to
the virial mass and radius. The purple asterisk with error bars and the
purple dash triple dotted line are the result of the X-ray analysis, while
the orange diamond with a long dashed line is the one coming from
weak lensing analysis. The shaded area is the 1σ confidence region of
the mass profile according to the MAMPOSSt results.

Fig. 8. Virial (top panels) and mass scale (bottom panels) radius for
all the methods. Left panels: blue diamonds are values obtained from
the caustic technique, red ones for MAMPOSSt, and black ones for DK
(from left to right, respectively). The average value and its error are the
solid and dashed lines, respectively. See the text for the computation of
the error. Right panels: values obtained from the kinematical analysis,
X-ray and WL (from left to right, respectively). The average value and
its error are the solid and dashed lines, respectively.

populations of A2142 to test the PPSD profile and the rela-
tion linking the logarithmic slope of the density profile and the
anisotropy β(r).

Both the PPSD and β − γ relations were derived from dissi-
pationless single-component simulations. It is therefore not clear
whether the power-law PPSD and the linear beta-gamma rela-
tion, both found for the particles of single component dark mat-
ter (DM)-only simulations, will be obtained when using galax-
ies to measure the velocity dispersion or velocity anisotropy and

Fig. 9. Velocity anisotropy profiles for the ALL, RED, and BLUE sam-
ples. The solid line is the result of the inversion of the Jeans equa-
tion, while the dotted lines are the 1σ confidence intervals. The vertical
dashed line locates the virial radius.

whether one should use the total density or the galaxy number
density in these two relations. We discuss this further in Sect. 7.

6.1. Use of the total matter density profile

We begin by adopting the total density profile ρ(r). We com-
pute both the PPSD profile Q(r) = ρ/σ3 and its radial counter-
part Qr(r) = ρ/σ3

r . In Fig. 10, we show, for the different tracers
(ALL, RED, BLUE), the radial profile of Q(r) (left panels) and
Qr(r) (right panels) within the virial radius. To compute the er-
rors on the best-fit slope parameters, we have assumed that the
number of independent Q and Qr values are the same as those of
the observed velocity dispersion profile (see Fig. 5).

Assuming a power-law behaviour of the PPSD profile, as
suggested by Dehnen & McLaughlin (2005), we fit the profiles
of both Q(r) and Qr(r) in two ways, either keeping the exponent
fixed to the values found for haloes in ΛCDM simulations by
Dehnen & McLaughlin (2005) or considering it as a free param-
eter. In both cases the normalization is left as a free parameter.
In Table 4 the results of such fits are shown. The Q(r) profile
for the RED sample is consistent within less than 2σ with the
r−1.84 relation by Dehnen & McLaughlin (2005). The fit of the
profile with a linear relation in the log-log plane is compatible
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Table 4. Best-fit parameters of the PPSD profile.

Q(r) Qr(r)

A B A B
[M� Mpc−3 km−3 s3] [M� Mpc−3 km−3 s3]

Fixed slope

ALL 5534 ± 314 −1.84 25 071 ± 3341 −1.92
RED 7727 ± 391 −1.84 38 484 ± 5622 −1.92
BLUE 1753 ± 294 −1.84 3998 ± 1084 −1.92

Free slope

ALL 6342 ± 367 −2.28 ± 0.11 29 175 ± 4223 −2.27 ± 0.24
RED 8034 ± 411 −2.00 ± 0.09 38 881 ± 5665 −1.77 ± 0.23
BLUE 3121 ± 793 −2.97 ± 0.50 5413 ± 1810 −2.60 ± 0.67

Q(r) GAL Qr(r) GAL

A B A B
[10−9 Mpc−3 km−3 s3] [10−9Mpc−3 km−3 s3]

Fixed slope

ALL 6.82 ± 0.68 −1.84 28.49 ± 5.37 −1.92
RED 3.62 ± 0.46 −1.84 13.23 ± 3.21 −1.92
BLUE 0.98 ± 0.23 −1.84 1.30 ± 0.47 −1.92

Free slope

ALL 10.19 ± 25.60 −1.09 ± 0.15 46.94 ± 7.34 −1.09 ± 0.26
RED 8.21 ± 17.01 −0.90 ± 0.14 40.48 ± 6.69 −0.71 ± 0.25
BLUE 0.88 ± 1.81 −0.90 ± 0.61 1.52 ± 0.55 −0.52 ± 0.74

Notes. The PPSD profile is parametrized as Q(r) = A · rB. The first panel at the top shows the results of the fit of Q(r) and Qr(r) for the different
samples, both when keeping fixed the exponent to the values suggested by Dehnen & McLaughlin (2005), and when considering the exponent as
a free parameter. In the bottom panel (which is the one identified by Q(r) GAL and Qr(r) GAL) the same quantities are shown, but they refer to
the PPSD computed using the galaxy number density profile instead of the total matter density profile.

