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ABSTRACT
We present a measurement of the correlation function between luminous red galaxies (LRGs)
and cool gas traced by Mg II λλ2796, 2803 absorption, on scales ranging from about 30 kpc to
20 Mpc. The measurement is based on cross-correlating the positions of about one million red
galaxies at z ∼ 0.5 and the flux decrements induced in the spectra of about 105 background
quasars from the Sloan Digital Sky Survey. We find that: (i) this galaxy–gas correlation reveals
a change of slope on scales of about 1 Mpc, consistent with the expected transition from a dark
matter halo dominated environment to a regime where clustering is dominated by halo–halo
correlations. Assuming that, on average, the distribution of Mg II gas follows that of dark matter
up to a gas-to-mass ratio, we find the standard halo model to provide an accurate description of
the gas distribution over three orders of magnitude in scale. Within this framework, we estimate
the average host halo mass of LRGs to be about 1013.5 M�, in agreement with other methods.
We also find the Mg II gas-to-mass ratio around LRGs to be consistent with the cosmic mean
value estimated on Mpc scales. Combining our galaxy–gas correlation and the galaxy–mass
correlation function from galaxy–galaxy lensing analyses, we can directly measure the Mg II

gas-to-mass ratio as a function of scale and reach the same conclusion. (ii) From linewidth
estimates, we show that the velocity dispersion of the gas clouds also shows the expected
one- and two-halo behaviours. On large scales the gas distribution follows the Hubble flow,
whereas on small scales we observe the velocity dispersion of the Mg II gas clouds to be lower
than that of collisionless dark matter particles within their host halo.

Key words: intergalactic medium – quasars: absorption lines.

1 IN T RO D U C T I O N

Understanding the large-scale distribution of matter is a major goal
in astrophysics. The advent of large photometric sky surveys com-
bined with statistical analyses has allowed us to characterize the
distribution of stars, dark matter and dust well beyond galactic
discs. However, the large-scale distribution of gas and in particular

� E-mail: gz323@pha.jhu.edu
†Alfred P. Sloan Fellow.

gaseous metals which encodes key information about the cosmic
baryon cycle remains poorly constrained.

Absorption line spectroscopy has been used for more than three
decades to probe the distribution of gas around galaxies, the cir-
cumgalactic medium (CGM). Analyses have typically focused on
the study of individual absorbers detected in the spectra of back-
ground quasars. While this approach has its merit, it is restricted to
the study of strong absorbers and only allows us to probe the tip of
the iceberg of the overall gas distribution. Probing the matter dis-
tribution on large scales where density is low requires a large range
in sensitivity, which statistical analyses can often offer. Such sta-
tistical approaches have been successfully applied numerous times
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to broad-band photometric surveys. However, statistical analyses
aimed at probing the gaseous content of the CGM with spectro-
scopic data by extracting information below the noise level of indi-
vidual spectra have been limited to a handful of analyses (Steidel
et al. 2010; Bordoloi et al. 2011; Zhu & Ménard 2013b) constraining
the gas distribution within a few hundred kpc around galaxies.

When measured over a broad range of scales, spatial correlation
functions can provide us with valuable information on the distribu-
tion of matter within and beyond dark matter haloes. Obtaining such
a measurement in the context of galaxy–gas correlations requires
(i) a large number of foreground galaxies and background sources
and (ii) the presence of an abundant species giving rise to a strong
absorption feature. With existing data sets, maximizing those two
criteria can be done by selecting luminous red galaxies (LRGs) from
the Sloan Digital Sky survey (SDSS, York et al. 2000; Eisenstein
et al. 2011) as foreground objects and measuring the associated
Mg II absorption. In this paper, we present results of an analysis
aimed at using these samples to measure the galaxy–gas correlation
function over a broad range of scales. The measurement is based on
a spatial cross-correlation between the position of about one mil-
lion LRGs at z ∼ 0.5 from SDSS and flux fluctuations induced in
the spectra of background quasars by Mg II absorption lines. This
measurement allows us to characterize the gaseous density profile
on scales ranging from the inner dark matter halo of the galaxies up
to more than 10 megaparsecs where the Hubble flow dominates the
dynamics of galaxies.1

The paper proceeds as follows: we introduce the formalism of
galaxy–gas correlation function in Section 2 and the data sets in
Section 3. The measurements are presented in Section 4 and we dis-
cuss the results in the context of standard cold dark matter (CDM)
paradigm in Section 5. Section 6 summarizes our findings. Through-
out this work, we assume the �CDM cosmology with (�m, ��, h,
σ 8, ns) = (0.3, 0.7, 0.7, 0.8, 0.96). The Roman subscript ‘m’ stands
for all matter and unless stated otherwise scales are in physical
units.

