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ABSTRACT

The inner profile of dark matter (DM) haloes remains one of the central problems in small-scale
cosmology. At present, the problem cannot be resolved in dwarf spheroidal galaxies due to a
degeneracy between the DM profile and the velocity anisotropy 8 of the stellar population. We
discuss a method which can break the degeneracy by exploiting 3D positions and 1D line-of-
sight (LOS) velocities. With the full 3D spatial information, we can determine precisely what
fraction of each stars LOS motion is in the radial and tangential direction. This enables us to
infer the anisotropy parameter 8 directly from the data. The method is particularly effective if
the galaxy is highly anisotropic. Finally, we argue that such a test could be applied to Sagittarius
and potentially other dwarfs with RR Lyrae providing the necessary depth information.

Key words: galaxies: dwarf — galaxies: kinematics and dynamics — Local Group — dark matter.

1 INTRODUCTION

A central prediction of cold dark matter (CDM) simulations
(Navarro, Frenk & White 1996) is the formation of a cusp at the cen-
tre of a DM halo. Mounting (though still debated) observational ev-
idence (see Gentile et al. 2004 for spiral galaxies) contrarily prefers
a cored halo. This issue has been dubbed the ‘cusp versus core
problem’. If indeed haloes are cored, then our present understand-
ing of CDM haloes requires modification from either astrophysical
effects or new particle physics. On the astrophysical side, numerous
explanations (Read & Gilmore 2005; Tonini, Lapi & Salucci 2006;
Governato et al. 2012) have been given that may reduce the cusp
of a halo. On the other hand, if DM has an internal force, then
the self-interaction (Spergel & Steinhardt 2000) can induce a core
(Zavala, Vogelsberger & Walker 2013).

At a practical level, the DM profile is also an important un-
certainty for indirect detection experiments. Dwarf galaxies are a
primary target for indirect experiments, e.g. the FERMI gamma-ray
telescope (Ackermann et al. 2011) looking for a DM annihilation
signal. The potential signal is highly sensitive to the DM profile
with the annihilation rate going like the density squared ~p2. Re-
ducing this astrophysical uncertainty will improve indirect detection
constraints on the particle physics properties of DM. Hence, deter-
mining the density profile of a dwarf galaxy is a critical bench mark
in deciphering the nature of DM and structure formation in general.

Unfortunately, the density of DM at the centre of distant spher-
ical systems is very poorly constrained by the simplest and most
widely used method in galactic dynamics — the Jeans equation. The
failure of this method to address the cusp/core issue goes some way
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to explaining why there is still no consensus. The fundamental lim-
itation of the Jeans equation is a degeneracy between the density
profile and the B parameter which measures the anisotropy between
radial and tangential velocity dispersions. A direct measurement
of this quantity is not possible if the observer only has access to
the line-of-sight (LOS) component of each stars velocity and a 2D
projection of each stars radius. This is the kinematic data that is
available for Milky Way dwarf galaxies at present. As a shorthand,
we call it the 241 scenario as we have access to two of the three
position coordinates and one of the three velocity coordinates for
each star in the sample.

In practice, the flat LOS velocity dispersion profiles found in real
(24-1) dwarf spheroidal data sets are fit equally well (Dejonghe &
Merritt 1992; Charbonnier et al. 2011) by solutions to the Jeans
equation encompassing a huge range of density profiles simply by
tuning the anisotropy parameter. More precisely, Wolf et al. (2010)
has recently shown that mass estimates of dwarf spheroidal galaxies
are approximately independent of the anisotropy parameter § at the
radius of half-light. If 8 does not undergo sharp transitions within
the stellar extent then an inference of the mass at this radius is
primarily limited by statistical noise in the velocity measurement.
At smaller and larger radii, a free choice of 8 permits a wider range
of masses that can fit velocity dispersion measurements. Unless one
has some a priori intuition for the anisotropy parameter, the mass-
anisotropy degeneracy masks the density slope of DM at the galactic
centre. Under such circumstances, even a broad measurement of
the anisotropy parameter (e.g. ruling out 8 < 0.2) could offer a
significant improvement.

There have been several interesting attempts to mitigate the above
uncertainty for 241 data sets. Here, we provide a brief summary
of the simplest analytic methods and guide the interested reader
to Battaglia, Helmi & Breddels (2013) for a detailed review of
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Table 1. Summary of observational scenarios: X+Y indicates that we can measure X position coordinates and
Y velocity coordinates.

Method

Description

2+1

242(3)

3+1

Only the projected radius R? = x> 4 y* and LOS velocity v, is available for each star (standard
technique). Large data sets (500 stars) are currently available for the classical Milky Way dwarf
spheroidal population. See the Introduction for details of techniques that use 241 data.

Proper motions of each star are added to R (and v;). As discussed in An, Evans & Deason (2012), the
Gaia satellite’s spectrograph has a limiting magnitude (in the G band) of G ~ 17 whilst astrometric
measurements with microarcsecond precision can be made for stars with G ~ 20. The Gaia satellite will
therefore be able to measure the proper motion of stars before LOS velocities are available in systems
such as Galactic globular clusters (at a distance of ~50kpc or less). Mass estimators for this 2+2
scenario are provided in An et al. (2012). See also Wilkinson et al. (2002) and Strigari, Bullock &
Kaplinghat (2007) for dynamic techniques that can be applied to 2+3 data. In these two works, the
authors consider the scenario where proper motions can be added to existing LOS velocity measurements
in dwarf spheroidal galaxies.

In this scenario, the LOS depth z is available before the proper motions. This could arise if the variable
nature of a star is used to determine its distance from the observer. The LOS depth can be added to R to
calculate the deprojected 3D radius > = R? 4 z2. This is the situation that we investigate in
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unprecedented detail in this paper.

343 The full 6D information of each star is known. By performing a simple coordinate transformation, one
has the radial and tangential velocities. The anisotropy parameter B(r) can then be read off directly.

the more sophisticated numerical techniques. With multiple stellar
populations, one has multiple half-light radii for which one can
estimate the mass. Given mass estimates at multiple points, the mass
gradient (Walker & Penarrubia 2011) can be calculated. Similarly,
in the case of Sculptor, Agnello & Evans (2012) have also exploited
multiple stellar populations to place constraints on cusped profiles
with the Viral theorem.