Fig. 10. Radial profiles of Q (left columns) and Qr (right columns)
within the virial radius, and the 1σ confidence regions (shaded areas),
for different types of member tracers: green for the ALL sample (top
panels), red for the RED sample (middle panels), and blue for the BLUE
sample. The shaded areas represent the propagation of the errors asso-
ciated with ρ, σ and σr . The dashed lines are the power-law relations
Q(r) ∝ r−1.84 and Qr(r) ∝ r−1.92 found by Dehnen & McLaughlin (2005)
on numerically simulated haloes. The vertical dotted lines locate the
virial radius of the combined model (see Sect. 4).

with the theoretical value −1.84 within 1.7σ. On the other hand,
for the BLUE sample, the slope of the PPSD is steeper than the
theoretical expectation.

The σr profile is affected by larger uncertainties than the
σ profile, because the former combines the uncertainties from
the latter and β(r), which are the parameters produced by
the anisotropy inversion algorithm of Solanes & Salvador-Solé
(1990). It is therefore not surprising that, within the uncertain-
ties, the Qr profiles of all three samples appear consistent with
the theoretical expectation for simulatedΛCDM haloes (Dehnen
& McLaughlin 2005), Qr ∝ r−1.92. We note, however, that
the agreement is quite remarkable (within 0.3σ) for the RED
sample.

Ludlow et al. (2010) warn against fitting the pseudo phase–
space density profile outside the scale radius, because of the up-
turn they find in the Q(r) profile in the outer regions. However,
for our three samples, none of the Q(r) and Qr(r) profiles show
significant curvature in log-log space.

In Fig. 11, we show the anisotropy–density slope relation.
The β − γ relation of the ALL sample matches the one found by
Hansen & Moore (2006) closely in single-component dissipa-
tionless simulations (cosmological and academic); however, the
β − γ relation for the RED sample shows curvature, with lower
values of β at the steeper slopes (larger radii) than found in sim-
ulations by Hansen & Moore (2006).

It can be proven that all multicomponent spherical sys-
tems with positive phase-space distribution function, for which
1) the density of a component is a separable function of total
gravitational potential and radius; 2) β(0) ≤ 1/2 (i.e. are not
too much radially anisotropic at the center), necessarily satisfy
β(r) < −γ(r)/2, where the velocity anisotropy β and the logarith-
mic slope of density γ are for that component, as shown in Ciotti
& Morganti (2010; see also Van Hese et al. 2011). It is not clear
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Fig. 11. Velocity anisotropy versus logarithmic slope of the total den-
sity profile. The samples are ALL galaxies (top), RED (middle), and
BLUE galaxies (bottom panel). The shaded areas are the 1σ confidence
regions. The β−γ relation found by Hansen & Moore (2006) for single-
component dissipationless simulations is shown as the dotted lines. The
dashed line is the limit below which the relation by Ciotti & Morganti
(2010) holds. The vertical dot-dashed line locates the value of γ at the
virial radius.

Fig. 12. Same as Fig. 10, but now using the radial profiles of galaxy
number density instead of total mass density to estimate the PPSD.

whether the galaxy components of clusters of galaxies have such
separable densities.

6.2. Use of the tracer density profile

As we discuss at length in Sect. 7, it is not obvious that one
should use the total mass density profile rather than the tracer
number density profile in evaluating the PPSD and the β − γ re-
lations, when we want to compare them to those found in numer-
ical simulations. As a result, we now repeat repeat our analyses
of the PPSD and the β − γ relations, replacing the total mass
density with the number density of the tracer of the sample.

In Fig. 12, we show the PPSD computed using the galaxy
number density profile instead of the total matter density one.
For all three samples, both Q(r) and Qr(r) remain as power
laws, but are considerably shallower than the relation found by
Dehnen & McLaughlin (2005) on simulated ΛCDM haloes.