2 FORMALISM

The spherically averaged galaxy–gas spatial cross-correlation func-
tion is defined as

ξgal−gas(r3D) ≡ 〈δgal(r
′
3D) × δgas(r

′
3D + r3D)〉, (1)

where δ is the density contrast, δ ≡ ρ/ρ − 1, and the ensemble
average is performed over the entire survey volume. The projected
cross-correlation function is given by

ωgal−gas(rp) ≡ 〈δgal(r
′) × δgas(r

′ + rp)〉, (2)

where the 2D density contrast is defined as δ ≡ �/� − 1 and the
surface density � is the integral of 3D density ρ along the line
of sight over a redshift path of interest, and the ensemble average
is performed over the entire survey area. When the galaxy field is
discretized, i.e. when one considers only the positions of galaxy
centres, the galaxy density contrast is given by a series of Dirac
functions δD(r ′ − r ′

i ) at the position of each galaxy i. This restricts

1 In an independent analysis, Pérez-Ràfols et al. (in preparation) also detect
the galaxy–Mg II absorption correlation up to Mpc scales with similar am-
plitude. The authors use this signal to estimate the cosmic opacity due to
Mg II absorption.

the ensemble average of the above equation to the positions of
galaxies. The cross-correlation then reads

ωgal−gas(rp) =
〈

�tot
gas(rp) − �gas

�gas

〉
gal

. (3)

The total mean gas surface density around galaxies can be expressed
as

〈�tot
gas(rp)〉gal = �gas

[
ωgal−gas(rp) + 1

]
. (4)

In this work, we constrain the galaxy–gas correlation by measur-
ing the relative gas absorption along quasar sightlines probing the
vicinity of galaxies with respect to reference quasars. We are there-
fore not sensitive to the background value of the gas surface density
and our analysis only allows us to measure the excess gas surface
density around galaxies, �gas. This is given by

〈�gas(rp)〉gal ≡ �gas ωgal−gas(rp) . (5)

The projected surface gas density of a given species X is given by
the product of its atomic mass mX and column denstiy N

�X = N × mX. (6)

The absorption by atoms in the gas phase induces an optical depth
τ (λ) given by

τ (λ) = πe2

mec
f Nφ [ν(λ)] , (7)

which is proportional to the column density N, oscillator strength
f, and line profile φ(ν). For a single-cloud system, the line profile
follows the Voigt form determined by the transition wavelength
λ0, the intrinsic Lorentz width γ , the Doppler broadening factor
b and the line-of-sight velocity V0. For a single-cloud system, the
centre-of-line optical depth is approximately

τ0 	 1.5 × 10−2 Nf λ

b
, (8)

where N is in unit of cm−2, λ in Å, and b in kms−1. For a multicloud
system, the line profile also depends on the number of clouds and
their velocity spread. The optical depth causes a flux decrement in
the background source spectrum given by

R(λ) ≡ F (λ)

F̂cont(λ)
= e−τ (λ), (9)

where F(λ) is the observed spectrum and F̂cont(λ) is the intrinsic
continuum of the background source. From an observational point
of view, we quantify the optical depth by measuring the absorption
rest equivalent width W0, obtained by integrating the flux decrement
over the absorption line profile defined by φ(λ),

W0 ≡
∫

[1 − e−τ (λ)] dλ

=
∫

[1 − R(λ)] dλ. (10)

If the optical depth at the line centre is smaller than unity, the column
density is simply given by

N = 1.13 × 1020 cm−2 W0

f λ2
, (11)

where both W0 and λ are in unit of Å.
The above equations show that the projected galaxy–gas cor-

relation function can be constrained by measuring the correlation
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between galaxy positions and the rest equivalent width induced by
its surrounding gas distribution

〈W0〉gal(rp) ≡ 〈δgal(r) × W0(r + rp)〉

=
∫

[1 − 〈R(λ, rp)〉gal] dλ. (12)

In the next sections, we will present a measurement of 〈W0〉gal(rp)
for Mg II absorption induced by gas around LRGs. In the rest of the
paper, all scale-dependent ensemble averages will be taken around
galaxies. For clarity we will drop the subscript ‘gal’ in the formal-
ism.

