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No, within a broad class of scenarios. Gravitational-wave (GW) astronomy will open a new window on
compact objects such as neutron stars and black holes (BHs). It is often stated that large signal-to-noise
detections of ringdown or inspiral waveforms can provide estimates of the masses and spins of compact
objects to within fractions of a percent, as well as tests of general relativity. These expectations usually
neglect the realistic astrophysical environments in which compact objects live. With the advent of GW
astronomy, environmental effects on the GW signal will eventually have to be quantified. Here we present a
wide survey of the corrections due to these effects in two situations of great interest for GWastronomy: the
BH ringdown emission and the inspiral of two compact objects (especially BH binaries). We mainly focus
on future space-based detectors such as eLISA, but many of our results are also valid for ground-based
detectors such as aLIGO, aVirgo, and KAGRA. We take into account various effects such as electric
charges, magnetic fields, cosmological evolution, possible deviations from general relativity, firewalls, and
the effects related to various forms of matter such as accretion disks and dark matter halos. Our analysis
predicts the existence of resonances dictated by the external mass distribution, which dominate the very
late-time behavior of merger and ringdown waveforms. The mode structure can drastically differ from the
vacuum case, yet the BH response to external perturbations is unchanged at the time scales relevant for
detectors. This is because, although the vacuum Schwarzschild resonances are no longer quasinormal
modes of the system, they still dominate the response at intermediate times. Our results strongly suggest
that both parametrized and ringdown searches should use at least two-mode templates. Our analysis of
compact binaries shows that environmental effects are typically negligible for most eLISA sources, with the
exception of very few special extreme-mass-ratio inspirals. We show, in particular, that accretion and
hydrodynamic drag generically dominate over self-force effects for geometrically thin disks, whereas they
can be safely neglected for geometrically thick disk environments, which are the most relevant for eLISA.
Finally, we discuss how our ignorance of the matter surrounding compact objects implies intrinsic limits on
the ability to constrain strong-field deviations from general relativity.
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I. INTRODUCTION

The past few decades have seen tremendous activity in
gravitational-wave (GW) physics, at both the theoretical
and the experimental level. Ground-based GW detectors
have reached design sensitivity and are currently being
upgraded to sensitivities one order of magnitude higher [1],
and the first exploratory missions for space-based detectors
are upcoming [2–4], whereas the prospects for GW
detection with pulsar timing arrays have increased tremen-
dously [5]. Altogether, these facilities will provide access to
the GW universe in the full range from nanohertz to tens of
kilohertz. Because the main sources of GWs are compact

binaries of black holes (BHs) or neutron stars, a huge
theoretical effort has gone into the modeling of these
systems. Slow-motion, post-Newtonian expansions and
relativistic, extreme-mass-ratio perturbative approaches
have been developed to exquisite levels and matched
against state-of-the-art numerical waveforms.
The gravitational waveform from the coalescence of

compact objects carries a signature of the dynamics of
those objects; accordingly, it can be roughly divided into an
inspiral phase, where the two objects follow quasi-
Newtonian trajectories, and a ringdown phase describing
relaxation of the final merged body to a stationary state.
The two phases are connected by a (short) nonlinear regime
when spacetime is highly dynamical and relativistic.
Two corollaries of all the intense labor on compact

binary coalescence have a direct implication on tests of the
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nature of the compact objects, and also of the underlying
theory of gravity.
(i) When the final merged object is a BH, measurements

of mass and angular momentum as well as tests of the no-
hair theorem and of general relativity (GR) in the strong-
field regime can be made by studying the ringdown
waveform [6–9]. Because BHs in GR are characterized
by mass and angular momentum only, their oscillation
spectrum is fully described by these two parameters.
Measurements of one single characteristic mode (i.e.,
vibration frequency and relaxation time scale) can be
inverted to yield the mass and angular momentum of the
BH; measurements of more than one mode can test the
theory of gravity and/or the nature of the object [6–9].
Reference [6] considered the original design of the space-
based detector LISA and GWs from supermassive BHs at
redshift z and luminosity distance DL. The accuracy with
which the redshifted massMz ¼ ð1þ zÞM of the final BH
(M being its the physical mass; for our notations, see
Appendix A) can be measured is given by [see Eq. (4.15a)
in Ref. [6]]

ΔMz

Mz
∼ 4.5 × 10−5

ð1þ νÞ2
ν

DL

1 Gpc

�
106M⊙
Mz

�
3=2

: (1)

We have used the realistic estimate that the fraction
of total mass going into ringdown is of the order of
ϵrd ∼ 0.44ν2=ð1þ νÞ4, with ν ¼ m1m2=ðm1 þm2Þ2 the
symmetric mass ratio of the progenitors [see Eq. (4.17)
in Ref. [10]].
(ii) The inspiral waveform carries information about the

two objects, the background geometry and the underlying
theory of gravity, allowing in principle a measurement of all
spacetime multipoles [11,12]. In particular, again for the
same space-based detector LISA, Ref. [13] gives

ΔM
M

∼ ð−1.1476þ 7.2356zþ 5.7376z2Þ × 10−6;

z ∈ ½1; 10�; (2)

for the accuracy with which the chirp mass M of a
106M⊙ − 106M⊙ mass binary at redshift z can be
measured.
Both estimates (1) and (2) were derived for space-based

detectors and should be revised in current designs.
Nevertheless, they offer a glimpse of what GW astronomy
can become: a precision discipline, able to map nearly the
entire Universe in its compact object content to a precision
better than 1%.
However, most of the studies to date have considered

isolated compact objects, neglecting the realistic astro-
physical environment where these objects live. We are thus
faced with the following questions: Howmuch of an impact
does our ignorance of realistic astrophysical environments
(accretion disks, magnetic fields, electromagnetic charges,

cosmological expansion, etc.) have on GW detection and
compact binary parameter estimation, and how does it
affect the ability of future GW detectors to test GR? Such
questions are usually dismissed on the grounds that these
effects are negligibly small for compact binaries.
The sole purpose of this work is to quantify such

statements, with the view that quantitative estimates are
mandatory if one aspires to perform precision GW physics.
This is a specially sensitive question as far as tests of GR
are concerned, since these require a careful control on
environmental effects, as simple explanations are often
preferable. An interesting example concerns the planet
Neptune, whose existence was inferred through unexpected
changes in the orbit of Uranus (i.e., changes in Newton’s
theory were not required). A second historical event,
especially amusing for relativists, relates to the first
attempts at explaining Mercury’s excessive periastron
precession, which precisely invoked the existence of
unseen disks of matter [14] (in that case, changes in the
theory were indeed required).

A. Attenuation, redshift, wave propagation,
and generation

The environment in which compact objects live can
influence GW emission by these sources in different ways:
It can affect the generation of the waves themselves (either
by altering the motion of the sources via extra forces,
accretion, etc., or by modifying the local structure of
spacetime, for instance, due to the self-gravity of dirtiness),
or it can affect GWs after they are generated as they travel
to the observer. An exhaustive review of possible effects on
wave propagation is given by Thorne [15], the overall
conclusion being that there is no known mechanism that
can affect the amplitude or phase of the wave to appreciable
amplitude, with the possible exception of weak lensing.
Because the latter has been discussed at length by several
authors (see, e.g., Refs. [16,17], and references therein), we
do not consider it here.
For the remainder of this work, we focus on the first,

almost unexplored effect, i.e., how astrophysical environ-
ments affect GW generation.

B. Purpose of this work and assumptions:
How small is small?

Any large signal-to-noise detection of a GW can in
principle be used as a precision tool, containing informa-
tion about the merging objects but also about their
environment: accretion disks, galactic halos, strong mag-
netic fields, and all those effects that indirectly leave an
imprint in the GW signal. These extrinsic factors will
degrade the pure-GR waveform and hamper our ability to
test GR or to measure the merging objects’ masses and
spins with phenomenal accuracy. On the other hand, these
effects can in principle give us important information about
the surrounding medium and galaxy.
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We initiate here a broad survey of the corrections due to
environmental effects in two situations of great interest for
GW astronomy: the ringdown emission of a single BH and
the inspiral of two compact objects. We take into account
various effects such as electric charges, magnetic fields,
cosmological evolution, possible deviations from GR, and
various forms of matter such as accretion disks and dark
matter (DM) halos. Inmany cases, a detailed analysis of these
effects is necessarily model dependent. When possible, we
have instead opted for a broader (yet less precise) discussion
capturing the correct order ofmagnitude and the essentials of
the phenomena under consideration. Our study can be
extended in various ways, but we believe it might serve as
a basis and guidance for more sophisticated analysis.
Our results are based on the following assumptions:
(1) The central BH is spherically symmetric.
(2) The spacetime geometry outside the horizon is

modeled as a small perturbation away from the
Schwarzschild geometry.

(3) For the ringdown studies below, the matter around
the BH is also spherically symmetric. Therefore, the
spacetime geometry is spherically symmetric.

(4) The inspiral studies below assume that the orbits are
circular and evolve adiabatically.

(5) When modeling the effect of accretion onto the
central BH—which causes the BHmass to change—
dynamical effects are neglected; i.e., the central BH
grows adiabatically.

(6) When we parametrize corrections from GR below,
we assume a perturbative expansion in the coupling
parameters of the modified theory, thus neglecting
possible strong-field effects (the latter have to be
investigated on a case-by-case basis).

This paper is organized as follows. In Sec. II, we present
the various environmental effects that we wish to quantify.
We found it useful to divide the rest of the paper into three
parts, each one starting with an executive summary of our
main findings.A reading of Sec. II shouldbe sufficient for the
busy reader to understand the three executive summaries.
In Secs. III(A–F), we discuss the ringdown emission of

“dirty BHs.” We define the latter to be BH geometries
surrounded by matter of a possible different nature, so that
they are not exactly described by the Schwarzschild geom-
etry [18]. Unlike several other works on the topic (see, e.g.,
Refs. [18–21]), our purpose is to characterize their GW
signature in astrophysical contexts. In Secs. IV(A–D), we
discuss environmental effects for a two-body inspiral. We
estimate the effects ofmatter interactions for the satellite and
for the central object, as well as the corrections to the
gravitational waveforms due to various types of environ-
mental effects. In Secs. V(A–D), we discuss the conse-
quences of environmental effects on possible tests of GR
(and theories of gravity alternative to it) withGWastronomy.
Finally, Sec. VI contains our conclusions and a discussion of
possible future work. Due to the large number of symbols

used throughout themanuscript, we found it useful to collect

them all in Appendix A, for the readers’ convenience.
In this paper, we will typically use geometrized units

G ¼ c ¼ 1, but in some sections (especially when estimat-
ing the orders of magnitude of the various effects) we will
restore G and c and use physical units for clarity.

II. COMPACT OBJECTS AND ASTROPHYSICAL
ENVIRONMENTS

Compact objects are not isolated but rather surrounded
by a multitude of matter fields in the form of gas,
electromagnetic fields, fluids, etc. We refer to all of these
configurations as “dirtiness.” Dirtiness can potentially
affect mass and spin measurements and other estimates
of the observables associated with the source. In addition,
dirtiness might hamper our ability to perform tests of
Einstein’s gravity, since deviations from GR (e.g., BH hair
or modified GW emission) can be degenerate with—or
subdominant to—other environmental effects.

A. Composite-matter configurations:
Accretion-disk geometries

The most common and best understood environmental
effect in astrophysical BHs is the gas in accretion disks.
It is customary to normalize the bolometric luminosity
of active galactic nuclei (AGNs), Lbol, to the Eddington
luminosity

LEdd ¼
4πGMmpc

σT
; (3)

wheremp is the proton’s mass and σT is the Thomson cross
section. The Eddington luminosity can be derived by
requiring equilibrium between the radiation pressure
exerted on the matter surrounding the BH and the gravi-
tational pull of the BH itself; i.e., the Eddington limit sets
an upper limit to the luminosity achievable through
accretion onto a BH and therefore on the mass accretion
rate.1 One can then define the Eddington ratio fLEdd ¼
Lbol=LEdd for the luminosity, which ranges from 10−2 to 1
(with typical values of fLEdd ∼ 0.1) for quasars and AGNs
and is typically much lower (down to fLEdd ∼ 10−9 for
SgrA*) for quiescent galactic nuclei (see, e.g.,
Refs. [23–26]).
The luminosity is then linked to the mass accretion rate

by _M ¼ Lbol=ðηc2Þ, where η is the radiative efficiency of
the accretion process. While η depends on the nature of the
accretion process and on the spin of the BH, Soltan-type
arguments [27,28] (i.e., a comparison between the lumi-
nosity function of AGNs and the mass function of BHs)

1Note, however, that the standard derivation of the Eddington
luminosity assumes spherical symmetry; cf., e.g., Ref. [22] for a
discussion of the effects and limitations of this assumption.

CAN ENVIRONMENTAL EFFECTS SPOIL PRECISION … PHYSICAL REVIEW D 89, 104059 (2014)

104059-3



require an average value η ≈ 0.1 (see, e.g., Refs. [29–31]).
Taking therefore η ¼ 0.1 as the fiducial radiative efficiency,
one can define the Eddington mass accretion rate as

_MEdd ≈ 2.2 × 10−2
�

M
106M⊙

�
M⊙ y−1: (4)

One may then try to infer the mass accretion rate by
assuming that the Eddington ratio for mass accretion,
fEdd ¼ _M= _MEdd, matches the Eddington ratio for lumi-
nosity, fLEdd. Clearly, this would be the case only if η was
roughly constant and ∼0.1 for all galactic nuclei. While that
is probably a decent assumption for quasars and AGNs, as
shown by the Soltan-type arguments mentioned above,
quiescent nuclei probably have considerably smaller radi-
ative efficiencies. This follows mainly from observations of
SgrA*, for which direct mapping of the gas in its vicinity is
possible and gives values of fEdd ∼ 10−4 [32], which yields
η ∼ 10−5. Similar efficiencies are also measured for vir-
tually all nearby galactic nuclei [33–35]. (Clearly, quiescent
nuclei are not constrained by the Soltan-type argument
because they are too faint.)
Models that allow for such low radiative efficiencies are

given by advection-dominated accretion flows (ADAFs)
[36], where the (optically thin) ion-electron plasma accret-
ing onto the BH has too low a density and too large a
temperature to efficiently transfer the accretion energy
(which is transferred from the gravitational field to the
ions by viscosity) to the electrons (which are mainly
responsible for the electromagnetic emission). As a result,
the ion component is heated to the virial temperature, thus
making the disk geometrically thick, and the accretion
energy is “advected” into the BH. ADAFs are believed to
well describe galactic nuclei with fLEdd ≲ 0.01. In some
variations of the model [such as advection-dominated
inflow-outflow solutions (ADIOSs) [37] or convection-
dominated accretion flows (CDAFs) [38,39]], however,
only a small fraction of the plasma that gets close to the BH
accretes onto it, generating enough energy to drive an
outflow or a convective process that returns most of the
plasma at large distances. This is important to note, because
it means that in ADAFs the mass accretion rate is given by
the observed “large-scale” rate fEdd _MEdd, but in ADIOSs
and CDAFs it will be considerably lower than that, because
most of the plasma will not fall down the horizon. In what
follows, however, we will only need the accretion rate
through a surface enclosing the BH but still far away from
the horizon, so we can assume that the actual accretion rate
is the same as the large-scale accretion rate without loss of
generality.
For larger Eddington ratios such as those encountered in

AGNs and quasars, accretion disks are optically thick.
Geometrically, they can be described by thin disks [40] for
10−2 ≲ fLEdd ≲ 0.2, while for fEdd ≳ 0.2 at least a fraction
of the accretion energy is advected into the BH, as a result

of which the disk “puffs up” and can be described by
a geometrically slim disk [41], i.e., one with height
comparable to the radius.
The gas present in the vicinity of binary systems (and, in

particular, binary BHs) affects the orbital evolution and
therefore the emission of GWs. The main effects can be
classified as follows.

(i) Accretion.—The masses and spins of the compact
objects change due to accretion onto them [42,43].

(ii) Purely gravitational effects (self-gravity).—The
matter in accretion disks or in other structures exerts
a gravitational pull on the compact objects [43,44].

(iii) Dynamical friction and planetary migration.—The
gravitational interaction of the compact objects with
their own wake in the matter medium [42,43,45–47].

These effects impact the evolution of the orbital phase of
the binary and thus the phase of the gravitational wave-
forms. In Sec. IV B, we will estimate the magnitude of
these effects by using a simple Newtonian model and
insights from astrophysical observations.

B. Electromagnetic fields and cosmological constant

In addition to “ordinary matter” configurations around
compact objects, three standard effects that might contrib-
ute to dirtiness are the presence of an electromagnetic
charge and of background magnetic fields and the effects
due to the cosmic acceleration.
The observed accelerated expansion of our Universe is

most simply described by Einstein’s equations augmented
by a cosmological constant Λ [48–50]. Cosmological BH
solutions are described by the Schwarzschild–de Sitter
geometry:

ds2 ¼ −ð−Λr2=3þ 1 − 2M=rÞdt2
þ ð−Λr2=3þ 1 − 2M=rÞ−1dr2 þ r2dΩ2; (5)

which satisfies the field equations Gμν þ Λgμν ¼ 0.
Observations place the magnitude of Λ to be [48–50]

Λ ∼ 10−52 m−2; (6)

which we use as a reference value.
Magnetic fields pervade our Universe on cosmic, galac-

tic, and stellar scales, with different amplitudes. At the
surface of the Earth, for instance, B ∼ 0.5 G. The magnetic
field at the center of our Galaxy has been estimated to be of
the order of B ∼ 10−4 G at scales of the order of 100 pc and
B ∼ 10−2 G closer to the event horizon of the supermassive
BH [51,52] (and possibly as large as 102 G very near the
horizon [53–55]). The largest magnetic fields can be found
in magnetars and reach B ∼ 1015 G [56]. The magnetic
field of the supermassive BHs that power active galactic
nuclei is believed to be ≲103 − 105 G [57–59]. We will
take B ∼ 108 G as reference value for a very large mag-
netic field.

ENRICO BARAUSSE, VITOR CARDOSO, AND PAOLO PANI PHYSICAL REVIEW D 89, 104059 (2014)

104059-4



Not much is known about the spacetime metric
describing BHs immersed in magnetic fields. One
of the few known exact solutions was discovered by
Ernst and describes a nonrotating BH in a poloidal
magnetic field [60]:

ds2 ¼ K2

�
−
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2 þ r2dθ2

�

þ r2sin2θ
K2

dϕ2; (7)

K ≡ 1þ B2r2sin2θ
4

: (8)

Note that this solution is not asymptotically flat and it is
cylindrically symmetric. Nonetheless, it allows for planar
(equatorial) geodesic motion [see Eq. (120) below] sim-
ilarly to the spherically symmetric case and is simple
enough to be studied analytically in various cases.
Finally, concerning the electromagnetic charge, the

standard lore is that astrophysical BHs are neutral to a
very good approximation because of the following.
(1) Quantum Schwinger pair-production effects dis-

charge BHs rather quickly [61,62]. In a back-of-
the-envelope calculation, the Schwinger process is
efficient whenever the (electric) potential energy
across a Compton wavelength is larger than the
particle rest mass, yielding rapid quantum discharge
unless q ¼ Q=M ≲ 10−5M=M⊙ (Q being the elec-
tric charge).

(2) Even in situations where the Schwinger process is
feeble, a vacuum breakdown mechanism can be
efficient, whereby a spark gap triggers a cascade
of electron-positron pairs [63–65]. Blandford and
Znajek estimate that this limits the charge of
astrophysical BHs to q ≲ 10−13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=M⊙

p
.

(3) BHs are never in complete isolation. Intergalactic or
accretion disk plasma is sufficient, via selective
accretion, to neutralize quickly any charged BH.
The reason is that electrons have a huge charge-to-
mass ratio qe ∼ 1021. Thus, an accretion of a mass
∼10−21M is sufficient to neutralize even an
extremely charged BH.

Nevertheless, there are various attempts at explaining BH-
driven high-energy phenomena using charged BHs [66].
These BHs may acquire charge through different mecha-
nisms, all related, in one way or another, to the fact that
BHs immersed in magnetic field build up a nonzero net
charge. Classical charge induction by external magnetic
fields was studied by Wald [67], who showed that BHs
acquire a charge which satisfies the bound

q≲ 1.7 × 10−6
M

106M⊙
B

108 G
: (9)

We recall that the most extreme magnetic fields in the
Universe are found in magnetars and are of the order of
1013 G, and up to 1015 G [56]. Thus, the overall result of
these studies is that astrophysical BHs are likely to be
neutral to a high degree. We will take q ¼ 10−3 as a
fiducial, overly conservative reference charge-to-mass ratio
of BHs.

C. Dark matter

DM is ubiquitous in the Universe and, in particular, in
the vicinity of massive BHs, but, unlike baryonic matter, it
is not expected to form accretion disks. This is because DM
has a small interaction cross section (i.e., behaves almost as
collisionless), and it is therefore hard to conceive a way in
which it could form a disklike configuration around a BH.
Nevertheless, the dynamical influence of the BH does
affect the distribution of DM around it.
Gondolo and Silk [68] showed that the massive BH’s

adiabatic growth gives rise to a “spike” in the DM density;
i.e., it causes the initial DM density profile (i.e., the one in
the absence of the BH) to develop a steeper slope near the
BH (assuming that the BH is at the center of the DM halo).
For example, in the case of the Navarro-Frenk-White
profile [69], which gives an initial DM density formally
diverging as 1=r near the center, the BH’s presence would
make the DM density diverge as r−7=3 [68]. These DM
spikes received much attention, as they would enhance the
possible annihilation signal from DM near the Galactic
center, but they were later shown to be quite efficiently
destroyed by BH mergers [70] and by scattering of DM by
stars [71,72] (although this latter mechanism is less
efficient for more massive galaxies such as M87 [73],
and the cusp may in any case still regrow in a relaxation
time [74]). Also, even in the absence of stars and BH
mergers, it was shown [75] that these spikes do not form
unless (i) the original seed from which the massive BH
grows has a mass of ≲1% the BH’s mass at z ¼ 0, and
(ii) this seed forms very close to the DM halo’s center (to
within 50 pc of it). This second condition is necessary,
because seeds are brought to the center of the halo by
dynamical friction, but the time scale of this process
exceeds the Hubble time unless the seeds are very close
to the center.
Taking into account the interaction of massive BH

binaries with the DM cusp, Ref. [70] finds that the DM
density in the halo’s center has a shallow slope, or even a
core, rather than a spike. This is also plausible because
stellar luminosity profiles in large ellipticals (which are gas
poor and where therefore stars behave as collisionless
“particles”) are found to exhibit a shallow slope or even a
core, which could be the result of the interaction of the stars
with a massive BH binary [76]. More precisely, Ref. [70]
finds that the DM density in the core created by the massive
BH binary is ρDM ∼ 102M⊙=pc3 for comparable-mass
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binaries and ρDM ∼ 103M⊙=pc3 for binaries with mass
ratio 1=10.
The situation for extreme-mass-ratio inspirals (EMRIs)

(i.e., binaries consisting of a stellar-mass BH or a neutron
star around a massive BH) is slightly more complicated. As
mentioned above, if the galaxy hosting the EMRIs has
recently experienced a major (i.e., comparable-mass)
galactic merger and thus a comparable-mass BH merger,
the DM spike is destroyed and a core is formed. At least
90% of Milky-Way-type galaxies are expected to have
undergone a major merger after z ¼ 2,2 based on semi-
analytical galaxy formation models [70]. However, even
though most Milky-Way-type galaxies are expected to have
undergone a recent major merger, that may not be the case
for a large fraction of satellite galaxies. In fact, Ref. [78]
showed that a Milky-Way-type halo may have a consid-
erable number of BHs that have never undergone mergers
and which are hosted in satellite galaxies. These satellite
galaxies may therefore have retained the original DM spike
produced by the adiabatic BH growth. The precise number
and mass of unmerged BHs in satellite galaxies depend on
the mass of the BH seeds at high redshifts. Reference [78]
finds that ∼1000 such BHs may be present in each Milky-
Way-type halo in a scenario in which the BHs grow from
remnants of population III stars [79] (i.e., from “light”
seeds” with mass Mseed ∼ 102M⊙ at z ∼ 20), while ∼100
may be present if the BHs grow from “heavy” seeds with
mass Mseed ∼ 105M⊙, originating at z ∼ 15 from the
collapse of primordial gas in early-forming halos
[80–82]. In either case, however, the mass of these BHs
at z ∼ 0 is comparable to Mseed, so this population will
give rise to EMRIs detectable with future space-based
detectors (such as eLISA) only if BHs evolve from
heavy seeds.
Under the hypothesis that massive BHs do indeed

evolve from heavy seeds, and thus that EMRIs detectable
with eLISA may be present in these satellite galaxies, we
will examine whether DM may have an effect on the
gravitational waveforms. First of all, as mentioned above,
the DM spikes might not form at all unless the BH seed
forms within 50 pc of the peak of the DM distribution
[75], which is in itself a very demanding assumption.
Second, even if that is the case, the BH must grow its
mass by at least a factor of ∼100 relative to the seed’s
mass for the DM density to be enhanced relative to the
initial DM profile [75]; e.g., if the BH grows its mass by a
factor of ∼100 (1000), the DM density around it may be
∼109M⊙=pc3 (1012M⊙=pc3), while the formally diver-
gent spike found in Ref. [68] actually appears only in the
limit in which all of the BH mass is adiabatically added

after the BH’s formation. Finally, if the BH accretes a
large fraction of its mass after the seed is formed, it is also
plausible that star formation may have happened in the
satellite galaxies. The scattering of stars by the BHs
will then reduce the slope of the DM density profile,
and the DM density near the BH will be at most
∼1010–1012M⊙=pc3 [71,72]. These would still be very
high densities that could give rise to DM annihilation.
In fact, above a certain density threshold ρDM; max,
annihilation would happen on time scales shorter
than the Hubble time, thus causing the local DM
density to plateau at ρDM; max. This threshold value
depends on the annihilation cross section σA and
on the mass of the DM particles mDM, i.e., ρDM; max ∼
mDM=ðhσAvitÞ, where t is the Hubble time and v
is the velocity of DM particles. Choosing plausible
values for these parameters, one finds that ρDM; max
may be as large as 1011M⊙=pc3.
Because of the considerations above, we will take as the

reference value for the DM density

ρDM ¼ 103M⊙pc−3 ∼ 4 × 104 GeV=cm3; (10)

but we will also entertain the possibility of higher DM
densities ∼1011M⊙=pc3 in satellite galaxies.

D. Beyond-GR effects

Unlike large-distance corrections—where cosmological
observations are in clear conflict with theoretical
expectations—the motivation to modify GR in the
strong-curvature regime is inspired by conceptual
arguments. These arguments rely in one way or another
on the conflict of the classical equations of GR with
quantum mechanics and lead to the obvious conclusion
that the ultimate theory of quantum gravity will differ from
GR where curvature effects are important. In this paradigm,
curvature effects become important close to singularities—
but these seem to be hidden from us by horizons, as all
evidence indicates. The very existence of horizons also
sets an upper limit on the energy scale involved, so that
putative quantum effects at the Planck scale are negligible
for astrophysical BHs. Therefore, it appears that any
problem that might potentially affect the strong-gravity
dynamics of astrophysical objects can be understood within
GR rather than by extending it.
Nonetheless, paradigms such as this have been chal-

lenged time and again in physics. Current experiments can
probe gravitational potentials which are roughly 6 orders of
magnitude weaker than those experienced near a massive
BH, and they can probe only curvatures which are 13 orders
of magnitude smaller than those experienced near and
within compact objects [83]. Extrapolating Einstein’s
theory to those unexplored regions introduces dangerous

2Actually, a stellar cusp and later a DM cusp may regrow after
a major merger [77], but if the merger happens at z≲ 2, there is
no time for such a regrowth to be completed, at least in the case of
Milky-Way-type halos [77].
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bias in our understanding of the strong gravitational
interaction.3

GW astronomy promises to test GR in the strong-
curvature, highly dynamical regimes which are completely
unexplored to date (cf., e.g., Ref. [12]). While waiting for
experiments to guide the theoretical efforts, the study of
beyond-GR effects on the GW signal faces the problem that
each theory is associatedwith different corrections and that a
case-by-case analysis seems to be required. Deviations from
GR (as well as matter effects) in spinning geometries were
considered in the so-called “bumpy-BH” formalism [84–87]
and in other approaches [88,89], although none of them
is free from limitations. A different promising approach is
the so-called parametrized post-Einstein (ppE) expansion,
which attempts to model modified gravitational waveforms
directly, in a way that can potentially accommodate most of
the corrections to the GR signal [12,90].
Here we use and extend some of the salient features

of these available approaches. In order to parametrize
generic corrections to the background metric, we adopt
an approach similar to the bumpy-BH case: Taking advan-
tage of the assumption of spherical symmetry, we para-
metrize possible deviations from GR directly at the level of
the metric by considering weak-field deformations around
the most general static and spherically symmetric geometry.
With respect to the bumpy-BH formalism, this approach
has the merit to be generic (we do not assume Einstein’s
equations or any particular symmetry other than the
spherical one) and sufficiently simple to provide direct
order-of-magnitude estimates. On the other hand, to para-
metrize corrections to the GW fluxes, in some sections we
use the ppE framework.
An alternative theory of gravity would modify the GR

signal essentially in three ways: (i) by altering the back-
ground solutions, i.e., by deforming the geometry of
compact objects; (ii) by modifying the GW emission, for
example, introducing monopolar and dipolar radiation,
changing the coupling with sources, and possibly sup-
pressing some radiation (as in the case of massive fields
[91,92]); (iii) by modifying the physical properties of the
GWs once they are emitted, e.g., the dispersion relation,
the polarization, and the way they interact with matter and
with the detector. In this section, we mostly focus on the
“conservative” effects of (i), which in many situations are
the dominant correction. “Dissipative” effects related to (ii)
and (iii) are discussed below.