Fig. 13. Same as Fig. 11, but now using the radial profiles of galaxy
number density of the three samples instead of total mass density to
estimate the slope.

In Fig. 13, we show the β − γ relation computed using the
galaxy number density profile instead of the total matter density
one. The behaviour does not change significantly from the case
of the β−γ relation computed using the total matter density pro-
file: the overall shapes of the profiles are similar, but the BLUE
sample now presents a noisier profile, while ALL and RED pro-
files are shifted towards higher values of γ, reflecting the shal-
lower trend of the galaxy number density profile with respect to
the matter density one. We discuss these results below.

7. Discussion

7.1. Dynamical status

Munari et al. (2013) report the scaling relation between the
virial mass of clusters and the velocity dispersion of the mem-
ber galaxies within the virial sphere. Using the most realistic
(“AGN”) hydrodynamical simulation at their disposal, they find
σ1D = 1177 [h(z) M200/1015 M�]0.364 for the galaxies within
the virial sphere, where σ1D is the total 3D velocity dispersion
within r200, divided by

√
3. The analysis was carried out in the

6D phase space, so is immune to projection effects. The statisti-
cal nature of their relation suggests that it should hold for real,
observed, and relaxed systems. As a test, we checked the consis-
tency of the velocity dispersion – mass relation found by Munari
et al. (2013) with our findings for A2142. The values of virial
mass obtained with this relation are: 1.42×1015 M� for the ALL
sample, 1.07× 1015 M� for the RED sample, and 2.50× 1015 M�
for the BLUE sample. The values obtained for the ALL and RED
samples agree, within the uncertainties, with the combined value
of the mass of A2142. This seems to indicate that RED cluster
members are in, or very close to, equilibrium. The large differ-
ence obtained for the BLUE cluster members warns against us-
ing the blue galaxy LOS velocity dispersion as a proxy for the
cluster mass.

A glance at Table 3 indicates that our different estimates
of the mass concentrations are bimodal: the caustic and weak
lensing have values 	4, while those for the DK, MAMPOSSt,
and X-ray methods are <3. Could these lower mass concentra-
tions found by methods based upon internal kinematics be a sign
that A2142 is out of dynamical equilibrium? The substructures
found by Owers et al. (2011) and the results by Rossetti et al.
(2013) on the importance of the mergers undergone by A2142
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Fig. 14. Concentration–mass relation, with respect to an overdensity
200 times the critical one. Purple asterisk refers to the X-ray val-
ues by Akamatsu et al. (2011), orange diamond to the WL values by
Umetsu et al. (2009), small red circle refers to the values obtained
by MAMPOSSt, blue square by the caustic method, black triangle by
DK, the big black circle to the values of the combined model. Lines
are the theoretical predictions, and in black the relations by De Boni
et al. (2013) when considering all (solid) and relaxed (dotted) clusters.
In green the relations by Bhattacharya et al. (2013) when considering
all (solid) and relaxed (dotted) clusters.

suggest that full relaxation is to be excluded. On the other hand,
the agreement on the virial radius amongst the different methods
and with the results from X-ray and lensing (the latter does not
require equilibrium) suggests that A2142 is not far from dynam-
ical equilibrium.

In Fig. 14, the concentration – mass relation for A2142 is
shown along with theoretical relations by Bhattacharya et al.
(2013) and De Boni et al. (2013) based on cosmological N-body
and hydrodynamical simulations, respectively. The value of the
combined model [M200 = (1.25 ± 0.13) × 1015 M� and c =
4.0 ± 0.5] agrees within 1σ with the “relaxed” case of De Boni
et al. (2013), while it is in excellent agreement with both the rela-
tions by Bhattacharya et al. (2013). This strengthens the scenario
of A2142 being very close to equilibrium.

7.2. Mass density profile

Previous studies based on the kinematics of galaxies in clus-
ters have shown that galaxy populations have similar concentra-
tions to those of the total matter, or slightly smaller, blue galax-
ies being instead much less concentrated (see, e.g. Biviano &
Girardi 2003; Katgert et al. 2004). On the other hand, Biviano
& Poggianti (2009) found in the ENACS clusters that the
red galaxy population has a concentration that is as much as
1.7 times lower for the total matter density profile. Here, we
find that the scale radius for the RED galaxy number density
profile (0.95 Mpc) is 1.8 times greater than for the total mass
density profile from our combined model, which agrees with the
ENACS result. Collister & Lahav (2005) found, on a stacked
sample from the 2dFGRS, values of galaxy concentration com-
parable to ours, when considering objects as massive as A2142
(see their Fig. 7), although with uncertainties that are too large
to distinguish between red and blue samples.