Several authors have investigated galaxy–absorber correlations
which correspond to the cross-correlation between galaxies and in-
dividually detected absorbers, some of them explicitly in the context
of LRGs and Mg II (e.g. Bouché, Murphy & Péroux 2004; Gauthier,
Chen & Tinker 2009; Lundgren et al. 2009, 2011), which is a valu-
able tool to shed light on the connection between gas and galaxies.
We note that the galaxy–gas correlation introduced above is distinc-
tively different from galaxy–absorber correlations. The galaxy–gas
correlation probes the mean of the entire gas distribution around
galaxies, while galaxy–absorber correlations only probe the dis-
tribution of gas clouds for which the equivalent width is directly
detectable and usually selected to be above a given threshold. The
latter is therefore only sensitive to a fraction of the gas distribution.

3 DATA A NA LY SIS

Our goal is to constrain the galaxy–gas (metal) correlation function
over a broad range of scales. Doing so requires (i) a large number of
foreground galaxies and background sources and (ii) the presence
of an abundant species giving rise to a strong absorption feature.
With existing data sets, maximizing those two criteria is done by
selecting LRGs from the SDSS as foreground objects and measuring
the associated Mg II absorption.

3.1 Mg II absorption lines

The Mg II λλ2796, 2803 doublet has played a major role in gas astro-
physics because of their strength and their location in the visible part
of the spectrum. They correspond to the fine structure splitting of
the singly ionized magnesium excited states Mg II (Mg+). Being an
abundant element, log(Mg/H)� + 12 	 7.6 (Asplund et al. 2009),
it is found in a range of astrophysical environments. Magnesium is a
moderately refractory element and has ionization potentials of 7.65
and 15.04 eV, for Mg I and Mg II, respectively (Morton 2003). At
redshift greater than about 0.3, the Mg II λλ2796, 2803 lines are the
strongest absorption lines of 104 K gas accessible to ground-based
observations. The Mg II doublet has been used for three decades to
study the intergalactic medium. It is the lines used in the observa-
tional discovery of the CGM (Bergeron 1986) and has been used
extensively since then (e.g. Steidel & Sargent 1992; Churchill et al.
1999; Nestor, Turnshek & Rao 2005; Narayanan et al. 2007, among
others).

The oscillator strength of the two lines are 0.608 and 0.303 for
Mg II λλ2796, 2803 (Kelleher & Podobedova 2008). When both
lines are saturated, their line ratio is 1, and when neither is saturated,
the line ratio is 2. For a thermal broadening factor b about 4 kms−1

(corresponding to about 25 000 K, e.g. Churchill et al. 2000), sat-
uration begins for an Mg II column density of about 1012.5 cm−2,
which occurs at a total rest equivalent width (WMg II

0 , sum of the two
lines) of about 0.15 Å.

3.2 Samples and analysis

The sample of LRGs used in this work originates from the eleventh
Data Release (DR112) of SDSS. It includes about one million
LRGs from the Baryonic Oscillation Spectroscopic Survey (BOSS;
Dawson et al. 2013) with mean stellar mass 〈M∗〉 ∼ 1011.5 M� (e.g.
Chen et al. 2012) and redshift 〈z〉 ∼ 0.57. The photometric and spec-
troscopic data were obtained with the wide-field imaging camera
(Gunn et al. 1998) and the new multi-object spectrographs (Smee
et al. 2013) on the SDSS telescope (Gunn et al. 2006). From this
parent sample, we select 849 533 galaxies at 0.4 < z < 0.75 where
Mg II is accessible in the optical. We do not have additional selection
requirement other than the redshift cut and therefore almost all the
galaxies are optically luminous and red.

