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ABSTRACT
Gravitational lensing magnification is measured with a significance of 9.7σ on a large sample
of galaxy clusters in the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS). This
survey covers ∼154 deg2 and contains over 18 000 cluster candidates at redshifts 0.2 ≤ z ≤ 0.9,
detected using the 3D-Matched Filter cluster-finder of Milkeraitis et al. We fit composite-NFW
models to the ensemble, accounting for cluster miscentring, source-lens redshift overlap, as
well as nearby structure (the two-halo term), and recover mass estimates of the cluster dark
matter haloes in range of ∼1013 M� to 2 × 1014 M�. Cluster richness is measured for the
entire sample, and we bin the clusters according to both richness and redshift. A mass–
richness relation M200 = M0(N200/20)β is fit to the measurements. For two different cluster
miscentring models, we find consistent results for the normalization and slope, M0 = (2.3 ±
0.2) × 1013 M�, β = 1.4 ± 0.1 and M0 = (2.2 ± 0.2) × 1013 M�, β = 1.5 ± 0.1. We find
that accounting for the full redshift distribution of lenses and sources is important, since any
overlap can have an impact on mass estimates inferred from flux magnification.

Key words: gravitational lensing: weak – galaxies: clusters: general – galaxies: photometry –
dark matter.

1 IN T RO D U C T I O N

Clusters of galaxies are the most massive gravitationally bound
structures in the Universe today. As such they can be useful cos-
mological probes, as well as laboratories for all kinds of interesting
physics including galaxy evolution, star formation rates, and in-
teractions of the intergalactic medium. There are several methods
commonly used to estimate cluster masses (e.g. mass-to-light ra-
tios, X-ray luminosities, the Sunyaev–Zeldovich effect), but among
them gravitational lensing is unique in being sensitive to all mass
along the line of sight, irrespective of its type or dynamical state
(Bartelmann & Schneider 2001).

There are multiple ways to measure the signature of gravitational
lensing, and each has its own specific advantages and limitations.
Observation of strong lensing arcs and multiple images is extremely
useful for studying the innermost regions of clusters, and getting
precise mass estimates, but can only be applied to very massive
objects which are observationally limited in number. On the other
hand, weak lensing shear, which measures slight deformations in
background galaxy shapes, can be applied across a much wider
range of lens masses. Shear studies have been used with much

� E-mail: jesford@phas.ubc.ca

success to map large-scale mass distributions in the nearby universe
(Massey et al. 2007; Van Waerbeke et al. 2013). However, because
they rely on precise shape measurements, shear faces the practical
limitation of an inability to sufficiently resolve sources for lenses
more distant than a redshift of about 1 (Van Waerbeke et al. 2010).

A third approach to measuring gravitational lensing is through
the magnification of background sources, observable either through
source size and flux variations (Huff & Graves 2014; Schmidt et al.
2012), or the resultant modification of source number densities
(Scranton et al. 2005; Hildebrandt, van Waerbeke & Erben 2009b;
Hildebrandt et al. 2011, 2013; Ford et al. 2012; Morrison et al.
2012). Magnification has been recently measured using quasar vari-
ability as well (Bauer et al. 2011). Although relative to the shear,
magnification will tend to have a lower signal-to-noise for typical
low-redshift lenses, the requirement for source resolution is com-
pletely removed. This makes magnification competitive for higher
redshift lenses, and especially for ground-based surveys where at-
mospheric seeing has a strong influence on image quality.

In this work, we adopt the number density approach, known
as flux magnification, using Lyman-break galaxies (LBGs) for the
lensed background sources. The observed number density of LBGs
is altered by the presence of foreground structure, due to the apparent
stretching of sky solid angle, and the consequential amplification of
source flux. Because of the variation in slope of the LBG luminosity
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function, magnification can either increase or decrease the number
densities of LBGs, depending on their intrinsic magnitudes. By
stacking many clusters we can overcome the predominant source of
noise – physical source clustering (Hildebrandt et al. 2011).

In Section 2, we describe the cluster and background galaxy
samples. Section 3 lays out the methodology for the measurement
and modelling of the magnification signal. We discuss our results
in Section 4 and conclude in Section 5. Throughout this paper, we
give all distances in physical units, and use a standard � cold dark
matter cosmology with H0 = 70 km s−1 Mpc−1, �M = 0.3, and
�� = 1 − �M = 0.7.

2 DATA

For the magnification results presented in this paper, we are fortu-
nate to work with a very large sample of galaxy cluster candidates
and background galaxies in the Canada–France–Hawaii–Telescope
Lensing Survey (CFHTLenS;1 Erben et al. 2013; Hildebrandt et al.
2012). CFHTLenS is based on the Wide portion of the CFHTLenS,
with deep five band photometry. The survey is composed of four
separate fields, in turn divided into 171 individual pointings, cover-
ing a total of 154 deg2.

2.1 3D-MF Galaxy clusters

The 3D-Matched-Filter (3D-MF) cluster finding algorithm of
Milkeraitis et al. (2010), essentially creates likelihood maps of the
sky (in discrete redshift bins) and searches for peaks of significance
above the galaxy background. The likelihood is estimated assuming
that clusters follow a radial Hubble profile as well as a Schechter
luminosity function. A significance peak of >3.5σ is considered a
cluster detection, since this reduces below 1 per cent the probability
of Gaussian random noise fluctuations mimicking a true cluster.
The reader is referred to Milkeraitis et al. (2010) for the details of
the 3D-MF algorithm; here, we discuss only the essential points
relevant to our purposes.