Without using multiple populations, higher moments of the LOS
velocity distribution (Lokas, Mamon & Prada 2005) can also break
the degeneracy between S and the DM density profile. A complete
generalization of the classic Jeans equation analysis has very re-
cently been derived in Richardson & Fairbairn (2013). The kurtosis
(fourth moment divided by the dispersion squared) of LOS veloc-
ity data is very sensitive (Lokas 2002) to the anisotropy parameter.
By simultaneously fitting to the kurtosis and the velocity disper-
sions of the data we have an additional constraint on the density
profile. This has become an increasingly attractive option as dwarf
(241) data sets have grown. Recent sets of 241 kinematic data
(Walker, Mateo & Olszewski 2009) for Sculptor and Fornax still
exceed 1000 stars after applying sophisticated interloper removal
schemes.

In order to obtain maximum information from discrete data how-
ever, one would like to avoid the binning process altogether and to
instead evaluate the likelihood of the fit on a star-by-star basis with
the full phase space distribution function f(x, v) (see Chakrabarty
& Portegies Zwart 2004 for equations that relate the distribution
function to observables in numerous X+Y scenarios). In practice,
marginalizing over all possible distribution functions rather than just
fitting to the velocity moments with the Jeans equations presents
significant new technical challenges but by utilizing Jeans’s theo-
rem (i.e. using integrals of motion such as specific energy E and
angular momentum L rather than x and v as coordinates for f)
the distribution functions are implicitly guaranteed to be in dy-
namic equilibrium which is particularly convenient when general-
izing to non-spherical systems. For a more detailed discussion of
state-of-the-art discrete modelling techniques, we refer the reader to
Magorrian (2014).

Clearly, if we had all 6D phase space information for stars in
a galaxy, we could directly measure the velocity anisotropy SB(r)
with a simple coordinate transform. The degeneracy is broken and
an inference of the density profile is only limited by statistical and
experimental noise. Short of having all 6D information, as astro-
nomical experiments become ever more sophisticated one might ask
what information we need to tackle this degeneracy head on. We
summarize the possible observational scenarios in Table 1 and use
the notation X+Y to indicate the scenario in which the observer can
measure X components of each stars position and Y components of
each stars velocity. Estimators for the (global) anisotropy (Leonard
& Merritt 1989; Genzel et al. 2000) and the mass (An et al. 2012)
have been developed for 243 data sets with projected radii and the
full 3D velocity information. Indeed, it has been shown (Wilkinson
et al. 2002; Strigari et al. 2007) that the proper motions enable a
precise measurement of the density slope (not just the mass) at the
half-light radius. Dwarf galaxies are unfortunately sufficiently far
away that it will be challenging to get proper motion of stars within a
dwarf galaxy in the near future. Proper motions for stars in Galactic
globular clusters however may soon be within reach with the Gaia
satellite (see Table 1 for details) and this 2+2 scenario is explored
in An et al. (2012).

Alternatively, if we know the depth of stars in the galaxy and
LOS motion, we can break the degeneracy between 8 and the slope
of the DM profile. Depending upon where a star sits in a galaxy, the
motion will primarily be either in the tangential or radial direction.
Heuristically, from the stars moving in the radial direction, we
can compute the dispersion in the radial direction, and similarly,
from stars moving in the tangential direction, we can determine
the tangential dispersion. In the case of the Andromeda galaxy,
Watkins, Evans & An (2010) used 500 satellite galaxies to infer B
given positions and LOS velocities. We expand upon the technique
and apply the more general method to dwarf galaxies.

In the rest of the paper, we focus on the 341 method. In Section 2,
we exploit the 3D information to give an intuitive understanding of
how B is revealed in the LOS velocity data. As a proof of concept,
we then explicitly show how we can isolate 8 from the density

MNRAS 440, 16801689 (2014)
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parameters and thus break the mass-anisotropy degeneracy in a
likelihood analysis of dwarf spheroidal data. At the end of the
section, we present very simple estimators for 8 in the form of
sample variances.

In Section 3, the performance of these estimators is tested on
mock dwarf spheroidal data from the Gaia challenge. To simulate
a population of variable stars in real dwarf spheroidal galaxies we
limit our sample size to 500 stars. We show that a sample of 500 stars
is not sufficient to precisely determine the local value of S(r) but may
be used rule out large regions of the parameter space. We also discuss
the sensitivity of the estimator to biases from the experimental errors
and the assumption of spherical symmetry. Finally, we turn to the
feasibility of our technique. We find that our technique can likely
work for Sagittarius. If observational techniques can be improved
by a factor of a few, our technique may also be applicable to other
nearby dwarfs.

2 DYNAMICS WITH 3D POSITIONAL
INFORMATION

In this section, we show how access to each stars depth along the
LOS reveals 8 which parametrizes the anisotropy between radial
and tangential velocity dispersions. We show how the LOS depth
measurements can be used to tackle the mass-anisotropy degeneracy
and derive estimators of 8 that can be applied to dwarf data sets
with 3D positions and LOS velocities.

2.1 The imprint of velocity anisotropy

Let us define the origin of our spherical coordinate system to be at
the galaxy’s centre such that the observer is located a distance d.
in the negative z-direction. Assuming that d. is very large relative
to the system’s scale (as is the case in dwarf spheroidal galaxies),
then we may approximate the distance from the observer to any
given star to be d =~ d. + z. The projected 2D radius R* = x* + y*
that is measured on the sky can be combined with z to give the
de-projected 3D radius > = x*> + y*> + z2. The LOS velocity of
each star is

v, = v, cos 6 — vy sinb, (1)

where 6 is the angle between the star’s position vector and the
z-axis. Under the assumption of spherical symmetry there is a uni-
form probability in solid angle P(2) = 1/47 and the density of stars
v(r) depends only on the radius. If the stars belong to an anisotropic
distribution function f(r, v), then the LOS velocity dispersion at
each (deprojected 3D) radius is

) 1 /dsz/ \ -
o (r)=— | — | d®v(v,cos6 — vy sinb)” f(r, v). (2)
- v /) 4m

Performing first the integration over velocity space, we use the
standard definition,

Vol (r) = / v v f(r, v), 3)

for the velocity dispersions of f(r, v), where k = r, 6, ¢. Subse-
quently integrating over the azimuthal angle ¢ and introducing the
anisotropy parameter, 8 = 1 — o7 /0? we find

o2(r,0) = 0(cos” 0 + (1 — B)sin® 0). 4)

This result has been derived previously in Leonard & Merritt (1989).
Equation (1) clearly shows that the motion observed along the
LOS depends upon both the radial and tangential velocity. The
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Figure 1. The visual imprint of velocity anisotropy. For systems with
isotropic (upper panel), tangentially biased (middle panel) and radially bi-
ased (bottom panel) orbits, the LOS velocities of 5000 stars are plotted as a
function of the standard polar angle 6 between the position vector of each
star and the LOS axis. Dashed red lines show the relative contributions of
the radial and tangential dispersions to the LOS dispersion o, (solid red)
as described by equation (4). Black verticals lines show the boundaries of
regions A and B that are described in Section 2.2.

relative contribution from each component will depend upon the
angle 0 and changes sinusoidally.