We measure the absorption induced by the gas around these
galaxies in the spectra of background quasars. We use spectra from
the Data Release 7 (DR7, Abazajian et al. 2009; Schneider et al.
2010) of SDSS I-II and the improved redshift estimates by Hewett
& Wild (2010). The sample includes 107 194 quasars at 0.1 < z <

6.5.
Accurate estimation of the source flux continuum F̂ (λ) (equa-

tion 9) is crucial to detect absorption features. We use the method
presented in Zhu & Ménard (2013a), applied to the 84 533 quasars
with z < 4.7. In a nutshell, this method employs the robust
dimensionality-reduction technique non-negative matrix factoriza-
tion (NMF; Lee & Seung 1999; Blanton & Roweis 2007) to con-
struct a basis set of non-negative quasar eigenspectra, and fits each
observed quasar spectrum with a non-negative linear combination
of these eigenspectra. Large-scale residuals not accounted for by
the NMF basis set are removed with appropriate median filters. The
smallest width of such filters has to be kept significantly larger than
the size of the absorption feature we are interested in. This set of flux
residuals has been used to create a sample of about 50 000 absorber
systems (Zhu & Ménard 2013a) and to measure the total amount
of Ca II around low-redshift galaxies (Zhu & Ménard 2013b). In the
present analysis, we use only quasars for which zquasar − zLRG > 0.1.
The median stellar mass and redshift of LRGs in the LRG–quasar
pairs are 〈M∗〉 = 1011.4 M� and 〈z〉 	 0.52. The set of flux resid-
uals obtained this way allows us to construct composite residuals
consistent with unity at the one percent level. To further improve
the accuracy and remove systematic trends, we apply our procedure
to a set of LRG–quasar pairs for which the quasars are selected to
have the same redshift distribution as the original sample but are
randomly selected over the sky. This is used to map out large-scale,
sub-percent systematic shifts in the mean residuals which are then
subtracted when analysing a given sample. This step is required to
properly estimate the zero-point of the mean flux residuals over a
broad wavelength range.

To quantify the rest equivalent width of the absorption of the
Mg II λλ2796, 2803 doublet, we perform a double-Gaussian fit of
the absorption feature expected at the redshift of the galaxy, allow-
ing the width and line ratio to be free parameters. Absorption being
a multiplicative effect, we estimate the ensemble average using a
geometric mean. This provides us with an estimate of the arith-
metic mean of the corresponding optical depth. However, we note
that using an arithmetic mean yields similar results, as expected
when measuring weak absorption lines. Our estimator is inverse-
variance weighted, using the wavelength-dependent noise given by

2 DR11 will be released in 2014 December. Here, we use the redshift cat-
alogue based on version v5 6 0 of the reduction pipeline (Bolton et al.
2012).
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Figure 1. Examples of stacked continuum-normalized spectra of background quasars as a function of impact parameter (projected galactocentric distance)
from foreground luminous red galaxies (LRGs) at z ∼ 0.5. The vertical ticks and dark blue colours mark the expected positions of Mg II λλ2796, 2803 and
Mg I λ2853.

the SDSS pipeline. Throughout the paper, we will present the total
rest equivalent width of the doublet instead of just one of the two
lines.

4 R ESULTS

4.1 The galaxy–gas correlation

We measure the spatial cross-correlation between the position of
our selected sample of LRGs and the Mg II rest equivalent width in-
duced in the spectra of background quasars, as a function of scale,
〈WMg II

0 〉(rp) (see equation 12). Fig. 1 presents examples of the inter-
mediate products of the analysis, the stacked continuum-normalized
spectra 〈R(λ)〉. The figure highlights the expected positions of Mg II

λλ2796, 2803 and Mg I λ2803 with vertical tick marks and dark
blue colour. Note that the absorption scale varies from about 10−2

at the top to about 10−4 at the bottom. In Table 1 and Fig. 2, we
present the mean Mg II rest equivalent width 〈W0〉 (including the
contribution from both absorption lines) with solid circles between
30 kpc and 20 Mpc. We estimate the rest equivalent width errors by
bootstrapping the sample of LRG-quasar pairs one hundred times.