The scale radius of the BLUE population in Abell 2142
appears unusually high, leading to concentrations (using our

combined virial radius) of 0.16 (best) or 0.39 (+1σ), which are
much lower than expected from previous studies. Blue galax-
ies within the virial cones of clusters are more prone to projec-
tion effects than red galaxies: Mahajan et al. (2011) analyzed
clusters and their member galaxies in the SDSS, using LOS ve-
locities and cosmological simulations to quantify the projection
effects. They conclude that 44 ± 2% of galaxies with recent (or
ongoing) starbursts that are within the virial cone are outside
the virial sphere. Since galaxies with recent star formation have
blue colours, our BLUE sample includes this recent-starburst
subsample, plus perhaps some more galaxies with more moder-
ate recent star formation. Moreover, an analysis of cosmological
simulations by Mamon et al. (2010) indicates that there is a high
cosmic variance in the fraction of interlopers within the DM par-
ticles inside the virial cone. This suggests that the unusually low
concentration of the blue galaxy sample could be a sign of an
unusually high level of velocity interlopers with low rest-frame
velocities in front of and behind Abell 2142.

Wojtak & Łokas (2010) find a virial radius that corresponds
to r200 = 2.15+0.10

−0.12 Mpc, in excellent agreement with our different
estimates of the virial radius (Table 3). On the other hand, they
find a mass scale radius rs = 1.0+0.3

−0.2 Mpc not compatible with
our value of the combined model, although in agreement with
the results of the DK, MAMPOSSt, and X-ray analyses. Wojtak
& Łokas assumed that the DM and galaxy scale radii were equal.
Such an unverified assumption may have biased high their scale
radius for the mass distribution. On the other hand, the values
of the mass scale radii that we found from DK and MAMPOSSt
(0.93 and 0.83 Mpc, respectively, see Table 3) are consistent with
that of the RED galaxy population used as the tracer (0.95 Mpc),
as is in Wojtak & Łokas, both within the uncertainties.

7.3. Velocity anisotropy profile

The velocity anisotropy profile for the ALL sample in the centre
is compatible with the one found by Wojtak & Łokas (2010). In
the outer part, at 	3 Mpc, the value of σr/σθ found by Wojtak &
Łokas (2010) is higher and offset from ours by 1.4σ. An analysis
of a stacked sample of 107 nearby ENACS clusters (Biviano &
Katgert 2004; Katgert et al. 2004) shows that the orbits of ellip-
ticals and S0s (hence red) galaxies are compatible with isotropy,
while those of early and late-type spirals have radial anisotropy.
At slightly higher redshifts, van der Marel et al. (2000) also find
red galaxies close to isotropy. The velocity anisotropy profile for
our BLUE sample presents behaviour that lies in between the
profiles found in Biviano & Katgert for the early spirals and
the late spirals together with emission line galaxies, suggest-
ing agreement between their findings and ours. The anisotropy
profile we found for the ALL sample appears to be consistent
with those measured by Lemze et al. (2012) and Mamon et al.
(2013) in simulated ΛCDM haloes. In simulations, data are usu-
ally stacked or averaged, and the scatter in the anisotropy profiles
is considerable (see e.g. Lemze et al. 2012; Mamon et al. 2013)
and this reflects the variety of configurations of galaxy clusters.
A2142 does not present strong deviations from the general trend,
because its anisotropy profile is compatible with this scatter.

7.4. PPSD profile and β − γ relation

Biviano et al. (2013) analyzed the pseudo phase-space density on
MACS1206, a cluster at z = 0.44. They find a Q(r) profile with
a slope for the blue galaxies in agreement with the predictions
of Dehnen & McLaughlin (2005), at odds with our findings. We
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speculate that this different behaviour might provide a hint of the
dynamical history of clusters. In fact, a cluster that has only re-
cently undergone the phase of violent relaxation might present
a population of blue galaxies in rough dynamical equilibrium.
On the other hand, a cluster that has undergone the violent re-
laxation phase a long time ago, should have had time to trans-
form its blue galaxies into red ones. Therefore the blue galaxy
population would be mainly composed of only recently accreted
galaxies, hence not in dynamical equilibrium.