We can visualize the effect. Fig. 1 plots the LOS velocity of 5000
stars as a function of 6 for a fixed radius r. The radial velocity
dispersion has been set to 0> = 1 kms~'. The velocity anisotropy
parametrizes a trigonometric envelope which outlines the dispersion
of the stars as a function of angle. The shape of this envelope
is shown in Fig. 1 as solid red lines. Dashed red lines show the
contribution to the LOS variance from o and o7. At the centre
(0 = m/2) of Fig. 1 the LOS velocities have no radial velocity
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component and o, = g,. At the edge of the figure (6 = 0, 7) the
position vector of each star is aligned with the LOS axisand o, =0,

With 5000 stars the impact of § is visible by eye. In the isotropic
case (B = 0), the variance is the same as a function of angle since
o, = oy and the amplitude of the sine and cosine functions are the
same. In the tangentially biased case B = —2, the variance has a
bulge at 6 = 71/2 since o, < oy. Conversely, in the radial biased
case B = 2/3, the variance increases at the edges since o, > .

It is also clear from Fig. 1 that if we fix o, (i.e. we fix the solid
red lines at the edges of the figure), then the global average of af
over all angles is determined uniquely by 8. The global average of
o2 increases if § is decreased. Averaging equation (4) over @ gives

af(r) = <1 — %) arz )]

as was previously derived by Leonard & Merritt (1989).

2.2 Breaking the mass-anisotropy degeneracy

In studying dwarf galaxies, our primary aim is to constrain the
density profile of the dwarf’s DM halo. Let us say that we observe
a dwarf galaxy and our data set comprises of the 3D positions and
LOS velocities of stars. We would like to evaluate the likelihood
of the data given a model of the density profile. Typically, this
is achieved by invoking the assumption of dynamic equilibrium
and using the Jeans equation to solve for the variance of the LOS
velocity distribution. Unfortunately, this is not possible unless we
specify the anisotropy parameter S(r) in addition to the DM density
profile and the density of stars v(r).

Famously there is a degeneracy between the mass and anisotropy
parameter if we use the Jeans equation (and subsequent projection
for O'YZ(R)) to fit LOS dispersion data that is flat as a function of the
projected radius R. A similar degeneracy persists if we have all three
positional components. To break the mass-anisotropy degeneracy
with the new LOS depth measurement we must do more work than
simply binning the LOS velocity data in spherical radial bins (as a
function of the 3D radius r) rather than the usual cylindrical ones.

Perhaps the simplest and most intuitive way to disentangle the 8
and density parameters is to split the data set into two angular sub-
regions (A and B) of equal stellar content. In a spherically symmetric
gravitational potential, the stars at every angular position have the
same contribution from the density parameters. As discussed in
Section 2.1, the angular position does however effect the relative
contributions of the radial and tangential velocities. We can thus
use the angular information to isolate 8 and break the degeneracy.

From Fig. 1, we see that to maximize the impact of g then we
should choose region A to be centred at 7t/2 and B to enclose the
regions nearest the LOS axis in the positive and negative directions.
To ensure an equal number of stars in each region (and noting that
the stars are distributed uniformly in cos 8) we define the boundaries
at |cos@| = 1/2. Averaging the LOS dispersion (equation 4) over
all angles 6 in each sub-region, we find

5
(062)a = (1 - 1—‘;) o2,

11
(02)p = <1 - Tf) o2,

The ratio of the above equations depends only on B. We have
removed the dependence on the density parameters. By fitting to
the velocity dispersion in two angular regions, A and B, we can

1
A:|cos9|<§, (6)

1
B:|Cose|>§. @)
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then solve for B and break the degeneracy with the DM profile of
the halo.

In order to test our method, we create a mock dwarf galaxy data
set. To model galaxies we often assume that the positions {x;} and
velocities {v;} of each tracer star are random samples from a smooth
6D distribution function f(x, v). We can then parametrize a galaxy
by defining the distribution of tracer stars f and the DM density
profile ppy.

For our purposes, here we are only interested in measuring the
LOS velocity dispersions. First, we assume spherical symmetry.
Secondly, we also assume for simplicity that the LOS velocity dis-
tribution is Gaussian (this assumption will be relaxed in Section 3).
With these assumptions, we need only consider the spatial density
of stars v(r) and the variances of the radial and tangential veloc-
ity distributions. As discussed previously these can be determined
from the Jeans equation if we specify the DM density profile and
the anisotropy parameter 8. The LOS dispersion then follows from
equation (5). We therefore define' a ‘model’ for a dwarf galaxy
by its spatial density of stars v(r), its DM density profile ppm and
its anisotropy parameter 8. Every ‘mock galaxy’ discussed in this
section is a Monte Carlo sampling of 5000 stars from a parent
model.

We generated a mock galaxy of 5000 stars, galaxy O (for cOre)
from parent model O. To generate each LOS velocity, we solved the
Jeans equation and used equation (4) as the variance of a Gaussian
LOS velocity distribution. The density of stars v(r) in model O is
parametrized by a Plummer profile and has a characteristic radius of
250 pc. The DM distribution of model O is (as the name suggests)
a cored (inner density slope = 0) Hernquist density profile. The
anisotropy parameter of model O rises from B = O at the galactic
centre to B = 1/2 at large radii.

Let us say that we are presented with the mock data set galaxy
O but do not know that the parent model is the anisotropic and
cored model O. We want to show the power of the 3+1 method
to discriminate between models that are degenerate in the standard
2+1 (no LOS depth measurement) Jeans equation analysis. We
therefore introduce model U (for cUsp). Model U has an identical
Plummer profile v(r) to model O. The DM profile of model U is
a cusped Navarro-Frenk-White (NFW; Navarro, Frenk & White
1997) profile and the anisotropy parameter is S(r) = 0.