The radial component of the 3D-MF likelihood employs a cutoff
radius of 1 Mpc, which was chosen to roughly correspond to the
radius r200 of an M200 ∼ 3 × 1013 M� cluster. Milkeraitis et al.
(2010) motivate this choice by the desire to optimally search for
relatively high-mass clusters, but note that this radius will be less
ideal for low-mass clusters. One should expect that random galaxy
interlopers may contaminate the estimation of significance for like-
lihood peaks corresponding to lower mass clusters. This may be
a key factor in explaining the wide range of cluster significances
conferred upon low-mass clusters from simulations, while high-
mass simulated clusters were assigned significances that correlated
strongly with mass (see fig. 10 in Milkeraitis et al. 2010). Because
peak significance may therefore not be an ideal mass proxy to use
for the full cluster ensemble, in this work we rely upon a measure
of the cluster richness, which is discussed in Section 2.1.2 below.
Using cluster richness has the added benefit that the mass–richness
relation can be measured and used as a scaling relation.

Using the 3D-MF method, a total of 18 036 galaxy cluster can-
didates (hereafter clusters) have been detected in CFHTLenS, at a
significance of >3.5σ above the background. In contrast to pre-
vious cluster magnification studies, which have been limited by
small number statistics, this huge sample of clusters allows us to

1 www.cfhtlens.org; Data products available at http://www.cadc-ccda.hia-
iha.nrc-cnrc.gc.ca/community/CFHTLens/query.html

pursue multiple avenues of investigation. In particular, we bin the
clusters according to both richness and redshift, to recover trends
in physical characteristics such as the mass–richness relation, and
also investigate halo miscentring as a function of these parameters.

2.1.1 Cluster centres

Due to the nature of the method, the defined centres of the 3D-
MF clusters, which are located at peaks in the likelihood map, do
not necessarily coincide with member galaxies. Hence, the defined
centres are notably different from many other cluster finders, which
commonly choose the brightest cluster galaxy (BCG), the peak in
X-ray emission, some type of (possibly luminosity-weighted) aver-
age of galaxy positions, or a combination of these, as a measure of
the centre of a dark matter halo.

The choice of cluster centre is always ambiguous, both observa-
tionally and in simulations. One wants to know the centre of the
dark matter distribution, as the point around which to measure a
radially dependent signal. Obviously the dark matter cannot be di-
rectly seen, so an observable such as galaxies or X-ray emission
must be used (see George et al. 2012 for an excellent review and
analysis of cluster centroiding). The chosen centre of the cluster
can be wrong for several reasons. The observable chosen (e.g. the
BCG) may simply be offset from the true centre of the dark matter
potential. Misidentification of the BCG can be a significant problem
for this particular example as well (Johnston et al. 2007).

Perhaps a more interesting source for miscentring comes from
the fact that clusters haloes are not perfectly spherical, and exhibit
substructure and irregularities caused by their own unique mass
assembly histories. Especially for very massive haloes, which have
formed more recently and in many cases are still undergoing mergers
and have yet to virialize, we really should not expect a clear centre
to exist. Following visual inspection, Mandelbaum, Seljak & Hirata
(2008) chose to exclude the most massive clusters from their weak
lensing analysis for this very reason. Instead of throwing away the
highest mass haloes in our sample, we include them in this study,
but take care to account for possible miscentring effects.

Milkeraitis et al. (2010) tested for centroid offsets in 3D-MF by
running the cluster-finder on simulations and comparing detected
cluster centres to known centres. The simulations used were the
mock catalogues of Kitzbichler & White (2007), which were created
from a semi-analytic galaxy catalogue (De Lucia & Blaizot 2007)
derived from the Millennium Simulation (Springel et al. 2005).
Fig. 13 of that work shows the number of clusters detected as
a function of distance from true cluster centre. Because 3D-MF
was optimized to produce cluster catalogues that are as complete
as possible (in contrast to, e.g. Gillis & Hudson 2011, which is
designed to maximize purity), the trade-off is the presence of some
contamination with false detections, especially at the low-mass end.

We use the numbers of clusters at each offset, and the contami-
nation from Milkeraitis et al. (2010), to estimate the probability of
radial offsets P(Roffset). We fit the result for each mass bin with a
two-dimensional Gaussian distribution:

P (Roffset) = Roffset

σ 2
offset

exp

[
−1

2

(
Roffset

σoffset

)2
]

. (1)

These resulting curves are presented in Fig. 1 (colours are selected
to match those in fig. 13 of Milkeraitis et al. 2010), and for clarity
we only show the data points for the bin that combines all clusters.
We find consistent fits for the separate mass bins, which we list in
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Figure 1. Modelled Gaussian distribution of radial offsets between defined
3DMF centres and simulated cluster centres. The black points and solid curve
is the combined data and best fit for all CFHTLenS clusters combined. The
coloured curves show the best-fitting Gaussians for separate mass bins, and
colours match the empirical offsets measured and presented in fig. 13 of
Milkeraitis et al. (2010). As each of these coloured curve fits is consistent
with the solid black curve for the entire combined sample, we choose to use
this single Gaussian distribution to model miscentring for all clusters.