To validate the robustness of these measurements, we perform
two null hypothesis tests: (1) we measure the mean rest equivalent

Table 1. The LRG–Mg II correlation at z ∼ 0.5.

rp bin Median rp Npairs 〈WMg II

0 〉a σ (〈WMg II

0 〉)b

(Mpc) (Mpc) (mÅ) (mÅ)

(0.030, 0.045]c 0.039 35 494.71 145.21
(0.045, 0.068] 0.056 88 352.58 78.68
(0.067, 0.101] 0.086 200 267.94 40.05
(0.101, 0.152] 0.128 434 161.29 34.91
(0.152, 0.228] 0.191 880 102.67 19.76
(0.228, 0.342] 0.289 1936 86.60 11.49
(0.342, 0.513] 0.432 3964 33.95 10.10
(0.513, 0.769] 0.648 8911 35.42 6.11
(0.769, 1.153] 0.974 19981 16.54 4.59
(1.153, 1.730] 1.461 45030 14.06 2.20
(1.730, 2.595] 2.192 101153 11.01 1.94
(2.595, 3.892] 3.287 228261 8.17 1.32
(3.892, 5.839] 4.929 512263 5.00 0.77
(5.839, 8.758] 7.395 1151523 5.23 1.03
(8.758, 13.137] 11.092 2591671 3.04 0.63
(13.137, 18.000] 15.694 4086471 2.51 0.57

aMean rest equivalent width of Mg II (sum of two lines).
bBootstrapping errors of 〈WMg II

0 〉.
cMg I measurement in this bin: 〈WMg I

0 〉 = 83 ± 64 mÅ.
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The large-scale distribution of Mg II 3143

Figure 2. Mean gas absorption profiles (in terms of rest equivalent widths) as a function of scale. The blue solid circles represent our measurements of the
LRG–Mg II correlation function at z ∼ 0.5 (here the quoted rest equivalent width corresponds to the sum of the two lines λλ2796, 2803). It is detected from
about 30 kpc to 20 Mpc. Other symbols show measurements of several metal species around different types of galaxies from the literature (see the text).

Figure 3. Null hypothesis tests for the robustness of the Mg II detection. Left panel: significance of rest equivalent width measurements at randomly selected
wavelengths. Right panel: significance of rest equivalent width measurements using random quasars at the same redshifts as those in galaxy–quasar pairs. The
blue solid circles show the significance of the Mg II absorption measurements.

width at randomly chosen wavelengths; and (2) we measure the
expected Mg II rest equivalent width not using the corresponding
background quasars located in the vicinity of foreground LRGs but
instead random quasars with similar redshifts. In both cases, we
fix the width of the Gaussian line profile to be roughly the same
as that of the actual measurement, in this case four pixels. The
results of these null tests are shown in Fig. 3. Each panel shows
the measurements for 12 random realizations (grey diamonds). In
both cases, the null test measurements are consistent with random
noise and indicate that the detection of Mg II absorption shown in
Table 1 and Fig. 2 is robust and not induced by systematic effects.

These tests can also be used to estimate the intrinsic noise level of
the statistical measurement.

To put our results in context, we first present existing mea-
surements of the galaxy–metal absorption correlations for several
species from the literature. This compilation is shown with open
symbols in Fig. 2. The magenta triangles are measurements for
the Si IV λ1393 around Lyman-break galaxies (LBGs) at z ∼ 2.2
by Steidel et al. (2010), who also reported measurements for Lyα,
Si II λ1260, C II λ1334, Si II λ1526, C IV λ1549 and Al II λ1670 on
similar scales (not shown to avoid crowdedness). Bordoloi et al.
(2011) measured the mean Mg II absorption around different types
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D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/439/3/3139/1113180 by guest on 24 April 2022



3144 G. Zhu et al.

of galaxies at z ∼ 0.7. The orange stars show their measurements
around red massive galaxies with stellar mass M∗ > 1010.7 M�
(though still about 0.5 dex less massive than the LRGs used in this
study). The grey circles show the mean Ca II absorption around all
galaxies at z ∼ 0.1 measured by Zhu & Ménard (2013b). Note this
compilation is inhomogeneous in terms of galaxy types and red-
shifts but it shows the range of scales accessible to previous studies.
The present analysis extends the detectability of the galaxy–gas
(metal) correlation function up to about 20 Mpc, i.e. by two orders
of magnitude.