In the top panel of Fig. 2, we assess the standard (24-1) method on
galaxy O and demonstrate the mass-anisotropy degeneracy. In this
case, we only have access the projected radii R and LOS velocities of
the 5000 stars in galaxy O. The data points in the upper panel show
the LOS velocity dispersion (UZZ) of galaxy O’s stars in 10 cylindrical
radial bins. The solid red and dashed black lines show the variance
of the LOS velocity distribution ozz in models O and U, respectively.
Despite the very different DM density profiles of models O and U
we see by eye that by suitable tuning of the anisotropy parameter
the LOS variances are very similar.

To assess the statistical significance of this claim for galaxy O, we
must compute the likelihood. We can perform a frequentist estimate
for the likelihood of a model by generating many mock galaxies
from the model parameters and determining the regions where the
median and central 67 and 95 per cent of our estimators (in this case
(vf)) lay. The blue region shows the resulting likelihood contours
for model U. Clearly with only 5000 stars the width of the contours
is significantly larger than the difference between the two models.

'To be clear our use of ‘model’ is not a Bayesian model that defines a
parameter space but rather one parameter set of a Bayesian model.

MNRAS 440, 16801689 (2014)
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Figure 2. For a mock dwarf galaxy of 5000 stars, galaxy O, we compare
an isotropic (8 = 0) model with a cusped density profile (model U) and an
anisotropic model with a cored density profile (model O). Galaxy O is in
fact one Monte Carlo sampling from model O (solid and dotted red lines).
We show a fit to the data with model U (dashed black lines). Blue lines and
shaded regions show the median and 67 and 95 percent contours for the
likelihood of the galaxy O data given the parameters of model U. See text
for details. Upper panel: here, we assume that the observer only has access
to the 2D projected radius R and the LOS velocities v. Data points show the
sample variance (v?) of galaxy O’s LOS velocities in 10 cylindrical radial
bins. Solid red and black dashed lines show the Jeans equation prediction for
the LOS dispersion after marginalizing over the LOS depth (see equations
4- 57 in Binney & Tremaine 1987). Lower panel: now, we assume that the
observer additionally has the LOS depth measurements of the mock dwarf
data. The data may now be divided into two angular sub-regions A and B
according to the condition |cos | < 1/2. Each half of the galaxy O data set is
then splitinto 10 spherical radial bins. Green circular and magenta triangular
data points show the sample variance of LOS velocities in regions A and B.
Red solid and dotted lines show the expected values of the LOS dispersion
in each angular region according to equations 6 and 7. We note that that
as model U is isotropic then (62)a = (02)g. For clarity, we therefore only
show the likelihood contour for the (vzz) A data.

Though we do not explicitly show the likelihood given the cored
model O, it is evident that the likelihood of the data given our cusped
isotropic model is very similar to that of our cored model with tuned
anisotropy. We are thus unable to reject either hypothesis.

With the 3+1 method we can break the degeneracy. The lower
panel of Fig. 2 shows what we see if we additionally measure the
LOS depth of each star. By splitting galaxy O into angular sub-
regions A and B, we see that the LOS velocity dispersions in each
region (region A — green circular and region B — magenta triangular)
are visibly divided at large radii. This splitting of dispersions in
region A and B is a smoking gun for anisotropy 8 # 0 as can be
seen in Fig. 1. In particular, we see from the bottom panel of Fig. 1
that if the LOS dispersion in region A is larger than in region B,
then this indicates radial anisotropy 8 > 0. The solid and dotted
red lines show the variance of the LOS velocity distribution in each
region for the anisotropic model O. Conversely, the model U will

MNRAS 440, 16801689 (2014)

have the same LOS velocity distribution in both angular regions
which is shown with a black dashed line.

Hence, model U cannot simultaneously fit the LOS dispersion
data of galaxy O in angular regions A and B. The degeneracy
between the two models is broken. The blue likelihood contours
(in this case the estimator is (vzz) A) for model U show that this is a
statistically significant result for our mock galaxy of 5000 stars.

Of course 5000 stars is an unrealistically large sample size that
is chosen for illustrative purposes. We note in Fig. 2 that we may
also have ruled out tangentially anisotropic models (where (azz) A
is instead smaller than (ozz)B) with an even greater significance.
Even for modest sample sizes where a precise measurement of the
splitting is obscured by noise, it should still be possible to place a
strong upper or lower bound.

2.3 Estimators for

In the previous section, we described how one could directly tackle
the degeneracy problem. For a real galaxy, it may often be the case
that only a small sub-set of available stars are amenable to a precise
measurement of the LOS depth. Additionally, this measurement
will be subject to a myriad of potential uncertainties that introduce
complicated systematic biases. In either case, it may therefore be
preferable to use the limited 3D data set to make a more robust
estimate B and to use this as a prior in existing 2+1 methods
that treat larger and more precisely measured 2D data sets. In this
section, we introduce simple estimators for .

First let us adapt the method applied in Section 2.2. Eliminating
the o2 term we derive the estimator for 8,
~ (v2)B — (V1)
po=12——F——

11{v2)p — 5(v7)a
that approximates 8 for a radial bin of stars. Though useful as
an illustrative example this method requires a splitting of the data
that increases the statistical noise by a factor of approximately /2.
We can instead obtain a new constraint by reweighting the LOS
velocities by cos?6 and again performing the average over solid
angles,

®

— dQ
o2cos?f = / T (07 cos* 6 + o sin> 0 cos® 0) &)
1 28
=3 (1 - ?) ol (10)
Again we may cancel out o to get a new estimator,
~ 3 1 (v2 cos? 6)
= - — N = = 11
O T P R (02) (an

that uses the full data set.

As an aside, one could also perform a maximum likelihood anal-
ysis on the individual data points to derive § but we found that intro-
ducing the angular dependence strongly altered the simple Gaussian
velocity distributions. Numerical tests indicated that the maximum
likelihood method is more susceptible to the complicated biases that
are discussed in the next section.

3 MONTE CARLO PERFORMANCE OF B
ESTIMATORS FOR MOCK DWARF DATA

In this section, we use mock dwarf spheroidal data from the Gaia
challenge workshop (accessible on the wiki; Read & Kawata 2013)
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to test the variance and bias of our anisotropy parameter estimators
(equations 8 and 11). We draw stars from a more realistic distribu-
tion function f(r, v) rather than the Gaussian approximation used
in the preceding sections. As a point of comparison, the fake data
sets have been drawn from two different but realistic models. Both
models have identical Plummer stellar density profiles with a char-
acteristic radius of 250 pc embedded in a DM halo with a scale
radius of 1 kpc.