We consider a general static, spherically symmetric
spacetime:

ds2 ¼ −AðrÞdt2 þ 1

BðrÞ dr
2 þ r2ðdθ2 þ sin2θdϕ2Þ; (11)

which we treat as a small deformation of the Schwarzschild
geometry. Accordingly, we expand the metric coefficients
as

AðrÞ ¼
�
1 −

rþ
r

��
1þ

XNα

i¼1

αi
Mi

ri

�
; (12)

BðrÞ ¼
�
1 −

rþ
r

��
1þ

XNβ

i¼1

βi
Mi

ri

�−1
; (13)

where rþ is the horizon’s radius, and we assume that αi
and βi are small dimensionless parameters. In writing the
expansions above, we have required regularity of the metric
[which implies AðrþÞ ¼ BðrþÞ ¼ 0 at the horizon] and
asymptotic flatness.
The asymptotic behavior of the metric reads

AðrÞ ¼ 1 −
rþ −Mα1

r
þM2α2 −Mrþα1

r2
þOð1=r3Þ; (14)

BðrÞ−1 ¼ 1þ rþ þMβ1
r

þOð1=r2Þ: (15)

By comparing this with the parametrized post-Newtonian
(PPN) expansion of the metric [93],

AðrÞ ¼ 1 −
2M
r

þ 2ðβ − γÞM
2

r2
þOð1=r3Þ; (16)

BðrÞ−1 ¼ 1þ 2γ
M
r
þOð1=r2Þ; (17)

we can identify

rþ ¼ 2M þMα1;

β1 ¼ 2ðγ − 1Þ − α1; α2 ¼ 2ðβ − γÞ þ α1ð2þ α1Þ:
(18)

The PPN parameters are very well constrained by observa-
tions [93], and their measured value is close to unity,
δγ ≡ γ − 1 ∼ 10−5 and δβ≡ β − 1 ∼ 10−3. In the following,
we consider δγ; δβ ≪ 1 and work to first order in all these
perturbative quantities.4 Equation (18) can be written as

3As a comparison, the gravitational potential on Earth’s
surface, where Newtonian gravity proved to be extremely
successful, is only 4 orders of magnitude smaller than its
corresponding value on the Sun’s surface where relativistic
effects are relevant, as shown by the classical tests of GR.
Likewise, even a very successful theory such as quantum
electrodynamics cannot be extrapolated from atomic to nuclear
energy scales, the latter being 6 orders of magnitude larger and
well described by strong interactions.

4Note, however, that the PPN constraints are derived by
assuming the central object is a star. Since we are mainly
interested in BHs, we make the extra assumption that the
asymptotic behaviors (14) and (15) are the same for a BH
geometry and a star. This might not be the case in some modified
gravity, for example, in theories which allow for some
Vainshtein-like mechanism [94], but is the case, for instance,
in scalar-tensor theories, Æ theory, and Hořava gravity. Also, note
that the assumption δγ; δβ ≪ 1 is weaker than requiring that the
Birkhoff theorem be satisfied in modified gravity.
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rþ ¼ 2M þMα1;

β1 ¼ 2δγ − α1; α2 ¼ 2ðδβ − δγÞ þ α1ð2þ α1Þ:
(19)

This model has Nα þ Nβ parameters, in addition to the
mass M. The parameters δγ and δβ are already strongly
constrained, but we keep them undetermined to explore the
potential of GW measurements to provide stronger con-
straints than those currently in place. The remaining
parameters are currently unconstrained in a PN sense. It
is worth stressing that α1 is also unconstrained. This
parameter is related to a shift of the event horizon for a
given mass (i.e., to a deformation of the BH area formula),
and it was neglected in previous analyses (e.g., in Ref. [89]
and in subsequent studies; cf. Ref. [95] for a discussion),
although it is the dominant term in a weak-field expansion.
Note that the parametrization (12) and (13) is substantially

different from a PN expansion, because it includes strong-
gravity effects such as the presence of an event horizon. The
metric above is effectively aweak-field expansion around the
Schwarzschild geometry, and, as such, it is not unique.
Furthermore, a priori there is no guarantee that the expansion
(12) and (13) converges for small values ofNα andNβ in the
strong-field regime. In other words, there is no reason why
any strong-field observable derived from such a deformed
metric should depend more strongly on the lowest order
coefficients. We will show, however, that only the first
coefficients of the αi and βi series do indeed give relevant
contributions to GW observables, even at the strongest
curvatures that can be probed with GW astronomy.
Naively, this is due to the fact that geodesic motion has an
upper cutoff in frequency given by the innermost stable
circular orbit (ISCO) r ∼ 6M, whereas the ringdown emis-
sion is governed by the light ring at r ∼ 3M. Both the ISCO
and the light ring radii are larger than the central massM, so
higher powers ofM=r are suppressed. As a result, Eqs. (12)
and (13) provide a very efficient parametrization, at least in
the static case, where M=r≲ 1=2 outside the horizon.

III. PART I: RINGDOWN

A. Executive summary

We summarize here the most important results and
conclusions of our study on the ringdown of BHs in
realistic astrophysical environments. For the readers wish-
ing to skip the technicalities in the subsequent pages, we
stress that these results were (mostly) obtained from
particular models of environments surrounding the BH,
but we believe they are conservative reference values. For
the extraction of quasinormal frequencies, we follow the
numerical procedure documented elsewhere [8,96] (cf. also
the notebooks and data files freely available in
Refs. [97,98]). We find the following.
(1) The system consisting of a BHþ surrounding matter

has quasinormal modes (QNMs) which can differ
substantially from those of vacuum, isolated BHs

and are typically localized farther away.5 The QNMs
of isolated BHs seem not to show up in the spectrum
of BHs surrounded by matter (i.e., they do not
correspond to poles of the associated Green func-
tion). Despite not showing up in the spectrum, the
modes of the corresponding isolated BH play an
important—dominant most of the time—role in time
evolutions of the system.6

(2) Accordingly, the lowest QNMs of isolated BHs can
be used to estimate the redshifted mass of super-
massive BHs to levels of 0.1% or better, even when
including our ignorance on the astrophysical envi-
ronment. This statement is supported by Table I,
which shows an upper limit to the corrections to the
ringdown frequencies in a variety of astrophysical
scenarios: BHs with nonvanishing electric charge
qM, immersed in a magnetic field B, in a universe
with a cosmological constant Λ, or surrounded by
“matter” of different distributions. These numbers
are conservative, in the sense that we always take
extreme situations as a reference value; actual
astrophysical conditions are likely to be less ex-
treme. Also note that the estimates shown in Table I
consider localized matter situated at distances
6 < r0=M < 40 from the BH. For matter localized
farther away (or much closer to the horizon), the
QNMs differ very strongly from those of isolated
BHs, but the dominant energy emission in an
inspiral and merger is carried by ringdown modes
of isolated BHs (see Figs. 3, 10, and 11).

(3) The QNM spectrum is extremely rich. For each
mode of an isolated Schwarzschild BH, we find an
infinite family of matter-driven modes plus one other
mode which is a parametric correction to the isolated
BH QNM. When the matter distribution is localized
at large distance ∼r0, we observe a constant drift of
the QNMs as r0 increases. In other words, the farther
away the matter is from the BH, the more the QNM
spectrum of the matter-BH system differs from those
of isolated BHs. This surprising effect is due to the
QNM exponential sensitivity eiωr� to “small correc-
tions.” We prove this effect by using three different
models: a one-dimensional quantum-mechanical toy
model, a thin-shell distribution around a Schwarzs-
child BH, and a deformed Schwarzschild metric due
to the presence of unspecified matter fields.

(4) The QNMs of dirty BHs typically play a subdomi-
nant role in time evolutions, as they are localized
farther away from the BH. During the merger of two
BHs, these modes are excited to low amplitudes anld

5The QNMs of isolated BHs are localized and excited at the
light ring and correspond to poles of the appropriate Green’s
function [8,99,100].

6This is an intriguing result which would merit an independent
study on its own.
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at very late times. Accordingly, they play little role in
the merger waveform of BHs, but they will likely
dominate over Price’s power-law tails [101,102]. On
the other hand, these modes might in principle be
excited to large amplitudes by inspiralling matter
(e.g., by an EMRI) and give us important informa-
tion on matter surrounding the BH. A recent
example of excitation of similar modes by orbiting
matter is given by floating orbits, i.e., the resonant
excitation of modes of putative massive fields in the
vicinities of supermassive BHs [91]. Similar studies
for accretion disks, magnetic fields, or DM halos are
lacking.

(5) Our results are in agreement with some sparse results
in the literature and also seem to solve one puzzling
finding, as we describe below in Sec. III D.

In summary, the presence of matter changes the QNM
spectrum drastically, but it does not affect the ability of GW
observatories to detect BH ringdowns in realistic environ-
ments using templates of isolated BHs. The tabulated
values of isolated BH QNMs in the literature [8,97,98]
can also be used efficiently to estimate the mass and spin of
realistic BHs. In optimistic scenarios, detections could even
be used to investigate accretion disks and DM halos. As we
noted, for realistic configurations the dominant ringdown
phase will be identical to that of isolated BHs, but with an
additional stage, which could dominate over Price’s power-
law tails (see, for instance, Figs. 3, 10, and 11). For large

signal-to-noise ratio (SNR) events, such imprints could be
detectable. On the other hand, the effects listed above and
discussed in what follows are interesting per se. Although
beyond the scope of this work, a more rigorous under-
standing of these phenomena is highly desirable.

1. Detectability

Before venturing in a detailed analysis, let us consider
the accuracy in a ringdown detection required to observe
deviations from the vacuum Schwarzschild case. The
changes in the ringdown frequencies induced by environ-
mental effects can be observationally scrutinized but
require very sensitive GW telescopes. With a detection
with SNR, each ringdown mode is determined with an
accuracy in frequency of roughly

σωR
=ωR ∼ 1=SNR; (20)

where we used the fact that the quality factors of BHs are of
the order of 3–20 [6–8]. A crude estimate of the minimum
SNR necessary to perform ringdown null tests can be
obtained by requiring that the measurement error is at least
smaller than any putative environmental effect (see Table I):

1=SNR < δR; (21)

where δR;I ¼ 1 − ωR;I=ω
ð0Þ
R;I, and ωR;I is the real (imagi-

nary) part of the ringdown frequency of matter-surrounded

BHs, whereas ωð0Þ
R;I is the corresponding quantity for

isolated BHs with the same total mass. Thus, by using
the results of Table I, signal-to-noise ratios of at least a few
103 are necessary to see the impact of environmental effects
on ringdown modes.

B. Ringdown of “dirty” black holes:
Fundamental fields and classical hairs

Our definition classifies BHs as dirty if they are
surrounded by any kind of matter. Some types of matter,
such as electromagnetic fields or a cosmological constant,
are more “fundamental” than others and can sometimes
even be called classical hair instead of dirtiness. We
decided therefore to start by analyzing BHs surrounded
by this type of matter and by computing the corrections to
the ringdown frequencies due to a putative small charge,
background magnetic field, and the cosmological constant.
We will compare our results against those of an equal mass
isolated BH.
In order to make our approach and motivation clear,

consider the following mock problem: Assume that BHs all
have a very small rotation. What error (in the ringdown
frequency) do we incur by assuming that they are
Schwarzschild BHs instead? This can be answered very
quickly with the fitting formulas in Refs. [6,8]. These
authors provided fits for the dimensionless vibration fre-
quencyMωR and for the quality factorQ≡ ωR=ð2jωIjÞ, as

TABLE I. Upper limits on the corrections to the fundamental
ringdown frequencies of a Schwarzschild BH in a variety of
environments, with respect to isolated BHs. We compute
δR;I ¼ 1 − ωR;I=ω

ð0Þ
R;I , where ωR;I is the real (imaginary) part of

the ringdown frequency of dirty BHs, whereas ωð0Þ
R;I is the

corresponding quantity for isolated BHs with the same total
mass. We include the effects of a cosmological constant Λ,
electric charge Mq, background magnetic field B, and accretion
of gas, as well as the impact of the DM galactic halo and that of
other possible stationary matter configurations with mass δM at a
distance r0, 6 < r0=M < 40 from the BH (see the text for more
details). All of these results refer to the dominant quadrupole
mode, but the order of magnitude is the same for other modes.

Correction jδRj=P½%� jδIj=P½%� P

Cosmological constant 10−32 10−32 Λ
10−52 m−2 ð M

106M⊙
Þ2

Galactic DM halos 10−21 10−21 ð M
106M⊙

Þ2 ρDM
103M⊙=pc3

Accretion 10−11 10−11 fEdd
M

106M⊙

Charge 10−5 10−6 ðq=10−3Þ2
Magnetic field 10−8 10−7 ð B

108Gauss
Þ2ð M

106M⊙
Þ2

Rings 0.01 0.01 δM
10−3M

Matter bumpy 0.02 0.04 δM
10−3M

Short hair 0.05 0.03 δM
10−3M

Thin shell 20 200 δM
10−3M
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functions of the dimensionless spin parameter j≡ J=M2

(J being the BH’s angular momentum):

MωR ¼ f1 þ f2ð1 − jÞf3 ; (22)

Q ¼ q1 þ q2ð1 − jÞq3 : (23)

For a Schwarzschild BH, we therefore get an uncertainty

δR ¼ f2f3=ðf1 þ f2Þj; δQ ¼ q2q3=ðq1 þ q2Þj;
(24)

at small j. For the dominant l ¼ m ¼ 2mode, ðf1; f2; f3Þ ¼
ð1.5251;−1.1568; 0.1292Þ and ðq1; q2; q3Þ ¼ ð0.7000;
1.4187;−0.4990Þ. We obtain

δR ¼ −0.41j; δQ ¼ −0.33j; δI ¼ −0.07j: (25)

Thus, finally we would know that a small spin of j ∼ 10−3

would impact on mass measurements at a level of 1 part in
104. Notice also that highly spinning BHs are in general
more sensitive to changes in parameters. From here on, we
consider only nonspinning BHs.

1. Cosmological constant

The quasinormal modes of the Schwarzschild–de Sitter
BH given in Eq. (5) can be computed via accurate
continued fraction representations [103]. It can be shown
that both axial and polar gravitational perturbations give
rise to the same spectrum. Using the approach of
Ref. [103], we find

ðδR; δIÞ ¼ M2Λð4.5; 3.8Þ; l ¼ 2; (26)

ðδR; δIÞ ¼ M2Λð3.7; 3.4Þ; l ¼ 3; (27)

and we therefore get

ðδR; δIÞ ¼ ð4.5; 3.8Þ × 10−34
�

M
106M⊙

�
2
�

Λ
10−52 m−2

�
;

l ¼ 2; (28)

ðδR; δIÞ ¼ ð3.7; 3.4Þ × 10−34
�

M
106M⊙

�
2
�

Λ
10−52 m−2

�
;

l ¼ 3; (29)

so that the corrections are completely negligible even for
extremely massive BHs.

2. Magnetic fields

To study the effects of magnetic fields, we consider the
spacetime (8), which is cylindrically symmetric and is not
asymptotically flat. Separating the relevant gravitational
perturbations in this spacetime seems like a formidable

task. We will estimate the changes in ringdown frequencies
by using the Klein-Gordon equation as a proxy. Scalar
fields in this metric were studied in Refs. [104,105], which
concluded that the ringdown is equivalent to that of a scalar
field with mass 2Bm in the background of a Schwarzschild
BH, where m is an azimuthal number (perturbations have a
dependence ∼eimϕ).7 We find the following behavior:

ðδR;δIÞ¼ð3.9;−7.0Þ×10−10
�

B
108G

�
2
�

M
106M⊙

�
2

;

l¼m¼2:

(30)

While this prediction is most certainly correct up to factors
of the order of 2 or so for the gravitational case, it would be
interesting to devise ways to solve the full set of the
perturbed Einstein equations in the background (8).
Equation (30) was derived by using a very specific

background, but we now show that the estimate is robust.
Consider a BH immersed in an approximately constant
magnetic field spacetime, with energy density (in geom-
etrized units) ρB ¼ B2=ð8πÞ. As we show below in Sec. III
C 4, this gives rise to an approximately Schwarzschild–de
Sitter solution with cosmological constant Λeff ¼ 24πρB.
We can thus use the result of the previous Sec. III B 1 to get

ðδR; δIÞ ¼ ð2.4; 2.0Þ × 10−10
�

B
108 G

�
2
�

M
106M⊙

�
2

;

l ¼ 2;

(31)

in agreement, to within a factor of 2, with the estimate from
an exact spacetime solution. We will take the more
conservative estimate (30) as a reference.

3. Charge

Perturbations of charged black holes couple the gravi-
tational and electromagnetic fields together and excite
electromagnetic degrees of freedom, such as vectorial-type
QNMs [106,107]. While this is already an interesting result
per se, i.e., that arbitrarily small charges will give rise to an
entirely new set of modes in the spectrum, we focus here on
the purely gravitational modes, i.e., those which join
smoothly to a neutral BH in the zero charge limit.
Working in the small-charge limit, we can use the fitting
formulas provided in Ref. [107] (where the charged, slowly
rotating case was considered; here we simply set the
rotation to zero):

MωR;I ¼ f0 þ f1yþ f2y2 þ f3y3 þ f4y4; (32)

where y ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

p
. Using the values listed in Table I

of Ref. [107] for the l ¼ 2 fundamental mode, we obtain

7This equivalence is somewhat hand waving, but we will take
it for granted. It is clearly desirable to have a more robust analysis
of perturbations in this background.
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δR ¼ −7 × 10−8
�

q
10−3

�
2

; δI ¼ −3 × 10−8
�

q
10−3

�
2

:

(33)

Note that, because of the symmetries of the Einstein-
Maxwell equations when q → −q, the corrections to the
uncharged case are proportional to q2. Therefore, even in
the overly optimistic scenario q ∼ 10−3, the correction to
the ringdown frequencies are less than 1 part in 107. Note
also that both gravitational sectors have the same spectra
[8,107]. As we mentioned, a different set of electromag-
netic-type modes are also excited when charged BHs are
perturbed [108], and these may give rise to a new
observable set of ringdown frequencies.

C. Ringdown of nonisolated black holes: Composite
matter configurations and dark matter

In this section, we initiate the study of the ringdown
emission by matter-BH systems, i.e., BHs surrounded by
some sort of composite matter. The structure of the QNMs
of BHs surrounded by matter is extremely rich. We found it
convenient to start by analyzing a simple toy model which
presents most of the features we shall encounter in more
realistic configurations.

1. A toy model for matter bumps:
Two rectangular barriers

We consider an extension of the Chandrasekhar and
Detweiler toy model [109], which has the advantage that no
differential equations need to be numerically solved, there-
fore reducing the likelihood of numerical error influencing
the results.
In this problem, one considers a one-dimensional poten-

tial consisting of two rectangular barriers of height V0 and
V1 ≪ V0, as in Fig. 1. The role of V0 is to mimic the
potential barrier at r ∼ 3M in the Schwarzschild geometry,
whereas V1 would describe a small amount of matter some
distance away.
If we define the Fourier transform of the field ψðt; xÞ as

Ψðω; xÞ ¼ Rþ∞
0 dtψðt; xÞeiωt, then the wave equation

□ψ ¼ 0 is brought into the form

Ψ″ þ k2Ψ ¼ 0; (34)

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − VðrÞ

p
and primes stand for derivatives

with respect to the x coordinate. In this form, it is clear that
x plays the role of the tortoise coordinate in curved
backgrounds.

Mode structure.—Following Chandrasekhar and Detweiler
[109], it is natural to define the QNMs of this system as the
solutions which are purely left moving at x ¼ −∞ and
purely right moving at x ¼ þ∞. Since the potential is
piecewise constant, the left-moving solution reads

ΨL ¼

8>>>>>><
>>>>>>:

e−iωx x ≤ 0;

AI
ine

−ikIx þ AI
outeikIx 0 ≤ x ≤ a;

AII
ine

−iωx þ AII
outeiωx a ≤ x ≤ b;

AIII
in e

−ikIIIx þ AIII
outeikIIIx b ≤ x ≤ c;

AIV
in e

−iωx þ AIV
outeiωx c ≤ x;

(35)

where kI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − V0

p
and kIII ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − V1

p
. Notice that

the coefficients ðAX
in; A

X
outÞ are obtained via algebraic

relations, by requiring continuity of Ψ and Ψ0 at
x ¼ ð0; a; b; cÞ. The requirement that the solution be purely
right moving for c ≤ x is equivalent to

AIV
in ðωÞ ¼ 0 (36)

and is an (algebraic) eigenvalue equation for the
frequencies ω.
Even in this simple toy model, the QNM spectrum

is extremely rich, as shown in Fig. 2 and Table II.
We fix a ¼ 1; V0 ¼ 16 for ease of comparison with
Chandrasekhar and Detweiler’s results. The single-barrier
case (i.e., V1 ¼ 0) yields a fundamental frequency
ωa ¼ 4.660 − 0.710i.
When the second barrier is turned on, V1 ≠ 0, the

structure of the spectrum changes drastically. To understand
the spectrum we first take the five lowest-lying modes (i.e.,
those with a smaller imaginary component) of the single
barrier and track them when V1 grows from 0 to 10−3=a2.
We show in the top left panel in Fig. 2 how these modes
change when we now let b increase. The top right panel
shows the variation of the single-barrier fundamental mode
as the width of the barrier increases. We see that all these
modes become longer lived when b increases. In particular,
for any V1 ≠ 0, there exist modes with ωR <

ffiffiffiffiffiffi
V0

p
, which

do not exist in the single-barrier case.
In the large b limit, we observe some surprising features:
(i) As shown in the top right panel in Fig. 2, the

deviations from the vacuum case increase as b
increases. That is, the more distant the small bump
of matter is from the BH, the more it affects the
QNM spectrum.

FIG. 1 (color online). Toy model of two rectangular barriers of
height V0 and V1 ≪ V0. For V1 ¼ 0, one recovers the original
toy model considered by Chandrasekhar and Detweiler [109].

CAN ENVIRONMENTAL EFFECTS SPOIL PRECISION … PHYSICAL REVIEW D 89, 104059 (2014)

104059-11



(ii) Those modes that are the lowest-lying ones in the
vacuum (V1 ¼ 0) case are no longer such when
V1 ≠ 0. Indeed, new families of modes appear, some
of which become the new fundamental and lowest-
lying modes. The 20 lowest-lying modes are given in
Table II for b ¼ 10; c ¼ bþ 1.

(iii) For any V1 ≠ 0, a family of modes appears whose
spacing in the real part is roughly constant. These
modes and respective eigenfunctions are plotted in
the bottom panels in Fig. 2.

These peculiar features of the QNMs can be understood
analytically in two limiting cases.
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FIG. 2 (color online). QNMs of the double-barrier system. Top left: Some modes of the toy model of two rectangular barriers of height
V0 and V1 ≪ V0 as functions of the second barrier position b. For definiteness, we focus on V0 ¼ 16=a2, V1 ¼ 10−3=a2, and
c − b ¼ 0.1a. Top right: The same but for the fundamental mode only as a function of bwith V1 ¼ 10−3=ðabÞ and for different values of
c − b≡ L. Qualitatively similar results hold for different choices of the parameters. Bottom left: Eigenfunctions of the double-barrier
potential. We show the first three QNMs, the fundamental mode in the vacuum case (ωva ¼ 0.466 − 0.710i), and two intermediate
modes whose real part is close to that of ωv. Bottom right: QNM spectrum (cf. also Table II). In both panels we set V0 ¼ 16=a2,
V1 ¼ 10−3=a2, b ¼ 10a, and c ¼ 11a, but different choices of the parameters would give similar results.

TABLE II. QNM spectrum of the double-barrier potential with V0 ¼ 16=a2, V1 ¼ 10−3=a2, b ¼ 10a, and c ¼ 11a. The fundamental
mode in vacuum (V1 ≡ 0) reads ωa ¼ 4.66 − 0.710i.

n
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

aωR 0.186 0.529 0.858 1.182 1.503 1.821 2.136 2.447 2.751 3.045 3.334 3.629 3. 928 4.224 4.502 4.748 5.001 5.272 5.553 5.836 6.115
−aωI 0.340 0.368 0.392 0.411 0.430 0.449 0.469 0.491 0.512 0.529 0.533 0.527 0. 518 0.508 0.495 0.503 0.542 0.573 0.593 0.610 0.625
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Perturbative limit: In the limit V1=V0 ≡ ϵ ≪ 1, the
problem can be solved analytically. Expanding
ω ¼ ωð0Þ þ ϵωð1Þ, we obtain

ωð1Þ ¼ ðe2icωð0Þ − e2ibω
ð0Þ Þk3I

ωð0Þ
�
4kI − ωð0Þ log

h
V0−2ωð0Þðωð0ÞþkIÞ
V0−2ωð0Þðωð0Þ−kIÞ

i�

×

�
V0 − 2ωð0Þðωð0Þ þ kIÞ
V0 − 2ωð0Þðωð0Þ − kIÞ

�−ωð0Þ
kI
; (37)

where ωð0Þ solves the zeroth-order problem [109]. In the
large b limit, the deviation scales as −e2ibωð0Þ

. Because

Im½ωð0Þ�≡ ωð0Þ
I < 0, the linear corrections diverges expo-

nentially: ωð1Þ ∝ e2ω
ð0Þ
I b. However, in this limit the pertur-

bative procedure does not converge, and one has to resort to
the exact numerical solutions above. The latter displays a
milder (power-law) drifting from the vacuum modes in the
large b limit.
Double Dirac Delta system: In order to get some further

insight on the problem, let us consider an even simpler
model, in which V ¼ V0δðx − aÞ þ V1δðx − bÞ. By inte-
grating the Schrödinger equation across the shell, one gets
the junction condition Ψ0þ −Ψ0

− ¼ ViΨi, where i ¼ a; b
for the two Dirac deltas, respectively. Without loss of
generality, we choose the coordinates such that a ¼ 0. It is
straightforward to derive the QNM condition:

e2ibωV0V1 þ ðiV0 þ 2ωÞðiV1 þ 2ωÞ ¼ 0: (38)

When V1 ¼ 0, the only solution of the equation above is
ω ¼ −iV0=2. However, for any V1 ≠ 0, there are infinite
QNMs whose structure is remarkably rich. When
V1=V0 ¼ ϵ, a perturbative solution is

ω ¼ −
V0

2
ið1þ ϵebV0Þ: (39)

Again, this solution is consistent only when ϵebV0 ≪ 1. An
analytical solution exists also in the opposite (large b) limit.
First, we separate real and imaginary parts and write
Eq. (38) in the form

− ðV0 þ 2ωIÞðV1 þ 2ωIÞ þ 4ω2
R

þ e−2bωIV0V1 cosð2bωRÞ ¼ 0; (40)

2ðV0 þ V1 þ 4ωIÞωR þ e−2bωIV0V1 sinð2bωRÞ ¼ 0: (41)

In the limit where ωR ≫ Vi, jωIj ≪ Vi, and bjωIj ≫ 1, the
equations above admit the following solution:

ωR ¼ nπ
2b

; e−2bωI ¼ ð−1Þnþ1
n2π2

b2V0V1

; (42)

which is consistent only when n ≫ 1, n being an odd
integer. Note that there exist infinite QNMs even if the
corresponding vacuum problem admits one single mode
only. Furthermore, the real part is separated by a roughly
constant spacing, whereas the imaginary part decreases as b
increases. This is consistent with our previous findings,
and, indeed, this simple double Dirac delta model displays
most of the salient features of the more realistic configu-
rations that we discuss in the following. These generic
features are also in agreement with what was found by
Leung et al. [110,111] in the case of scalar perturbations of
a Schwarzschild BH enclosed by a thin shell.
Perhaps the single most important aspect of this example

is that at sufficiently large distances b, the fundamental,
isolated-barrier mode at ω ¼ 4.660 − 0.710i is no longer
the fundamental mode nor does it play any obviously
outstanding role in the spectrum. Nevertheless, physical
intuition would guarantee that at sufficiently large separa-
tions b this isolated-barrier mode must be excited for at
least a finite duration. In fact, we will now see that this is
the case.

Mode excitation: Scattering.—To discuss mode excitation,
we set up initial conditions for the scalar field in this one-
dimensional problem such that

∂ψ
∂t ðt ¼ 0; xÞ ¼ e−ðx−x0Þ2=σ2 ; ψðt ¼ 0; xÞ ¼ 0: (43)

Laplace transforming the Klein-Gordon equation, we get

Ψ″ þ k2Ψ ¼ IðxÞ≡ − _ψðt ¼ 0; xÞ: (44)

We require the solution to be right and left directed
at x ¼ �∞, respectively, i.e., Ψ ∼ e�ikx. The general
solution can be found with the help of Green’s functions
and reads

Ψðω;xÞ¼ΨR

Z
x

−∞

Iðx0ÞΨLðx0Þ
2iωAIV

in
dx0þΨL

Z
∞

x

Iðx0ÞΨRðx0Þ
2iωAIV

in
dx0;

(45)

where ΨL was defined in Eq. (35) and ΨR is a homo-
geneous solution which behaves as ΨR ¼ eiωx and x ≥ c.
Thus, if the observer is located close to þ∞, he sees a
waveform

Ψðω; xÞ ¼ eiωx
Z þ∞

−∞

Iðx0ÞΨLðx0Þ
2iωAIV

in
dx0: (46)

For the initial data we consider, this is simply

Ψðω;xÞ¼ eiωx

2iωAIV
in

ffiffiffi
π

p
σe−ikx0−k

2σ2=4ðAX
inþAX

oute2ikXx0Þ; (47)
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with X ¼ I; II; III; IV depending on where the initial data
are localized (we focus on initial data that do not overlap
between different regions). Because all coefficients
ðAX

in; A
X
outÞ are obtained via algebraic relations, no integra-

tions are necessary to find Ψðω; xÞ. The time-domain
solution at x > c is then given by

ψðt;xÞ¼
Z þ∞

−∞

dω
2π

eiωðx−tÞ

2iωAIV
in

ffiffiffi
π

p
σe−ikx0−k

2σ2=4ðAX
inþAX

oute2ikXx0Þ:

(48)

We have considered various configurations which all give
qualitatively similar results. For concreteness, we present
results for barriers with V0 ¼ 16, V1 ¼ 10−3, a ¼ 1,
c ¼ bþ 1, and two values of b: b ¼ 10; 15. The time
evolution of the scalar field is depicted in Fig. 3, for a
Gaussian of unit width centered at x0 ¼ −2 (top panel) and
at x0 ¼ 5 (bottom panel). Thus, the initial data are localized
to the left of both barriers in the top panel and in between
the barriers in the bottom panel. The black solid line refers
to V1 ¼ 0, and a very clear ringdown waveform is seen
after an initial transient. We find that the ringdown is very
well described by the fundamental mode of the isolated
barrier, ωa ¼ 4.660 − 0.710i.
The red (solid) and blue (dashed) lines show the response

in the double-barrier case. Let us focus on the top panel.
The initial transient is the same as the isolated barrier, and
for a finite time it also displays the same ringdown, with the
same parameters as the isolated barrier. Eventually, the
system “thermalizes” to the double-barrier vibrations, and
we see ringdown which corresponds to the fundamental

mode of the double-barrier case, in particular, the funda-
mental mode of Table II. Thus, even though the isolated-
barrier mode does not play any seemingly special role in the
QNM spectrum of the composite system, it does play a
major role in the transient evolution.
The bottom panel in Fig. 3 shows that, by tuning the

initial perturbations and the model parameters, one can
circumvent the isolated-barrier ringdown in the double-
barrier system, by exciting to higher levels the double-
barrier modes. This will happen if the initial data ring
directly V1 to a large amplitude, as is the case when we let
the Gaussian evolve from in between both barriers. We
believe that such an analogous situation is hard to come by
in the astrophysical setups.