Table 1. Best-fitting Gaussian distributions for the cluster miscentring in
Fig. 1.

Mass range (M�) Colour Best-fitting σ offset (arcmin) χ2
red

(1.5-5) × 1013 red 0.37 ± 0.06 1.8
(5-10) × 1013 green 0.42 ± 0.06 1.4
(1-2.5) × 1014 blue 0.42 ± 0.06 1.2
≥2.5 × 1014 purple 0.45 ± 0.06 1.4

≥1.5 × 1013 black 0.40 ± 0.06 1.1

Table 1, and therefore use the combined distribution (black curve)
to model the effects of miscentring in our measurements.

2.1.2 Cluster richness

We define the richness parameter N200 in this work to be the number
of galaxies within a radius r200, and redshift �z, of a cluster candi-
date centre (both points discussed below). Member galaxies are also
required to be brighter than i-band absolute magnitude −19.35. This
cutoff is chosen to correspond to the limiting apparent magnitude
of CFHTLenS (i ∼ 24) at the highest redshift clusters that we probe,
z ∼ 1. So at the expense of removing many galaxies from the rich-
ness count, we hope to largely avoid the effect of incompleteness
on the number of galaxies per cluster. Then clusters of the same
intrinsic richness at high and low redshift should have compara-
ble observed N200, within the expected scatter of the mass–richness
relation.

For the line-of-sight dimension, we require galaxies to fall within
�z < 0.08(1 + z) of the cluster redshift. This �z is the 2σ scatter
of photometric redshifts in the CFHTLenS catalogue, chosen so
that we reduce the probability of galaxies in a cluster being missed
due to errors in their photo-z estimation. Of course, this comes
at the expense of counting galaxies within a quite broad line-of-
sight extent, especially for the higher redshift clusters. This effect
should cancel out though, since we also use the same �z range in

Figure 2. Distribution of richness (N200) values for clusters in this study.

calculating the galaxy background density, which is subtracted to
yield N200 as an overdensity count of cluster galaxy members.

In the plane of the sky, galaxies must lie within a projected radius
r200 of the cluster centre (defined above). r200 is defined as the
radius within which the average density is 200 times the critical
energy density of the universe, ρcrit(z), evaluated at the redshift of
the cluster. However, since r200 itself is unknown, we require some
kind of assumption about radius or mass in order to proceed with
the galaxy counting. There is no unique way to do this. We begin by
making an initial approximation of the masses using a best-fitting
power-law relation between mass and cluster peak significance, for
3D-MF clusters (Milkeraitis 2011):

log(M200) = 0.124σ + log(1014 M�) − 1.507. (2)

As discussed in 2.1, 3D-MF tests on simulations that suggested
peak significance was a good mass proxy for high, but not low, mass
clusters. In light of this, we merely employ the above relation as a
starting point for calculating the radii from mass,

r200 =
[

3M200

4π(200)ρcrit(z)

]1/3

. (3)

These r200 estimates are then used for counting galaxies for cluster
richness. Richness N200 is the variable of choice used as a mass
proxy for binning the magnification measurement. The distribution
of these richness values is shown in Fig. 2.

2.2 Sources

We use LBGs as the magnified background sources. LBGs are
high-redshift star-forming galaxies (Steidel et al. 1998), that have
been successfully employed in past magnification studies (see
Hildebrandt et al. 2009b, 2011; Ford et al. 2012; Morrison et al.
2012) due to the fact that their redshift distributions and luminos-
ity functions are reasonably well understood. Knowledge of the
intrinsic source luminosity function allows for an interpretation of
the magnification signal, which depends sensitively on the slope
of the number counts as a function of magnitude. In addition,
the high-redshift nature of LBGs is important to reduce redshift
overlap between lenses and sources. Any source galaxies in the
redshift range of the cluster lenses will contaminate the lensing-
induced cross-correlation signal, with correlations due to physical
clustering.

The LBG sample is selected with the colour selection criteria
of Hildebrandt et al. (2009a) (see section 3.2 of that paper). It is
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composed of 122 144 u-dropouts with 23 < r ≤ 24.5, located at
redshift ∼3.1. We choose this magnitude range to avoid as much
potential low-redshift contamination as possible. See Section 3.2.2
for our modelling of the residual contamination. The detailed prop-
erties of this LBG population will be described in a forthcoming
paper (Hildebrandt et al. in preparation).

3 MAG N I F I C AT I O N M E T H O D O L O G Y

3.1 The measurement

The magnification factor, μ, of a gravitational lens can be expressed
in terms of the change from intrinsic (n0) to observed (n) differential
number counts of background sources:

n(m) dm = μα−1n0(m) dm (4)

(Narayan 1989). Here, m is apparent magnitude, and α ≡ α(m)
is proportional to the logarithmic slope of the source luminosity
function. Depending on the luminosity function’s slope in a given
magnitude bin, it is possible to observe either an increase or a
decrease in source number counts, as demonstrated in fig. 2 of Ford
et al. (2012).