Model 1 has a cusped NFW density profile and an isotropic ve-
locity distribution at all radii (8 = 0). Model 2 has a cored DM
halo and Osipkov—Merritt anisotropy where B rises from zero at
the galactic centre to purely radial orbits (8 = 1) at large radii. For
more details on these models, we refer the reader to the Gaia Chal-
lenge data suite described in Walker & Penarrubia (2013). These
two models were selected as they have very different anisotropy
parameters but similar flat dispersion profiles.

Dwarf galaxies may have of the order of 10 thousand plus stars. In
the feasibility section, we will focus on variable stars as our tracer
population. Dwarf galaxies typically only have several hundred
variable stars so we limit our sample size to N = 500.

A rigorous treatment of uncertainties in the distance measurement
is acomplex and method-dependent issue that is beyond the scope of
this work. Indeed, studies [see Binney et al. (2014) for a treatment of
stars in the RAVE survey (Steinmetz et al. 2006)] of how to quantify
the error distribution of distances to stars are ongoing. As such we
consider the performance of our estimator for a simplified model
in which the errors for the distance measurements are assumed to
be Gaussian before commenting on the impact of a more realistic
error distribution.

To evaluate the variance and bias of our anisotropy estimators, we
drew a large number of independent samples of N = 500 stars from
the Gaia Challenge data set. To these positions and velocities, we
added Gaussian distributed noise to the LOS depth z and velocity
v, measurement with standard deviations §, and §,, and centred at
the true coordinates. For each sample, we split the data into five
radial bins of 100 stars, calculated the anisotropy estimator for each
bin and added it to an array. In this way, we were able to construct
likelihood regions for B in a similar fashion to those for (v?) in
Fig. 2.

3.1 Sources of bias and an improved estimator Blb

For a robust inference of 8 and in particular to claim a stringent
upper or lower bound, we must consider how experimental errors
and other systematics bias our estimators. The experimental errors
will introduce biases in our estimate for .

Our numerical tests indicate that only substantially large LOS
velocity errors §,, > 8kms~! can bias our estimators B Adding
Gaussian distributed noise to the LOS velocities adds a systematic
error to the LOS dispersion that is independent of the position
of the star. In Fig. 1, we see that this would simply shift the red
lines vertically. Because the estimators B are defined as ratios of the
LOS dispersion measurements at different positions, this systematic
effectively cancels out. In practice, velocity measurements should
be sufficiently precise that we can neglect the bias due to velocity.

Instead, we focus upon the experimental errors in the LOS depth
measurement, which will alter the distribution of stars first morpho-
logically and secondly in terms of ordering. These two effects will
introduce two separate biases.

Morphologically, experimental distance errors may artificially
elongate the galaxy along the LOS. In our Gaussian example with
width &, the square average of the LOS depth measurement z
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is transformed via (z*) — (z*) 4 82. Measurements of x and y in
plane perpendicular to the LOS are left unchanged however so we
have (z?) > (x?) = (y*). In other words, our spherically symmetric
halo becomes ellipsoidal. As our estimators are derived under the
assumption of spherical symmetry (and particularly uniformity in
solid angle) the elongation will bias the inferred value of §. For
the interested reader, the bias is similar to the Lutz (Lutz & Kelker
1973) bias. In the Lutz case however, Gaussian errors in the parallax
measurement (p  1/d) have the effect of squashing the galaxy.

The depth measurement errors will introduce a second bias when
we group the stars into radial bins. For sufficiently large scatter, the
ordering of stars will be corrupted by moving stars from one bin
to another, which introduces a separate ordering bias effecting B
Though the two aforementioned biases can have a dramatic effect
on ,B, we now demonstrate that there are hints from the data that
allow us to identify them and in some cases clean them.

First, we introduce a new estimator to remove the morphological
bias for our estimate of 8. We can identify the departure from
spherical symmetry in our data set by measuring

1 Y Vecos?6, 3 &
b=—=_— " == 26;. 12
N (05 O)ue N ZCOS ’ (12

A spherical system with uniform probability in solid angle has
(cos?6) = 1/3. The parameter b indicates the fractional deviation
from this prediction. By design, the parameter b enables us to for-
mulate a simple estimator for the anisotropy parameter,

3 b

b= " 5%

13)

for which we can correct for the morphological bias. In Fig. 3, we
have plotted our original estimator ,/51 without the correction. We
adopt Gaussian errors of §. = 100 pc and (8,. = 3kms~!) which
are shown in Fig. 3. These errors are significant relative to the half-
light radius R, » = 250 pc and the LOS dispersion o, &~ 11 kms™!.

e o Elb , =0
—1.0p ~ T
a2 B, B=0
—  L(Bylp=0)
—1.5} —  L(BulB=Bow) |]
260 460 660 860 1600 12‘00

3D Spherical Radius [r/pc]

Figure 3. 500 stars were sampled from a mock dwarf galaxy with an
isotropic distribution function (8 = 0 solid red line). Gaussian errors were
added to the LOS depth and velocity to simulate experimental errors. Data
points show the anisotropy parameter estimator Bl;, (bias corrected) for five
spherical radial bins of 100 stars. Shaded regions show the likelihood of the
data points given the true isotropic model (blue) and a model with Osipkov—
Merritt anisotropy (green) where 8 undergoes a transition from zero at the
galactic centre to one at large radii about transition radius r, = 250 pc.
Central lines show the median and shaded regions show the central 67 and
95 per cent intervals.
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Clearly, the original estimator is offset from the true value of 8 = 0.
Conversely, our morphologically corrected estimator ,El » now aligns
with the true value of 8. The solid blue line in Fig. 3 that represents
the median value of El » for alarge sample of isotropic mock data sets
is approximately centred at zero. We found that if we increased the
distance errors to much above §, = 150 pc then even our improved
estimator E”, began to show significant bias.

Our corrected estimator assumes that all of the deviation from
spherical symmetry is a result of the experimental errors. If the
system is not spherically symmetric, we would need to introduce
a different estimator with an alternative prediction for (cos26).
This could be guided by evaluating the deviations from spherical
symmetry that are present in the x and y positional data in the plane
perpendicular to the LOS. In other words, we can check to see that
the galaxy looks circular in projection as is the case in Draco. Any
such analysis would vary from dwarf to dwarf and we leave this
more complicated case for the future.