Lessons from the double-barrier toy model.—The double-
barrier model is instructive in many respects. First, it shows
that the QNM spectrum of matter-BH systems can be
drastically different from that of their vacuum counterparts.
New families of modes exist and they might contain lowest-
lying modes. The fundamental mode of the vacuum case
does not seem to play any special role in the spectrum.
However, a simple scattering experiment shows an inter-
esting “memory effect,” in which the fundamental mode of
the isolated BH appears at intermediate time. This opens up
the interesting prospect of detecting both the modes of
vacuum BH and those associated with the surrounding
matter from the ringdown waveform of BHs in astrophysi-
cal environments.
Perhaps one of the most relevant lessons from this toy

model is the existence of two very different regimes: one in
which the matter fields are localized near the BH and the
other where matter is many Schwarzschild radii away. In
the latter case, two very separated scales exist so that, to
some extent, one would still expect the modes of the
isolated BH to play a role in the waveform (even though
they no longer belong to the QNM spectrum). On the other
hand, in the former case there is no separation of scales and
onewould expect a genuine deviation from the quasinormal
ringdown modes of the vacuum case. In the next sections,
we will indeed discuss various models by dividing the
matter distributions into two classes: those that are local-
ized near the BH (i.e., at some r≲ 10M) and those
localized farther away (r≳ 10M).

2. Spherical thin shells

As far as we are aware, the first, and only, attempt to
understand the impact of surrounding matter on the QNMs
of astrophysical BHs to date was that of Leung et al.
[110,111]. These authors focused on spherical, infinitely
thin shells of matter around nonrotating BHs and studied in
some detail the Klein-Gordon equation in this spacetime.
We now substantially generalize their results, by consid-
ering gravitational perturbations as well as scalar fields. We
thus consider a thin-shell distribution with metric
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FIG. 3 (color online). Left: Waveforms for a Gaussian packet in
the double-barrier potential. Top panel: The initial packet is
located on the left of the first barrier, x0 ¼ −2a and σ ¼ a.
Bottom panel: The initial packet is located between the two
barriers, x0 ¼ 5a and σ ¼ a. For both panels, V0 ¼ 16=a2 and
c ¼ bþ a. Other choices give qualitatively similar results.
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ds2 ¼
�−ᾱð1 − 2M

r Þdt2 þ ð1 − 2M
r Þ−1dr2 þ r2ðdθ2 þ sin2θdϕ2Þ; r < r0;

−ð1 − 2M0

r Þdt2 þ ð1 − 2M0

r Þ−1dr2 þ r2ðdθ2 þ sin2θdϕ2Þ; r > r0;
(49)

where ᾱ ¼ 1−2M0=r0
1−2M=r0

and δM ¼ M0 −M. Here M is the BH
horizon mass and M0 the total spacetime Arnowitt-Deser-
Misner mass.

Scalar fields.—If we write the metric above as Eq. (11)8

and use the decomposition Φðt; r; θ;ϕÞ ¼P
lm

ΨðrÞ
r e−iωtYlmðθ;ϕÞ, the Klein-Gordon equation □Φ ¼

0 is reduced to

ffiffiffiffiffiffiffi
AB

p
ð

ffiffiffiffiffiffiffi
AB

p
Ψ0Þ0 þ

�
ω2 − A

�
lðlþ 1Þ

r2
þ ðABÞ0

2Ar

��
Ψ ¼ 0:

(50)

Integrating across the shell location r ¼ r0, we find the
jump condition

ffiffiffiffiffiffiffi
AB

p
þΨ0ðr0 þ ϵÞ −

ffiffiffiffiffiffiffi
AB

p
−Ψ0ðr0 − ϵÞ

¼ Ψðr0Þ
r0

ð
ffiffiffiffiffiffiffi
AB

p
þ −

ffiffiffiffiffiffiffi
AB

p
−Þ: (51)

Here primes stand for derivatives with respect to the radial
coordinate r, and the subscripts stand for quantities
evaluated to the right (þ) and left (−) of the shell.
Using Eq. (49), we finally find�

1 −
2M0

r

�
Ψ0ðr0 þ ϵÞ − ffiffiffī

α
p �

1 −
2M
r

�
Ψ0ðr0 − ϵÞ

¼ −
2ðM0 −MÞ

r20ð1þ 1=
ffiffiffī
α

p ÞΨðr0Þ≡ κΨðr0Þ: (52)

This junction condition is equivalent to expression (4.24) in
Leung et al. [111] and can be used to match the scalar
perturbation inside the shell to those in the exterior.
The eigenvalue problem is then entirely specified. One
can compute the QNMs of the system by, e.g., robust
continued-fraction representations or also by direct
integration, as discussed below. Since the results are
qualitatively similar to those obtained in the more realistic
case of gravitational perturbations, we focus only on a
detailed discussion of the latter.

Gravitational perturbations.—Gravitational perturbations
of a Schwarzschild BH surrounded by a thin shell can be
studied by using the thin-shell formalism developed in
Ref. [112]. The details of the procedure are given in

Appendix C. In brief, the strategy is to solve the Regge-
Wheeler-Zerilli equations in vacuum and connect the
interior and the exterior solutions through the Israel
conditions. For axial variables, these matching conditions,
in the Regge-Wheeler gauge, read [112]

½½h0�� ¼ 0; ½½
ffiffiffiffi
B

p
h1�� ¼ 0; (53)

where ½½…�� denotes the “jump” of a given quantity across
the shell, i.e., ½½A��≡ Aðrþ0 Þ − Aðr−0 Þ. The treatment of
polar perturbations is more involved, and it yields the
following relations for the jump of the polar metric
functions across the shell [112]:

½½K�� ¼ 0;

½½K0�� ¼ −
1

2Að1þ 2v2sÞ
�
2M
r20

½½H�� − ½½HA0��

− 2Aðr0Þ½½H0�� þ 4iω½½H1��
�
: (54)

The parameter vs is related to the equation of state (EoS) of
the thin shell, Θ ¼ ΘðΣÞ, through

v2s ≡ −
�∂Θ
∂Σ

�
Σ¼0

; (55)

and it has the dimensions of a velocity. Here, ðΣ;ΘÞ are the
shell’s surface energy density and surface tension, respec-
tively. A microscopic model of matter on the thin shell is
needed for a microphysical interpretation of vs, but
(roughly speaking) this parameter is related to the sound
speed in the shell.
As explained in Appendix C, the matching conditions

above, together with the linearized Einstein equations, are
sufficient to solve the dynamical equations for the axial and
polar variables. After physically motivated boundary con-
ditions at the horizon and at infinity are imposed, the
problem is reduced to a simple one-dimensional eigenvalue
problem for the complex frequency ω ¼ ωR þ iωI. We
have computed the eigenfrequencies with a direct integra-
tion. We have carried out an extensive analysis of the
QNMs of the system as a function of δM, r0, vs, and l. The
parameter space is very rich, and a summary of our main
results is presented below.
Figure 4 shows a summary of the fundamental l ¼ 2

modes in the case of r0 < 10M (top panels) and when r0 >
10M (bottom panels). Here and in the following, we present
the results by keeping the BH mass M fixed; i.e., the total
mass of the spacetime,M þ δM, changes linearly with δM.

8We use the inverse definition for BðrÞ as compared to Leung
et al. [111].
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In the left panels, we show the percentage deviations of ωR
and ωI as functions of δM for fixed values of the shell
radius. In the case r0 < 10M, energy conditions impose
Σ > jΘj, and this translates into a lower limit on r0 for
given δM. When δM ≪ M, the limit reads r0 ≳ 2.5M, and
we shall limit our results to this region. In the right panels,
we present the dependence of the modes on r0 for fixed
values of δM.
It is clear from Fig. 4 that the behavior at small r0 is

qualitatively different from that at large r0, in agreement
with the toy model discussed above. While the behavior for
r0 ≲ 10M is linear in δM=M, the dependence when r0 ≳
10M is more involved. We also observe the same quali-
tative behavior of the modes at large r0 as previously
discussed.

Let us focus on the most interesting region r0 ≲ 10M
and δM=M ≪ 1. In this case, the corrections to the
vacuum modes are linear in δM=M. The linear coefficient
is shown in the left panel in Fig. 5. Finally, in the right
panel in Fig. 5, we show the dependence of the funda-
mental l ¼ 2 polar mode with the EoS parameter vs for
fixed values of δM and r0. Note that the dependence is
very mild when vs ≲ 0.3, which is the most interesting
region from a phenomenological point of view. For
completeness, we also show the region when the speed
of sound at the shell is superluminal, as might be the case
for exotic forms of matter. Interestingly, the peculiar
behavior of the relativistic regime, vs ∼ 1, emerges natu-
rally from our method, and it is more pronounced
when r0 ≳ 10M.
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FIG. 4 (color online). Left panels: Percentage deviations of the real and imaginary parts of the QNMs of a Schwarzschild BH
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Isospectrality breaking.—A remarkable property of a
Schwarzschild BH in vacuum is the isospectrality of the
axial and polar sector. Although this classification does not
have a particular meaning for spinning BHs, these over-
lapping modes stay isospectral also in the case of Kerr BHs.
The presence of matter surrounding the BH breaks this
degeneracy. Furthermore, polar modes also depend on the
matter EoS through the parameter vs. In Fig. 6, we show the
fractional difference between axial and polar modes for the
thin-shell model for two representative values of vs.
This isospectrality breaking is a robust, general predic-

tion of our model. Indeed, because isospectrality is a very
fragile property, it is generically broken if the object is
not a BH in isolation, or also if the underlying theory of
gravity is not GR. Thus, a model-independent signature of

deviations from isolated BHs in GR is the presence of two
lowest-lying modes which are very close to each other.
Different types of deviations (matter or modified gravity)
predict different amounts of isospectrality breaking, and the
possibility of resolving the two modes from the gravita-
tional waveform is an interesting open problem.

3. Matter-bumpy black holes

A thin-shell distribution is unrealistic and has the
disadvantage of introducing discontinuities in the metric.
In this section, we focus on two different models where
the metric is C1 everywhere. We take the ansatz (11) with
AðrÞ ¼ BðrÞ ¼ 1 − 2mðrÞ=r and two models (“I” and “II”)
for mðrÞ:
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and for the real and imaginary parts. In the polar case we have considered vs ¼ 0. Right panels: Real and imaginary parts of the QN
fundamental frequency for l ¼ 2 polar modes as a function of vs for δM ¼ 10−2M and different values of r0.
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mIðrÞ ¼
8<
:
M r< r0;

Mþ 3δMðr−r0L Þ2− 2δMðr−r0L Þ3 r0 < r< r0þL;

M0 r > r0þL;

(56)

mIIðrÞ¼MþδM
2

ð1þerf½ðrþ2M logðr−2MÞ−r0Þ=L�Þ:
(57)

Here δM ¼ M0 −M, and erf is the error function. These
models are specified by three parameters: δM, L, and r0.
When r0 > 2M, this metric describes a Schwarzschild BH
where some matter field localized at ½r0; r0 þ L� has been
superimposed. Note that this is a consistent solution in the
Newtonian limit, i.e., δM ≪ M and r0 ≫ M.
Computing the gravitational perturbations of this space-

time would require an explicit stress-energy tensor for this
matter distribution. In addition, the metric perturbations
and the fluid perturbations would be coupled, rendering the
analysis unnecessarily involved. To circumvent these tech-
nicalities, we consider a probe scalar field on this back-
ground. The Schrödinger-like potential reads

V ¼
�
1 −

2mðrÞ
r

��
lðlþ 1Þ

r2
þ 2mðrÞ

r3
−
2m0ðrÞ
r2

�
(58)

and is continuous everywhere by virtue of the smoothness
of the metric. By a direct integration, we have computed the
scalar QNMs of the system, which depend on l, δM, r0, and
L. It is interesting to track the modes as functions of r0 at
large distance and for fixed δM. This is shown in Fig. 7 for
the two profiles mIðrÞ and mIIðrÞ.

We observe the same qualitative features as the toy
model and the thin-shell model. Namely, when tracked as a
function of r0, the fundamental mode oscillates around the
vacuum mode for r0 ≲ 30M (the precise number depends
on the model parameters), whereas large deviations from
the vacuum case occur at large distances.
In addition, we also observe the appearance of new

modes which are not present in the vacuum case. A
representative example is shown in Fig. 8, and the results
are discussed in the caption. In Fig. 8, we show only two of
these modes, but there is actually an infinite set, whose
structure is qualitatively similar to that shown in Fig. 2 for
the toy model discussed above. Note that some of these
modes can have the same real or imaginary part for specific
values of the parameters (cf. bottom panels in Fig. 8).
Correspondingly to these crossings, and also because of the
presence of a multitude of modes, it might be challenging to
track a single mode in the entire parameter space. This is
the reason for the nonmonotonic behavior of the modes as a
function of L that is shown in Fig. 7: At large distances, it is
likely that the root finder simply starts tracking a different
mode. Nonetheless, the structure of the large-r0 corrections
is clear and qualitatively similar for the two models. A
representative example of a mode tracked as a function of L
for fixed r0 and δM in the large r0 limit is shown in the right
panel in Fig. 9.
In Table III, we present a selection of the lowest-lying

QNM frequencies for the matter profile mIIðrÞ. At this
point, it is important to stress that, even if the spectrum
contains new lowest-lying modes and modes which deviate
substantially from the vacuum case, this does not neces-
sarily imply that the ringdown waveforms would be so
drastically affected. We shall prove this statement in the
next section, confirming our findings for the previous
models.
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FIG. 7 (color online). Percentage deviations of the real and imaginary parts of the fundamental l ¼ 2mode of a matter-bumpy BH as a
function of r0 for different values of δM and L. Left and right panels refer to models I and II in Eqs. (56) and (57), respectively.
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Taking aside the large-r0 corrections, we now focus on
the region r0 ≲ 10M. In this region, the behavior of the
modes is much more clear and the corrections are linear in
the small δM limit. We define

δR;I ¼ δð1ÞR;Iðl; r0; LÞ
δM
M

þOðδM2Þ: (59)

The linear corrections to δR;I are shown in the left panel in
Fig. 9. When r0 is located a few Schwarzschild radii away
from the BH, the corrections increase as L decreases, i.e.,

when the matter density increases. In fact, our results
should reduce to those of the thin shell in the L → 0 limit.
We estimate a deviation of the order of δR;I ∼Oð10ÞδM=M
for L≲M. This is the value reported in Table I.

Mode excitation: Scattering and infall.—Our excursion
into the double-barrier toy model suggested that, as
interesting and rich as the spectra of bumpy potentials
may be, their excitation is hard to achieve with transient
sources. More importantly, on time scales relevant for
detectors, it is possible that the free modes (i.e., the QNMs

10 20 30 40 50

0.5

ω
R
 M

vacuum-driven mode
matter-driven mode

10 20 30 40 50
r0/M

-0.14

-0.12

-0.10

ω
I M

l=2

10 20 30 40 50

0.5

0.6

0.7

ω
R
 M

vacuum-driven mode
matter-driven mode

10 20 30 40 50
r0/M

-0.20

-0.15

-0.10

ω
I M

l=2
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δM ¼ 0.01M, L ¼ 10M as a function of r0 in the large r0 limit. The black curve represents the “vacuum-driven”mode, i.e., the one that
resembles the fundamental mode of the vacuum BH at intermediate distance. The red curve represents the “matter-driven” mode, i.e., a
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of the composite system) are completely irrelevant. To test
this, we consider the excitation of scalar fields. For
weak enough scalar fields, the Klein-Gordon equation
sourced by the radial infall of a unit scalar charge,
□Φ ¼ −4π=ðγr2Þδðr − RðtÞÞδðcos θÞδðϕÞ, can be studied
as a perturbation in the background spacetime [we use
standard Schwarzschild coordinates ðt; r; θ;ϕÞ]. Here, γ is
the Lorentz factor of the scalar charge at infinity, as
measured by a static observer with respect to the BH,
whereas RðtÞ is the radial position of the infalling scalar
charge, whose worldline reads ðTðtÞ; RðtÞ; 0; 0Þ.
Decomposing the field in spherical harmonics Ylm

Φðt; r; θ;ϕÞ ¼
X
lm

ψ lmðt; rÞ
r

Ylmðθ;ϕÞ (60)

and performing a Laplace transform,

ψ lmðt; rÞ ¼
1

2π

Z þ∞

−∞
dωe−iωtΨðω; rÞ; (61)

one gets the following ordinary differential equation:

d2Ψ
dr2�

þ ðω2 − VðrÞÞΨ ¼ I ¼ − _ψ0 þ iωψ0 þ S: (62)

For concreteness we focus on two cases.
Infalls: Here ψ0 ¼ ψðt ¼ 0; rÞ, _ψ0 ¼ _ψðt ¼ 0Þ, and

S ¼ −A
eiωTðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 4l

p

4πrγdR=dT
; (63)

where the geodesic equation yields

dT
dR

¼ −
γ

A
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − A

p : (64)

We take the scalar particle to materialize at t ¼ θ ¼ ϕ ¼
0; rp ¼ 6M with gamma factor γ ¼ 2. This is an ad hoc
source, intended to mimic the plunge of particles at the last
stable circular orbit.
The scalar waveforms for l ¼ 2 are shown in Fig. 10 for

different configurations. In the top left panel, we compare
the waveform obtained for δM ¼ 0.1M and r0 ¼ 100M

with the one corresponding to the vacuum (Schwarzschild)
case. The waveforms perfectly match, and we observe the
typical ringdown of the isolated BH. This is the same
“memory effect”we discussed for the toy model. It is worth
stressing that, for this choice of the parameters, the QNM
spectrum does not contain the modes of the isolated BHs.
The situation is different in the other panels, where we
consider smaller values of r0 or larger values of δM. In the
bottom panels, in order to display large deviations, we have
considered the value δM ¼ 2M, although the latter is not
consistent with a Newtonian approximation.
Scattering: We have considered also the scattering

of a sourceless scalar field with S ¼ ψ0 ¼ 0 and
_ψ0 ¼ AðrÞe−ðr�−rpÞ2=σ2 . This is shown in Fig. 11. Again,
the signal at intermediate time is governed by the ringdown
of the isolated BH, and the effects of the surrounding matter
appear only at late time.
These results confirm that the QNMs of dirty BHs

typically play a subdominant role in time evolutions,
particularly when matter is localized farther away from
the BH. Although the QNM spectrum is dramatically
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FIG. 10 (color online). Scalar l ¼ 2 waveforms for a point
particle falling into a Schwarzschild BH. The particle “suddenly”
materializes at rp ¼ 6M with gamma factor γ ¼ 2 and sub-
sequently falls into the BHs. The matter profile has extension
L ¼ 2; 1.5 in the top and bottom panels, respectively.

TABLE III. Two lowest-lying QNM frequencies for the matter profile mIIðrÞ for l ¼ 2.

ðδM;LÞ rS ðωR;−ωIÞ ðδR; δIÞð%Þ
10 (0.4520, 0.005018) (6.5, 94.8)
15 (0.4514, 0.006244) (6.7, 93.5)

(2, 1.5) 20 (0.4513, 0.005693) (6.7, 94.1)
50 (0.5062, 0.06286) ð−4.7; 35:0Þ
100 (0.4518, 0.005923) (6.6, 93.9)

(0.1, 2) 3 (0.4640, 0.08289) (4.1, 14.3)
100 (0.4533, 0.005903) (6.3, 93.9)
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different from the case of an isolated BH, in dynamical
situations (e.g., during the merger of two BHs) the modes
of the matter-BH system are excited to low amplitudes and
at very late times. Accordingly, they play little role in the
merger waveform of BHs, but they will likely dominate
over Price’s power-law tails [101,102]. Furthermore, these
modes can be excited to large amplitudes by inspiralling
matter. For example, extra modes associated to massive
fields may give rise to “floating orbits,” which correspond
to resonances in the gravitational flux [91].

4. Effects of dark-matter halos

In this section, we wish to describe a different source of
deformation of an isolated Schwarzschild BH, namely,
massive BHs immersed in DM halos. Because the DM
density in the vicinity of the BH is small, we model the
geometry by the approximate ansatz given by Eq. (11) with
AðrÞ ¼ BðrÞ ¼ 1 − 2mðrÞ=r, and

mðrÞ ¼ M þ 4π

3
r3ρDM; (65)

where ρDM is the DM density. This approximation is valid
as long as the correction due to the DM mass is small
compared to the BH mass M. In this approximation, the
geometry takes the form of a Schwarzschild–de Sitter
spacetime AðrÞ ¼ BðrÞ ¼ 1 − 2M=r − Λeffr2=3 with

Λeff ¼ 8πρDM: (66)

Thus, in this approximation we can directly use the results
of Eq. (26):

ðδR;δIÞ¼ð6.0;5.2Þ×10−24
�

M
106M⊙

�
2 ρDM
103M⊙=pc3

(67)

for the l ¼ 2 mode.

5. Black holes with short hair

We have already studied several ad hoc matter models
and corresponding QNMs in the previous sections. The
general case of extended matter distributions outside BHs is
a rather unexplored subject. Let us explore this subject a bit
further by assuming a spherically symmetric ansatz which
describes a Schwarzschild BH surrounded by a small
amount of matter:

ds2 ¼ −
�
1 −

2M
r

þ ϵH

�
dt2 þ 1

1 − 2M
r þ ϵF

dr2 þ r2dΩ2;

where H and F are radial functions to be determined and ϵ
is a small, bookkeeping parameter. Einstein equations yield

ϵðrFÞ0 ¼ −
8πGr3

r − 2M
Ttt; (68)

ϵðr2H0Þ0 ¼ −
8πGðr3ðM − rÞTtt þ ðr − 2MÞ2ðrðM − rÞTrr − 2TθθÞÞ

ðr − 2MÞ2 : (69)

Thus, given a matter distribution (i.e., given Tμν), one can
in principle compute the metric coefficients and from these
the spacetime QNMs. Unfortunately, the dynamical per-
turbations of this spacetime depend on the metric functions

H and F, so that it does not seem possible to express all
equations solely in terms of the matter content. In other
words, it is impossible to solve for the QNMs, in closed
form, in terms of a generic Tμν. One has to resort to a case-
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FIG. 11 (color online). Scalar l ¼ 1 waveforms for a scattering in a bumpy BH background. Initial data are S ¼ ψ0 ¼ 0 and
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by-case analysis, which in fact corresponds to our pro-
cedure in the previous sections.
We end this QNM study with an interesting, analytic

solution describing a BH surrounded by an anisotropic
fluids [113]. This “short-hair” BH solution is described by

ds2 ¼ −fdt2 þ dr2

f
þ r2dθ2 þ r2sin2θdϕ2; (70)

f ¼ 1 −
2M
r

þQ2k
m

r2k
; (71)

ρ ¼ Q2k
m ð2k − 1Þ
8πr2kþ2

; P ¼ kρ; (72)

where ρ and P are the density and pressure, respectively, of
the anisotropic fluid and Qm is a constant, describing the
“matter hair.” The solution above corresponds to an
anisotropic stress tensor, specified by (3.2) in Brown and
Husain’s work [113], and it reduces to the Reissner-
Nordstrom BH when k ¼ 1.

Scalar QNMs of the Brown-Husain solution.—The scalar
wave equation in the Brown-Husain solution reduces to

V ¼ f

�
lðlþ 1Þ

r2
þ 2M

r3
−
2kQ2k

m

r2kþ2

�
: (73)

Let us consider a simple case and set k ¼ 3=2 in the
equation above, so that the behavior of the potential is
analytical. This case is qualitatively similar to the Reissner-
Nordstrom one: If Qm < 25=3M=3, the solution has two
horizons located at r > 0, whereas in the extremal case

these two horizon merge at r ¼ rþ ¼ 4M=3. The solution
for k ¼ 2 displays a similar behavior.
We have computed the scalar QNMs by using a direct

integration. Our results for the fundamental l ¼ 2mode as a
function ofQm are shown in Fig. 12 for k ¼ 3=2 and k ¼ 2.
The deviation from the Schwarzschild case decreases as k
increases, because the hair becomes subdominant in a post-
Newtonian expansion. For Qm=M ≲ 0.6, deviations are
smaller than 1%. In the small-Qm limit, our results are well
fitted by

k ¼ 3=2∶ δR ∼ 0.06

�
Qm

M

�
3

∼ 0.5
δM
M

; δI ∼ 0.04

�
Qm

M

�
3

∼ 0.3
δM
M

; (74)

k ¼ 2∶ δR ∼ 0.02

�
Qm

M

�
4

∼ 0.3
δM
M

; δI ∼ 0.03

�
Qm

M

�
4

∼ 0.4
δM
M

; (75)

where we have used the relation δM=M ¼ 2−2kðQm=MÞ2k,
where δM is the Newtonian mass associated with ρ in
Eq. (72).

6. Accretion

Previous results all considered stationary matter outside
the horizon. We now briefly turn our attention to accretion,
which changes the BH mass as a function of time. A
detailed discussion on the effects related to accretion is
given below. We can estimate how much accretion will
impact the QNMs of astrophysical BHs by computing how
much mass a BH accretes during the ringdown phase. The
latter lasts typically τ ∼ 20M or less in geometrical units, or

τ ∼ 100
M

106M⊙
s: (76)

By using Eq. (4), during this time the BH accretes a mass
δM of the order of

δM
M

∼ 7 × 10−14fEdd
M

106M⊙
: (77)

Because the instantaneous ringdown frequency ω ∝ 1=M,
and because accretion is a very slow process compared
to the light-crossing time, we estimate that δR ∝ δM=M.
This intuition is confirmed by several distinct linearized
calculations of BH ringdown in (spherically symmetric)
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FIG. 12 (color online). Percentage difference for the funda-
mental l ¼ 2 scalar QNM of the Brown-Husain solution (71) as a
function of Qm. The extremal limit corresponds to Qm=M ¼
25=3=3 ∼ 1.06 for k ¼ 3=2 and to Qm=M ¼ 33=4=2 ∼ 1.14
for k ¼ 2.
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Vaidya spacetimes, which model accreting spacetimes
and which therefore take dynamical effects into account
[114–117]. These studies show that the QNMs correspond
to those of standard momentarily stationary BHs; that is,
the mass evolves adiabatically on the ringdown time scale.
Thus, we estimate

ðδR; δIÞ ∼ ð7; 7Þ × 10−14fEdd
M

106M⊙
: (78)

As mentioned in Sec. II, as well as explained below, fEdd
depends on the details of the accretion disk surrounding
the BH but is at most ∼Oð1Þ. Therefore, the effects of
accretion on the ringdown frequencies are completely
negligible, as summarized in Table I.

7. Nonspherical configurations: Self-gravity
effects of rings

Up to now, we have investigated spherically symmetric
matter distributions only. Many astrophysical BHs are
surrounded by disks and rings of nontrivial angular
distribution, which makes the system nontrivial to handle
from a numerical point of view. However, QNMs have
been shown to be associated with radiation leaking
from the unstable light ring, and our previous results are
consistent with this picture [8,100]. Thus, we now turn
briefly our attention to null geodesics of BHs surrounded
by an axisymmetric distribution of matter. Such systems
were studied by Will [118,119] in a setup where the
mass of the ring is much smaller than that of the BH.
Will finds an upper bound to the change to the circular
photon orbit in the presence of a thin ring of matter
localized near the BH. In particular, the frequency of the
photon orbit is shifted by

δΩLR

ΩLR
≲ 0.1

δM
M

: (79)

According to Refs. [8,100], the impact on the QNMs is then
estimated to be

ðδR; δIÞ≲ 10−4
δM

10−3M
; (80)

which is the value quoted in Table I. These bounds
are of the same order as those relating to spherical
matter distributions, and, despite referring to a very
specific model, we have no reason to believe that other
distributions will modify Eq. (80) by more than a factor
of 2 or so.

D. Previous results and puzzles
in the literature

As we mentioned earlier, it is somewhat surprising
that the work on QNMs of dirty BHs is very

scarce.9 To the best of our knowledge, Leung and collab-
orators [110,111] seem to have been the only ones
seriously addressing this question, because in their own
words, “inasmuch as the goal of the GWobservatories is to
obtain astrophysical information of our Universe…there is
no doubt that we will eventually have to face this problem
of the QNM spectra of dirty BHs.”
As we showed, for a given matter profile and at fixed δM,

the corrections δR; δI grow linearly with the distance of the
localized source from the BH. This is the most counterin-
tuitive result of our analysis and is unexpected, because, at
fixed δM, increasing the radial position of the matter
distribution is equivalent to decreasing its density. In
Refs. [110,111], the authors studied in detail the scalar
QNMs of nonrotating BHs surrounded by thin shells of
matter, both numerically and perturbatively. Their results
and conclusions are in full agreement with our own results
reported earlier. Their analysis, in a vein similar to pertur-
bation theory familiar from quantummechanics, shows that
it is the exponential dependence of theQNMwave functions
on the radial coordinate that is responsible for the overall
behavior at large distances. Their analysis fits in very nicely
with the analytic results of our toy model, Sec. VA.
The overall structure of this problem is also in agreement

and consistent with a well-known phenomena in BH
physics, concerning the behavior of massive fields around
BHs [124–129]. These studies have shown that fundamen-
tal fields of mass μ give rise to long-lived (or even unstable)
states whose lifetime τ scales as τ ∼ ðMμÞ−p, with p some
integer power. Thus, in the zero mass limit Mμ → 0, these
modes do not coalesce to any of the Schwarzschild
QNMs. The reason for this behavior is, again, that these
modes are localized far away from the BH, at a distance
comparable with the Compton length of the massive
field, r=M ∼ 1=ðMμÞ.
Another related work is that of Nollert [130], who

considered QNMs of the discretized Regge-Wheeler poten-
tial. Nollert shows that the QNMs of the discretized
potential differ substantially from the QNMs of the
Regge-Wheeler potential but that, nonetheless, time evo-
lutions using the discretized potential ringdown according
to the Regge-Wheeler potential modes. These findings are
in complete consistency with ours and most likely also
explained by the exponential sensitivity at large distances.