In practice, the magnification signal is easily measured using
the optimally weighted cross-correlation function of Ménard et al.
(2003):

wopt(R) = Sα−1L − Sα−1R − 〈α − 1〉LR

RR
+ 〈α − 1〉. (5)

In this expression, the terms are normalized pair counts in radial
bins, where L stands for the lenses, and Sα − 1 are the optimally
weighted sources. R represents objects from a random catalogue
more than 10 times the size of the source catalogue, with the same
masks applied.

In order to determine the optimal weight factor α − 1, for both
the measurement and the interpretation, we require knowledge of
the source luminosity function. As done in Ford et al. (2012), we
determine the LBG luminosity function slope from the Schechter
Function (Schechter 1976), giving

α = 2.5
d

dm
log n0(m) = 100.4(M∗−M) − αLF − 1, (6)

and rely on externally measured luminosity functions for the char-
acteristic magnitude M∗ and faint end slope αLF. We use the LBG
luminosity function of van der Burg, Hildebrandt & Erben (2010),
measured using much deeper data from the CFHTLS Deep fields.
For u-dropouts M∗ is −20.84 and αLF is −1.6. Thus, every source
galaxy is assigned a weight factor of α − 1 according to its absolute
magnitude M.

The magnification signal, wopt(R), is measured in logarithmic
radial bins of physical range 0.09–4 Mpc (in contrast to angle),
so that we can stack clusters at different redshifts without mixing
very different physical scales. Each cluster’s signal is measured
separately before stacking the measured wopt(R), and full covariance
matrices are estimated from the different measurements.

3.2 The modelling

The magnification is a function of the halo masses, and to first order
it is proportional to the convergence κ . In this work, however, we

will use the full expression for μ to account for any deviations from
weak lensing in the inner regions of the clusters:

μ = 1

(1 − κ)2 − |γ |2 (7)

(Bartelmann & Schneider 2001).
We assume a spherical Navarro–Frenk–White (NFW) model

(Navarro, Frenk & White 1997) for the dark matter haloes, along
with the mass–concentration relation of Prada et al. (2012). The
convergence is modelled as the sum of three terms,

κ = [
pcc
NFW + (1 − pcc)
smoothed

NFW + 
2halo

]
/
crit, (8)

where pcc is the fraction of clusters correctly centred (i.e. with
Roffset = 0), and 
crit(z) is the critical surface mass density at the
lens redshift. The expression for the shear, γ , is identical with
κ → γ , and 
 → �
. Note that the first term in Equation (8) is
equivalent to adding a delta function to the miscentred distribution
of Fig. 1, to represent clusters with perfectly identified centres. As
discussed in Section 4, the fits do not give strong preference to
miscentring in the measurement, but in future work (in particular
with weak lensing shear) it will be useful to constrain the degree of
miscentring using the data, instead of relying solely on simulations.

We assume both lenses and sources are located at known discrete
redshifts. This is z ∼ 3.1 for the LBGs. Since they are at very high
redshift the effect of any small offsets from this has negligible effect
on the angular diameter distance, the relevant distance measure for
lensing. The clusters, on the other hand, have redshift uncertainties
of 0.05 [due to the shifting redshift slices employed by 3D-MF
(Milkeraitis et al. 2010)]. This translates into an uncertainty on the
mass estimates ranging from less than a percent up to ∼17 per
cent (depending on cluster z), and is included in the reported mass
estimates.


NFW is the standard surface mass density for a perfectly centred
NFW halo, calculated using expressions for κ (and γ ) in Wright &
Brainerd (2000). 
smoothed

NFW on the other hand, is the expected surface
mass density measured for a miscentred NFW halo:


smoothed
NFW (R) =

∫ ∞

0

NFW(R|Roffset)P (Roffset) dRoffset. (9)

The distribution of offsets P(Roffset) is given by equation (1), and
the other factor in the integrand is


NFW(R|Roffset) = 1

2π

∫ 2π

0

NFW(R′) dθ, (10)

where R′ =
√

R2 + R2
offset + 2RRoffset cos θ (Yang et al. 2006).

The two-halo term 
2halo accounts for the fact that the haloes
we study do not live in isolation, but are clustered as all matter in
the universe is. We account for neighbouring haloes following the
prescription of Johnston et al. (2007):


2halo(R, z) = bl(M200, z)�Mσ 2
8 D(z)2
l(R, z) (11)


l(R, z) = (1 + z)3ρcrit,0

∫ ∞

−∞
ξ

(
(1 + z)

√
R2 + y2

)
dy (12)

ξ (r) = 1

2π2

∫ ∞

0
k2P (k)

sin kr

kr
dk. (13)

Here, small r is comoving distance, D(z) is the growth factor, P(k)
is the linear matter power spectrum, and σ 8 is the amplitude of
the power spectrum on scales of 8 h−1Mpc. For the lens bias factor
bl(M200, z), we use equation 5 of Seljak & Warren (2004).
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3.2.1 Composite-halo fits

The part of the optimal correlation function which is caused by
gravitation lensing is related to the magnification contrast δμ ≡
μ − 1 through

wlensing(R) = 1

Nlens

Nlens∑
i=1

〈(α − 1)2〉iδμ(R, M200)i . (14)

Here the sum is over the number of lenses in a given stacked mea-
surement, and 〈(α − 1)2〉i refers to the average of the weight factor
squared in the pointing of a given cluster.