We can also predict the effects of the ordering bias, which mixes
the stars from different radial bins. Though we measure the position
of a star at a point with observed radius r,, the true position of the
star is actually at some other point with a true radius . Given our
limited knowledge, we will never know r. If we know the density
of stars at each radius v(r) and the distribution of errors in the depth
measurement then we can use a likelihood analysis to determine the
probable location, which will allow us mitigate the ordering bias.
The 3D density of stars can be estimated by fitting to the surface
density of stars that we observe on the sky and performing an Abel
inversion.

Let us denote the error in the radial measurement ¢, such that
ro = 1y + o, If we know the distribution of LOS depth errors «,,
then we may use

a = \/rt2+rtc059az—|—a§—r[ (14)

to determine the distribution of radial measurement errors P (o, |r;).
In our example where the LOS depth errors «, are normally dis-
tributed we can easily derive the displacement error distribution
function P(c|ry) numerically by drawing o, from the normal dis-
tribution and cos 6 uniformly from —1 to 1. Even though we have a
fixed error distribution for o, we note that P(«,|r;) depends on the
true radius r,. We are now in a position to evaluate the expectation
value of the true radius () at an observed radius r,. This is simply
a weighted combination of all r; and «, that combine to make the
observed radius r,, namely,

{rd(ro) = / NG / "t Pl — 7 — )
JO J—

o0

= /00 drN(r)rP(a, = rg — r|r), (15)
0

where the delta function ensures that ro = r + o;. Our § estimators
depend on sample variances of the LOS velocities. With errors in
the LOS depth we must update our estimates of the LOS dispersion
to reflect the fact that the majority of stars at r, originated from radii
centred at (r). The impact of this bias depends on gradients in the
LOS dispersion. If the gradients are large, then azz(r‘,) could be con-
siderably different to af((rt)). Fortunately, real dwarf spheroidals
have approximately flat LOS dispersion profiles which minimizes
this effect.

In summary, the estimators are prone to bias for any realistic
account of the distance errors. Though this bias is not trivial to
calculate, we have shown with our simple model that if we have
an understanding of the error distributions and a good estimate
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of the stellar density profile then there is sufficient information
from the data to identify the bias and in some cases to clean it.
We found that the estimators are insensitive to errors in the LOS
velocity measurement but that even our improved estimator 31;,
cannot account for bias if the error in the LOS depth measurement
climbs above §, = 150 pc.

Inreality, the biggest issue that the method faces is that the estima-
tor is sensitive to the assumption of spherical symmetry which is al-
ready in tension with observations of real dwarf spheroidals. Sadly,
the only motivation for this assumption is simplicity. Nonetheless,
the spherical model provides a useful test example to answer a
more general question. If we can only observe the LOS component
of each velocity, then how well can we utilize the full 3D positional
information to determine the velocity anisotropy? For any configu-
ration of stellar positions, the key to answering this question lies in
determining the average contribution of each velocity coordinate to
the LOS.

3.2 How well could we determine § in practice?

The primary concern of this section is the fundamental limitation
of sample size. In practice, distance measurements of stars in dwarf
spheroidal galaxies will be limited to variable stars. This will be
discussed in greater detail in the feasibility section. We therefore
consider small samples of 500 stars which represents the upper limit
of variable star populations in dwarf spheroidals. We again adopt
the benchmark errors of §,, = 3kms~! and §, = 100 pc in the LOS
velocity and depth. In the previous section, we showed that these
errors are not sufficient to bias the estimator Bl b

From Fig. 3, we note that with 500 stars the blue likelihood
contours corresponding to the isotropic galaxy are broad at all radii
offering little distinction between data points in areas of mild radial
(E > 0) and tangential (B < 0) anisotropy. As with the estimator
,Eo, this reflects the fact that isotropy does not leave a strong signal
on the angular distribution. By contrast, we see from the green
contours that if the galaxy is strongly anisotropic, as is the case for
the Osipkov—Merritt model at large radii, then the observed data
points will almost always be clustered tightly about the true value.
This is a key result. With a small sample of 500 tracers the strength
of the 3+1 method depends on the nature of the galaxy that we
observe.

If the galaxy that we observe is approximately isotropic, then
clearly the statistical noise limits an inference of 8. The scatter of
data points will be consistent with a wide range of mildly anisotropic
models and an inference is limited to setting upper and lower bounds
that rule out more extreme models. Such information would still be
of interest. Mass estimates at the half-light radius (Wolf et al. 2010)
are less robust if the anisotropy parameter has large gradients. The
mass slope method (Walker & Penarrubia 2011) in particular could
be sensitive to such a correction if individual sub-populations have
contrasting gradients. Though intuition suggests that large gradients
in B are unlikely it would be useful to validate this assumption with
observation. Any prior information on g could also be useful for
methods that use higher moments (i.e. that measure the shape as
well as the width) of the velocity distribution. As discussed in the
introduction, these methods are much more sensitive to 8 than the
classic Jeans analysis of velocity dispersions.

If the galaxy that we observe is instead highly anisotropic, then
we can make even stronger assertions. Had we sampled our mock
galaxy from the anisotropic Osipkov—Merritt model, then we see
from the green contours in Fig. 3 that 95 per cent of measurements of
B1p atlarge radii (r > 1000 pc) will be constrained above Blb =0.5.
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The blue contours show that an observation Of/§1b = (0.5isintension
with the isotropic model at the 20 level. Of course, with one data
point this is not highly significant but it can be used to place much
more stringent constraints on tangential models with 8 < 0. If the
model was highly anisotropic at all radii then five observations of
Bl » = 0.5 would be sufficient to exclude the isotropic model.

In this favourable scenario then, limiting the parameter space to
positive 8 with the 341 method can break the degeneracy if com-
bined with existing (two projected positions + one LOS velocity)
methods. The dwarf that we observe will have a much larger (we
no longer require that the stars are variable) complementary data
set of 2D projected radii plus LOS velocities. The left-hand panel
of fig. 1 in Wolf et al. (2010) shows the degenerate solutions of the
Jeans equation that fit the (typically) flat LOS velocity dispersion
of the Carina dSph. The mass at the half-light radius is fixed but the
mass at the centre is masked by the mass-anisotropy degeneracy.
In particular, we see that (in the case of constant anisotropy) radi-
ally anisotropic models with smaller interior masses (i.e. cores) are
degenerate with tangentially anisotropic models with large interior
masses (i.e. cusps). The prior of 8 > 0 set by our 341 method can
thus break the degeneracy between cusps and cores.