9We are excluding from this list important work on the
excitation amplitude of QNMs from infalling shells or oscillating
torii [120–123]. These works address the degree to which
ringdown is excited in physical processes, concluding that these
modes are excited only when matter crosses the light ring, and
that they can be strongly suppressed by interference effects.
These studies do not tackle the main problem we are discussing,
which is that of corrections to the QNM frequencies themselves
by backreaction. We are also excluding interesting works on the
asymptotic structure of highly damped QNMs nonisolated BHs,
since these are less relevant for GW physics; for more on this
topic, see, for instance, Ref. [20].
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These results all highlight a clear need to understand
better the relation between time-domain waveforms and the
QNMs of perturbed potentials, which has been surprisingly
overlooked in the past.

E. Relation with “firewalls” and
other exotica around massive BHS

Our results for the ringdown modes of matter-deformed
Schwarzschild BHs have also a direct application in the
context of the recent “firewall” proposal [131] (see also
Ref. [132] for a similar earlier proposal). Roughly speaking,
under quite generic assumptions on the quantum properties
of an event horizon, Ref. [131] suggests that an infalling
observer is expected to encounter Planck-density fluctua-
tions in a region near the horizon, whose thickness is of the
order of the Planck length. Here we do not enter the debate
about the fate of the observer or about the very existence of
such a firewall (cf. Refs. [133,134] for a detailed discussion).
Rather, we are interested in understanding possible gravi-
tational signatures of this proposal at the classical level.
We model such a configuration as a spherical thin

shell of mass δM located at r0 ∼ 2M0 þ lP, where
lP ∼ 1.6 × 10−35 m is the Planck length, M0 ¼ M þ δM
is the total mass of the spacetime, and M is the BH mass.
Such an approximation should be reliable, because the
thickness of the firewall is negligible with respect to the
size of the BH. Although the energy condition Σ > jΘj is
violated when the shell is only some Planck length
away the horizon, putative quantum-gravity effects
(ignored here) should cure this problem.
This system resembles other objects in the literature,

such as gravastars, aimed at mimicking BH properties
(QNMs of gravastars were computed in Refs. [112,135],
and the overall behavior is consistent with the one we
discuss below for firewalls). These other objects have a
surface but no horizon and were all but ruled out by
observations of the galactic center object, on the basis of the
large luminosities that the existence of a surface would give
rise to [136]. By energy conservation arguments, infalling
accreted matter would release huge amounts of potential
energy which could only be converted into radiation at
infinity; this radiation is, however, not observed. These
arguments rely heavily on conversion of potential energy
into electromagnetic energy and can be circumvented if the
central object is exotic and energy is preferably converted
through other channels, like neutrinos or gravitons. For
firewalls, though, the arguments do not apply due to the
existence of the horizon behind the firewall, which can
absorb essentially all the converted energy. To be more
precise, consider the infall of accreting matter into the
firewall, modeled as a shell, and assume conservatively that
all the potential energy is converted into electromagnetic
radiation, as in Ref. [136]. Assume also that the produced
photons have an isotropic distribution in the frame of an
observer at rest with the shell. It is easy to show that, of all

the photons produced, only a vanishingly small fraction
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M0=r0

p
∼

ffiffiffiffiffiffiffiffiffiffiffiffi
lP=M

p
are able to escape to infinity

[137,138], while all those remaining are absorbed. This
then invalidates the arguments of Ref. [136] when applied
to firewalls.
The analysis of the previous section suggests that, in this

configuration, the ringdown frequencies of the massive BH
would be drastically modified. Indeed, the Schrödinger-like
potential of a Schwarzschild BH—when written in tortoise
coordinates r� ¼ rþ 2M logðr=ð2MÞ − 1Þ—is roughly
symmetric around the light ring at r ∼ 3M [8]. This fact,
together with the double-barrier toy model discussed in
Sec. VA, suggests that the corrections to the QNMs when
r0 → rþ (i.e., when r�0 → −∞ in tortoise coordinates)would
be similar to the case r0 → ∞ discussed above and shown
in the bottom right panel in Fig. 4. Therefore, we expect that,
for any δM, the QNMs would deviate parametrically from
the vacuum case as r0 → rþ. Because r0 is expected to be
only some Planck length away from the horizon, the firewall
proposal provides a natural candidate where very large
corrections to the vacuum QNMs are expected.
Computing the modified ringdown frequencies explicitly

turns out to be extremely challenging, mostly due to the
huge difference in scale between the BH mass M for a
massive BH and the Planck scale. In Fig. 13, we plot the
modified axial fundamental mode for a thin-shell model in
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FIG. 13. Relative corrections to the fundamental axial QNM for
a firewall model using a thin shell with mass δM ¼ 0.01M
located at r0. Top and bottom panels, respectively, refer to the
real and the imaginary part of the frequency as a function of the
shell location in the limit where r0 approaches the horizon (i.e.,
r0 → −∞ in tortoise coordinates). The oscillatory behavior is
similar to that shown in the bottom right panel in Fig. 4. Finite
numerical accuracy prevents us from tracking the modes when
r0=ð2M0Þ−1≪10−6, where much larger corrections are exp-
ected. The modes were computed by using an accurate continued-
fraction method adapted from Ref. [112]. Polar modes and
different values of δM would give qualitatively similar results.
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the limit r0 → 2M0. This figure has to be compared with
the bottom right panel in Fig. 4, which shows the same
corrections in the opposite limit r0 → ∞. In line with
Fig. 4, also in Fig. 13 we observe the same oscillatory
behavior as the distance between the shell and the light ring
(in tortoise coordinates) increases. However, finite numeri-
cal accuracy prevents us from computing the modes when
r0=ð2M0Þ − 1 ≪ 10−6, i.e., in a region where we expect the
same power-law drift as in the bottom panel in Fig. 4.
Nonetheless, in light of our results in Sec. III C, there is no
reason to expect that such parametric deviation does not
occur if the shell is sufficiently close to the horizon, as it is
in the firewall proposal.
From the results of Fig. 4, the correction to the real part

of the frequency is roughly linear in r0 in the large-r0 limit.
Assuming the same behavior occurs in the r�0 → −∞ limit
(in tortoise coordinates) and converting to Schwarzschild
coordinates, we obtain the numerical fit

δR ∼ 2 × 10−2 log

�
r0
2M0

− 1

�
δM

10−2M
; (81)

as r0 → 2M0. Because the firewall is located at a Planck
distance from the horizon, r0 ∼ 2M0 þ lP, we can extrapo-
late the correction

δR ∼ −2
�
1 − 0.01 log

�
106M⊙
M0

��
δM

10−2M
: (82)

Because of the logarithmic dependence, this number is only
mildly sensitive to the BH mass. ForM ∼ 10M⊙, δR would
be only 10% smaller than the estimate above for
M ∼ 106M⊙. Although approximate, our results suggest
that a firewall of proper mass as low as δM ∼ 10−4M would
introduce a correction of the order of a few percent in the
ringdown frequencies of a massive BH. Such corrections
might be observable with advanced GW detectors, provided
the modes are excited to appreciable amplitudes. Now, one
of the main conclusions of Sec. III C is that the modes
of the composite system are excited a light-crossing time
t ∼ log ð r0

2M0
− 1Þ after the main burst of radiation produced

at the light ring. Even for a shell a (coordinate) Planck lP
distance away from the horizon, this is a very small time
interval. Thus, this back-of-the-envelope calculation pre-
dicts that the main splash of radiation, consisting of
ringdown of an isolated BH, is quickly followed by
ringdown in the modes of the composite BH plus firewall
system. In summary, we predict changes in the GW signal

which can be significant if the firewall model is correct; the
actual number depends (linearly) on the total mass of the
firewall shell, which is still a subject of debate [139,140].

F. Parametrized ringdown approach

Finally, we conclude this part by illustrating a powerful
method to study small corrections from the Schwarzschild
ringdown frequencies in a model-independent fashion. The
idea is to use the parametrized metric presented in Sec. II D
and study probe fields in this background.
In Ref. [141], a “master equation” for scalar and

electromagnetic probe perturbations of a generic (slowly
rotating) metric has been derived. In the nonrotating case,
the master equation reads

d2Ψ
dr2�

þ
�
ω2 −A

�
lðlþ 1Þ

r2
þ μ2 þ ð1− s2Þ

�
B0

2r
þBA0

2rA

	��
Ψ

¼ 0; (83)

where s is the spin of the perturbation (s ¼ 0 for scalar
perturbations and s ¼ �1 for vector perturbations with
axial parity), μ is a generic mass term, and we have
introduced a generalized tortoise coordinate r�ðrÞ such
that dr=dr� ¼

ffiffiffiffiffiffiffi
AB

p
.

Inserting the expansion (12) and (13) in Eq. (83), we find
an eigenvalue problem that depends parametrically on the
infinite set of parameters αi and βi. This problem can be
solved with standard methods [8,96] to compute the
eigenfrequencies as functions of the parameters. For
obvious reasons, we dubbed this the “parametrized ring-
down approach.”
This technique will be discussed in detail elsewhere.

Here, as a first example of its effectiveness, we have solved
the parametrized ringdown equation by using direct inte-
gration, in order to compute the corrections to the funda-
mental s ¼ 0, 1 modes. In the small-coupling limit, these
corrections can be written as a linear combination of the
parameters:

δR ¼ δslR;βδβ þ δslR;γδγ þ
XNα

i¼2

δslR;αiαi þ
XNβ

i¼2

δslR;βiβi; (84)

δI ¼ δslI;βδβ þ δslI;γδγ
XNα

i¼2

δslI;αiαi þ
XNβ

i¼2

δslI;βiβi: (85)

The first corrections for different values of s and l are
presented in Table IV and shown in Fig. 14.

TABLE IV. Coefficients of the fits (84) and (85) for the real and imaginary parts of scalar (s ¼ 0) and electromagnetic (s ¼ 1) modes
of the parametrized metric (12) and (13).

ðs;l; nÞ ðδR;β; δI;βÞ ðδR;γ ; δI;γÞ ðδR;α1 ; δI;α1Þ ðδR;α3 ; δI;α3Þ ðδR;α4 ; δI;α4Þ ðδR;β2 ; δI;β2Þ ðδR;β3 ; δI;β3Þ ðδR;β4 ; δI;β4Þ
(0,2,0) (0.10,0.15) (3.7,5.7) (0.22,0.02) ð0.02; 4 × 10−3Þ ð7 × 10−3; 4 × 10−3Þ ð5 × 10−4; 0.05Þ ð10−4; 0.02Þ ð10−4; 6 × 10−3Þ
(0,2,0) (0.10,0.15) (3.8,11) (0.28,0.01) (0.02,0.02) ð7 × 10−3; 7 × 10−3Þ (0.01,0.05) ð4 × 10−3; 0.02Þ ð10−3; 8 × 10−3Þ
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A detection of a ringdown mode to the level of 1% can
constrain the parameter δγ to the level of roughly one part
in 104 and the parameters δβ and α1 to the level of one part
in 103. Remarkably, higher-order coefficients in the expan-
sion (12) and (13) are less constrained, showing that a
weak-field expansion is still meaningful for ringdown tests.
This is due to the fact that the ringdown modes are
governed by the light ring located roughly at r ∼ 3M
[100], so that higher powers of M=r are still mildly
suppressed there. While the putative constraints on δγ
and δβ are less stringent than or comparable to those
currently in place, ringdown tests have the potential to put
very competitive bounds on the coefficients of the higher-
order expansion.
A detailed investigation of this parametrized ringdown

approach and its generalization to spinning geometry is
an interesting extension of our work, which we leave for
future work.

IV. PART II INSPIRALS

A. Executive summary

The inspiral of compact binaries can be affected by
environmental “dirtiness” in a variety of ways, including
the gravitational pull exerted by the matter configuration,
accretion onto the binary’s components, dynamical friction,
and planetary migration. We summarize here the most
important results and conclusions of our study on the
compact-binary inspiral in realistic astrophysical environ-
ments, which are quantified in Tables Vand VI and detailed
below. Our main findings are the following.
(1) Environmental effects can be safely neglected for

most sources of GWs (especially in the case of
space-based detectors such as eLISA). This result is

apparent from Tables V and VI, where we show the
corrections to the periastron shift and GW phase,
respectively, in a variety of environments.

(2) The only exception to the above concerns thin
accretion disks, where accretion, dynamical friction,
planetary migration, and the gravitational pull of the
disk are large enough to spoil parameter estimation
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FIG. 14 (color online). Percentage difference for the fundamental l ¼ 2 scalar and l ¼ 1 electromagnetic QNMs of the parametrized
metric (12) and (13) as a function of various parameters. Each curve corresponds to a single parameter turned on, while the others are set
to zero.

TABLE V. Corrections to the periastron shift of a particle on a
circular orbit with dimensionless radius ~rc ¼ rc=ðGM=c2Þ,
where rc is the (areal) radius of orbit, around a BH. We consider
the corrections due to a cosmological constant, electric charge,
magnetic field, and accretion onto the central BH, as well as the
effects of the gravitational pull (“self-gravity”) of a thick or thin
disk, of DM halos, and of a DM “spike” modeled by a power-law
density profile (168) with α̂ ¼ 7=3. (Other values of α̂ produce
comparable corrections.) Dissipative effects such as GW radia-
tion reaction and hydrodynamic drag are negligible and are not
considered here.

Correction δper=P P

Cosmological constant 10−31 Λ
10−52 m−2 ð M

106M⊙
Þ2ð~rc=10Þ4

Galactic DM halos 10−21 ð M
106M⊙

Þ2 ρDM
103M⊙=pc3

ð~rc=10Þ4
Thick accretion disk 10−16 fEdd

10−4
M

106M⊙
0.1
α ð~rc=10Þ5=2

Accretion 10−8 fEdd
Thin disk [assuming
Eq. (95) and ~rc ¼ 10]

10−8 fEdd7=10
�

M
106M⊙

�
6=5

ð α
0.1Þ−4=5

Charge 10−7 ðq=10−3Þ2
DM distribution
ρ ∼ r−α̂

10−21 ð M
106M⊙

Þ2 ρDM
103M⊙=pc3

×ð~rc=10Þ4−α̂ð R
7×106M

Þα̂
Magnetic field 10−8 ð B

108 GÞ2ð M
106M⊙

Þ2ð~rc=10Þ4
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and possibly detection for EMRIs. The effects men-
tioned above are in fact generally more important than
second-order self-force effects [142] in thin-disk
environments. Furthermore, accretion, dynamical fric-
tion, and planetary migration can even be more
important than GWemission itself at separations larger
than ∼30–40M. On the other hand, all environmental
effects in thick disks are typically subdominant relative
to second-order self-force corrections. Overall, our
results confirm that EMRI detection should not be
significantly affected by environmental effects, be-
cause the majority of events detectable by eLISAwill
likely occur in thick-disk environments. Indeed, as we
show in Sec. IVB 6, the fraction of EMRIs observable
by eLISA and which evolve in thin-disk environments
is at most a few percent.

(3) The effects of dynamical friction from DM halos are
comparable or dominant with respect to the gravi-
tational pull of DM. As a by-product, our analysis
shows that the results of Ref. [143] would be
drastically modified, because they were obtained
by considering self-gravity only and neglecting
dynamical-friction effects.

(4) Detection of the inspiral GW signal can potentially
improve the constraints on the PN parameter β by 2
orders of magnitude, as well as provide novel
constraints for higher-order coefficients of a weak-
field expansion of the metric. This is also discussed
in the context of tests of GR (cf. Sec. V).

A discussion of these issues is presented in Sec. IV B,
whereas specific observables are computed in the remaining
sections.

B. The effects of matter distributions in the two-body
inspiral

In this section, we estimate how accretion, self-gravity,
dynamical friction, and planetary migration affect the GW
signal in a binary inspiral. More specifically, we will
consider both comparable-mass binaries (ν ∼ 1=4) and
EMRIs (ν ≪ 1) and analyze the effects of baryonic matter
(i.e., gas in accretion disks) and DM on these systems,
comparing their magnitude with that of GW emission and
self-force effects [144,145]. The gravitational self-force
acting on a particle in orbit around a large BH introduces
corrections to the observables that, at first order, are ∼OðνÞ
and which include, in particular, the backreaction of the
GW fluxes on the dynamics. Second-order self-force
effects are instead ∼Oðν2Þ. Thus, if the relative corrections
due to environmental effects with respect to the vacuum
case are roughly larger than OðνÞ [Oðν2Þ], such effects
would also be stronger than first- (second-) order self-force
corrections and may have important implications for the
dynamics of the inspiral.
The computation of some observables (periastron shift,

GW dephasing, and changes in the orbital motion) is

detailed in the next sections. In this section, we explicitly
restore the factors G and c for clarity.

1. The effect of accretion onto the binary’s components

It is particularly easy to estimate the effect of accretion
on the two BHs constituting a binary system and, therefore,
on their orbital evolution and GW emission. As in the
previous section, we can parametrize the mass accretion
rate with the (mass) Eddington ratio fEdd and thus write the
change in the BH masses ΔM during a typical space-based
mission’s lifetime Δt ∼ 1 y as

ΔM
M

¼
_MΔt
M

¼ 2.2fEdd × 10−8; (86)

independently of the mass of the BH. This calculation
therefore applies to both comparable-mass binaries and
to EMRIs [i.e., in the latter case Eq. (86) applies both to
the central BH and to the satellite]. A similar order-of-
magnitude calculation applies to the spins of the BHs.
This simple analysis shows that, for fEdd ≳ 10−4 (which
marginally includes also SgrA*), the relative accreted
mass is ΔM=M ≳ 10−12. This suggests that the effects of
accretion might be comparable to or larger than second-
order self-force corrections for a typical EMRI with
M ∼ 4 × 106M⊙ and ν∼10M⊙=M∼2×10−6, while clearly
accretion effects will be completely negligible for
comparable-mass binaries compared to GW emission,
because ΔM=M ≪ OðνÞ ∼ 1=4.

2. Gravitational effect of matter

To estimate the order of magnitude of the effect of matter
on the orbital evolution of binaries, let us note that, because
of the conservation of mass, for a steady-state accretion disk

_M ¼ 2πrHρvr; (87)

where ρ is the density, r the radius, H the height of the disk,
vr the radial velocity, and _M ¼ const the steady-state
accretion rate. Note that this equation must be valid at all
radii r. Also, the radial velocity is related to the speed of
sound vs ∼ ðp=ρÞ1=2 (where p is the pressure) by [40,146]

vr ∼
αvsH
r

; (88)

where α ∼ 0.01–0.1 is the viscosity parameter, and the
height of the disk is given by [40,146]

H ∼
vsr
vK

; (89)

where vK ≈ ðGM=rÞ1=2 is the local Keplerian velocity.
For fEdd ≲ 10−2 or fEdd ≳ 0.2, the disk is geometrically

thick or slim (H ∼ r) and close to the virial temperature, so
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the speed of sound vs is comparable to the Keplerian
velocity, consistently with Eq. (89), and vr ∼ αvK from
Eq. (88). Equation (87), Eq. (4), and _M ¼ fEdd _MEdd then
imply

ρ ∼ 3.4 × 10−6
�
0.1
α

��
106M⊙

M

�
fEdd
~r3=2

kg=m3; (90)

where ~r ¼ r=ðGM=c2Þ.
For geometrically thin disks such as those suitable for

describing systems with 10−2 ≲ fEdd ≲ 0.2, one can solve
the equations describing the disk’s structure exactly in
Newtonian theory and in a steady-state regime [40,146]:

ρ ≈ 169
f11=20Edd

~r15=8

�
1 −

ffiffiffiffiffi
~rin
~r

r �11=20

×

�
0.1
α

�
7=10

�
106M⊙

M

�
7=10

kg=m3; (91)

H
GM=c2

≈ 3 × 10−3f3=20Edd

�
1 −

ffiffiffiffiffi
~rin
~r

r �3=20

×

�
0.1
α

�
1=10

�
106M⊙

M

�
1=10

~r9=8; (92)

where ~rin ∼ 6 is the radius of the inner edge of the disk in
gravitational radii.
The calculation of the Newtonian potential of a thin disk

with arbitrary surface density can be a complicated prob-
lem. However, certain functional forms for the surface
density yield an analytical expression for the Newtonian
potential on the equatorial plane, e.g., the Kusmin-Toomre
model and the exponential disk model used to describe
galactic disks [147]:

ΣðrÞKusmin ¼
Mdisk

2πR2ð1þ ðr=RÞ2Þ3=2 ;

ΦðrÞKusmin ¼ −
GM
r

−
GMdiskffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ R2

p ; (93)

ΣðrÞexp¼
Mdisk

2πR2
e−r=R;

ΦðrÞexp¼−
GM
r

−
GMdisk

2R2
rðI0½y�K1½y�−I1½y�K0½y�Þ; (94)

where Σ and Φ are the surface density and the Newtonian
potential, respectively, r is the distance from the BH along
the disk plane, y ¼ r=ð2RÞ, In and Kn are modified Bessel
functions of the first and second kind, respectively, and

TABLE VI. Correction δφ to the GW phase of a quasicircular EMRI due to various effects (the same as in Table V,
with the addition of some dissipative effects that modify the GW emission.). The coefficients cXðχÞ represent the
terms written between square brackets in Eqs. (161), (163), (166), and (171), respectively, and are functions of the
combination (151). The behavior of the coefficients is shown in Fig. 15. For the “self-gravity” corrections due to a
power-law distribution, we considered α̂ ¼ 7=3. (Other values induce corrections of the same order of magnitude.)
The quantity hρDMi is the volume average of the DM density profile ρðrÞ ¼ ρ0ðR=rÞα̂ between the initial and final
orbital radii of the inspiral. Self-gravity effects of thin-accretion disks are modeled by using a combination of
Kusmin-Toomre and exponential disks discussed below Eq. (95). For these cases, we consider an observation time
of T ¼ 1 y and a final radius rf ¼ 6M. DF and GP stand for “dynamical friction” and “gravitational pull,”
respectively.

Correction jδφj=P P

Planetary migration < 104 Cf. Refs. [46,47].
Thin accretion disks (DF) ≲102 fEddð0.1α Þð ν

10−5
Þ1=2ð M

106M⊙
Þ−0.3 (cf. Sec. IV D 10)

Thin accretion disks (GP) ≲10−3 Cf. Fig. 16
Magnetic field 10−4 ð B

108GÞ2ð
rf
6MÞ9=2ð M

106M⊙
Þ2 10−5

ν
cBðχÞ
2538

Charge 10−2 ð q
10−3

Þ2ð rf
6MÞ3=2 10−5

ν
cqðχÞ
−0.08

Gas accretion onto the central BH 10−2 fEddð M
106M⊙

Þ−5=8ð ν
10−5

Þ−3=8ð τ
1yÞ5=8

Thick accretion disks (DF) 10−9 fEdd
10−4

ð0.1α Þð ν
10−5

Þ0.48ð M
106M⊙

Þ−0.58(cf. Sec. IV D 10)

DM accretion onto central BH 10−8 ð M
106M⊙

Þð hρDMi
103M⊙pc−3

Þð T
1yÞð σv

220km=sÞ−1
Thick accretion disks (GP) 10−11 fEdd

10−4
ð rf
6MÞ4ð M

106M⊙
Þ2 10−5

ν
0.1
α

cα̂¼3=2ðχÞ
0.3

DM distribution (DF) 10−14 ð hρDMi
103M⊙=pc3

Þð ν
10−5

Þ0.65ð M
106M⊙

Þ0.17
DM distribution ρ ∼ r−α̂ (GP) 10−16 ð R

7×106M
Þα̂ hρDMi

103M⊙=pc3
ð rf
6MÞ11=2−α̂ð M

106M⊙
Þ2 10−5

ν
cα̂ðχÞ
0.15

Galactic DM halos 10−16 hρDMi
103M⊙=pc3

ð rf
6MÞ11=2ð M

106M⊙
Þ2 10−5

ν
cΛðχÞ
68

Cosmological constant 10−26 Λ
10−52m−2 ð rf6MÞ11=2ð M

106M⊙
Þ2 10−5

ν
cΛðχÞ
68
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Mdisk and R are two free parameters (respectively, the total
mass—if the disk extends from r ¼ 0 to r → ∞—and its
scale radius). While neither of these models alone can be
tuned to approximate the surface density given by Eqs. (91)
and (92), i.e.,

Σdisk ≈ ρH ∼ 7 × 108
f7=10Edd

~r3=4

�
1 −

ffiffiffiffiffi
~rin
~r

r �7=10

×

�
0.1
α

�
4=5

�
M

106M⊙

�
1=5

kgm−2; (95)

we find that a combination of the two can. Indeed, we
find that the superposition of a Kusmin-Toomre disk
with Mdisk ≈ 63M⊙fEdd7=10½M=ð106M⊙Þ�11=5ðα=0.1Þ−4=5
and R ≈ 1016GM=c2 with an exponential disk with
Mdisk ≈ 1.5M⊙fEdd7=10½M=ð106M⊙Þ�11=5ðα=0.1Þ−4=5 and
R ≈ 74GM=c2 approximates well (for our purposes) the
surface density of a thin disk as given in Eqs. (91) and (92).
We will therefore use this composite model to calculate the
Newtonian potential of a thin accretion disk, and we will
superimpose to it a spherically symmetric potential describ-
ing the BH.
Before venturing into such a detailed calculation, how-

ever, let us estimate the expected magnitude of this effect.
For an EMRI with separation r of a few gravitational radii
[i.e., ~r ∼Oð1Þ], the time needed for the satellite to fall into
the central massive BH is Δt ∼ ðM=msatÞðGM=c3Þ, which
is comparable to or smaller than ∼1 y for M ∼ 106M⊙ and
msat ¼ 1–10M⊙. Therefore, during the lifetime of an
eLISA-like mission, the separation of a typical EMRI
changes by Δ~r ∼Oð1Þ. Let us then calculate the change
ΔM in the mass of the accretion disk contained in a radius r
during the mission lifetime. (At least at lowest order in a
monopolar expansion, the matter at radii larger than the
radius r of the EMRI exerts no force on the satellite.)
Therefore, using the densities given above, we find

ΔM
M

∼
2πρrHΔr

M

∼ 5 × 10−9
�
0.1
α

�
4=5

�
M

106M⊙

�
6=5

× f7=10Edd

�
1 −

ffiffiffiffiffi
~rin
~r

r �7=10

~r1=4Δ~r (96)

for a thin-disk model and

ΔM
M

∼
2πρrHΔr

M

∼ 3.5 × 10−14
�
0.1
α

��
M

106M⊙

�
fEdd ~r1=2Δ~r (97)

for a thick-disk model. Therefore, it is clear that this effect
can be more important than the second-order self-force for
thin disks but is negligible in the thick-disk case even
relative to second-order self-force corrections. Note that
these results, although derived in the extreme-mass-ratio
case, can be extrapolated (at least as orders of magnitude) to
comparable-mass binaries by taking ~r ∼ Δ~r to be the
separation at which such systems enter the eLISA band,
i.e., ~r ∼ Δ~r ∼ 200. It is thus clear that these gravitational
effects are completely negligible for comparable-mass
binaries, since ΔM=M ≪ OðνÞ ∼ 1=4.

3. The effect of dynamical friction

The easiest way to compare the effect of dynamical
friction to that of the self-force is through the changes
induced on the energy of the satellite. The self-force is
known to preserve energy balance and to decrease the
satellite’s energy exactly by the energy carried away by
GWs [148]. The GW energy flux is given, at Newtonian
order, by the quadrupole formula [149]

_EGW ¼ 32

5

G4

c5
ν2
�
M
r

�
5

: (98)

Dynamical friction exerts a drag force in the direction
of motion, and its magnitude is given, at Newtonian
order,10 by

FDF ¼
4πρðGmsatÞ2

v2
I; (99)

where v is the satellite’s velocity relative to the gas (which
we will take, as a rough approximation, to be given by the
Keplerian velocity) and I is given, for a satellite in circular
motion with radius r, by [150]

I ¼

8>><
>>:

0.7706 lnð 1þM
1.0004−0.9185MÞ − 1.4703M; for M < 1.0;

ln ½330ðr=rminÞðM − 0.71Þ5.72M−9.58�; for 1.0 ≤ M < 4.4;
ln ½ðr=rminÞ=ð0.11Mþ 1.65Þ�; for 4.4 ≤ M:

(100)

10See Ref. [45] for the special-relativistic corrections to this formula.
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Here, M≡ v=vs is the Mach number, and rmin is an
unknown fitting parameter which we take to be the capture
impact parameter of the satellite, e.g., for a BH,
rmin ∼ 2Gmsat½1þ ðv=cÞ2�=v2. Our results show a very
mild dependence on the exact value of rmin.
The energy lost by the satellite because of dynamical

friction is therefore

_EDF ¼ FDFvK ∼ 4πρ
ðGmsatÞ2

vK
IK̄; (101)

where K̄ is the fraction of time the satellite spends inside
the accretion disk (e.g., K̄ ¼ 1 for orbit on the equatorial
plane, and K̄ ∼H=r for more generic orbits), while I is
given by Eq. (100) withM ∼ vK=vs ∼ r=H ≫ 1 in the case
of a thin disk or with M ∼ vK=vs ∼ r=H ∼ 1 for thick
disks. Using the density estimates above, we obtain

_EDF

_EGW

∼ 5 × 10−7f11=20Edd

�
M

106M⊙

�
13=10

×

�
1 −

ffiffiffiffiffi
~rin
~r

r �11=20�
0.1
α

�
7=10

~r29=8IK̄ (102)

for thin disks and

_EDF

_EGW

∼ 10−14fEdd

�
M

106M⊙

��
0.1
α

�
~r4IK̄ (103)

for thick disks. This shows, in agreement with the results of
Ref. [42], that in thin disks dynamical friction may be as
important as GW emission (i.e., as important as the first-
order gravitational self-force) in EMRIs at ~r≳ 40 but is
subdominant compared to it at smaller separations, which
are the most relevant for eLISA. Nevertheless, the con-
sequent dephasing may have an impact on GW detections;
cf. Sec. IV D 10.
If one considers the second-order self-force, dynamical

friction clearly dominates over it for EMRIs in thin disks,
essentially at all separations. However, dynamical friction
is always negligible relative to the second-order self-force
for thick disks at all separations ~r≲ 800.
We stress that our results can be extrapolated (at least as

orders of magnitude) to comparable-mass binaries by
taking ν ∼ 1=4 and replacing M → MT . Therefore, for
these systems the effect of dynamical friction is completely
negligible compared to GW emission in the case of thick
disks, because, at separations inside the eLISA band (i.e.,
~r≲ 200), _EDF= _EGW ≪ 1. In the case of thin disks, instead,
dynamical friction has a magnitude comparable to GW
emission in the early stages of the inspiral but becomes
smaller at separations ~r≲ 60–70 (but see Sec. IV D 10).
However, it is likely that any thin-disk structure would be
destroyed by a massive BH binary. Also, in any case, the
inspiral would probably not happen inside the thin disk,

since the massive BH’s size would be typically larger than
the disk’s height H, thus resulting in K̄ ∼ 0 in Eq. (102).
Nevertheless, we note that the thin-disk estimates above
can be useful to gauge the order of magnitude of the effect
of the circumbinary disks that are believed to form around
massive BH binaries in gas-rich galactic mergers [151].
Using the results above, in Secs. IV D 9 and IV D 10, we
will estimate the GW dephasing introduced by dynamical
friction more precisely and compare it to that due to
accretion and self-gravity effects.