We perform composite-halo fits using the above prescription, in
which we allow for the fact that the clusters in a given measurement
have a range of masses and redshifts. We do not fit a single average
mass. Instead, we calculate δμ(R, M200)i for each individual cluster
using a scaling relation between mass and richness,

M200 = M0

(
N200

20

)β

. (15)

The fit parameters are the normalization, M0, and (log-) slope, log β,
of the assumed power-law relation. From this we calculate the opti-
mal correlation wopt(R) according to equation (14). The best-fitting
relation is determined by minimizing χ2, which is calculated us-
ing the full covariance matrix. We apply the correction factor from
Hartlap, Simon & Schneider (2007) to the inverse covariance ma-
trix; this corrects for a known bias (related to the number of data
sets and bins) which would otherwise lead to our error bars being
too small.

3.2.2 LBG contamination

An important source of systematic error for magnification comes
from low-redshift contamination of the sources, leading to physi-
cal clustering between the lens and source populations. The cross-
correlation that results from contamination can easily overwhelm
the measurement of magnification, making redshift overlap far more
important for magnification than for shear. Past studies sought to
minimize this effect, for example by checking for the negative cross-
correlation that should exist between lenses and very faint sources
with shallow number count (Hildebrandt et al. 2009b; Ford et al.
2012). Here, we incorporate this clustering into the model, using a
similar approach to Hildebrandt et al. (2013).

Fig. 3 shows the redshift probability distributions, P(z), for the
clusters and the LBGs. The LBG redshift distribution is based on
the stacked posterior P(z) put out by the BPZ redshift code (for
details on the CFHTLenS photo-z see Hildebrandt et al. 2012).
Since the BPZ prior is only calibrated for a magnitude-limited sample
of galaxies, we cannot expect the stacked P(z) to reflect the real
redshift distribution of the colour-selected LBGs. Hence, we use

Figure 3. Redshift probability distribution functions for the clusters and the
LBG sources. Low-redshift contamination of the LBGs will lead to physical
clustering correlations where overlap with the cluster redshifts occurs.

the location and shape of the primary (high-z) and secondary (low-
z) peaks but adjust their relative heights separately. This can be
done with a cross-correlation technique similar to Newman (2008).
Details of this technique will be presented in Hildebrandt et al. (in
preparation).

Despite our efforts to avoid contamination, there is obviously
some redshift overlap with the clusters. We use the products of the
lens and source P(z) to define selection functions, and calculate the
expected angular correlations using the code from Hamana et al.
(2004). The weighted correlation function that we measure is the
sum of the correlations due to lensing magnification and clustering
contamination:

wopt(R, z) = flensingwlensing + fclusteringwclustering. (16)

Note that flensing + fclustering ≤ 1, since some of the contaminants
may be neither in the background and lensed, nor close enough in
redshift to be clustered with the lenses.

The clustering contamination fraction fclustering(z) for each cluster
redshift is defined as the fraction of each source P(z) that lies within
0.1 in redshift (twice the cluster redshift uncertainty). The part of
the source P(z) that lies at higher redshift than the lens is then the
lensed fraction flensing(z), and the part at lower redshift (i.e. in front
of the lens) has no contribution to the signal.

The factor fclustering(z) itself is generally very small for the LBGs
used in this work, only really non-negligible for cluster redshifts
z ∼ 0.2–0.3, which can be seen in Fig. 3. The more significant
effect on the estimated masses is that flensing(z) ∼ 0.9 across all
redshift bins, because about 10 per cent of the sources are not
really being lensed. We tested our results for robustness against
uncertainties in the contamination fraction. When we vary the total
low-z contamination fraction by ±1σ (∼4 per cent), the best-fitting
cluster mass estimates remain within the stated error bars.

We explore three ways of determining wclustering. Because of the
weighting applied to LBGs in our measurement (which is optimal
for the lensed sources, and should suppress contributions from red-
shift overlap), there will always be a prefactor of 〈α − 1〉 in each
estimation of clustering. The first method uses the dark matter an-
gular autocorrelation, wdm, and estimates of the galaxy and cluster
bias to calculate:

wclustering(R, z) = 〈α − 1〉blbswdm(R, z). (17)

We set the bias factor for the galaxy contaminants bs = 1 for this
analysis, which is reasonably consistent with the bias relation of
Seljak & Warren (2004) that is employed for the cluster bias (bl).

We also calculate both the one- and two-halo terms for NFW
haloes, w1halo and w2halo (again using the code and methods de-
scribed in Hamana et al. 2004). Here, the expression for physical
clustering takes the form:

wclustering(R, z) = 〈α − 1〉bs [w1halo(R, z) + w2halo(R, z)] . (18)

This method requires knowledge of the occupation distribution of
the low-z galaxy contaminants in the cluster dark matter haloes,
which is not well determined. As a first approximation, we use the
simple power-law form described in Hamana et al. (2004),

Ng(M) =
{

(M/M1)α for M > Mmin

0 for M < Mmin

. (19)

Since these parameters are unknown, we use the values for M1

and α measured for galaxies in the SDSS (see table 3 of Zehavi
et al. 2011). We choose Mmin to correspond to the minimum mass
measured for cluster haloes, and assume that haloes above this mass
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always host a detected cluster. As a final check, we also ask what
the clustering signal would be if every halo above Mmin hosted both
a cluster and a single low-z galaxy contaminant (so that Ng = 1 for
M > Mmin).