4 FEASIBILITY

There are several techniques to determine the distance of individual
stars in dwarf galaxies ranging from parallax to variable stars. We
discuss how the different distance measurement techniques could
be useful. See Table 1 for definitions of the different methods. We
find that variable stars offer the best opportunity to apply the 3+1
method. First, we consider parallax, which turns out to be more
important for methods other the 341 method. With sufficiently
good angular position and long enough baseline, we could get all
6D phase space information for a galaxy. Hence, one would use all
the data and not be limited to a 3+1 method. Furthermore, even
without sufficiently good parallax data to determine the depth of a
star along the LOS, we could still get the proper motion of the stars
inside the galaxy. The proper motion of stars in a dwarf plus the
LOS velocity would allow one to use the 243 method discussed in
the introduction. Hence, parallax would be more useful for other
techniques.

In the near term, proper motion studies will be limited. To mea-
sure the internal motion of stars inside a dwarf will require an
observe to determine the proper motion to the per cent level. Gaia
in the next five years will map out the proper motion and position
for over a billion stars and will significantly alter our understanding
of the Milky Way. Regardless, Gaia will have difficulty to achieve
the necessary precision (per cent level) to observe the internal mo-
tion of stars inside of dwarf galaxies, with the possible exception of
Sagittarius.

Ground-based missions and pointing telescopes may be able to
do better than Gaia. In the early 1950s, Baade & Swope (1961)
made a detailed study of the variable stars in Draco. Over an entire
season Baade took many long and deep exposures (100 plates plus)
to determine the period of nearly 300 RR Lyrae. Subsequently, over
the last 20 years, many telescopes including (CFHT, HST, KPNO,
USNO, etc.) have imaged Draco and UMil with CCDs. Following a
technique discussed and used by Sohn, Anderson & van der Marel
(2012) and Bouy et al. (2013), one should be able to use at least a
20 year baseline to determine the proper motion and position of the
stars in Draco to the few per cent level. A longer base line (60 years)
could reduce the error to the sub-per cent level. Hence, Draco and
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Sagittarius are potentially interesting targets for the 2+3 method
and may even allow for a full 6D analysis. Regardless, parallax data
will be sparse and hard to come by in the near term.

Given the potential challenges of parallax, we look to other meth-
ods to determine the depth of a star along the LOS. Variable stars are
very promising. Unlike proper motion studies, one does not need a
long baseline to infer a distance. In addition, dwarf galaxies typi-
cally have several hundred variable stars such as RR Lyrae. Fornax
has atleast 500 RR Lyrae (Bersier & Wood 2002), Draco has nearly
300 RR Lyrae (Kinemuchi et al. 2008) if not more, and the Sagittar-
ius dwarf has at least 400 stars (Soszynski et al. 2011). In the case
of RR Lyrae stars, one can certainly determine the absolute distance
of RR Lyrae stars to the per cent level using a period—luminosity
relationship (PLR; Madore et al. 2013). Much of the error in the ab-
solute distance is due to the constant offset term of the PLR. We are
only interested in the relative depth of each star in the dwarf galaxy.
Error in the offset term will not alter the relative depth of a star with
respect to the centre of the galaxy. Hence, the 3+1 method will not
be affected by errors related to the absolute distance relationship.

The fundamental limitation of the PLR for a dwarf spheroidals
would be due to any intrinsic scatter. In the V band, this is certainly
true (Sandage 1990). In the K band, theoretical models of the PLR
(Bono et al. 2001; Catelan, Pritzl & Smith 2004) appear to have
an intrinsic scatter of about 0.032 mag, which corresponds to about
a 2 per cent ~8d/d uncertainty in relative distance (where d is the
distance to the star and 4d is the error in the distance). Bono et al.
(2001) assumed an intrinsic mass scatter of about 4 per cent which
accounts for most of the intrinsic scatter of the PLR by contributing
0.03 mag. If one can account for the mass, one could reduce any
intrinsic scatter.

The K-band PLR depends upon metallicity. For simplicity, we
have neglected any uncertainties in metallicity in the intrinsic scat-
ter. First, we can directly measure the metallicity of RR Lyrae stars.
Secondly, dwarfs such as Draco do not appear to not have a large
range of metallicities. On the positive side, Kepler has brought new
life into the field with new exquisite light curves for RR Lyrae
(Kolenberg 2013). Kepler’s new insight has improved modelling of
RR Lyrae, which may also have the side benefit of improving the
PLR.

Regardless, we would like to observe directly any intrinsic scatter
in the PLR. Unfortunately at present, observational errors mask any
intrinsic scatter. Buckley, Longmore & Dixon (1992) looked at stars
in M3 and w Cen. The authors found a scatter of about 0.03 mag,
which appears to be consistent with limited number of observations.
If the scatter found by Catelan et al. (2004) and Bono et al. (2001)
is real, then the mass and metallicity of stars in M3 and w Cen
are almost identical. Conversely, the PLR relationship may actually
be less sensitive to the mass and metallicity of stars than has been
found by Catelan et al. (2004) and Bono et al. (2001). In sum at
present, the PLR relationship appears limited to the per cent error
level in determining distances, but the relationship might still be
improved in the future.

Beyond the PLR, the Baade—Wesselink (BW) method (Baade
1926; Wesselink 1946, 1969) may also be used to directly measure
the distance to RR Lyrae in dwarf galaxies. The BW method mea-
sures the change in a star’s luminosity as a function of the star’s
surface velocity and temperature, from which one can directly infer
the intrinsic luminosity. The BW method is limited by how well we
can measure the temperature of the star and the star’s actual surface
velocity.

Even without recent improvements in stellar modelling and vari-
ous means to determine the temperature of a star such as with widths
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of metal lines, the temperature of RR Lyrae stars have previously
been determined down to 20 K with only K- and V-band photometry
(see Cacciari, Clementini & Fernley 1992, for further references).
Barcza (2010) and Barcza & Benkd (2012) have formulated a new
way to directly model the size mass, radius and temperature of the
star by exploiting multiple bands — no spectral information. The
authors could determine the temperature to within 20 K and limit
the mass to better than 4 per cent. We emphasize that the conclu-
sions drawn by Barcza (2010) and Barcza & Benkd (2012) were
made without the benefit of deep infrared band coverage (H, J and
K) and without the use of any spectral information. In terms of
surface velocity, we note that with the addition of spectral informa-
tion, we can measure the expansion of a star down to a fraction of
akms~!. Apogee can measure the velocity of stars down to 50 ms™!
(Deshpande et al. 2013). The stars in the dwarfs will be much fainter
than the stars observed with apogee (mag 20 versus mag 13), but
we can use a 10 metre telescope versus a 1 metre telescope, which
will give a much faster integration time. Regardless, we probably
can still measure the surface velocity with a precision on the order
of few tenths of a kms~!. With more probes (multiple bands and
spectroscopy), we may well be able to improve our determination
of the surface temperature, mass, and radius of RR Lyrae. More
complimentary data cannot hurt.