The results found in Sect. 6 raise the question of what is
more relevant for galaxy clusters when considering the β−γ and
PPSD relations, the total mass density, or the tracer number den-
sity. It is important to recall that these relations were derived for
dissipationless, single-component systems. Although dominated
by DM, clusters of galaxies contain a non-negligible component
made up of dissipative diffuse hot gas. One can argue that the
PPSD and β−γ relations and even the NFW density model found
inΛCDM haloes concern the total density profiles, as they would
be related to the global gravitational potential (hence total mass
profile), violent relaxation, or more generally the mass assem-
bly of clusters through a combination of several major mergers
and numerous minor mergers. Alternatively, one can argue that
these quantities concern the DM component only and that for
the PPSD and β − γ relations, it is inconsistent to associate the
total density profile to the tracer velocity dispersion profile and
that one should instead associate the tracer density profile to the
tracer velocity dispersion profile.

For giant elliptical galaxies, we now know that the NFW
model must concern the DM component, while the β − γ rela-
tion found in single-component dissipationless simulations con-
cerns the observed tracer. Indeed, Mamon & Łokas (2005a) have
shown that the observed inner aperture velocity dispersions are
too high to be matched by a single NFW component (while the
addition of a stellar Sérsic component matches the observations).
Moreover, in the elliptical galaxy remnants of binary mergers of
spiral galaxies made of stars, gas, and DM, the β − γ relation
is obeyed well by the stellar component, but not for the DM
component (Mamon et al. 2006). Also, the stellar or DM β do
not relate to the slope of the total mass density profile (Mamon,
unpublished).

Extrapolating from our understanding of elliptical galax-
ies, we find it surprising that the PPSDs that we measure for
Abell 2142 match the relations found in ΛCDM haloes bet-
ter when the total density profile is used instead of the density
profile of the tracer used to estimate the velocity dispersion.
Perhaps one should not expect clusters to behave like elliptical
galaxies. Indeed, in comparison with the progenitors of elliptical
galaxies, the progenitors of clusters (galaxy groups) have deeper
gravitational potentials that prevent cooling and dissipative con-
traction of gas more effectively. Moreover, cluster-mass haloes
grow relatively faster at z = 0 than galaxy-mass haloes (e.g.
van den Bosch 2002), hence are built by more recent mergers
than elliptical galaxies, and these mergers, some major, will mix
the inner regions. For this reason, the baryonic and DM mass dis-
tributions in clusters should be closer than in elliptical galaxies.

While galaxies are biased tracers of the DM velocity disper-
sion (Munari et al. 2013), if the velocity dispersion profile of
the galaxy component is proportional to that of the DM compo-
nent at all radii (i.e. no velocity bias relative to the DM), then
the PPSDs built from the galaxies should have the same slope
as the one built from the DM. On the other hand, if the ve-
locity bias of the galaxy component is a function of radius, as
found by Wu et al. (2013) in cosmological hydrodynamical sim-
ulations of clusters, then the PPSD built from the galaxies will

be different from the one built with the DM component (after
proper normalization). Since the DM component dominates the
gravitational potential of clusters, we infer that the consistency
of the PPSD, built with the total density and the velocity disper-
sion of the RED galaxy component, suggests that the velocity
bias of the component of red galaxies outside of substructures is
roughly independent of radius.

At all radii, the RED galaxy sample shows somewhat lower β
for given γ (measured with total mass density) than found in
simulated haloes. However, the β − γ relations have been de-
rived using DM-only simulations, which do not take the effects
of the presence of baryons into account. Now, if the tangential
and radial components of the velocity dispersion of the galaxy
population are proportional to those of the DM, then the veloc-
ity anisotropy of the galaxy population, written as A = σr/σθ
should be proportional to that of the DM, but the non-linear
function of A, β = 1 − 1/A2, measured for the galaxies, will
not necessarily be proportional to the analogous β for the DM.
Therefore, any radial variation ofA, hence β, will lead to a bias
in the β − γ relation. Finally, the β − γ relation may vary from
cluster to cluster (Ludlow et al. 2011).