This final method yields the largest estimates of wclustering, and
therefore a smaller estimate of cluster masses. The former (using
SDSS parameters) gives the highest mass estimates, and the sim-
ple biasing approach of equation (17) yields intermediate results.
We use the range of these results to estimate an uncertainty in
mass estimates coming from lack of knowledge about the nature of
the low-z galaxies that contaminate our LBG source sample. This
additional systematic error affects only the clusters at low redshift,
where the source and lens P(z) distributions overlap, and is reported
on the mass estimates given in Table 3. All best-fitting mass values
reported in the tables of this work are calculated using the contam-
ination approach of equation (17), since this method relied on the
fewest assumptions about the nature of the galaxy contaminants.

Accounting for redshift distributions in this particular source
sample effectively means that cluster masses are higher than one
would naively guess by fitting for only the magnification signal.
However, note that in a case with more significant redshift overlap,
so that fclustering was large, the opposite statement would be true,
and mass estimates that included the full P(z) distribution would
be smaller than the naive magnification-only approach. These are
important effects to consider, and future flux magnification studies
should be careful to use full redshift distributions in modelling the
measured signal.

4 R E SULTS

Stacking the entire set of 18 036 clusters gives a total significance
of 9.7σ for the combined detection, shown in Fig. 4. The per-
fectly centred model is a better fit to the overall measurement, with
χ2

red ∼ 1.2, while the miscentred model gives χ2
red of 2.3. For both

models, there are two free parameters (M0 and log β), leading to

8 degrees of freedom. To investigate miscentring and mass–richness
scaling, we divide the clusters into six richness bins, and measure
the optimal cross-correlation in each.

We measure the characteristic signature of magnification in every
richness bin with significances between 4.6 and 5.9σ . These results
are shown in Fig. 5, where we try fitting both a perfectly centred
model (pcc = 1) and a model where every cluster is affected by
centroid offsets (pcc = 0). Details of the fits, including reduced χ2

and the average of the best-fitting mass values 〈M200〉, are given in
Table 2.

The lowest mass (richness) bin is not well fitted by either model.
Overall there is not a strong preference for either perfectly centred
(pcc = 1) or miscentred (pcc = 0) clusters, and both are reasonably
good fits. Generally, the miscentred model yields slightly higher
masses for the clusters (though it is sensitive to the shape of the
data), due to the Gaussian smoothing applied, which lowers the
model amplitude in the innermost regions. However, this is easily
within the uncertainty on the mass estimates, so the results are in
agreement.

The issue of cluster miscentring is interesting in its own right
as discussed in Section 2.1.1. It is tempting to try and fit for the
parameter pcc, describing the fraction that are actually correctly
centred, or else for the miscentring Gaussian width σ offset, as done
in Johnston et al. (2007). The issue here is a strong degeneracy be-
tween pcc, σ offset, and cluster concentration. Increasing the number
of clusters that have offset centres produces essentially the same
results as leaving pcc fixed and increasing σ offset, an effect that can
be mimicked by a lower concentration in the NFW model. We run
the risk of overfitting to the results.

In fact, Johnston et al. (2007) found very little constraining
power on the miscentring width and the fraction of miscentred
MaxBCG clusters, and applied strong priors to these distribu-
tions. George et al. (2012) performed an extensive weak lensing
miscentring study of groups in the cosmological evolution sur-
vey (COSMOS), and chose to forgo the additional parameter pcc,

Figure 4. Optimal cross-correlation signal measured for the entire stacked sample of 18 024 clusters. The model fits are both composite-NFW (see the text
for all terms in the fit). The solid line assumes that the clusters are perfectly centred on the peak likelihood of the 3DMF cluster detection, while the dashed
line includes the effects of cluster miscentring.
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Figure 5. Optimal cross-correlation signal measured for each N200 (richness) bin. Two composite-NFW fits are shown. The solid curve assumes clusters are
perfectly centred, while the dashed curve accounts for cluster miscentring, using the Gaussian offset distribution modelled in Fig. 1 and discussed in Section 3.2.

Table 2. Details of fits for richness-binned measurements in Fig. 5. We list the richness range selected, the number of clusters in
that bin, the detection significance, the average richness of the bin, and the mass estimates and reduced χ2 for both the centred and
miscentred models fit to the data. Note that the average mass given is not the value fit itself, but the average of all resulting masses fit
using the composite-halo approach discussed in Section 3.2.1.