4. The effect of planetary migration

The physical mechanism behind dynamical friction is the
gravitational pull exerted on the satellite by the density
perturbations (the “wake”) excited in the gaseous medium
by the satellite itself. Dynamical friction, however, neglects
the effect of the differential motion of the various annuli of
the accretion disk. More specifically, it does not account
for the fact that the part of the wake that lies at larger radii
than the satellite lags behind it, while the part that lies at
smaller radii trails the satellite. (This is because, at least for
quasi-Keplerian disks, the rotational velocity is a decreas-
ing function of the radius.) As a result, the wake in the
region “exterior” to the satellite’s orbit will tend to reduce
the orbit’s angular momentum—thus causing the satellite to
sink—while the “inner” part of the wake will tend to
increase the orbit’s angular momentum and stall the infall
of the satellite. This effect is known as “planetary migra-
tion,” and whether this will cause the satellite to migrate
inwards or outwards depends on the detailed balance
between the aforementioned effects and requires quite
technical calculations (see, e.g., Refs. [152,153] for a
review). In particular, under appropriate conditions the
satellite can create a gap in the disk. Namely, this happens if
the Hill sphere (or Roche radius) of the satellite becomes
comparable to the height of the disk, i.e. [153],�

msat

3M

�
1=3

r≳H; (104)

and if tidal torques remove gas from the gap faster than
viscosity can refill it, i.e. [153],

msat

M
≳ α1=2

�
vs
vK

�
2

: (105)

If such a gap forms, the process is dubbed “type-II”
migration; i.e., the satellite moves inwards on the disk’s
viscous time scale and loses angular momentum with rate
[46,47,154]

_Lmigr II ≈msat

�
4πr2Σ
msat

�
3=8 vKvr

2
; (106)

where Σ ¼ Hρ is the surface density of the disk. If instead a
gap is not formed, this process goes under the name of
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“type-I” planetary migration, and the change in the angular
momentum of the satellite is [155]

_Lmigr I ≈�0.65

�
msat

M

�
2
�
vK
vs

�
2

ΣðvKrÞ2; (107)

where the � sign reflects the stochastic nature of the
process in a turbulent disk. Clearly, in the case of thick
disks only type-I migration can occur, while in thin disks
both type-I and type-II migration can take place.11 Note
that, for AGN thin accretion disks, EMRIs are expected to
open gaps at large separations and close them as the
satellite gets closer to the massive BH. This is the opposite
behavior as in protoplanetary disks, and it is due to the fact
that radiation pressure makes the height H of AGN disks
roughly constant [47].
Using the density estimates for thin and thick disks given

above and the fact that the loss of angular momentum
through GWs is _LGW ¼ _EGW=Ωϕ, we find

� _Lmigr I

_LGW

�
thin

¼ 10−5f2=5Edd

�
M

106M⊙

�
7=5

×

�
1 −

ffiffiffiffiffi
~rin
~r

r �2=5� α

0.1

�
−3=5

~r7=2; (108)

� _Lmigr II

_LGW

�
thin

¼ 2 × 10−4f9=16Edd

�
M

106M⊙

�
1=4

×

�
1 −

ffiffiffiffiffi
~rin
~r

r �−7=16� α

0.1

�
1=2

×

�
ν

10−5

�
−11=8

~r103=32; (109)

� _Lmigr I

_LGW

�
thick

¼ 6 × 10−16fEdd

�
M

106M⊙

��
0.1
α

�
~r4: (110)

Therefore, for thin-disk accretion the effect of planetary
migration can even be comparable to the first-order self-
force in EMRIs (at least for satellites embedded in the disk).
More specifically, using reasonable values for EMRIs, e.g.,
M ∼ 106M⊙, ν ∼ 10−5, fEdd ∼ 0.1, ~rin ∼ 6, and α ∼ 0.1, in
the equations above, one finds that type-I and type-II
migration dominates over the GW fluxes, respectively,
for ~r≳ 35 and ~r≳ 18, and they are larger than second-
order self-force effects essentially at all separations. This is
in full agreement with the results of Refs. [46,47], where it
was first noted that the effect of planetary migration in
EMRIs embedded in thin disks can be comparable to that of
the GW fluxes.

For thick disks, instead, Eq. (110) resembles very much
Eq. (103) for dynamical friction, so as in that case planetary
migration is negligible up to separations of several thou-
sand gravitational radii, even relative to the second-order
self-force in EMRIs. Again, this can be verified by using
reasonable values M ∼ 106M⊙, ν ∼ 10−5, α ∼ 0.1,
and fEdd ∼ 10−4.
As in the dynamical-friction case, Eqs. (108)–(110) can

be extrapolated (as orders of magnitude) to massive BH
binaries by M → MT and ν ∼ 1=4 and considering sepa-
rations ~r≲ 200 at which these systems emit in the eLISA
band. As such, it is clear that planetary-migration effects
are completely negligible relative to GW emission in the
thick-disk case, while thin disks are probably destroyed by
massive BH binaries, for the same reasons that we
mentioned in the dynamical friction case. However, as
already mentioned, one can interpret the thin disk as a
model for the circumbinary disks that are expected to form
around massive BH binaries in gas-rich environments
[151]. In this latter case, the equations above show that
the binary’s inspiral may be driven by type-I planetary
migration for ~r≳ 35, while type-II migration is important
only before the binary enters the eLISA band.

5. Gravitational interaction with stars

The interaction of BH binaries (both comparable-mass
and extreme-mass-ratio ones) with stars typically has
negligible effects on the waveforms. This is because the
binary’s separation when it enters the eLISA band
(∼100–200 gravitational radii for a comparable-mass
binary, and even smaller values for EMRIs) is tiny
compared to the average distance between stars (even in
the high-density environment of galactic centers). More
precisely, the typical time scale of two-body interactions in
galactic centers is ∼109 y; hence, a scattering event during
the final year-long inspiral is extremely unlikely.
Equivalently, the typical time scale of two-body inter-
actions becomes comparable to the GW-emission time
scale only at a separation of ∼0.01 pc, much larger than
the radius at which the binary enters the eLISA band. Still,
Ref. [156] showed that, for a fraction (perhaps a few
percent) of the EMRIs detectable with eLISA, a star may be
close enough to the binary system to significantly alter the
binary’s orbital evolution and GWemission. The fraction of
events for which such an effect might happen, however,
depends strongly on the presence of a stellar cusp around
the massive BH, which is still debated even in the case of
our own Galaxy [157] (where, for instance, proper motion
data seem to point at a flat or declining stellar density
toward SgrA* [158]).
As a side note, gravitational effects that depend on

scales larger than those considered here may become
sensitive to the galactic stellar content. This is the case,
for instance, for GW detection with pulsar timing arrays,
which probe smaller frequencies and therefore larger

11In the context of planetary dynamics, a third type of
migration occurs, but this type-III migration does not take place
in the case of EMRIs [46,47].
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separations. A recent study does indeed suggest that stellar
environments may affect detection in those setups [159].
Finally, we also stress that interaction of an EMRI with a

nearby massive BH (to within a few tenths of a parsec)
might also produce a detectable impact on eLISA wave-
forms [160]. The fraction of EMRIs subject to this effect is
very uncertain but may be of the order of a few percent (see
the discussion in Ref. [160]).

6. Prospects for eLISA-like missions

Future space-based detectors such as eLISAwill observe
EMRIs only at redshifts z≲ 0.7 [3,161]. In the local
universe, however, the fraction of massive BHs accreting
at high Eddington ratios is expected to be very small, as
galactic nuclei are typically quiescent rather than active.
More precisely, Ref. [162] analyzes the distribution of
Eddington ratios of BHs in local Sloan Digital Sky Survey
galaxies and finds that only a few percent of the BHs with
masses ∼3 × 106M⊙ are accreting with fLEdd ≈ fEdd ≳ 10−2

(see Fig. 3 in Ref. [162]). Therefore, only a few percent of
all EMRI events detectable by eLISA are expected to
happen in thin-disk environments. Qualitatively similar
conclusions can be drawn from Ref. [163] (Fig. 7), which
shows that at z ¼ 1 only a fraction≲10−2 of BHs with mass
M ≲ 109 is in a quasar phase.
Since eLISA is expected to detect between five and 50

EMRI events per year [3], it is clear that detecting an EMRI
event in a thin-disk environment will be rather unlikely.
Therefore, for the astrophysical sources of interest for
eLISA, matter effects should definitively be negligible
compared to first-order self-force effects and in most cases
also to second-order ones, with perhaps the exception of
accretion, which as derived above can be comparable to
second-order self-force effects if fEdd ≳ 10−4.
Because the quasar luminosity increases from z ¼ 0 to

its peak at z ∼ 2 (see, e.g., Ref. [164]), one generally
expects to have a larger fraction of BHs accreting at high
Eddington ratios at higher redshifts, but making quantita-
tive statements is more difficult as high-redshift samples
will intrinsically be biased in favor of the most luminous
objects. More importantly, what matters in order to attempt
to estimate the effects of gas on eLISA sources at high
redshift is not actually the Eddington ratio of isolated
galactic nuclei but rather the accretion properties of
massive BHs in binary systems. In fact, eLISA will be
able to detect the inspiral, merger, and ringdown signal of
such systems up to high redshifts z ∼ 10 and beyond, with
expected event rates between 10 and 100 per year [3]. The
accretion properties of binary systems are even more
difficult to observe, as there are no direct electromagnetic
observations of massive BH binaries (with the exception of
dual AGNs, which are, however, at kiloparsec separations,
much larger than the subparsec separations of eLISA
sources; see, e.g., Ref. [165] for a recent search of dual-
AGN candidates and references therein for previously

discovered candidates). Furthermore, the accretion proper-
ties of binaries are probably only weakly correlated to those
of isolated galactic nuclei, because major galactic mergers
(i.e., those between comparable-mass galaxies) are thought
to trigger bursts of star formation and to feed gas to the
binary BH systems that form after the two galaxies merge.
Some indications about accretion in binaries, however,
come from the models of galaxy formation that are used,
for instance, to estimate massive BH merger event rates for
eLISA. Reference [31] presented a semianalytical galaxy
formation model tracking the evolution of the baryonic
component of galaxies (stars and gas in spheroids and
disks), as well as that of massive BHs, along dark-matter
merger trees. This model was validated by comparing its
predictions to galactic and quasar observations in the local
z ¼ 0 universe and at higher redshifts z≲ 7. Because it
allows one to track the coevolution between the massive
BHs and their galactic hosts, this model was used to
estimate how many BH mergers happen in gas-rich or in
gas-poor scenarios, finding that the fraction of gas-rich
mergers generally tends to decrease with the redshift12 but
remains generally non-negligible. In particular, the pre-
dicted fraction of BH mergers happening in gas-rich
environments is shown in Figs. 10 and 11 of Ref. [31].
Clearly, while the exact fraction depends on the model’s
details (e.g., on the choice of the seeds of the BH
population at high redshifts), it is safe to conclude that
the thin-disk estimates worked out in the previous
sections may apply to a sizable fraction of the massive
BH inspirals, mergers, and ringdown that will be detectable
with eLISA.
Thus, the results derived in the previous sections suggest

that the effect of matter on binaries of massive BHs can be
safely ignored for a detection with eLISA. A possible
exception is given by inspiralling binaries at separations
≳60–70 gravitational radii in a thin-disk (i.e., gas-rich)
environment. In these systems the effect of dynamical
friction and planetary migration may be comparable to or
even larger than GW emission, while the GW signal may
still be strong enough to be detected with eLISA.

7. The effects of dark matter

Let us first consider the effect of DM for a binary of
massive BHs with comparable masses (i.e., ν ∼ 1=4) and
total mass MT during the inspiral. We recall that these are
the systems where we expect QNMs to be excited during
mergers. To obtain the order of magnitude of the purely
gravitational (i.e., self-gravity) effect of DM, we can then
assume a roughly constant DM density given by (10) and
calculate the change ΔM in the mass contained between
the two BHs during eLISA’s lifetime, i.e., from the

12This can be understood by the fact that galactic nuclei get
drier and drier as gas is consumed by star formation, accretion,
and AGN feedback.
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separation ~r ∼ 200 at which the binary enters the eLISA
band until the merger-ringdown. One then obtains

ΔM
MT

∼ 5 × 10−19
�

MT

106M⊙

�
2
�

~r
100

�
3
�

ρDM
103M⊙ pc−3

�
;

(111)

which is clearly negligible for all practical purposes.
The nature of DM accretion onto BHs can be assessed as

follows. If the horizon radius of the BH, rþ ∼ 2GM=c2, is
much smaller than the mean free path l, then DM can be
considered as effectively collisionless. On the other hand, if
rþ ≳ l, cohesion forces and matter compressibility have to
be taken into account [166], and accretion is described by
the Bondi-Hoyle formula. Considering that l ¼ ðnσDMÞ−1,
where n is the particle density and σDM is the scattering
cross section, we find that the condition for collisionless
behavior reads

σDM=ð10−40 cm2Þ
mDM=GeV

≪ 9 × 1014
�
109M⊙ pc−3

ρDM

��
106M⊙

M

�
;

(112)

where mDM is the mass of the DM particle and we have
normalized the result for typical values of the ratio
σDM=mDM. Note that we have considered a very large
DM density, close to the annihilation limit discussed in
Sec. II C. Even in the most favorable scenarios for Bondi-
Hoyle accretion (large DM density and large accreting
object), it is clear that DM can be treated as a collisionless
fluid, unless either the DM cross section is ridiculously
large or the mass of DM particles is very small. An example
of the latter situation are models of ultralight DM fields,
like axions with masses of the order of eVor smaller [167].
The effect of Bondi-Hoyle accretion of these particles onto
a BH was studied in Ref. [43].
Accretion of DM onto BHs is then regulated by the

collisionless accretion rate for nonrelativistic particles, i.e.,
_M ¼ 16πðGMÞ2ρDM=ðvDMc2Þ [166]. Here, vDM is the
typical velocity of the DM particles relative to the BH,
i.e., vDM ¼ maxðv; σvÞ, where σv ¼

ffiffiffiffiffiffiffiffiffi
hv2i

p
is the velocity

dispersion of the DM particles and v is the BH velocity in
the DM halo reference frame. The changeΔM in each BH’s
mass in a time T is therefore

ΔM
M

∼ 4 × 10−16
�

M
106M⊙

��
ρDM

103M⊙ pc−3

�

×

�
T
1 y

��
~r

100

�
1=2

; (113)

where we have used v ∼ c=~r1=2 ≫ σv. Thus, this effect is
also negligible.
Let us now turn to dynamical friction. The latter

produces a drag force FDF ∼ ð4πρDMν2G2M2
T=v

2Þ ×
lnðr=rminÞ (r being the orbit’s radius). Comparing the

energy lost by the BH due to this drag, _EDF ∼ FDFv, to
the energy lost to GWs in the quadrupolar approximation,
_EGW ≈ ð32=5Þðc5=GÞðν2=~r5Þ, one finds

_EDF

_EGW

∼ 2 × 10−14
�

MT

106M⊙

�
2

×

�
ρDM

103M⊙ pc−3

��
~r

100

�
11=2

ln

�
r

rmin

�
; (114)

where we have used again v ∼ c=~r1=2. As can be seen,
dynamical friction also turns out to be negligible for
comparable-mass binaries.
The situation for EMRIs is slightly more complicated.

For these systems, the estimates given by Eqs. (111)–(114)
still describe the purely gravitational effect of DM as well
as the effect of accretion and dynamical friction on the
satellite, provided that M is interpreted as the mass of
the satellite in Eq. (113), while MT is still the total mass of
the binary in the other equations. As can be seen, these
effects are negligible relative to both the first- and second-
order self-force. The effect of accretion onto the more
massive BH (which is almost at rest in the DM halo’s
frame) is also easily calculated by using again the colli-
sionless accretion rate for nonrelativistic particles:

ΔM
M

∼ 5 × 10−14
�

M
106M⊙

�

×

�
ρDM

103M⊙ pc−3

��
T
1 y

��
σv

220 km=s

�
−1
; (115)

where we have used the fact that σv ≳ v. Taking σv to be of
the order of the DM halo’s virial velocity (e.g., σv ∼
220 km=s for the Milky Way), one gets an effect which
is completely negligible relative to both the first- and
second-order self-force.
As mentioned in Sec. II C, EMRIs in satellite galaxies

might possibly live in environments with much higher DM
density, up to a plateau density of ρ ∼ 109–1012M⊙=pc3.
However, even inserting this (probably unrealistically
large) DM density in Eqs. (111)–(115), one obtains that
the DM effects on the waveforms may be at most barely
comparable to first-order self-force effects.

8. Interference and resonant effects

We conclude this section by discussing two further
effects that were not taken into account by our analysis.
The first one is the interference in the GW radiation emitted
by an extended distribution of matter around a BH. This
effect was studied in detail by Saijo and Nakamura
[168,169] and by Sotani and Saijo [170] considering
noninteracting (dust) thin disks, obtained as superpositions
of noninteracting thin rings. They find peculiar
“resonances” in the energy spectrum, which carry infor-
mation about the disk’s parameters, such as the location
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[170]. Depending on the location of the disk, a low-
frequency peak appears in the spectrum, and the corre-
sponding waveform can be detectable by a typical space-
based detector with sensitivity higher than about 10−22 in
the millihertz band. It would be interesting to extend this
kind of study to the case of a binary inspiral.
In addition to this effect, in an EMRI one might also

expect to excite the characteristic frequencies of the matter
distribution. Such an analysis was not included in
Refs. [168–170], because the disk was made of noninteract-
ing point particles. However, in more realistic situations the
polar modes of the disk will be coupled to the gravitational
perturbations and can be excited during the inspiral. This
situation is akin to the case of the fluid modes in relativistic
neutron stars [171], which can be excited by a point particle
(see, e.g., [172]). Although such a detailed analysis is
beyond the scope of our work, we anticipate that fluid
modes of disks, shells, and other localized distributions will
be generically excited during the inspiral and would corre-
spond to sharp resonances in the energy flux, in addition to
the new class of modes of the composite BH-matter system
that were discussed in Sec. III. The characteristic frequencies
of extended matter distributions are smaller than the gravi-
tational BH modes, so that they can be excited also by
particles in quasicircular orbits outside the ISCO. A detailed
analysis of this process is left for future work.

C. Orbital changes

Given the estimates above, it is important to model more
precisely the effects of matter around compact binaries. In
this section, we start this analysis in the limit of extreme-
mass ratios, by computing the periastron precession and the
change in the ISCO frequencies introduced by environ-
mental effect. The next section is instead devoted to the
study of GW observables.

1. Periastron shift

Periastron precession is caused by a mismatch between
radial Ωr and azimuthal Ωϕ oscillation frequencies and can
be computed via

δϕ ¼ 2π

�
Ωϕ

Ωr
− 1

�
: (116)

For the generic spherically symmetric line element (11), one
can express the motion of timelike particles in the form

_r2 ¼ Vr ¼
BðrÞ
AðrÞ

�
E2 − AðrÞ

�
1þ L2

r2

��
; (117)

where dots stand for derivatives with respect to proper time
and E and L are (conserved) energy and angular momentum
parameters, respectively. If we focus on nearly circular
orbits, we obtain

Ωr ¼
1

_t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−V 00

r=2
p

; (118)

Ωϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0=ð2rÞ

p
; (119)

to be evaluated at the circular orbit radius rc and
where _t ¼ E=AðrÞ.
Although the solution (8) for a magnetized BH space-

time is not spherically symmetric, it is easy to show that
geodesic motion is still planar at θ ¼ π=2 and that the radial
potential reads

_r2 ¼ Vr ¼
E2

K4
−
�
1 −

2M
r

��
1

K2
þ L2

r2

�
; (120)

where K is to be evaluated on the orbital plane: K ¼
1þ B2r2=4.
Inserting the expressions above into Eq. (116), we obtain

[173]

δϕ ¼ 2π

� ffiffiffiffiffiffiffiffiffi
A=B

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3A − 2rA0 þ rA00A=A0p − 1

�
: (121)

Substituting A ¼ B ¼ 1 − 2M=r in the formula above, we
get the leading-order GR prediction

δϕ ¼ 6πM
rc

þO
�
M
rc

�
2

: (122)

Let us now discuss the corrections to the periastron
shift induced by BH dirtiness and by other effects. For
simplicity, we focus on the large rc limit, but the general
formula (121) is valid also in the strong-curvature region.
When rc ≫ M, we parametrize the deviation from
the isolated Schwarzschild case by a parameter δper
defined by

δϕ ¼ 6πM
rc

ð1þ δperÞ þO
�
M
rc

�
2

: (123)

Substituting the parametrized metric (12) and (13) into
Eq. (121) and using the conditions (18), we get, at large
distances,

δϕ ¼ 2πMð2ð1þ γÞ − βÞ
rc

�
1þMðβð8þ βÞ − 4ð5þ 4γÞ − α1ð12þ 6β − 4γ þ 3α1ð4þ α1ÞÞ þ 3α3 − β2Þ

2ðβ − 2ð1þ γÞÞrc

�
þO

�
M
rc

�
3

:

(124)
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Assuming β ¼ 1þ δβ and γ ¼ 1þ δγ then, to first order in
the corrections δβ, δγ, α1, α3, and β2, the change in the
periastron shift reads

δper ¼
9M
2rc

þ 2δγ

3
−
δβ

3
þ M
6rc

ð16δγ − 10δβ þ 14α1

− 3α3 þ β2Þ þO
�
M
rc

�
2

; (125)

where the first term is the 2PN GR correction. Note
that higher-order terms in the weak-field expansion (12)
and (13) do not contribute at this order. The expression
above is the most general correction for the periastron
shift in a spherically symmetric, deformed Schwarzschild
background.
In Table V, we present the corrections to the periastron

shift in a variety of contexts. The first entries were
computed as particular cases of the previous analysis.
The estimate for the corrections due to a magnetic field
is slightly more involved, because it was performed by
using the Ernst solution (8). That solution is not spherically
symmetric, but geodesic motion is planar, and we obtain,
for small magnetic fields and large orbital distance,

δper ¼
B2r4c
4M2

: (126)

Finally, let us discuss the periastron shift induced by the
presence of an accretion disk. To keep the analysis simple,
we focus on Newtonian disks. We note that in Newtonian
theory the periastron shift is expressed simply in terms of
the Newtonian potential ΦðrÞ by

δϕ ¼ 2π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ0

3Φ0 þ rcΦ00

s
− 1

�
: (127)

By applying the formalism above to the two Newtonian
models described in Eqs. (93) and (94), we obtain

δKusmin
per ¼ −

Mdiskr4cR2

2M2ðr2c þ R2Þ5=2 ; (128)

δexpper ¼ 4MdiskRy4c
3πM2

fI1ðycÞ½K1ðycÞ − 2ycK0ðycÞ�
þ I0ðycÞ½2ycK1ðycÞ − 3K0ðycÞ�g; (129)

where yc ¼ rc=ð2RÞ and we recall that In and Kn are
modified Bessel functions of the first and second kind,
respectively.13 However, as we previously discussed, to
model the effects of a realistic thin disk, we use a

superposition of the two Newtonian models of Eqs. (93)
and (94), with parameters given below Eq. (95). Plugging
this superposition into Eq. (127), we obtain, in the
Mdisk ≪ M limit,

δper ¼ 6 × 10−9fEdd7=10
�

M
106M⊙

�
6=5

�
α

0.1

�
−4=5

; (130)

where we assumed rc ≈ 10M. This estimate is also pre-
sented in Table V. A more comprehensive list of Newtonian
disk models can be found in Ref. [147], the periastron
precession for some of them and their relativistic counter-
parts is presented in Ref. [174], and they confirm our
overall conclusions.
Finally, for the DM profile (168), we obtain

δper ¼
2π

3
ρ0M2

�
R
M

�
α̂

~rc4−α̂: (131)

These results are summarized in Table V. Notice that
the equation above applies also to the case of thick
disks when α̂ ¼ 3=2, R ¼ M, and ρ0 ¼ 3.4×
10−6fEddð0.1α Þð10

6M⊙
M Þ kg=m3, as can be checked by compar-

ing the density profile of thick disks, Eq. (90), with the
profile in Eq. (168).
Notice that in the absence of dirtiness, the only extra

contribution to the “geodesic” precession is due to self-
force effects, which scale as δSFper ∼ a1νþ a2ν2, with ν ∼
10−5 the mass ratio. The first term comes from first-order
self-force calculations; the second would require second-
order self-force calculations [175–177]. Most profiles in
Table V yield contributions larger than second-order self-
force, but they are typically smaller than first-order self-
force corrections. For example, even the most optimistic
scenario which considers self-gravity of thin disks gives
corrections which are 3 orders of magnitude smaller than
first-order self-force effects. As discussed in Sec. IV B 6,
EMRIs detectable by eLISA are expected to be surrounded
by thick disks, whose self-gravity is even smaller than the
estimates above. On the other hand, as mentioned in
Secs. IV B 3 and IV B 4 and as discussed in detail in
Sec. IV D below, the corrections to the GW phase due to
dissipative effects such as dynamical friction and planetary
migration can be larger than first-order self-force correc-
tions in thin disks and should be taken into account to
generate accurate templates.

2. ISCO changes

The presence of matter surrounding massive BHs would
also affect other geodesic quantities, like the ISCO fre-
quency and location. The deviations introduced by a ring
distribution localized outside the ISCO of a Schwarzschild
BH were computed in Refs. [118,119] and found to be

13In the R=r ≪ 1 limit, these equations reduce to
δper ¼ ð1; 3ÞMdiskR2

2M2rc
, for the two models, respectively.
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δΩISCO

ΩISCO
≲ 2 × 10−4

δM
10−3M

: (132)

Therefore, a thin ring of mass δM ∼ 10−3M would affect
the ISCO frequency to the level of ∼0.01%.
Furthermore, by using our previous analysis, it is

straightforward to compute the corrections introduced by
the presence of charges, magnetic fields, and a cosmologi-
cal constant. Imposing V ¼ V 0 ¼ V 00 ¼ 0 in Eqs. (117) and
(120), we obtain

δΩISCO

ΩISCO
¼ 7

24
q2 þ 279B2M2 − 396ΛM2; (133)

to leading order in the corrections. Likewise, the correction
due to the parametrized metric (12) and (13) for the first
nine terms reads

δΩISCO

ΩISCO
¼ 5δβ

36
−
5δγ

36
−
4α1
9

þ 19α3
432

þ 41α4
2592

þ 71α5
15552

þ 109α6
93312

þ 155α7
559872

þ 209α8
3359232

þ � � � : (134)

Note that this ISCO shift does not depend on the coef-
ficients βi in Eq. (13) (because circular motion is not
affected by the grr component of the metric) and that the
coefficients of the αi terms decrease as i increases; i.e.,
higher-order terms (denoted with � � �) are again suppressed.
This hierarchy is likely due to the fact that in Schwarzschild
coordinates M=rISCO ¼ 1=6 < 1. Indeed, we expect all
corrections to be comparable for a nearly extremal BH
(for which rISCO ∼M).
Finally, let us compare these corrections with those

introduced by self-force effects. Self-force introduces a
correction to the ISCO frequency that, at leading order in
the mass ratio ν, reads δΩISCO=ΩISCO ∼ 0.487ν [178,179].
By comparing to Eq. (132), a ring of mass

δM
M

≳ 2 × 10−5
ν

10−5
(135)

would affect the ISCO frequency more than self-force
effects of an object of mass νM.
Furthermore, by comparing to the first term in Eq. (133),

we obtain that

q≳ 4 × 10−3
�

ν

10−5

�
1=2

; (136)

in order for electric-charge effects to be larger than those
due to the self-force. Similar lower bounds can be derived
for the effects due to magnetic fields and a cosmological
constant. Likewise, for the dominant corrections of the
parametrized metric (12) and (13), we obtain

δβ ≳ 4 × 10−5
ν

10−5
; (137)

δγ ≳ 4 × 10−5
ν

10−5
; (138)

α1 ≳ 10−5
ν

10−5
: (139)

This analysis shows that a precise measurement of the
ISCO frequency might strongly constrain deviations from
the Schwarzschild vacuum geometry. Such corrections can
be competitive with self-force corrections if the parameters
are larger than the estimates above. Extending our general
treatment to the rotating case is therefore important to
disentangle spin effects from environmental corrections.