8. Conclusions

We have computed the mass and velocity anisotropy profiles of
A2142, a nearby (z = 0.09) cluster, using the kinematics of clus-
ter galaxies. After a membership algorithm was applied, we con-
sidered the sample made of all members (ALL sample), as well
as two subsamples, consisting of blue member galaxies (BLUE
sample) and red member galaxies that do not belong to substruc-
tures (RED sample).

We made use of three methods based on the kinematics of
galaxies in spherical clusters: DK, MAMPOSSt and Caustic (see
Sect. 3). The mass profiles, as well as the virial values of the
mass and the radius, are consistent among the different meth-
ods, and they agree with the results coming from the X-ray
(Akamatsu et al. 2011) and the weak lensing (Umetsu et al.
2009) analyses. Serra et al. (2011) find that the caustic technique
tends to overestimate the value of mass in the central region of a
cluster. Our results appear consistent with this finding, because
the caustic mass profile increases more rapidly with radius in
the inner part with respect to the profiles coming from DK and
MAMPOSSt.

The parameters describing the mass profile are then used to
invert the Jeans equation and compute the velocity anisotropy
for the three different samples considered. Despite large uncer-
tainties, the β(r) profile for the full set of cluster members is
compatible with isotropy, becoming weakly radially anisotropic
in the outer regions. The behaviour of the RED sample is dif-
ferent. Although compatible within 1σ with isotropy at all radii
within r200, it is suggestive of a decreasing slope, starting slightly
radially anisotropic in the centre and becoming slightly tangen-
tially anisotropic at large radii. The difference between the β(r)
profiles for the ALL sample and the RED sample is mainly
due to the behaviour of the BLUE sample, which shows ra-
dial anisotropy at all radii except in the centre where it is
isotropic.

With the information obtained on A2142, we were able to
test some theoretical relations regarding the interplay between
the mass distribution and the internal kinematics of a cluster. We
investigated the radial profile of the pseudo phase-space den-
sity (PPSD) Q(r), as well as its radial counterpart Qr(r). When
we considered the total density profile to compute Q and Qr ,
we found that the profiles for A2142 are weakly consistent
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with the theoretical expectations (Dehnen & McLaughlin 2005;
Ludlow et al. 2010) when considering the ALL sample, but a
good agreement is observed in the RED sample. This strength-
ens the scenario of blue galaxies being a population of galaxies
recently fallen into clusters, which have had no time to reach
an equilibrium configuration yet, or are heavily contaminated by
interlopers.

We estimated the PPSD profile of the total matter, making
the assumption that the galaxy velocity dispersion is a good
proxy for the total matter dynamics. When we replace the to-
tal mass density by the number density of the tracer for which
we compute the velocity dispersion, the PPSDs are shallower
power laws than those found by Dehnen & McLaughlin (2005)
in simulated ΛCDM haloes.

The velocity anisotropy configuration of the internal kine-
matics reflects the formation history of the cluster. Therefore we
expect a relation between the velocity anisotropy and the poten-
tial of the cluster. A relation linking the β(r) profile and γ(r), the
logarithmic slope of the potential, has been analysed and com-
pared to the theoretical results provided by Hansen & Moore
(2006), resulting in weak agreement. A correlation between the
β and γ appears to hold out to γ 	 −2.3 in the RED sample, cor-
responding to a radial distance 	0.5 r200 	 1 Mpc. Interestingly,
cluster-mass simulated ΛCDM haloes also follow the Hansen &
Moore relation out to slopes of γ ≈ −2.3 but not beyond (see
Fig. 17 of Lemze et al. 2012). Our considerations do not change
when we compute the β − γ relation using the logarithmic slope
of the number density profile of galaxies instead of the total mat-
ter density profile.

Before reaching any conclusion, we must keep in mind that
the present theoretical studies of the β − γ and PPSD relations
lack the influence of baryonic physics, as well as the dynamical
processes acting on galaxies but not on DM particles. This might
induce the differences when comparing the theoretical predic-
tions with the observational results.

When we have better control of these properties, the PPSD
might provide a powerful tool for the study of structure forma-
tion. As an example, the PPSD of the blue galaxies in A2142
appears very different from what has been found for the blue
galaxies in another cluster, MACS J1206.2–0847 at z = 0.44
(Biviano et al. 2013). This discrepancy suggests interesting per-
spectives for understanding the formation of galaxy clusters.
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