Richness No. of Clusters Significance 〈N200〉 pcc = 1: 〈M200〉 χ2
red pcc = 0: 〈M200〉 χ2

red

2 < N200 18 036 9.7σ 17 (2.0 ± 0.3) × 1013 M� 1.2 (1.8 ± 0.3) × 1013 M� 2.3
2 < N200 < 10 4453 5.3σ 8 (0.9 ± 0.5) × 1013 M� 3.0 (0.7 ± 0.4) × 1013 M� 3.2
10 < N200 < 20 9398 5.9σ 15 (1.3 ± 0.3) × 1013 M� 1.6 (1.0 ± 0.3) × 1013 M� 2.2
20 < N200 < 30 2967 5.4σ 24 (2.9 ± 0.7) × 1013 M� 0.7 (3.3 ± 0.8) × 1013 M� 0.3
30 < N200 < 40 695 5.0σ 35 (7 ± 2) × 1013 M� 0.3 (7 ± 2) × 1013 M� 0.5
40 < N200 < 60 351 4.6σ 47 (1.0 ± 0.2) × 1014 M� 0.4 (1.1 ± 0.2) × 1014 M� 0.3
60 < N200 172 5.5σ 99 (2.0 ± 0.4) × 1014 M� 0.5 (2.1 ± 0.4) × 1014 M� 0.6

as they achieved sufficiently good fits without it. Mandelbaum
et al. (2008) performed a lensing analysis of the MaxBCG clus-
ters, and found that including miscentring effects with the Johnston
et al. (2007) prescription strongly affected the resultant fits for
concentration, again asserting the degeneracies of these parame-
ters. Mandelbaum et al. (2008) conclude that this method of ac-
counting for miscentring depends heavily on the mock catalogues
from which the input parameters are generated, and in the case of
MaxBCG clusters likely overcompensates.

In a forthcoming paper, we will present weak lensing shear mea-
surements of these clusters, as well as a more detailed investigation
of the centroiding. Shear, being proportional to the differential sur-
face mass density, is more affected by offset centres than magnifica-
tion (Johnston et al. 2007), and will be a better probe of miscentring.

4.1 The mass–richness relation

We observe a prominent scaling of best-fitting mass to richness,
across the six richness bins (although the first two bins do generally
have overlapping error bars). We plot this trend in Fig. 6, showing
the average of the fit masses as a function of average cluster richness

in each bin. Note that the distribution of N200 in a bin is not uniform,
and in the case of the highest richness bin the distribution is highly
skewed (see Fig. 2).

We fit a simple power-law, equation (15), to these points, using the
same plotted colour and line schemes for perfectly centred and mis-
centred clusters. For this cluster sample, we find that the best fit gives
the normalization and slope of the mass–richness relation to be

M0 = (2.3 ± 0.2) × 1013 M�, β = 1.4 ± 0.1 (20)

for the perfectly centred pcc = 1 case, and

M0 = (2.2 ± 0.2) × 1013 M�, β = 1.5 ± 0.1 (21)

for the miscentred pcc = 0 case. The reduced χ2 are 0.9 and 1.7,
respectively (4 degrees of freedom), and there is good agreement
between the two different centring scenarios explored here.

It is difficult to directly compare the results for the mass–richness
relation in this work to other studies. The main reason is that the
richness N200 we use is different than other definitions, which often
count only red-sequence galaxies. Some uncertainty exists in the
measure of richness as well, which we do not include in the anal-
ysis. Alternative measures of cluster richness would yield different

MNRAS 439, 3755–3764 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/439/4/3755/1165141 by C
N

R
S - ISTO

 user on 25 April 2022



3762 J. Ford et al.

Figure 6. Cluster mass–richness relation, using the same N200 bins as in Fig. 5. Power-law fits to the data are presented for both cases of with (blue diamonds
and dashed line) and without (green squares and solid line) the effects of miscentring. Points are slightly offset horizontally for clarity.

scaling relations. Another factor is the cluster sample, which was
compiled using a novel cluster-finder, and may well have different
characteristics than other samples in the literature. In a follow-up
paper, we will present a shear analysis of the CFHTLenS clusters,
and compare the mass–richness relation obtained using that com-
plementary probe of halo mass.

4.2 Redshift binning

Finally, we investigate the magnification as a function of redshift.
We stack clusters of all richnesses, at each redshift in the catalogue,
0.2 ≤ z ≤ 0.9, and measure the optimal correlations in each. This
is displayed in Fig. 8. We observe a steady decrease in measured
signal as the cluster redshift increases from z ∼ 0.2 to 0.5, then
roughly consistent measurements from 0.6 ≤ z ≤ 0.8, followed by
rather low signal at z ∼ 0.9.

The N200 distributions in Fig. 7 show that these trends cannot
be caused by deviations in richness between these different cluster

redshifts. This is difficult to reconcile with the clear mass–richness
scaling observed when all redshifts are combined. Table 3 shows
that detection significance for each reshift bin is more tightly linked
to mass than the 〈N200〉. Perhaps the richness estimates used in this
work are not optimized for use as a mass proxy at all redshifts.
Another possibility is that we have not correctly accounted for
redshift overlap between samples. If the contamination fraction
is higher than estimated, this could lead to a boost in correlation
strength at low redshift, as well as a depletion at higher redshift.
However, it is still very difficult to explain the anomalously low
measurement at intermediate redshift, z ∼ 0.5, with this reasoning.

One factor that we have not accounted for is possible cluster
false detections in our sample. Since 3D-MF was optimized to
produce cluster catalogues that are as complete as possible, false
detection rates could be quite high. In particular, we would ex-
pect these rates to increase at high redshift, which would also
weaken those measured correlations. We note in particular that
cluster redshift bins z ∼ 0.5 and 0.9, which yield relatively low

Figure 7. N200 distributions as a function of cluster redshift.
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Figure 8. Optimal correlation for clusters binned in redshift.