D. Gravitational waves
from dirty EMRIs

In this section, we study the effects of matter on EMRIs.
To lowest order, we consider a point particle of mass νM in
quasicircular orbit around a supermassive object of mass
M, and we compute the GW dephasing associated to
environmental effects and the corresponding gravitational
waveforms in the stationary phase approximation (see, e.g.,
Chap. 4 in Ref. [180]).
In the adiabatic approximation, the motion in the radial

direction is governed by dissipative effects only. For a
generic spherically symmetric spacetime (11), the orbital
energy for quasicircular timelike geodesics reads

E ¼
ffiffiffi
2

p
νMAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2A − rA0p : (140)

Also, in the presence of matter the emission of GWs is
governed by the GR quadrupole formula

_EGW ¼ 32

5
ν2M2r4Ω6

ϕ; (141)

which is equivalent to Eq. (98) where Ωϕ is defined as in
Eq. (119). Differentiating Eq. (140) with respect to time
and using the balance law _E ¼ − _EGW, one gets the
evolution equation for the orbital radius

_r ¼ −
4

ffiffiffi
2

p
νMrA03ð2A − rA0Þ3=2

5½Að3A0 þ rA00Þ� − 2rA02 : (142)

Note that this equation depends only on the metric
coefficient A and not on B. In the Newtonian limit
A ¼ 1þ 2Φ ∼ 1, we get

_r ¼ −
64νMrΦ03

15Φ0 þ 5rΦ00 : (143)
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This equation can be solved for rðtÞ, and, using Eq. (119),
one also obtains the frequency Ωϕ as a function of time.
Once the frequency evolution is known, the GW phase

simply reads

φðtÞ ¼ 2

Z
t
Ωϕðt0Þdt0: (144)

At the Newtonian level, it is possible to obtain analytical
templates of the waveforms in the Fourier domain.
Neglecting dissipation, r and Ωϕ are constant, and the
Newtonian waveforms simply read

hþðtÞ ¼
r2νMω2

GW

D

�
1þ cos2ι

2

�
cosðωGWtÞ; (145)

h×ðtÞ ¼
r2νMω2

GW

D
cos ι sinðωGWtÞ; (146)

where ωGW ¼ 2Ωϕ, D is the distance to the source, and ι is
the viewing angle. Then, dissipative effects can be included
by replacing the constant parameters ωGW and r by ωGWðtÞ
and rðtÞ, respectively, where the secular time evolution is
governed by the GW emission [180].

1. Warm-up: Vacuum

In order to illustrate the computation, let us review the
standard results to lowest order in the case of isolated
binaries. If ΦðrÞ ¼ −M=r, then Eq. (143) can be solved for
rðtÞ as

rðtÞ ¼ r0ð1 − t=tcÞ1=4; (147)

where tc ¼ 5r40=ð256νM3Þ. Consequently, the orbital
frequency reads

Ωϕ ¼ 1

43=2M

�
ν

5M
ðtc − tÞ

�
−3=8

: (148)

Note that ΩϕðtcÞ → ∞ and tc is commonly referred to as
coalescence time. Equivalently, one can solve the exact
equations (142) and (119) and expand them to lowest order.
The GR phase reads

φGR ¼−
2

ν

�
ν

5M
ðtc− tÞ

�
5=8

∼−2.3×106 rads

�
10−6

ν

�
3=8

�
106M⊙

M

�
5=8

�
tc− t
y

�
5=8

:

(149)

It is probably more useful to express the phase in terms
of the final orbital radius rf and the observation time T. In
order to do so, we write Eq. (144) as

Δφ ¼ 2

Z
rf

ri

dr
Ωϕ

_r
¼ 1

16ν

��
ri
M

�
5=2

−
�
rf
M

�
5=2

�

¼ 1

16ν

�
rf
M

�
5=2

ðχ5=8 − 1Þ; (150)

where in the last step we have expressed ri in terms of χ,
which is defined as

χ ¼ 1þ 256M3Tν
5r4f

∼ 1þ 0.25

�
M
rf

�
4 T
y

ν

10−6
106M⊙

M
:

(151)

Note that, in a significant region of the parameter space
(namely, for large central mass, small mass ratio, or large
final radius rf), the dimensionless quantity χ is close to 1.
In this region, we may expand our final results in the
limit χ ∼ 1.
Finally, standard treatment to compute the gravitational

waveforms within the stationary-phase approximation
allows one to write Eqs. (145) and (146) to lowest order
as [180] (see also Refs. [43,143])

hþðtÞ ¼ AþðtretÞ cosφðtretÞ; (152)

h×ðtÞ ¼ A×ðtretÞ sinφðtretÞ; (153)

where tret is the retarded time. The final result yields

~hþ ¼ AþeiΨþ ; ~h× ¼ A×eiΨ× ; (154)

where

Aþ ¼ 4
ffiffiffiffiffiffiffiffi
2=3

p
M7=3νt1=2c

π2=3r20D
f−7=6

1þ cos2ι
2

; (155)

A× ¼ 2 cos ι
1þ cos2ι

Aþ; (156)

Ψþ ¼−
16tc
5r40

M4=3ðπfÞ−5
3þ2πf

�
tcþ

r
c

�
−φ0−

π

4
; (157)

Ψ× ¼ Ψþ þ π=2; (158)

with f ¼ Ωϕ=π and φ0 ¼ φðtcÞ.
In the next section, we shall repeat this computation in

various contexts. Although a relativistic computation using
the full Eq. (142) is in principle possible, to simplify the
final expression we shall consider a small perturbation
around the Newtonian solution above. This means that we
shall superimpose small corrections such as charge, mag-
netic fields, and disks on the top of the unperturbed
Newtonian potential Φ ¼ −M=r.
Finally, to quantify the effect of the environmental

effects for the dephasing, we define δφ as
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φ ¼ φGR þ δφ; (159)

where φGR is the unperturbed GR value at lowest order,
Eq. (149). Note that we are considering here the absolute
correction, not the relative one as previously done for other
quantities. Indeed, we consider an eLISA-like mission with
accuracy to phase measurements jδexpφ j > 10=SNR, where
SNR is the signal-to-noise ratio [2,3]. We assume the EMRI
is detected when SNR > 10, so that the detector is at least
sensitive to (absolute) dephasings larger than 1 rad over the
mission time. This is a conservative assumption because
high-SNR events may allow for higher accuracy.
Furthermore, we define the relative correction of the full

Fourier phase in the stationary phase approximation as

Ψþ ¼ ΨGRþ ð1þ δΨþÞ: (160)

The corrections in various contexts are presented in
Tables VI and VII and computed below. In Table VI, we
have introduced some coefficients ci ¼ ciðχÞ which are
given in Eqs. (161), (163), (166), and (171) below and
shown in Fig. 15 as functions of M.
The explicit expressions shown in the main text are

typically valid only in the small frequency, large-separation
regime. However, the estimates for the dephasing in
Table VII were obtained by using relativistic calculations.

2. Accretion of gas and DM onto the central BH

In order to estimate the dephasing due to accretion onto
the central BH during the inspiral, we can compute the total
phase φ in the absence of accretion (following the pro-
cedure explained above) and evaluate the adiabatic correc-
tion δφ ¼ ðdφ=dMÞΔM, where ΔM is given in Eq. (86) for
gas accretion and in Eq. (115) for DM accretion. The results
are presented in Table VI. We note that the effect of DM
accretion onto the central object is usually negligible,

unless extreme DM configurations with hρDMi ≳
1012M⊙=pc3 exist near the central BH, e.g., in dwarf
satellite galaxies (cf. Sec. II C). In that case, the total
dephasing might have a marginal impact on detection and
parameter estimation with an eLISA-like detector.
These estimates do not take possible dynamical effects

into account. As we pointed out in Sec. III C 6, a more
realistic analysis of ringdown in time-varying geometries
[114–117] shows that dynamical effects are negligible. It
would be interesting to extend those calculations to BH
inspirals.

TABLE VII. Corrections δΨþ to the GW phase in the Fourier space computed within the stationary phase
approximation for a quasicircular EMRI, due to the same effects considered in Table VI, as well as dynamical
friction from a power-law density profile.

Correction δΨþ

Accretion 4
3
fEdd _MEdd

tc−t
M

Charge − 10
3
q2ðπfMÞ2=3

Cosmological constant − 50
99

Λ
ðπfÞ2

Magnetic field 5
22

B2

ðπfÞ2
Galactic halos − 50

792π
ρ

ðπfÞ2
Thick accretion disks − 50

792π
ρ

ðπfÞ2, ρ given by Eq. (90)

DM distribution ρ ∼ r−α̂ 40ðπfÞ2α̂3 −2M−α̂=3Rα̂ð2α̂−5Þρ0
3ð33−17α̂þ2α̂2Þ

Dynamical friction for thin disks 0.1K̄f11=20Edd ð0.1α Þ7=10ð10
6M⊙
M Þ1.12ðlog½ vs

πfrmin
� − 12

49
Þð πf

mHzÞ−29=12
Dynamical friction for distribution ρ ∼ r−α̂ −

25πK̄Rα̂ρ0ð3þ2ðα̂−8Þ log½ vs
πfrmin

�Þ
32ðα̂−8Þ2M1

3
ðα̂þ5Þ ðπfÞ2α̂3−11

3
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FIG. 15 (color online). Coefficients appearing in the formulas
(161), (163), (166), and (171) as defined in Table VI as functions
of M. We have set the observation time T ¼ 1 y, the final orbital
radius rf ¼ 6M, and the mass of the small particle reads νM ¼
1.4M⊙ and νM ¼ 10M⊙ in the top and bottom panels, respec-
tively. The coefficient cα̂ refers to α̂ ¼ 3.5; other values give
qualitatively similar results.
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3. Cosmological constant

Let us start with the simplest case and consider
Φ ¼ −M=rþ Λr2=6. Solving the equations above in this
particular case yields, to first order in Λ and in the small
frequency f limit,

δφ ¼ −
5

7392

�
rf
M

�
11=2 ΛM2

ν

�
11 − 21χ3=8 þ 10χ7=4

χ3=8

�

∼ −
T
3M

�
rf
M

�
3=2

ΛM2; (161)

δΨþ ¼ −
50

99

Λ
ðπfÞ2 ; (162)

where in the last step of the first equation we assumed χ ∼ 1
and used the definition (151). Our final result for the
dephasing depends on final radius rf and on the observa-
tion time T. Equivalently, one might express the results
in terms of the initial and final frequencies. A correction
similar to δΨþ can be straightforwardly computed also for
the GW amplitude.

4. Charge

Similarly to the previous case, we take into account the
effects of an electric charge by considering the Newtonian
potential Φ ¼ −M=rþQ2=ð2r2Þ. We obtain

δφ¼
5

96ν

�
rf
M

�
3=2

q2
�
5−3χ−3=8−2χ3=8

�
∼
T
M

�
M
rf

�
3=2

q2;

(163)

δΨþ ¼ −
10

3
q2M2=3ðπfÞ2=3: (164)

5. Magnetic field

By requiring quasicircular orbits and applying the
balance law, the equation governing the radial motion
due to GW dissipation reads, in the large-distance and
small magnetic field limit,

_r ¼ −
64

5

M3ν

5r3
þ 32

5
M2νB2: (165)

This equation can be solved perturbatively in the small-B
limit. The standard treatment discussed above yields

δφ ¼ 5B2M2

44352ν

�
rf
M

�
9=2

×

�
77ðχ9=8 − 1Þ − 9

rf
M

ð21 − 11χ−3=8 − 10χ11=8Þ
�

∼
TB2M

2

�
rf
M

�
1=2

�
1þ rf

M

�
; (166)

δΨþ ¼ 5

22

B2

ðπfÞ2 : (167)

6. Power-law density distributions

Let us consider the case where we add to the central BH a
Newtonian density distribution

ρDM ≡ ρðrÞ ¼ ρ0ðR=rÞα̂; rISCO < r < R: (168)

This profile was studied in Ref. [143] in the context of
DM effects in intermediate-mass ratio binaries. In the follo-
wing, we shall use reference values for ρ0 and R compa-
rable to those considered in Ref. [143]; namely, we use
hρDMi ≈ 103M⊙=pc3 and R ≈ 0.33 pc ∼ 7 × 1012M⊙.
The Newtonian potential which corresponds to Eq. (168)

reads

Φ ¼ −
M
r
þ 4πρ0R2

ð2 − α̂Þðα̂ − 3Þ
�
R
r

�
α̂−2

: (169)

Consistently with our perturbative approach, we assume
that the corrections to the Newtonian potential are small.
By using the potential above, Eq. (143) reduces to

_r ¼ 64M3ν

5r3
þ 256M2νπðα̂ − 1Þρ0

5ðα̂ − 3Þ
�
R
r

�
α̂

; (170)

which can be solved perturbatively in the small ρ0 limit,
although the solution is not illuminating. The dephasing in
this case reads

δφ ¼ 5πρ0M2

8ðα̂ − 3Þν
�
rf
M

�
11=2−α̂

�
R
M

�
α̂

×

�ð2α̂ − 3Þχ−α̂=4ðχ11=8 − χα̂=4Þ
2α̂ − 11

þ ðα̂ − 1Þχ−3
8
−α̂
4ðχα̂=4 − χ7=4Þ

α̂ − 7

�

∼
4π

α̂ − 3

�
R
M

�
α̂
�
rf
M

�3
2
−α̂
Tρ0M: (171)

Note that, by comparing the density profile of thick disks,
Eq. (90), with the profile in Eq. (168), the dephasing due
to the gravitational pull of thick disks can be expressed
as a particular case of Eq. (171) with the identifications
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α̂ ¼ 3=2, R ¼ M, and ρ0 ¼ 3.4 × 10−6fEddð0.1α Þ×
ð106M⊙

M Þ kg=m3. The final result for the dephasing is given
in Table VI.
Finally, the relative correction to the Fourier-domain

phase reads

δΨþ ¼ −
40ðπfÞ2α̂3−2M−α̂=3Rα̂ð2α̂ − 5Þρ0

3ðα̂ − 3Þð2α̂ − 11Þ ; (172)

which agrees with the results of Ref. [143]. We normalize
the DM density by computing the volume average
hρDMi ¼

R rf
ri r

2ρðrÞdr= R rf
ri r

2dr, where ri and rf are the
initial and final orbital radii, respectively. In Table VI, we
consider a typical DM density hρDMi ∼ 103M⊙=pc3 and
the radius R ∼ 7 × 106M [143]. The latter are typical
values to ensure that the corrections to the Newtonian
potential introduced by the matter distribution are small.
For example, when α̂ > 3, the Newtonian mass of the
matter distribution localized outside the ISCO,
δM ¼ R

∞
6M 4πr2ρ × dr, converges. In this case, requiring

δM ≪ M we get

δM
M

¼ 25−α̂33−α̂π

α̂ − 3

�
R
M

�
α̂

ρ0M2

∼ 0.01

�
R

7 × 106M

�
3.1
�

M
106M⊙

�
2 ρ0
103M⊙=pc3

≪ 1;

(173)

where in the second step we have assumed a representative
value α̂ ¼ 3.1. In the case α̂ < 3, the Newtonian mass does
not converge, but the corrections to the Newtonian potential
are still small compared to M=r for these typical values of
hρDMi and R; hence, our perturbative approach is justified.

7. Thin disks

In order to estimate the dephasing introduced by the
self-gravity of a thin disk, we consider the most extreme
case in which the entire inspiral occurs on the disk plane,
which maximizes the dephasing.
A representative result is shown in Fig. 16. As discussed

in Sec. IV B 2, to approximate a realistic Newtonian disk
we have used a superposition of the potentials in Eqs. (93)
and (94) whose parameters Mdisk and R have been chosen
to match the surface density (95). As shown in the inset
in Fig. 16, the fit well approximates the model (95), at least
in the intermediate region 6M < r < 103M, where the
Newtonian model is accurate. The dephasing cannot be
computed analytically in terms of simple functions; hence,
we have resorted to a numerical integration of the equations
presented above. In Fig. 16, we show the dephasing as a
function of the central mass M and for fEdd ¼ 1 and
α ¼ 0.1. As we can see, even in this rather extreme case the
dephasing is always quite small. This is consistent with our
previous estimate.

8. Parametrized metric

Modeling generic matter distributions outside BHs is a
tremendously difficult problem. One “quick and dirty” way
out is to start with the modified background metric (12) and
(13) and assume geodesic motion in this modified metric.
Such an inconsistent approach has its merits, as it can
model realistic situations with ad hoc matter content in the
case in which accretion and the hydrodynamic drag (i.e.,
dynamical friction and planetary migration) are negligible.
This approach is also instructive to assess whether a
hierarchy of corrections exists in the expansion (12) and
(13). At first sight, this is not obvious, because the metric is
expanded in the weak-field limit, whereas the dominant
contribution to the GW phase comes from the latest stage of
the inspiral, where the satellite probes the strong-field
region of the central object. Figure 17 shows that, none-
theless, such a hierarchy of terms exists. That is, the lowest-
order corrections in the weak-field expansion are associated
with the larger dephasing. In particular, this suggests that,
in dealing with modified BH solutions, a large-distance
expansion of the background might be sufficient for
capturing the dominant corrections.
Another interesting question is the extent to which the

metric corrections can be constrained by a putative detec-
tion of an inspiral waveform. A dephasing of 1 rad is
associated with α1 ∼Oð10−5Þ, depending on the other
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FIG. 16 (color online). Dephasing due to thin-disk self-gravity.
The disk is modeled by superimposing the potentials in Eqs. (93)
and (94) and by fitting the model parameters to match the
Shakura-Sunyaev surface density (95). We have set the obser-
vation time T ¼ 1 y, the final orbital radius rf ¼ 6M, and the
mass of the small particle reads νM ¼ 1.4M⊙ and νM ¼ 10M⊙
for the solid and the dashed line, respectively. The dephasing is
shown as a function of the central mass M and for fEdd ¼ 1 and
α ¼ 0.1. The fit parameters are Mdisk ≈ 63M⊙fEdd7=10×
½M=ð106M⊙Þ�11=5ðα=0.1Þ−4=5, R ≈ 1016GM=c2 for the
Kusmin-Toomre model and Mdisk ≈ 1.5M⊙fEdd7=10×
½M=ð106M⊙Þ�11=5ðα=0.1Þ−4=5, R ≈ 74GM=c2 for the exponential
model. The inset shows a comparison of the surface density (95)
and of the fit.
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parameters, whereas the higher-order terms are constrained
roughly at the level of 10−4. Note also that the dephasing
does not depend on the grr metric component, so that, to
this level of approximation, the βi coefficients in Eq. (13)
are unconstrained. In Fig. 17, we have assumed that the
observation stops when the orbital radius is r ¼ 6M
regardless of the value of αi.
Note that, because of the sole dependence on AðrÞ, the

dephasing depends on the combination δβ − δγ. However,
it is interesting to notice that such a combination can be
constrained at the level of 10−5–10−4 depending on the
parameters. This is 1–2 orders of magnitude more stringent
than current PPN constraints on β from Mercury’s perias-
tron shift [93].

9. Dephasing due to DM accretion and
dynamical friction

In addition to self-gravity effects, DM can affect the
gravitational waveforms due to accretion and dynamical
friction effects. As an example, we consider the density
profile (168), whose self-gravity introduces a dephasing
computed in Eq. (172) (see also Ref. [143]).
The dephasing introduced by accretion can be computed

by extending the analysis done in Ref. [43]. To lowest
order, accretion affects the radial motion by adding an extra
term [43]

_raccretion ∼ −
2

1þ α̂

_msat

msatðtÞ
r: (174)

Depending on the DM mass and cross section, accretion
can be collisionless or of Bondi-Hoyle type [43,166].
However, as shown by Eq. (112), for typical values of
DM density, cross section, and DM particle mass, we
expect accretion to be collisionless. For completeness, we
consider both cases, where (see, e.g., [166])

_msat ¼
�

4π ρm2
sat
v collisionless;

4πλ ρm2
sat

v3 Bondi;
(175)

where for the Bondi-Hoyle accretion λ ∼ 1 and we assumed
supersonic motion, v ∼

ffiffiffiffiffiffiffiffiffi
M=r

p
≫ vs. By using the equa-

tions above, the radial motion can be solved analytically
in the small density regime. With the stationary phase
technique discussed above, we obtain the perturbative
corrections

δaccretionΨþ ∼

8>><
>>:

25πðα̂−4ÞRα̂λρ0

8ðα̂−7Þð2α̂−9ÞM1þα̂
3

ðπfÞ2α̂3−3 collisionless;

25πðα̂−5ÞRα̂λρ0

8ðα̂−8Þð2α̂−11ÞM5
3
þα̂
3

ðπfÞ2α̂3−11
3 Bondi;

(176)

and it is clear that, in the small-frequency limit—i.e., small
Mf or large distances—Bondi-Hoyle accretion gives
stronger corrections than collisionless accretion.
Let us compare the effect of accretion with the dephasing

introduced by self-gravity, Eq. (172). In the small-
frequency limit we obtain

δBondiΨþ

δself-gravityΨþ

∼ −
15ðα̂ − 5Þðα̂ − 3Þλ
64ðα̂ − 8Þð2α̂ − 5Þ ðπfMÞ−5=3: (177)

Therefore, the effects of Bondi-Hoyle accretion generically
dominate over self-gravity effects for any value of α̂.
However, since DM likely behaves as a collisionless

fluid (cf. Sec. IV B 7), a more realistic estimate is to
compare self-gravity with collisionless accretion. In this
case we get

δcollisionlessΨþ

δself-gravityΨþ

∼
64ð7 − α̂Þð2α̂ − 9Þð2α̂ − 5Þ
15ðα̂ − 4Þðα̂ − 3Þð2α̂ − 11Þ πMf; (178)

so that accretion is typically negligible with respect to
self-gravity in the small-frequency regime.
In general, the effect of accretion is generically small.

For example, for α̂ ¼ 2, Eq. (176) in the more favorable
Bondi-Hoyle case can be written as

δBondiΨþ ∼ −6 × 10−8λ

�
R

7 × 106M

�
2
�

ρ0
103M⊙ pc−3

�

×

�
f

mHz

�
−7=3

�
M

106M⊙

�
−7=3

; (179)

and, therefore, even though such a correction enters at
lower PN order than self-gravity effects, its actual
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FIG. 17 (color online). Dephasing due to the parametrized
metric element (12) and assuming GW dissipation through the
lowest-order GR formula (141). Note that in this approximation
the dephasing depends only on the metric coefficient A and not
on B. Higher-order corrections in 1=r correspond to smaller
dephasing. We consider two different choices of the masses of
the binary components and assume a 1 − y observation time
terminating at r ¼ 6M.
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normalization in the millihertz band is tiny, as mentioned in
Sec. IV B 7. Other values of α̂ give the same order of
magnitude for the relative correction.
The dephasing introduced by dynamical friction can be

also estimated by using this framework and the results of
Sec. IV B 3. In this case, the time dependence of the orbital
radius is regulated by the standard Newtonian equation of
motion with an extra term _rDF ∼ − dr

dE
_EDF, where _EDF is

given in Eq. (101). This equation can be solved analytically
in the limitM ∼ vK=vs ≫ 1 and for equatorial motion. The
final dephasing in the small-frequency limit reads

δDFΨþ ∼ −
25πK̄Rα̂ρ0ð3þ 2ðα̂ − 8Þ log½ vs

πfrmin
�Þ

32ðα̂ − 8Þ2M1
3
ðα̂þ5Þ ðπfÞ2α̂3−11

3 ;

(180)

where K̄ ∼ 1. This shows that, besides the logarithmic term,
the dephasing introduced by dynamical friction has the
same frequency dependence as that introduced by Bondi-
Hoyle accretion, i.e.,

δDFΨþ

δBondiΨþ

∼
K̄ð11 − 2α̂Þ

4ðα̂ − 8Þðα̂ − 5Þλ
�
3þ 2ðα̂ − 8Þ log

�
vs

πfrmin

��
:

(181)

At low frequencies the two effects are comparable but both
much smaller than radiation-reaction effects. On the other
hand, the results above show also that dynamical friction is
dominant with respect to both collisionless accretion and
self-gravity effects. Our analysis shows that the results of
Ref. [143] would be drastically modified, as they were
obtained by neglecting both accretion and dynamical
friction.
In order to estimate the total dephasing due to dynamical

friction from the DM distribution during the inspiral, we
have integrated the equations of motion numerically
including the dissipative term (174) and using _r ∼ − dr

dE
_E

to compute the energy flux. The GW phase is then given by
Eq. (144). We find that, in the small-mass-ratio limit, the
dephasing for an inspiral of 1 y terminating at rf ¼ 6M is

δDM-DF
φ ∼ 10−14

�
ρDM

103M⊙=pc3

��
ν

10−5

�
0.65

�
M

106M⊙

�
0.17

;

(182)

which is the value reported in Table VI. This estimate is
consistent with Eq. (114) considering that the inspiral
occurs at ~r ∼ 6 for an EMRI.

10. Dephasing due to dynamical friction in
thin and thick disks

Our results for the dephasing due to dynamical friction
from the DM distribution can be directly used to estimate
the dephasing introduced by dynamical friction in thin and

thick disks. For thin disks, assuming the inspiral occurs
on the equatorial plane where the disk is located, and
using the approximation 1 −

ffiffiffiffiffiffiffiffiffiffi
~rin=~r

p
≈ 1 in Eq. (91), we

can map the profile (168) to the disk density (91) with
the identification α̂ ¼ 15=8, R → M, ρ0 → 169f11=20Edd ×

ð0.1α Þ7=10ð10
6M⊙
M Þ7=10 kg=m3. Hence, by using Eq. (180),

the dephasing associated to dynamical friction of a
Shakura-Sunyaev thin disk in the stationary phase approxi-
mation reads

δDF; diskΨþ ∼ 0.1K̄f11=20Edd

�
0.1
α

�
7=10

�
106M⊙

M

�
1.12

×

�
log

�
vs

πfrmin

�
−
12

49

��
πf
mHz

�
−29=12

; (183)

which is the result reported in Table VII.
To compute the total dephasing during the inspiral

between the orbital distance ri and the orbital distance
rf, it is more convenient to integrate the equations of
motion numerically. To isolate the dissipative effect of
dynamical friction, we neglect possible self-gravity effects
of the matter. As we previously discussed, the latter are
smaller than the hydrodynamic drag, so our assumption is
well motivated. Thus, we assume that the satellite follows a
quasicircular geodesic of the central object and that the
orbital radius changes adiabatically due to the energy flux

_ET ≡ _EGW þ _EDF ¼
32

5

m2
sat

M2

�
M
r

�
5

þ 4πρ
m2

sat

vK
IK̄; (184)

where we used Eqs. (141) and (101). For thin disks we
consider the most extreme case in which the inspiral occurs
entirely within the disk on the orbital plane, so K̄ ∼ 1 and ρ
is given by Eq. (91), whereas for thick disks ρ is given by
Eq. (90). We also take vK ∼ v ∼

ffiffiffiffiffiffiffiffiffi
M=r

p
in both cases. As

we previously discussed, differentiating Eq. (140) with
respect to time and using the balance law _E ¼ − _ET, one
gets the evolution equation for the orbital radius

_rðtÞ ¼ − _ET

�
dE
dr

�
−1
: (185)

This equation can be straightforwardly integrated with
initial condition ri ¼ rð0Þ. Finally, the GW phase can be
computed as Eq. (144) with Ωϕ given in terms of rðtÞ
by Eq. (119).
In order to compare to the results shown in Table VI, we

fix rf ¼ 6M and choose ri such that the satellite reaches
the ISCO after 1 y. For a thin disk with we obtain, in the
small-mass-ratio limit, the dephasing

δDF; thinφ ∼ 285fEdd

�
0.1
α

��
ν

10−5

�
1=2

�
M

106M⊙

�
−0.3

;

(186)
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with respect to the case in which dynamical friction is
neglected. This confirms that dynamical friction in thin
disks might produce an observable dephasing in the
gravitational waveforms. On the other hand, dynamical
friction in thick-disk environments (such as those more
relevant for eLISA-like missions) gives

δDF; thickφ ∼3×10−9
fEdd
10−4

�
0.1
α

��
ν

10−5

�
0.48

�
M

106M⊙

�
−0.58

;

(187)

where again the result is valid when the mass ratio is small.
Although the dephasing is larger than that introduced by the
gravitational pull of thick disks, the net effect is many
orders of magnitude smaller than in the case of thin disks
and can be always neglected (cf. Sec. IV B 3).

V. PART III

A. Blurred tests of general
relativity induced by astrophysical

environments

There are excellent monographs dealing with tests of GR
in various regimes [11,12,93,181,182], and we will not

attempt any comprehensive overview here. Rather than
presenting a detailed analysis for each specific modified
theory of gravity, we wish instead to provide a catalog
of order-of-magnitude estimates of various effects that
can be used to constrain alternative theories in a model-
independent fashion. Although admittedly approximate,
this approach is useful to understand which observations
impose the most stringent constraints on a particular theory,
thus paving the way for more rigorous treatments. To the
best of our knowledge, the impact of environment effects
for strong-field tests of gravity has never been discussed in
the literature, but it is of utmost importance to assess the
potential of GW astronomy.
We consider an alternative theory whose deviation from

GR is encoded in a new fieldΨ of generic spin which, at the
level of the action, is associated with two sets of coupling
constants, ai and bi. The first set corresponds to non-
minimal interactions between the field and the metric,
whereas the second set corresponds to a nonminimal
coupling to the matter sector. We assume that GR is
recovered when those couplings are vanishing so
that a small-coupling expansion is well defined. In this
limit, the most generic action can be schematically writ-
ten as

S ¼ 1

16πG

Z
dx4

ffiffiffiffiffiffi
−g

p ½Rþ ∂2Ψþ
X
i

aiUiðΨ; g; ∂Ψ; ∂g;…Þ�

þ Sð0Þm ½Ψm; gμν� þ
X
i

biS
ð1Þ
m;i½Ψm;Ψ; g; ∂Ψm; ∂Ψ; ∂g;…� þOða2i ; b2i Þ; (188)

where G is an effective gravitational coupling, not neces-
sarily equal to G, Ψm schematically represents any matter
field, Ui are some nonminimal interaction terms, and we
have linearized the matter action Sm. Without loss of
generality, we have rescaled the extra field Ψ in order to
be canonically normalized. Finally, Ui and Sð1;iÞm are all
vanishing when Ψ≡ 0, thus recovering GR.
In the action above, the couplings in Sð1Þm;i are such that an

effective metric can be defined in terms of g andΨwhich is
minimally coupled to the matter fields. This guarantees that
the weak equivalence principle is generically satisfied,
whereas the strong equivalence principle will in general
be violated.
Furthermore, the theory (188) is manifestly Lorentz

invariant. Possible Lorentz violations in the gravitational
sector can be accounted for by adding suitable Lagrangian
multipliers which enforce a preferred time direction at each
spacetime point. This is the case of Æ theory [183,184] or
Hořava gravity [185,186], which modify GR by adding a
timelike vector field. This produces BH solutions that differ
from GR [187–192], thus giving a way of testing these
theories, at least in principle, with GW observations.
The couplings ai and bi can have different physical

dimensions, depending on the theory. We assume

½ai� ¼ lengthxi and ½bi� ¼ lengthyi . Under these assump-
tions, all corrections to GR will be proportional to some
power of ai and bi. For example, spherically symmetric
geometries are modified in these theories, and the coef-
ficient αi and βi in Eqs. (12) and (13) would be proportional
to some power of the fundamental couplings ai and bi.
Finally, the role of G is to rescale the gravitational constant.
We set G ¼ 1 in the following, but it can be easily
reinserted by dimensional analysis.
Various extensions of GR are in fact low-energy expan-

sions of some more fundamental (and often unknown)
theory, and, as such, they are rigorously valid only in an
effective field theory sense (cf., e.g., Ref. [12]). In these
theories, a perturbative approach in the coupling parameters
is not only natural but required for internal consistency. As
we shall discuss, our approach does reduce to some of the
most studied alternative theories in some particular cases.
However, we stress that the estimates on the couplings that
we derive in this section are valid under the rather strong
assumption that the theory behaves perturbatively
in the regime where GW emission takes place. While
that is true in most cases, in some scalar-tensor theories
that assumption breaks down in certain binary systems
[193–195]. On the other hand, such possible strong-field
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effects—neglected by our approach—have to be investi-
gated on a case-by-case analysis. Rather than following this
often-beaten path, here we attempt to describe beyond-GR
effects in a novel (yet approximate) model-independent
fashion.
The rest of this section is divided in two subsections. In

the next section, we discuss tests of GR that involve
“conservative” effects. We define the latter, with some
abuse of terminology, as those corrections related to a
deformation of the background geometries with respect to
the GR solution. These tests include the classical ones,
some of which we have previously discussed. Finally, in
Sec. V D 1, we discuss tests that involve “dissipative”
effects, i.e., those related with modified GW emission.