As noted before, our numerical tests on mock dwarf spheroidal
data indicate that the 341 method requires that we know the relative
distance to better than 150 pc. We can translate that into a relative
distance error of 8d/d, where d is the distance to the star. We take
8d = 150 pc. For a fixed dd, we can then infer that the maximum
error allowed us to apply the 34+1 method. For example, the max-
imum error allowed for Sagittarius is 0.7 per cent, 0.3 per cent for
Ursa Minor, 0.2 per cent for Draco and 0.1 per cent for Fornax. In
summary, we will need distances to a few tenths of a per cent.

A factor of a few improvement in the PLR and the BW method
would be sufficient to apply the 341 method to the above-mentioned
galaxies. As noted previously, PLR appears to only determine the
relative distance down to the per cent level (multiple bands and
measurement of the stars metallicity could improve the situation).
As noted previously, any inherent dispersion appears is either lim-
ited to taking insufficient data or due to mass dispersion. If one can
use multiple bands to better constrain the mass of RR Lyrae, then
PLR maybe sufficient to apply the 341 method.

How well can the BW method work? The temperature of an
RR Lyrae star is 7 ~ 7000 K. The star has a surface velocity of
V ~ 150kms~'. As a base line, we will assume an error 8V of
2kms~! and 8T of 20 K, which gives a relative error on the distance
8d/d to around 0.7 per cent with 8d/d >~ 26T/T + §V/V (we have
neglected uncertainties on the period, which is small). Most of the
error comes from the temperature. Remarkably even without an
improvement of BW method we could already successfully apply
the 341 method to Sagittarius. A factor of a few improvement in
the determination of temperature would allow us to also apply the
3+1 method to Ursa Minor, Draco and possibly Fornax. Finally, we
emphasize that even with the present limitations on the BW method,
the 3+1 method could be used to help constrain § in Sagittarius.

5 DISCUSSION

Without knowledge of the anisotropy parameter §, the standard
methods in galactic dynamics are not able to unambiguously deter-
mine the DM density profile at the centre of the halo. By adjusting
B, one can accommodate a cored or a cusped profile. For systems
as distant as dwarf spheroidal galaxies this degeneracy cannot be
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broken at present because the available LOS velocities and pro-
jected radii offer virtually no information on the anisotropy. With
new sophisticated astronomical techniques this could be subject to
change in the near future.

The scenario in which data sets are bolstered by the proper mo-
tions has been examined thoroughly in the literature. For observa-
tional reasons however, less attention has been paid to the case where
we first gain access to the LOS depth of each star. In this work, we
illustrate clearly how velocity anisotropy can be identified with this
information and show for spherically symmetric systems how one
could in theory break the mass-anisotropy degeneracy completely.
For an application to small samples, we developed simple estima-
tors for the anisotropy parameter ,3 that could be used to inform
priors on B in existing 2D methods. This would be particularly
effective for methods that employ higher moments of the velocity
distribution which are sensitive to the anisotropy parameter.

To gauge how our estimators might perform in practice we tested
them on realistic mock dwarf data from the Gaia Challenge. Sam-
ples of N = 500 stars were given Gaussian experimental errors of
8. =100 pc in the LOS depth and §,. = 3km s~ in the LOS velocity
measurement. With so few stars we found that a precise measure-
ment of E is only possible for highly anisotropic galaxies that leave
a strong imprint on the data. The performance of the method is thus
dependent on the nature of the galaxy.

If the galaxy of interest is approximately isotropic (8 = 0), then
the statistical noise limits an inference of 8 to setting upper and
lower bounds. Given that we effectively have no a priori intuition
for B this is still useful information and excluding models with
radical anisotropy would verify the implicit assumptions of widely
used mass estimators.

The results are much more dramatic if the galaxy is in fact highly
anisotropic. In this case, the estimators B are clustered tightly about
the true value. Our numerical tests with 500 stars show that an
observation of [Ai = 0.5 is in tension with tangential models 8 < 0
at the 20 level. If such an observation were combined with the large
2D data sets available for dwarf spheroidals, then the degeneracy
can be broken.

In numerical tests with simple Gaussian error distributions, we
found that the estimators E are robust to errors in the LOS velocity
measurements but prone to bias from uncertainties in the distance
measurements. For our test model dwarfs with a half-light radius of
250 pc, the bias became highly significant as distance errors climbed
above 150 pc. This is only a guide and it is beyond the scope of this
work to fully quantify the bias as in practice the relevant error
distributions will dependent on the observational method. Where
possible, we have briefly shown how one can use the data to identify
and clean elements of this bias.

An additional issue is the assumption of spherical symmetry
which is in tension with measurements of real Milky Way dwarf
spheroidals. Numerical tests must be conducted to quantify how
well the estimators fare on non-spherical haloes but the spherical
model nevertheless gives us an interesting insight into the opportu-
nities that the 3D positional information provides. The general idea
holds for non-spherical stellar distributions; with 3D positional data
we can see exactly how much each velocity component contributes
to a stars LOS. This varies locally and by splitting or reweighting the
data according to its position we can isolate the velocity anisotropy
and break the degeneracy.

Finally, we argue that our method could successfully be applied
to Sagittarius. Our numerical tests on mock dwarf spheroidal data
indicate that we must know the relative depth of stars in a galaxy
to within 150 pc. As noted in the feasibility section, dwarf galaxies
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typically have a population of several hundred RR Lyrae. Via the
BW method we can measure the distance to the star directly. The
BW method is sensitive to accurate measurements of the surface
temperature and the radial velocity of the stars surface. With a
highly accurate spectrograph and coverage with multiple bands
(especially with the addition of the K band), it may well be possible
to apply our method directly to Sagittarius. If we can improve the
inferred temperature of an RR Lyrae by a factor of 3 or 4, we could
also apply the method to Draco, Ursa Minor, and potentially other
nearby dwarf galaxies.
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