Table 3. Details of fits for redshift-binned measurements in Fig. 8. We list the same bin properties and fits given in Table 2, as well as
fclustering, which is the total fraction of LBGs expected to lie within �z ∼0.1 of the cluster z.

Redshift fclustering Clusters Significance 〈N200〉 pcc = 1: 〈M200〉 χ2
red pcc = 0: 〈M200〉 χ2

red

z ∼ 0.2 0.07 1157 12.5σ 11.6 (9 ± 2 ± 2sys) × 1013 M� 3.6 (9 ± 2 ± 2sys) × 1013 M� 3.4
z ∼ 0.3 0.02 1515 8.0σ 14.4 (6 ± 1 ± 1sys) × 1013 M� 2.2 (6 ± 1 ± 1sys) × 1013 M� 2.1
z ∼ 0.4 3 × 10−3 2242 4.6σ 15.2 (1.9 ± 0.7) × 1013 M� 1.4 (1.6 ± 0.7) × 1013 M� 1.6
z ∼ 0.5 4 × 10−4 2932 4.0σ 15.9 (0.3 ± 0.4) × 1013 M� 1.9 (0.2 ± 0.5) × 1013 M� 1.9
z ∼ 0.6 1 × 10−4 2455 4.6σ 18.0 (2.2 ± 0.8) × 1013 M� 1.5 (2.0 ± 0.8) × 1013 M� 1.6
z ∼ 0.7 2 × 10−5 2331 4.5σ 19.3 (1.2 ± 0.7) × 1013 M� 1.7 (1.1 ± 0.7) × 1013 M� 1.9
z ∼ 0.8 2 × 10−5 2364 4.9σ 19.9 (2.5 ± 0.9) × 1013 M� 1.5 (2.2 ± 0.9) × 1013 M� 1.7
z ∼ 0.9 2 × 10−5 3040 2.6σ 17.6 (0.5 ± 0.5) × 1013 M� 0.6 (0.3 ± 0.6) × 1013 M� 0.8

cluster masses, are seen in Fig. 3 to have excess numbers of de-
tected clusters, possibly an indication of higher false detection rates
at these redshifts.

5 C O N C L U S I O N S

We present the most significant magnification-only cluster mea-
surement to date, at 9.7σ . A sample of 18 036 cluster candidates
has been detected using the 3D-MF technique in the ∼154 deg2

CFHTLenS survey. In this analysis, we have investigated the mass
of cluster dark matter haloes, from flux magnification, as a function
of both richness and redshift. A forthcoming paper will present the
weak lensing shear analysis of these clusters as well.

We fit a composite-NFW model that accounts for the full redshift
and mass ranges of the cluster sample, as well as redshift overlap
with low-z source contaminants, cluster halo miscentring, and the
two-halo term. We find that the entire cluster sample is marginally
better fit by the model that does not include miscentring, but do not
see a strong preference either way across richness bins. In the future,
shear measurements, which are more sensitive to miscentring, may
illuminate this aspect of the investigation.

We observe a strong scaling between measured mass and cluster
richness, and fit a simple power-law relation to the data. The two
miscentring models explored in this work yield consistent values
for the normalization and slope of the mass–richness relation.

We have attempted to account for the contamination of our back-
ground sources with low-z galaxies. This is a serious systematic
effect for magnification, as redshift overlap between lenses and
sources will lead to physical clustering correlations, swamping the
lensing-induced correlations that we want to measure. We use the
full stacked redshift probability distributions for the lens and source

populations, and include the expected clustering contribution in our
model. In spite of this we see unexpected features in the redshift-
binned measurements. Part of the reason could come from cluster
false detections, which can be high for the 3D-MF method which is
optimized for completeness. Another contribution could come from
errors in the source redshift distributions. Accounting for redshift
overlap is imperative if significant overlap exists between the lens
and source distributions, or else mass estimates can end up very
biased.

This is the first analysis presented of the 3D-MF clusters in
CFHTLenS, but much more science is left to do with the sam-
ple. In particular, a more thorough investigation of the miscentring
problem will be carried out in the forthcoming shear analysis, where
it will be possible to compare different candidate centres. Another
interesting question is whether dust can be detected on cluster scales
by simultaneously measuring the chromatic extinction along with
flux magnification. Finally different background source samples
may be employed to improve signal-to-noise, but only if their red-
shift distributions can be well determined. We leave these tasks to
future work.

This work has been an important step in the development of weak
lensing magnification measurements, and the progression from sig-
nal detection to science. Many upcoming surveys will benefit from
the inclusion of magnification in their lensing programmes, as the
technique offers a very complimentary probe of large-scale struc-
ture. Since measuring flux magnification is not a strong function
of image quality, it is especially useful for ground-based surveys
which must deal with atmospheric effects. Next generation surveys
like the large synoptic survey telescope (LSST), the wide-field in-
frared survey telescope (WFIRST), and Euclid, will have greater
numbers of sources, and improved redshift probability distribution
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estimates, so we can expect future magnification studies to yield
important contributions to weak lensing science and cosmology.
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