B. Executive summary

While our analysis is largely theory independent, in the
remaining we will discuss specific examples, by consider-
ing some of the most studied alternative theories of gravity.
Table VIII presents a summary of some of these and their
relation with the action (188).
We have considered a variety of effects that are affected

by strong-field corrections to GR. They are divided into
conservative and dissipative effects and discussed in
Secs. V C 1 and V D 1, respectively. Our main finding is
that such effects might be degenerate with those induced by
matter distributions. In order to be detectable, beyond-GR
corrections should be larger than environmental effects.
This poses intrinsic lower bounds on the couplings ai and
bi, which are shown in Tables IX and X and discussed in
what follows.

C. Classical tests based on
conservative effects

1. Advance rate of the periastron

In Eq. (125), we have derived the correction to the
periastron shift in the generic spherically symmetric geom-
etry (11) defined by Eqs. (12) and (13). In the theory (188),
corrections to a BH geometry would be proportional to
some power of ai only, whereas corrections to neutron-star
geometries would be proportional to some power of ai and
of bi. Since αi and βi in Eq. (125) are dimensionless, they
will be proportional to ani (or to bni ) normalized by some
appropriate power of M. Thus we obtain the order of
magnitude

δper ∼Oð1ÞM
rc

�
ai
Mxi

�
n

(189)

for the BH case and a similar expression involving bi for
the neutron-star case. In the equation above, we have
considered δγ ¼ 0 ¼ δβ. We recall that, although for
various alternative theories solar-system tests require

TABLE VIII. Catalog of modified theories of gravity that we consider in this work and their relation with the action (188). We consider
the small-coupling limit away from GR, whose deviations are encoded in a single extra field Ψ. The notation is taken from the
corresponding references. In the entries below, n.m. and m.d. stand for nonminimal and model dependent, respectively.

Theory Ψ ai xi bi yi Effect

Brans-Dicke
[Einstein frame] [93]

Scalar None None ∼1=ωBD 0 Spacetime-dependent G

Einstein-Dilaton-Gauss-Bonnet (EDGB) [196,197] Scalar ξi 2 None None Quadratic-in-curvature corrections
Topological invariant

Dynamical Chern-Simons (DCS) [196,198] Pseudoscalar ξ4 2 None None Quadratic-in-curvature corrections
Modify reflection-invariant solutions

Æ theory [183,184], Hořava gravity
[185,186]

Vector ci 0 None None Lorentz violation in gravity

Massive gravity [129,199] Tensor μ2graviton −1 N.m. M.d. Large-distance corrections Break
diffeomorphism invariance

TABLE IX. Intrinsic lower constraints on generic deviations
from GR due to environmental effects taking into account
different processes. The limit was obtained by comparing the
beyond-GR corrections parametrized by the metric (12) and (13)
and those induced to matter distributions within GR. The
exponent n depends on the theory: n ¼ 2 for all theories listed
in Table VIII except for Æ theory and Hořava gravity, for which
n ¼ 1. For the periastron advance, we consider the correction
introduced by a thin disk as shown in Table V. For the Shapiro
delay, De and Dp are the positions of the emitter and the receiver,
respectively, whereas D is the impact parameter. Note that, even
by assuming D ∼M (i.e., that the classical tests are performed
around a very compact object), tests based on ringdown or
EMRIs provide the smaller lower bounds, showing that tests of
GR are less affected by matter distributions in those cases.

Effect Intrinsic lower bound

Periastron advance ð ai
MxiÞn ≳ 10−7fEdd7=10½ M

106M⊙
�6=5ð α

0.1Þ−4=5
Shapiro delay ð ai

MxiÞn ≳ 10−4½DM δM
10−6M

log ð4DeDp=D2Þ
40

�
Deflection of light ð ai

MxiÞ2 ≳ 10−6½DM δM
10−6M

�
Ringdown ð ai

MxiÞn ≳ 10−6ð δM
10−6M

Þ
EMRIs ð ai

MxiÞn ≳ 10−6ð δM
10−6M

Þ
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δγ; δβ ≪ 1, these bounds can be evaded by possible
screening in some particular theory, e.g., the Vainshtein
mechanism in massive gravity and Galileon theories.
In theories containing a single scalar field nonminimally

coupled to gravity and preserving Lorentz invariance, the
small-field deviations from GR are typically proportional to
the square of the fundamental couplings. This can be
understood by noting that the extra field itself is propor-
tional to the coupling ai and that the stress-energy tensor is
quadratic in the field, so that the corrections to the metric
are proportional to a2i , i.e., n ¼ 2 in the equation above. On
the other hand, theories like Æ theory [183,184] or Hořava
gravity [185,186] introduce fields which are of zeroth order
in the couplings. In these theories, the corrections to GR are
linear in the couplings, i.e., n ¼ 1 in the equation above.
(See, e.g., Refs. [187–192] for BH solutions in these
theories, where these corrections do indeed appear at linear
order in the couplings.)
Our results in Table V can be used to compare the shift

induced by environmental effects to that related to beyond-
GR effects. Comparing with thin disks, we obtain an
intrinsic limit on the couplings ai for beyond-GR effects
to stand out against environmental effects:

�
ai
Mxi

�
n ≳ 6 × 10−8fEdd7=10

�
M

106M⊙

�
6=5

�
α

0.1

�
−4=5

:

(190)

We recall that, in order to compare with the corrections
introduced by thin disks, we have used a fit that approx-
imates a Shakura-Sunyaev surface density (95). This result
shows that the beyond-GR couplings must be sufficiently
large for their corrections to be more significant than those
produced by environmental effects.

2. Shapiro time delay

Another conservative effect that has been widely used as
a classical test of GR is the gravitational time delay of light.
The idea is to measure the difference of the time travel of a
light signal in a gravitational field with respect to the
flat case.
Let us consider the radial equation of a null-like particle

for the generic metric (11):

_r2 ¼ BðrÞ
AðrÞ ½E

2 − AðrÞL2=r2�; (191)

where the “dot” denotes derivatives with respect to the
proper time. Because _ϕ ¼ L=r2, we obtain

�
dϕ
dr

�
2

¼ D2

r2Bðr2=A −D2Þ ; (192)

where D ¼ L=E is the impact parameter (which reduces to
the distance of minimum approach in the weak-field
regime). Using ds2 ¼ 0 for light rays, Eq. (11), and the
equation above, we get

dt
dr

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

AB
þ 1

B
D2

r2 − AD2

r
: (193)

This result holds for a generic spherically symmetric
spacetime. Once the trajectory of the light ray is known,
the time delay can be computed as T ¼ R

dt
dr dr. Let us

consider a light signal sent from an emitter to a receiver and
reflected back. The total time delay in GR reads [181]

TABLE X. Intrinsic lower constraints on various modified theories of gravity due to environmental effects in the orbital decay rate of a
binary inspiral. The limit was obtained by comparing the results shown in Table XI with Eq. (232) in various cases. Deviations from GR
must be large enough in order for their effect to be larger than the environmental ones. For each environmental effect and for each theory,
we have normalized the result by a parameter P and a parameter T , respectively. These parameters are defined in the last row and last
column, respectively, where we also defined v3 ¼ v=10−3, ρDM3 ¼ ρ0=ð103M⊙=pc3Þ, ρdisk2 ¼ ρ0=ð102 kg=m3Þ, M10 ¼ MT=ð10M⊙Þ,
B8 ¼ B=ð108GÞ, q3 ¼ q=10−3, and γα̂ ¼ ½α̂ðα̂ − 9Þ þ 12�=ðα̂ − 3Þ2. The limits for magnetic field and for electric charges are obtained
by using Eqs. (236) and (238), respectively. We considered Eq. (168) as an example of spherically symmetric DM density and baryonic-
mass density profiles. For Æ theory and Hořava gravity, the function F depends on the coupling constants ci of the theory and on the
sensitivities si. In the small-coupling limit, F is linear in the couplings; cf. Refs. [200,201] for details.

Intrinsic lower bound
Theory Magnetic field DM profile, α̂ ¼ 3=2 Baryonic matter Charge Coefficient T

BD ω−1
BD ≳ 10−6PT ω−1

BD ≳ 10−19PT ω−1
BD ≳ 10−1−5α̂PT ω−1

BD ≳ 10−15PT ½0.1S �2
EDGB ζ3 ≳ 10−12PT ζ3 ≳ 10−25PT ζ3 ≳ 10−7−5α̂PT ζ3 ≳ 10−21PT ½ ν

0.1�4½ 1δm�2
DCS ζ4 ≳ 106PT ζ4 ≳ 10−7PT ζ4 ≳ 10−7−5α̂PT ζ4 ≳ 0.003PT ½ ν

0.1�2v−63 ½ 1
βdCS

�
Æ/Hořava F ≳ 10−9PT F ≳ 10−22PT F ≳ 10−4−5α̂PT F ≳ 10−18PT 1
Coefficient P B2

8M
2
10v

−4
3 ρDM3 M2

10v
−1
3 ½ R

7×106M
�3=2 γα̂ρ

disk
2 M2

10v
2α̂−4
3 ½ R

10M�α̂ q23v
4
3
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TGR ∼ 2ðDe þDpÞ þ 4M log

�
4DeDp

D2

�

þM2

�
−
8ðDe þDpÞ

DeDp
þ 8π

D

�
; (194)

where D is again the distance of minimum approach of the
signal from the massive object,De andDp are the positions
of the emitter and the receiver, respectively, and we have
considered a large distance expansion and also the most
favorable situation when the receiver is on the far side of

the central object from the emitter, D ≪ De;Dp (superior
conjunction). The most precise measurement of δT was
performed by the Cassini spacecraft [202] that has mea-
sured the fractional Doppler frequency

yGR ≡ dTGR

dt
¼ −

8M
D

dD
dt

�
1þ πM

D

�
: (195)

On the other hand, using the deformed metric (12) and (13),
we obtain

T − TGR ∼ 2Mδγ log

�
4DeDp

D2

�
þM2

�ðDe þDpÞð2δβ − 6δγ − 2α1 − β2Þ
DeDp

þ πð6δγ − 2δβ þ 2α1 þ β2Þ
D

�
; (196)

which corresponds to a deviation in the fractional fre-
quency

δy ≡ y
yGR

− 1 ∼
2Dþ 3Mπ

4Dþ 4Mπ
δγ

þ Mπ

4ðDþMπÞ
�
α1 þ

β2
2
− δβ

�
: (197)

For the Cassini missionM ∼M⊙,D ∼ R⊙, and δγ has been
constrained roughly to the level of 2 × 10−5. Using the
result above, we can estimate the constraints on the
other parameters in the case δγ ≡ 0. Note that there is a
threefold degeneracy in the second-order correction. As-
suming only a single parameter is turned on in the metric,
we obtain

jδβj≲ 6; jα1j≲ 6; β2 ≲ 12: (198)

Given our small-coupling assumption, these bounds are not
interesting. Higher-order parameters can be included at
next order in the large-distance expansion, but the corre-
sponding limits would be even less stringent. Hence, as
expected, this test of GR in the solar-system regime is not
useful to constrain the higher-order terms in our para-
metrized metric. However, if the central object is much
more compact than the Sun, then D ∼M and the correc-
tions proportional to δγ would be comparable to those
proportional to α1, β2, and δβ.
Finally, let us consider the degeneracy with environ-

mental effects. To give a simple characterization of some
matter distribution with total mass δM, let us differentiate
Eq. (194) with respect to M. To first order we obtain

Tmatter − TGR ∼ 4δM log

�
4DeDp

D2

�
: (199)

We compare this correction to Eq. (196). Assuming the
small corrections δγ, δβ, αi, and βi to be proportional to
an=Mnxi , we obtain the intrinsic lower bound�

ai
Mxi

�
n ≳ 10−6

�
δM

10−6M

�
; δγ ≠ 0; (200)

�
ai
Mxi

�
n≳5×10−5

�
D
M

δM
10−6M

logð4DeDp=D2Þ
40

�
; δγ¼ 0:

(201)

where the last bound holds if at least one of α1, β2, or δβ is
nonvanishing. Since the PPN parameter γ is already highly
constrained, in Table IX, we have reported the second
constraint. Note that the values above are normalized by a
very compact object with D ∼M. Solar-system experi-
ments would give values larger by roughly 3 orders of
magnitude.

3. Deflection of light

Another classical effect that is modified by the deformed
geometry (12) and (13) is the deflection of a light signal,
i.e., the bending of a null geodesic due to a gravitational
field. By using Eqs. (191) and _ϕ ¼ L=r2 (where again the
dot denotes derivatives with respect to the proper time), it is
straightforward to show that the light trajectory is

d2u
dϕ2

þ u ¼ M

�
3ð1þ δγÞu2 − δγ

D2

�
−M2

�
uð2δβ − 2δγ þ 8D2u2δγ þ ð2 − 4D2u2Þα1 þ β2 − 2D2u2β2Þ

D2

�
; (202)
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where u≡ 1=r and we have expanded to second order in M=r and to first order in the deformation parameters. The
perturbative solution of this equation reads

uðϕÞ ¼ sinϕ
D

þM
1þ ð1þ δγÞcos2ϕ

D2
þM2

�
−
3ð20ϕ cosϕ − 9 sinϕþ sinð3ϕÞÞ

16D3

þ 8ð2δβ − 5δγÞϕ cosϕ − 4ð2δβ þ 5δγ cosð2ϕÞÞ sinϕþ ð−4ϕ cosϕþ 3 sinϕþ sinð3ϕÞÞð2α1 þ β2Þ
16D3

�
;

where we have set the integration constants to zero since
they are irrelevant for the rest. Finally, the deflection angle
η̂ can be computed as the sum of the two asymptotic angles
η̂1 and η̂2 defined via uð−η̂1Þ ¼ 0 and uðπ þ η̂2Þ ¼ 0. In the
small angle limit we obtain

η̂ ¼ 2Mð2þ δγÞ
D

þM2

D2

π

4
½15 − 4δβ þ 10δγ þ 2α1 þ β2�;

(203)

so that the relative deviation with respect to GR reads

δη̂≡ η̂

η̂GR
− 1 ¼ δγ

2
þM

D
π

32
ð5δγ − 8δβ þ 4α1 þ 2β2Þ:

(204)

Beside the standard correction proportional to δγ, all other
corrections are suppressed by a factor M=D which, for the
Sun, is about M⊙=R⊙ ∼ 2 × 10−6. Hence, by assuming
δγ ¼ 0, a measurement of the bending of light will put
constraints on α1, β2, and δβ which are 6 orders of
magnitude less stringent than those actually in place for
γ. The best constraint to date reads δη̂≲ 3 × 10−4 [203]. On
the other hand, if the central object is as dense as a neutron
star, M=D ∼ 0.1 and the constraints on the higher-order
coefficients would be only slightly less stringent than those
on δγ.
As done above, in order to estimate the corrections due to

some matter distribution with total mass δM, we differ-
entiate Eq. (203) with respect to M and set all the small
parameters to zero. To first order we obtain

η̂matter − η̂GR ∼ 4
δM
D

: (205)

We compare this correction to Eq. (204). Again, assuming
the small corrections δγ, δβ, αi, and βi are proportional to
an, we obtain the intrinsic lower bound

�
ai
Mxi

�
n ≳ 10−6

�
δM

10−6M

�
; δγ ≠ 0; (206)�

ai
Mxi

�
n ≳ 10−6

�
D
M

δM
10−6M

�
; δγ ¼ 0; (207)

and we have reported only the latter in Table IX.

D. Gravitational-wave tests based on
dissipative effects

1. Ringdown

Detecting several modes of the gravitational waveforms
can help disentangle the effects due to a modified theory
from those due to extended matter distributions around
massive BHs. However, this would require a detailed model
of environmental effects, including knowledge of the
density profile of the matter distribution around massive
BHs, which is currently unknown. Spin measurements
might also be useful to break such degeneracy, as discussed
in Sec. VI.
A robust prediction of a non-GR effect is the isospec-

trality breaking for nonspinning and slowly spinning BHs.
As discussed above, polar and axial modes of the
Schwarzschild geometry in GR are remarkably isospectral,
but this property is very fragile [107]. Thus, a smoking gun
of deviations from GR would be the existence in the
gravitational signal of two very close modes with opposite
parity which branch off from the degenerate mode in the
GR limit. However, in practice, axial modes are difficult to
excite, so that the signal would be dominated by the first
two polar modes (the fundamental mode and the first
overtone).14

In the setup (188), let us now estimate the corrections to
the ringdown frequencies introduced by the new terms
proportional to ai and bi. If the object is a BH, the only
corrections would be proportional to ai. Furthermore, the
only scale in the problem is the light crossing time. It
follows that all quantities are normalized by M, and, in the
small-coupling limit, the correction with respect to GR
reads

δω

ω
∼Oð1Þ

�
ai
Mxi

�
n
; (208)

where the prefactor and the exponent n are theory depen-
dent and they must be computed in a case-by-case analysis.

14Furthermore, as previously discussed, also matter configu-
rations around compact objects would generically break mode
isospectrality. In this case, a more detailed computation would be
required to disentangle environmental effects from beyond-GR
corrections.
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A constraint similar to the one above is in place for bi and it
comes from the ringdown of compact stars. In this case the
prefactor depends also on the stellar compactness, on the
equation of state, and on the mode family considered.
Assuming an accuracy of roughly 1%15 in detecting the

BH ringdown modes [8], the relation above sets the order of
magnitude of the constraints:

ai ≲ 1.5xi × 10−2=n
�

M
M⊙

�
xi
kmxi ; (209)

bi ≲ 1.5yi × 10−2=n
�

M
M⊙

�
yi
kmyi : (210)

Let us discuss some examples, recalling that all theories
listed in Table VIII have n ¼ 2 except for Æ theory and
Hořava gravity, in which n ¼ 1. In Brans-Dicke theory in
the Einstein frame, ai ¼ 0 and there is a single non-
vanishing bi, say, b ∼ 1=ωBD. Since the latter is dimension-
less, it follows that 1=ωBD < 0.1; i.e., a measurement of
ringdown waves compatible with GR at the 1% level can at
most constrain ωBD > 10, independently of the BH mass.
This result is much less competitive than current bounds,
which set ωBD > 4 × 104 [93]. The latter comes from the
Shapiro delay measurement of the Cassini spacecraft by
noting that in Brans-Dicke theory the time delay would
acquire the same first-order correction as in Eq. (196) with
the substitution δγ → 1 − G=G ∼ 1=ωBD once physical
units are reinserted in the Jordan frame [181]. On the
other hand, quadratic theories of gravities have bi ¼ 0, and,
in the notation of Ref. [204], they have ai ¼ fi ¼ const for
i ¼ 1, 2, 3, 4 and ai ¼ 0 for i > 4. Because n ¼ 2 and
xi ¼ 2, the ringdown constraint on the nonvanishing ai
reads

fi ≲ 0.2

�
M
M⊙

�
2

km2: (211)

Another popular class of theories is massive gravities. In
their bimetric formulation [199], they have—at the linear
level [129]—a single nonvanishing coupling a ¼ μ2graviton,
where μgraviton is the graviton mass in natural units. Because
in this case x ¼ −1, we get

μgraviton ≲ 0.2

�
M
M⊙

�
−1

km−1: (212)

Interestingly, in this case x < 0, and supermassive objects
provide better constraints.
Finally, Æ theory and Hořava gravity are also mapped

in our parametrization. In the notation of Ref. [190],
these theories are defined in terms of a set of coupling

constants ci. Since these couplings are all dimensionless,
we obtain

ci ≲ 0.01; (213)

independently from the BH mass. In this case, the con-
straint is more stringent than in the case of Brans-Dicke
theory, because corrections to GR coming from Æ theory
and Hořava gravity are linear in the couplings ci, i.e., n ¼ 1
in Eq. (209).
The estimates above agree well with more detailed

computations when the latter are available, and, in general,
they will provide the correct order of magnitude. This
analysis does not include new sets of modes which
generically appear in some particular modified theory.
This is, for example, the case of massive perturbations
which allow for quasibound states [126,128,129].
However, although long lived, such modes are exponen-
tially suppressed at large distances, so that the gravitational
waveform will be dominated by the deformed fundamental
GR modes.

1.Intrinsic lower limits due to environmental effects
Finally, let us compare these beyond-GR effects with

those due to realistic astrophysical environments. From our
results summarized in Table I, a small matter distribution
with mass δM would affect the ringdown frequency
roughly at the level of 0.05%½δM=ð10−3MÞ�. This places
an intrinsic lower bound on possible ringdown constraints
on modified theories. A simple comparison yields the lower
bound:

�
ai
Mxi

�
n ≳ 5 × 10−7

�
δM

10−6M

�
; (214)

where δM represents the mass of a quite generic matter
distribution (as shown in Table I, matter-bumpy BHs, rings,
and short-hair BHs give comparable corrections).
Alternative theories whose couplings are much smaller
than the bound above would produce smaller deviations to
the ringdown frequencies than matter configurations sur-
rounding massive BHs.

2.Example: Chern-Simons gravity
As a check of our generic procedure, let us consider a

particular theory, dynamical Chern-Simons (DCS) gravity
[205]. This theory is equivalent to GR in the spherically
symmetric case, so that conservative effects due to a single
nonspinning object are absent. The ringdown modes of
Schwarzschild BHs in this theory were computed in
Ref. [206]. In the small-coupling limit (which is consistent
with Chern-Simon gravity being an effective theory), the
corrections to the fundamental l ¼ 2 gravitational mode
read

15The accuracy depends on the SNR of the event, and the
scaling is given in Sec. III A 1 (see also Refs. [6–8]).
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ðδR; δIÞ ¼ ð−2.1; 3.7Þ α
2
DCS

M4
: (215)

Fromour results summarized inTable I, thisplaces an intrinsic
lower bound on a possible ringdown constraint on αDCS:

αDCS ≳ 3.4 × km2

�
δM

10−3M

�
1=2

�
M

10M⊙

�
2

: (216)

Considering that ½αDCS� ¼ length2, this number differs from
the estimate (214) only by 30%. Projected bounds on the
Chern-Simons constant implies αDCS∼Oð0.01−1Þkm2

[207]. Our analysis of extended matter distributions summa-
rized in Table I shows that such a level of accuracy cannot
be reached with ringdown tests whenever δM ≳ 10−3M.

2. Orbital decay rate

Some of the most stringent constraints on modified
gravity come from the astonishingly precise measurement
of the orbital decay rate of binary pulsars [181], in particular,
of the period derivative _P. Computing this quantity requires
knowledge of both conservative and dissipative effects. The
former modify the Hamiltonian of the binary system and, in
turn, the relation between the period and the total energy.
The latter modify the GWemission and, in turn, the secular
changes of the orbital parameters. A precise computation of
these corrections necessarily requires a case-by-case analy-
sis. This program started with Brans-Dicke theory and has
been recently extended to other cases [92,196,200]. We
attempt here an approximate parametrization that should
nonetheless accommodate most deformations.16 We follow
the ppE formalism [90] and parametrize the orbital distance,
the energy, and the energy flux as [209], respectively,

r ¼ M1=3
T

Ω2=3
ϕ

�
1þA

6
~pðMTΩϕÞ2 ~p=3

�
; (217)

E ¼ μMT

2r

�
1þA

�
MT

r

�
~p
�
; (218)

_E ¼ _EGR

�
1þ B

�
MT

r

�
~q
�
; (219)

where μ≡ νMT , ν is the symmetric mass ratio, MT is the
total mass of the binary,A andB depend on the fundamental
couplings of the theory, and the GR terms were written to
lowest PN order. The terms ~p and ~q are dimensionless
quantities that depend on the specific theory. For simplicity,
we assume circular orbits whose orbital velocity is v≡Ωϕr.
Inverting this relation we get, to lowest order,

Ωϕ ¼ v3

MT

�
1 −

A
2
~pv2 ~p

�
: (220)

It is now straightforward to compute the period derivative by
using the chain rule:

_P≡ ∂P
∂Ωϕ

∂Ωϕ

∂E _E ¼ −
P
Ωϕ

� ∂E
∂Ωϕ

�
−1

_E: (221)

Using the parametrization (217)–(219), we obtain

_P
P
∼
�
_P
P

�
GR

�
1þA

6
ð ~pð ~p − 3Þ − 6Þv2 ~p þ Bv2~q

�
: (222)

In the simplest ppE model, the waveform in Fourier space is
parametrized as

~h ¼ ~hGRð1þ αppEuappEÞeiβppEu
bppE ; (223)

where u ¼ ðMcΩϕÞ1=3, Mc is the chirp mass, and the ppE
parameters αppE, βppE, appE, and bppE are related toA, B, ~p,
and ~q. Using the explicit mapping provided inRef. [209], we
can write the period derivative in terms αppE, βppE, appE, and
bppE. We obtain

δ _P=P ≡ _P=P

ð _P=PÞGR
− 1 ¼ Cν1þ

bppE
5 v5þbppE ; (224)

with

C ¼

8>>>><
>>>>:

−
�
43
4
þ 9bppE

4
− 6

5þbppE

�
αppE þ

�
2ðbppE−3ÞbppEð151þbppEð80þ9bppEÞÞ

15ð5þbppEÞ

�
βppE ~p ¼ ~q

8ð3−bppEÞbppE½bppEð4þbppEÞ−29�
15½81þbppEð46þ5bppEÞ� βppE ~p > ~q;

16
15
ð3 − bppEÞbppEβppE ~q > ~p:

(225)

We note that not all ppE parameters are independent in the
case at hand. Indeed, bppE ¼ appE − 5 for any value of ~p

and ~q [209]. Furthermore, if ~p ≠ ~q, βppE and αppE are not
independent:

αppE=βppE ¼
(

16ð ~p−4Þð2 ~p−5Þ½ ~pð5 ~p−4Þ−6�
15½ ~pð5 ~p−2Þ−6� ~p > ~q;

16
15
ð ~q − 4Þð2~q − 5Þ ~q > ~p:

(226)

Therefore, when ~p ≠ ~q, αppE ≡ 0 implies βppE ≡ 0 unless p
or ~q acquire some specific values.

16Some of our discussion has some overlap with the recent
analysis of Ref. [208], where a precise characterization of theories
with an extra scalar field has been developed. Our discussion in this
section will be more generic and necessarily approximate.
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Because we are interested in binary systems where
v ≪ 1, Eq. (224) implies that such systems can provide
large corrections to _P if the underlying theory of gravity
corresponds to bppE < −5. This is the case for theories that
allow for monopole or dipole emission, like Brans-Dicke
theory, Einstein-Dilaton-Gauss-Bonnet (EDGB) theory, Æ
theory, and Hořava gravity. In Table XI, we present the
correction δ _P=P for some specific theory, and we derive
typical order-of-magnitude constraints on the coupling
constant of the theories assuming a measurement of δ _P=P
at the level of 5%. These constraints are admittedly
simplistic, as a precise computation may have to account
for eccentricity, higher post-Newtonian orders, and spin
effects. Nonetheless, Eq. (224) serves as an estimate of the
potential of orbital decay measurements to test GR.
Finally, it is important to point that the parametrization

(224) does not include all possible deformations from GR.
For example, it does not include corrections due to
massive scalar fields [92]. These and other possible
corrections can nonetheless be included by modifying
the parametrization (217)–(219), although this is beyond
our scope.

Degeneracy with environmental effects.—The presence of
matter distributions mostly introduces conservative correc-
tions to the waveform. However, dynamical friction intro-
duces dissipative effects that modify the flux formula; cf.
Eq. (101). Such corrections require an extension of the
standard ppE formalism to account for logarithmic terms in
Eq. (219). To include dynamical friction effects, we
generalize Eq. (219) as

_E ¼ _EGR

�
1þ B

�
MT

r

�
~q
þ C

�
MT

r

�
~s
log

�
~γ

�
r
MT

�
~t
�	

;

(227)

where ~s, ~t, ~γ, and C are extra dimensionless parameters. It is
easy to show that the relative correction to the orbital decay
rate (222) is generalized as

_P
P
∼
�
_P
P

�
GR

�
1þA

6
ð ~pð ~p − 3Þ − 6Þv2 ~p þ Bv2~q

þ Cv2~s log
�
~γ

v2~t

�	
: (228)

This expression contains both conservative corrections
proportional to A and dissipative corrections proportional
to B and C. The results above can be reduced to the case of
dynamical friction in two special cases.
(1) For nonrelativistic supersonic motion, M ≫ 4 and

v ≪ 1, Eq. (101) corresponds to B ¼ 0, ~s ¼ 11=8,
~t ¼ 1=2, ~γ ¼ vsMT=ð0.22msatÞ, and
C ∼ 3.4 × 10−18f11=10Edd ðmsat=M⊙Þ2ð0.1=αÞ7=10

× ð106M⊙=MTÞ7=10: (229)

(2) In the case of subsonic motion, M ≪ 1, Eq. (101)
corresponds to C ¼ 0, ~q ¼ 15=8, and

B ∼ −4.8 × 10−18f11=10Edd ðmsat=M⊙Þ2v−1s ð0.1=αÞ7=10
× ð106M⊙=MTÞ7=10: (230)

The intermediate case in which M ∼Oð1Þ is more
involved, because it cannot be recast in the form (227).
Let us now focus on conservative corrections, setting

B ¼ C ¼ 0.17 As a representative example, we consider the
power-law density distribution (168). For that density
profile and to lowest order, we get an equation similar
to Eq. (217) if we identify

~p ¼ α̂ − 3; A ¼ 8πM2−α̂
T Rα̂ρ0

ðα̂ − 3Þ2 : (231)

We therefore obtain the changes in the orbital decay rate
due to this matter configuration

TABLE XI. Dominant corrections to the orbital decay rate for circular inspiral in some modified theories of
gravity. The ppE parameters and some definitions are taken from Table 3 in Ref. [12] except for the definition of
βdCS, which differs from the original by a factor ζ4=ν14=5. For Æ theory and Hořava gravity, the function F ðci; siÞ
depends on the coupling constants ci of the theory and on the sensitivities si. In the small-coupling limit F is linear
in the couplings; cf. Refs. [200,201] for details.

Theory δ _P=P Constraint

Brans-Dicke 5S2

48v2ωBD
ωBD ≳ 3 × 103½ S

0.1�2½10
−3

v �2 0.3
δ _P=P

Einstein-Dilaton-Gauss-Bonnet 5δ2mζ3
48v2ν4 ζ3 ≲ 3 × 10−10½ v

10−3
�2½ ν4

0.1�4½ 1δm�2½
δ _P=P

0.3 �
Dynamical Chern-Simons 32v4βdCSζ4

3ν2 ζ4 ≲ 3 × 108½10−3v �4½ ν
0.1�2½ 1

βdCS
�½δ _P=P

0.3 �
Æ theory/Hořava gravity F ðci;siÞ

v2
F ðci; siÞ≲ 4 × 10−7½10−3v �2 0.3

δ _P=P

17The analysis of the dissipative corrections in Eq. (227) for the
GW signal of an EMRI is performed in the next section. We
remark that conservative corrections are important only in
combination with dissipation, as provided by Eq. (227). The
latter coincides with GR when B ¼ C ¼ 0.
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δ _P=P ∼
4πM2−α̂

T Rα̂ð12þ ðα̂ − 9Þα̂Þρ0
3ðα̂ − 3Þ2 v2ðα̂−3Þ: (232)

Interestingly, when α̂ > 3 the correction to the orbital decay
rate enters at higher PN order than the leading-order GR
effect. This condition corresponds to a finite total mass for
the density configuration. On the other hand, DM profiles
are compatible with Eq. (168) with α̂ < 3 [143]. In
addition, the effects of a constant magnetic field B, of a
cosmological constant Λ, and of an electric field with
charge Q≡ qM are all described by Eq. (232) with the
identifications

α̂¼ 0; ρ0¼−
3B2

8π
∼−1.3×105kg=m3

�
B

1012G

�
2

; (233)

α̂ ¼ 0; ρ0 ¼
Λ
4π

∼ 10−26kg=m3
Λ

10−52m−2 ; (234)

α̂ ¼ 4; ρ0 ¼
q2

4π

�
MT

R

�
4 1

M2
T

∼ 8 × 108 kg=m3

�
q

10−3

�
2
�
5MT

R

�
4
�
10M⊙
MT

�
2

;

(235)

which correspond to

δ _P=P ∼ −
2B2M2

T

3v6
; (236)

δ _P=P ∼
4M2

TΛ
9v6

; (237)

δ _P=P ∼ −
8

3
q2v2; (238)

respectively.
In principle, this approach can be used to put intrinsic

constraints on the ppE parameters, i.e., constraints that are
theory independent. Such constraints can then be translated
to lower bounds on the couplings of any specific theory for
which a ppE parametrization is available. For concreteness,
in Table X, we present the intrinsic limits on some modified
theories of gravity due to the presence of various forms of
matter, namely, a magnetic field defined via Eq. (233), a
DM profile given by Eq. (168) with ρ0 ¼ 103M⊙=pc3,
R ∼ 7 × 106M, and α̂ ¼ 3=2, a generic distribution (168)
normalized by a typical disk density ∼102 kg=m3 [cf.
Eq. (91)],18 and an electric charge defined via Eq. (235).

As shown in the previous sections (cf. Tables V and VI),
tests of GR will be very difficult to perform with EMRIs
in thin-disk environments, where the effects of planetary
migration, dynamical friction, and accretion can be com-
parable to or even larger than GW emission itself.
Therefore, here and in the next section, we focus on
environmental effects that are smaller than GW emission.
Table X shows that the deviations from GR have to be
sufficiently large if their effect is to dominate over these
environmental corrections. The specific limits depends
strongly on α̂ and on the matter content. Nonetheless,
Tables XI and X show that, in the region which is
phenomenologically allowed to date, the effects due to
modifications of GR can still be larger than the matter
effects. On the one hand, our analysis shows that a
magnetic field B≳ 5 × 108G would make it impossible
to improve the current best bound ωBD ≳ 4 × 104, even
assuming infinite precision in the measurement of _P. On
the other hand, except for such extreme situations, tests of
GR using orbital decay rates are robust even in the presence
of matter distributions. In principle, by assuming GR is
correct, such tests can be used to probe matter around
binary systems. To the best of our knowledge, this is the
first time that a similar analysis has been performed.

3. Parametrized EMRIs

In the extreme-mass-ratio limit, the smaller body orbits
the massive central object along geodesics of the back-
ground spacetime to lowest order in the mass ratio. The
orbital parameters evolve secularly due to dissipative
effects. By combining our previous results, we can para-
metrize the background metric by using the expansion (12)
and (13), whereas we use Eq. (227) to parametrize the
energy dissipation. It is worth stressing that, in general, the
coefficients αi, βi, and B are not independent but related to
each other through the coupling parameters of the theory.
We focus on circular orbits whose frequency reads

Ωϕ ¼
ffiffiffiffiffiffiffiffiffiffiffi
M=r3

p
þOðδβ; δγ; αiÞ. A relevant quantity is the

total number of cycles during the inspiral from ri to rf.
This reads

N ¼
Z

tf

ti

dtf ¼
Z

rf

ri

dr
f
_Ep

∂Ep

∂r ; (239)

where f ¼ Ωϕ=π is the GW frequency andEp is the binding
energy of the particle in circular motion. We can evaluate
the integral above by using the balance law _Ep ¼ − _E, where
_E is defined in Eq. (227), and assuming for simplicity that
_EGR is given by the quadrupole formula (141).
In order to obtain a simple analytical result, let us

consider rf ¼ rISCO and ri ¼ rISCOð1þ ϵÞ with ϵ ≪ 1. A
similar analysis can be performed by using gauge-invariant
quantities like the frequency, but we found it convenient to
use the orbital radius instead. By expanding all quantities to
first order in the deformations, we obtain

18Because for simplicity we consider only spherically sym-
metric distributions, the mass of our configuration is larger than
that of a thin disk with the profile given in Eqs. (91) and (92).
Therefore, our estimates should be considered as an upper limit.
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δN ¼ −6− ~qB − 6−~sC logð6~t ~γÞ þ δβ − δγ

9
þ 11α1

18
−
α3
54

−
13α4
648

−
α5
108

−
25α6
7776

−
67α7
69984

−
217α8
839808

þOðϵÞ;
(240)

where δN ≡ δN
δN GR

− 1 and we have truncated the sum in
Eqs. (12) and (13) to Nα ¼ Nβ ¼ 8. The result above is
the most generic correction within the assumptions of
spherical symmetry, circular orbits, and small deforma-
tions around Schwarzschild and assuming a correction
to the quadrupole formula as in Eq. (227). This result
depends only on the metric function AðrÞ and not on
BðrÞ. The dissipative corrections are proportional to B
and C, and the prefactors 6− ~q and 6−~s make these terms
decrease quickly as ~q or ~s increase. In particular,

Eq. (240) also contains the corrections due to dynamical
friction which, in the case of supersonic motion,
correspond to ~s ¼ 11=8, ~t ¼ 1=2, and C given
by Eq. (229).
Finally, even though we have truncated the series to

Nα ¼ 8, it is clear that there is a hierarchy of terms. This
gives further confirmation that the parametrization (12) and
(13) is efficient, i.e., that higher-order terms give subdomi-
nant contributions.
Equation (240) shows that the main contributions to N

come from the corrections proportional to B and C if ~q ≤ 1

or ~s ≤ 1, whereas they come from those proportional to α1
if ~q and ~s are large. On the other hand, possible deviations
from the GR result accumulate during the inspiral, so larger
corrections are expected if ϵ ≫ 1. Using only the dominant
correction proportional to α1, we obtain, to any order in ϵ,

δN ∼
5ð−6ϵ2 þ 57ϵ3 þ 19ϵ4 þ 15ð−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ϵ
p Þ þ 15ϵð−3þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϵ

p ÞÞ
18ð1þ 2ϵÞð1þ ϵþ 7ϵ2 þ 3ϵ3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϵ

p Þ α1: (241)

As expected, the quantity above is an increasing function of
ϵ, and δN ∼ 0.9α1 as ϵ → ∞.
Finally, to estimate the conservative effects of the

environment in this case, we can set B ¼ C ¼ 0 and
differentiate the GR result with respect to M. We obtain
δmatter
N ∼ δM=M. Comparing this quantity with the equation
above and assuming that α1 ∝ ani , we obtain the intrinsic
lower limit presented in Table IX. On the other hand,
dissipative effects are typically small, because they are
proportional to the small quantities B and C; cf. Eqs. (229)
and (230).

4. Monopole radiation

In the previous sections, we have discussed how some of
the most stringent constraints on modified gravity arise
from considering dipolar emission, since the latter is
forbidden in GR. Indeed, GR being quadrupolar in
nature, any monopole and dipole emission would be a
clear signature of deviations from Einstein’s theory.
Monopolar emission has been much less explored, with
some exception in the study of spherically symmetric
collapse in scalar-tensor theories [210–212].
Spherically symmetric motion emits, generically,

monopolar radiation in any theory with some (effective
or fundamental) scalar degree of freedom. In particular,
spherical oscillations of compact stars or BHs and spheri-
cally symmetric collapse can be strong emitters of monop-
olar radiation in modified gravity, whereas they do not
source GWs in GR. Supernova explosions are believed to
be nearly spherical, and, therefore, in modified gravity they
would release a considerable amount of their enormous
energy through spherical scalar waves.

Because of the spherical symmetry, it is easy to estimate
the signal associated to monopole emission on dimensional
ground. The amplitude of the wave scales as

h ∼ γ̄
M
R

M
DL

; (242)

where DL is the luminosity distance of the source from the
detector, M and R are the typical mass and radius,
respectively, of the remnant produced in the collapse,
and γ̄ is a dimensionless coupling that parametrizes devia-
tions from GR. Typically, γ̄ is proportional to some power
of ai and bi as appearing in the action (188).

19 The quantity
to be compared with detector sensitivity S is ~h

ffiffiffiffiffiffiffiffiffi
fGW

p
,

where ~h ∼ hT is the Fourier spectrum of the signal, T ∼ R is
the typical time scale of the problem, and it is related to the
typical length of the final object, R, whereas

fGW ∼ 1=R (243)

is the characteristic frequency of the radiation. Then,
assuming no detection of GWs from a spherical source
at a luminosity distance DL, we obtain an order-of-
magnitude estimate for the upper bounds on γ̄:

19However, in theories in which weak-field corrections are
suppressed, the response of a detector to scalar waves in the far
zone can vanish at linear order, i.e., γ̄ ¼ 0. An example of one
such theory is scalar-tensor gravity with a conformal factor ∼eβφ2

,
in which case the linear coupling of the scalar field to matter in
the Einstein frame is exactly zero (cf., e.g., Refs. [193,211,213]).
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γ̄ ≲ 4 × 10−6
�

DL

1 kpc

��
S

10−23 Hz−1=2

�

×

�
R

30 km

�
1=2

�
10M⊙
M

�
2

; (244)

where we have normalized the result by a typical peak
sensitivity of Advanced Laser Interferometric Gravitational
Wave Observatory (LIGO) and for typical source parameters.
For example, if a supernova explosion were to occur within
10 kpc during Advanced LIGO operational time, the absence
of detection of correspondingGWswould imply a boundon γ̄
roughly of the order of 4 × 10−5. However, such events are
extremely rarewithin 10 kpc fromEarth.Our analysis reduces
to the well-studied case of Brans-Dicke scalar-tensor gravity
when γ̄ ∼ 1=ωBD. Indeed, the order of magnitude of the
estimate above agreeswith the detailed analysis of Ref. [214],
where scalar-wave detectability with KAGRA has been
studied (see also Ref. [215] for earlier work).
Similarly, we might retroactively analyze recent super-

nova explosions that occurred during the activity of first-
generation GW detectors. Two examples are SN2008D
and SN2011fe, which were located at about 9 × 107 and
2 × 107 light years from Earth, respectively. Assuming
S ∼ 10−21 Hz−1=2,M ∼ 10M⊙, and R ∼ 2M, we obtain that
the absence of GW detection from these sources implies a
mild upper bound on γ̄ of the order of unity.

VI. CONCLUSIONS AND EXTENSIONS

The advent of GW astronomy demands a careful quan-
tification of the impact of realistic astrophysical environ-
ments on the GW signal. Our results strongly suggest that
GW astronomy can become a precision discipline: Given
an appropriate and sensitive detector, astrophysical envi-
ronmental effects are small and do not prevent a precise
mapping of the compact-object content of the visible
Universe. Moreover, if adequately modeled, GWs might
be used in the most optimistic scenarios to study matter
configurations around compact objects as is routinely done
in the electromagnetic band. We have presented a survey of
several environmental effects in two situations of great
interest for GW astronomy: the ringdown emission of
massive BHs and the two-body inspiral of compact objects.
We have studied the GW signal associated to the presence
of electric charges, magnetic fields, cosmological evolu-
tion, matter disks and halos, and finally the effects of
possible deviations from GR.
Our analysis revealed novel effects related to the ringdown

modes in the presence of environmental effects. The QNM
spectrum of nonisolated BHs can be drastically different
from that of isolated BHs, yet the BH response to external
perturbations is unchanged at the relevant time scales for
ringdown. This result is interesting on its own and would
deserve an independent study. In particular, it would be
interesting to see if such resonances can be excited during an

extreme-mass-ratio inspiral around BH surrounded by mat-
ter, thus providing a clean GW signature of matter configu-
rations around compact objects. Toy models suggest this will
happen at low frequencies when the inspiralling object is far
away from the BH. Head-on collisions could also excite
these modes which would then presumably show up at very
late times competing with Price’s power-law tails. More
realistic models are clearly necessary to understand the full
implications of these results. A curiosity with possible
observational effects is that matter close to the event horizon
also gives rise to such modified modes and response. This
might have important implications for the so-called firewall
proposal [131]: The analysis in Sec. III 3 shows that any
localized field with mass δM ≳ 10−4M close to the horizon
of a massive BH would affect the ringdown frequencies to
detectable levels. Investigating the implications of this effect
for the gravitational waveforms in realistic scenarios is an
interesting extension of our analysis.
Self-force in BH spacetimes has been shown to be

directly connected to the QNM structure [216,217]. In view
of the sometimes dramatic change in the QNM spectrum of
nonisolated BHs, an open question is whether self-force
outside dirty BHs also shows the same exquisite depend-
ence on the environment configuration and distribution.
We note that the ringdown spectrum in the presence of

matter at large distance shares many features with the
spectrum of light massive fields around BHs (cf. Ref. [218]
for a review). In this case, the field is localized at ∼1=μ,
where μ is the mass of the field. It is known that also in this
case the late-time behavior is drastically modified and a
novel family of modes emerges which does not reduce to
GR when the mass goes to zero.
Overall, our results confirm the generic claim that

environmental effects can be safely neglected for detection.
However, in some situations such effects become important
for parameter estimation and for searches of new physics.
Environmental effects can in some cases be comparable
to first- and second-order self-force corrections and can put
intrinsic limits on our ability to test modified theories of
gravity. We have provided order-of-magnitude estimates of
these limits that are largely model and theory independent.
Clearly, a precise analysis might in principle disentangle
environmental effects from self-force and beyond-GR
corrections, but, given our ignorance of matter configura-
tions around compact objects, a precise modeling of the
dirtiness signal would be mandatory to perform such
an analysis.
In general, the corrections to the ringdown signal are

smaller than those affecting the inspiral waveforms. This
is expected, because the latter can accumulate during the
last stages of the inspiral. In addition, our analysis selects
some “smoking guns” of dirtiness in the ringdown signal:
isospectrality breaking, monopole and dipole radiation,
novel families of modes, resonant effects in the GW flux,
and changes of the late-time GW signal.
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The main limitation of our study is the fact that we
neglected spin effects. Compact objects are usually spinning,
and angular momentum plays a crucial role in the
GW signal. Spin modifies the multipolar structure of the
background geometries as well as the geodesic motion
and the GW emission. We have considered only static
configurations, and our approach has the merit of being
very general within this strong assumption. Including spin
effects for compact objects in a model- and theory-indepen-
dent framework is a remarkable open problem which goes
beyond the scope of this work. Because spin effects are
typically dominant over environmental effects, one does not
expect any degeneracy problem. Furthermore, most of the
effects we discuss are not directly related to the spin, so that
we expect our analysis can capture the correct order of
magnitude also in the case of spinning objects.
One important exception to the above are near-extremal

BHs. In this case, the light ring and the ISCO are located
close to the event horizon, thus probing regions of stronger
gravitational field with respect to the static case. We have
shown that a parametrization of deformed Schwarzschild
geometries in powers of M=r [cf. Eqs. (12) and (13)]
provides a very efficient expansion, because higher-order
corrections are suppressed even in the strong-field limit. We
have shown this for nonspinning objects, and our conclu-
sions would likely remain valid in the slow-rotation limit.
However, the same is not true in the case of near-extremal
objects, for which both ringdown and inspiral can probe the
strong-curvature region M=r ∼ 1, where an expansion sim-
ilar to (12) and (13) would likely not converge. This suggests
that strong-gravity effects are amplified in the near-extremal
case, making highly spinning compact objects the most
promising astrophysical probes of strong gravity.
Another possible extension of this work would be to

consider the impact of environmental effects on the eccen-
tricity of compact-object binaries (see Refs. [42,219] for
some results for the eccentricity evolution under the effect
of dynamical friction and accretion).
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APPENDIX A: NOTATION AND CONVENTIONS

Unless otherwise and explicitly stated, we use geom-
etrized units where G ¼ c ¼ 1, so that energy and
time have units of length. We also adopt the ð−þþþÞ
convention for the metric. For reference, the following
is a list of symbols that are used often throughout the
text.

gαβ Spacetime metric; Greek indices run from 0
to 3

M BH mass, defined via the horizon area A as
M2 ¼ A=ð16πÞ

M⊙ Mass of our Sun
δM Mass of the exterior distribution
M0 ¼ M þ δM Total Arnowitt-Deser-Misner mass of the

spacetime
DL Luminosity distance
L Typical length scale for the extension of the

exterior mass δM distribution
r0 Minimum radial distance at which the

exterior mass distribution is non-
negligible

(Infinitely thin shells of matter are located at
r ¼ r0.)

rþ Radius of the BH event horizon in the
chosen coordinates

msat Mass of the small satellite in a binary system
MT ¼ M þmsat Total mass of a binary system. In the

extreme-mass-ratio limit, MT → M.
ν Symmetric mass ratio of a binary system. In

the extreme-mass-ratio limit, ν → msat=M
is the mass ratio.

mp Proton mass
_M Accretion rate onto the BH
LEdd Eddington luminosity
fEdd ¼ _M= _MEdd Eddington ratio for mass accretion
vs Speed of sound in matter
H Height of the disk
η Radiative efficiency of the accretion process
α Viscosity parameter
FDF Dynamical friction force
~r Orbital separation normalized by the

gravitational radius (GM=c2 for isolated
BHs, GMT=c2 for binaries)

(Table continued)
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vK Keplerian velocity [ðGM=rÞ1=2 for test
particles around BHs, ðGMT=rÞ1=2 for
binaries]

Ωϕ Angular velocity of the binary
vr Radial velocity of the binary
Σ Surface density of (geometrically thin)

accretion disks
σ Typical length scale for the extension of

initial data profiles
σT Thomson scattering cross section
σA Dark matter annihilation cross section
σDM Dark matter scattering cross section
σv ¼

ffiffiffiffiffiffiffiffiffi
hv2i

p
Velocity dispersion of DM particles

ρDM DM density. The reference value is taken to
be 103M⊙=pc3.

mDM Mass of the DM particle
α̂ Exponent of a DM density distribution toy

model, ρ ∼ ρ0ðR=rÞα̂
a Kerr rotation parameter: a ¼ J=M ∈ ½0;M�
j Dimensionless Kerr rotation parameter:

j≡ a=M
Q Black-hole charge
q ¼ Q=M Dimensionless black-hole charge
ω Fourier transform variable. The time

dependence of any field is ∼e−iωt.
Ψðω; rÞ
¼ Rþ∞

0 eiωtψðt; rÞ
Laplace transform of field ψðt; rÞ

ωR;ωI Real and imaginary part of the QNM
frequencies

ðωð0Þ
R ;ωð0Þ

I Þ QNM frequencies of isolated BH spacetime
with δM ¼ 0

δR ¼ 1 − ωR=ω
ð0Þ
R Fractional variation in the (real part of)

QNM frequency for finite δM
δI ¼ 1 − ωI=ω

ð0Þ
I Fractional variation in the (imaginary part

of) QNM frequency for finite δM
δiso Fractional difference between axial and polar

modes (isospectrality holds for δM ¼ 0)
Q ¼ ωR=ð2jωIjÞ Quality factor
s Spin of the field
l Integer angular number, related to the

eigenvalue lðlþ 1Þ of scalar spherical
harmonics

n Overtone number. We conventionally start
counting from a “fundamental mode”with
n ¼ 0.

φ GW phase
Ψ GW phase in the frequency domain

APPENDIX B: EXTREME DIRTINESS: SMALL
BLACK HOLES IN ANTI–DE SITTER

BACKGROUNDS

An extreme, and very instructive, example of a dirty
BH consists in placing a Schwarzschild BH in a
curved nonasymptotically flat background. An example
of such a spacetime which has attracted considerable
interest in the past decade in the context of high-energy

physics is the Schwarzschild–anti–de Sitter (AdS)
geometry,

ds2 ¼ −ðjΛjr2=3þ 1 − 2M=rÞdt2
þ ðjΛjr2=3þ 1 − 2M=rÞ−1dr2 þ r2dθ2

þ r2sin2θdϕ2: (B1)

When jΛj > 0, this metric describes a BH living in a
negatively curved spacetime with a negative cosmo-
logical constant. The boundary of AdS is timelike, and
therefore time evolutions require boundary conditions
there. For very small BHs

ffiffiffiffiffiffijΛjp
M ≪ 1, the period T of

Schwarzschild ringdown modes scales as TSch ∼M and
is very small. On other hand, the modes of pure anti–
de Sitter have a period which roughly scales like the
time TAdS to reach spatial infinity, TAdS ∼ 1=

ffiffiffiffiffiffijΛjp
.

Accordingly, for very small masses M and times t≲
1=

ffiffiffiffiffiffijΛjp
the system could not have had time to thermal-

ize in the AdS modes and should be ringing down in its
pure Schwarzschild modes. In fact, for very small M,
one should even see a decaying power-law tail as an
intermediate stage.
To test this argument, we evolved a Gaussianwave packet

of unit amplitude, width σ ¼ 0.06, located at r0 ¼ 0.1,
around a BH with radius rþ ¼ 0.025 and jΛj ¼ 3. We
impose regularity conditions at the event horizon, Φðt; rÞ ∼
ψðtþ r�Þ=r and at spatial infinity, where the field now
decays asΦðt; rÞ ∼ ψðtÞ=r3Ylmðθ;ϕÞ. The results are shown
in Fig. 18 and show at early times the ringdown character-
istic of asymptotically flat Schwarzschild BHs, modulated
by the Schwarzschild-AdS frequency. Notice how each
pulse is slowly absorbed on each interaction with the (small)
BH. Eventually, the first pulse gets distorted by multiple
reflections off the boundary.
The main conclusion, trivial in retrospect, is that the

modes of asymptotically flat Schwarzschild BHs do domi-
nate the early-time response. We stress that this result also
highlights the quasilocal nature of Schwarzschild ringdown,
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FIG. 18 (color online). Scattering of a scalar wave packet in
the Schwarzschild-AdS background. The wave packet has a unit
amplitude and width σ ¼ 0.06 and is centered at r0 ¼ 0.1, around
a BH with radius rþ ¼ 0.025 (in units with jΛj ¼ 3).
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as the decay of light rays trapped at, and slowly leaking from,
the null circular geodesic [100]. It would be very interesting
to see these intermediate states arising from a Green’s
function analysis in the same way that QNMs arise from
poles of the corresponding Green’s function [8,99].

APPENDIX C: GRAVITATIONAL
PERTURBATIONS OF A SCHWARZSCHILD

BH SURROUNDED BY A THIN SHELL

In this Appendix, we discuss how to compute the
gravitational QNMs of a Schwarzschild BH surrounded
by a thin shell. The relevant formalism has been developed
in Ref. [112].
We start with the axial perturbations and discuss two

(equivalent) methods to implement the junction condi-
tions (53).

1. Method A

As discussed in Ref. [112], the junction conditions (53)
assume that, at least along the worldline r ¼ r0, there exists
a common time coordinate patch for the interior and the
exterior metric. In practice, in a static, spherically sym-
metric spacetime this can be imposed by requiring con-
tinuity of gtt at the shell location. The metric (49) satisfies
this criterion, and we shall consider this background.
It is easy to show that, in this background, the Regge-

Wheeler function ψ is related to the perturbation functions
h0 and h1 by

ψ ¼ A
r
h1; h0 ¼

i
ω
BðrψÞ0: (C1)

Using the definitions above and Eqs. (53), we obtain

ψþ ¼ ψ−ffiffiffī
α

p ; (C2)

ψ 0þ ¼ ψ−

r0

�
1

ᾱ
−

1ffiffiffī
α

p
�
þ ψ 0−

ᾱ
: (C3)

Thus, we can integrate the equations starting from the
horizon outwards, extracting ψ− at the shell location, using
the condition above to compute ψþ and ψ 0þ, and finally
continue the integration outwards to infinity, where the
appropriate boundary condition is imposed.

2. Method B

An equivalent method is based on recognizing that
the metric in the interior is equivalent to the
Schwarzschild metric after a time redefinition t ¼ ~t=

ffiffiffī
α

p
(we use a tilde for any quantity in these coordinates).
In these coordinates, ~A ¼ ~B, and they are both equal to the
standard Schwarzschild element with M and M0 in the
interior and in the exterior, respectively. It is easy to show
that Eq. (C1) becomes

~ψ ¼ B
r
~h1; ~h0 ¼

i
~ω
Bðr ~ψÞ0; (C4)

where the time dependence of each quantity has been
factored out as e−i ~ω ~t and we have used ~A ¼ ~B ¼ B. Now, in
order to use the junction conditions (53), we need to
transform the Regge-Wheeler function to the coordinates
where gtt is continuous. Under ~t →

ffiffiffī
α

p
t, we get

~h0e−i ~ω
~td~t → h0e−iωtdt; (C5)

~h1e−i ~ω
~t → h1e−iωt; (C6)

where ω ¼ ~ω
ffiffiffī
α

p
, h1 ¼ ~h1, and h0 ¼ ~h0

ffiffiffī
α

p
. With this

transformation, the perturbation functions are precisely
in the form needed to apply Eqs. (53). Substituting in
Eqs. (C4), we get

~ψ ¼ B
r
h1;

h0ffiffiffī
α

p ¼ i
ffiffiffī
α

p

ω
Bðr ~ψÞ0; (C7)

which are equivalent to Eqs. (C1) after the trivial rescaling
~ψ ¼ ψ=ᾱ. Finally, we obtain again Eqs. (C2) and (C3), as
we should.
Computing the junction conditions for polar perturba-

tions is more involved. In the background (49), using the
linearized Einstein equations, we define the Zerilli function
as

Z ¼ 2r2ωK − 2iðr − 2MiÞH1

ð6Mi þ λrÞ ffiffiffī
α

p
ω

; (C8)

Z0 ¼ iðr − 2MiÞð24M2
i þ 6λMirþ ðl − 1Þlð1þ lÞð2þ lÞr2ÞH1 − 2r2ðλr2 − 6M2

i − 3λMirÞωK
rðr − 2MiÞð6Mi þ λrÞ2ᾱω ; (C9)

where λ ¼ lðlþ 1Þ − 2 andMi takes the valuesM orM0 when the Zerilli functions are computed in the interior and in the
exterior, respectively. Therefore, in order to integrate the Zerilli equation, we need only to compute the jump of the functions
K and H1 across the shell. As for K, the first of the junction conditions (54) imposes continuity across the shell. In order to
compute the jump of H1, we use the equations of motion:

K0 ¼ 2ð2Mi − rÞrωH þ ilð1þ lÞð2Mi − rÞH1 þ 2rðr − 3MiÞωK
2ð2Mi − rÞr2ω ; (C10)
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H ¼ ið2Mi − rÞðlð1þ lÞMiᾱ − 2r3ω2ÞH1 þ rωð−6M2
i ᾱ − 2ðlðlþ 1Þ − 3ÞMirᾱþ λr2ᾱ − 2r4ω2ÞK

rðr − 2MiÞð6Mi þ λrÞᾱω : (C11)

The second of these equations is algebraic, and it can be
used to eliminate H from the first equation. Finally, using
the junction conditions (54) for K and K0, we can convert
the first equation above in a junction condition for H1 only.
The form of this equation is not very illuminating, but it is
simply an algebraic equation in the form H1þ ¼
H1þðZ−; Z−

0Þ. Finally, these junction conditions allow us
to write Zþ and Zþ0 in terms of Z− and Z−

0 and to continue
the integration to infinity.
An alternative—and in fact more elegant—approach is

the following. First, one could write the spacetime in

Schwarzschild form by using the time coordinate ~t defined
in method B above. Then, in this background one can use
Chandrasekhar’s transformation to relate the Zerilli and the
Regge-Wheeler function. Thus, in the interior one can
compute the Regge-Wheeler function outwards to the shell,
transform to the Zerilli functions, apply the junction
conditions across the shell in the way explained in method
B above, transform back to the Regge-Wheeler function,
and finally integrate the Regge-Wheeler equation to infin-
ity. To test our method, we checked that these procedures
are equivalent.
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