The mean absorption profile does not show any cut-off scale.
The spatial correlation roughly follows a power-law form of r−1.5

p .
Such a slope implies a roughly constant S/N across all scales as the
decrease in the signal amplitude is compensated by an increase in the
number of usable pairs. This property allows measurements of two-
point correlation functions to reach large scales, such as in galaxy
clustering and galaxy–galaxy lensing analyses. Our measurement
allows us to probe the gas distribution around galaxies below and
above the virial radius simultaneously. In Section 5, we will interpret
these measurements in the context of the standard CDM model.

4.2 From equivalent width to column density

To estimate the surface density of magnesium from our mean
measurements, we use the weaker of the two Mg II lines. From
a measurement of the rest equivalent width of the full doublet, we
estimate

〈Wλ2803
0 〉 = 〈WMg II

0 〉
1 + DR

, (13)

where DR is the doublet ratio, bound between 1 and 2.
When absorption lines are not saturated we can directly infer gas

column densities, as shown in equation (11). The saturation level
depends on the column density and thermal broadening factor b.
From high-resolution spectroscopic studies the thermal broadening
factor of Mg II gas appears to be of the order of several kms−1 (e.g.
Churchill et al. 2000). Taking b to be 4 kms−1, corresponding to
25 000 K, the stronger of the two Mg II lines starts to saturate when
W

Mg II

0 � 0.15 Å.
In the unsaturated regime, the Mg II surface density is given by

(see equation 11)

〈�̂Mg II〉 = 1.13 × 1020 mMg

f2803 λ2
〈Wλ2803

0 〉cm−2, (14)

where mMg is the atomic mass of magnesium.
On scales greater than about 200 kpc, our measurements show

that 〈WMg II

0 〉 < 0.1 Å. In addition, our estimators show that the
mean and median values are similar. This indicates that the fraction
of saturated systems contributing to the overall signal is negligible.
In this regime, we therefore expect a line ratio close to 2. This is
in rough agreement with line ratio estimates of our stacked residual
spectra, as shown in Fig. 4. We note that the estimation of the line
ratio of weak lines, detected a few orders-of-magnitude below the
noise level of individual spectra, is difficult and possibly subject
to systematic effects. Such line ratio estimates involve measuring
changes in the second-order moment of the (weak) stacked line
profiles, as opposed to the rest equivalent width estimation which
is based on the zeroth-order moment of the line profile. It is there-
fore not surprising that the scatter of the measured line ratios is
large.

Some authors have reported that in some cases weak absorbers
with W

Mg II

0 < 0.15 Å can have line ratios smaller than 2, indicating

Figure 4. Doublet ratios as a function of W
Mg II

0 . The orange points are
median values of individual Mg II absorbers from Churchill et al. (1999) and
Zhu & Ménard (2013a), and the green line is our adopted formula to capture
the dependence on W

Mg II

0 . The blue points are the measurements from the
statistical analysis in this work. The two measurements on the far left are
2σ lower limits because the double-Gaussian fitting gives too small values
of 〈Wλ2803

0 〉.

the strong line can still be saturated (e.g. Churchill et al. 2000). We
can obtain some guidance on the expected line ratio from direct
detections of Mg II absorber systems. Using the individual absorber
systems from Churchill et al. (1999) and Zhu & Ménard (2013a), we
compute the median line ratio as a function of W

Mg II

0 . This is shown
with orange point in Fig. 4. As expected we observe a break at
around W

Mg II

0 	 0.15Å, below which the mean line ratio appears to
be constant, with a value of about 1.75. The similarity between the
mean and the median (〈WMg II

0 〉) as a function of scale suggests that
the fraction of saturated systems is scale independent. We therefore
expect that the overall gas absorption is dominated by weak systems
and 〈�̂Mg II〉 	 〈�tot

Mg II〉.
At W

Mg II

0 � 0.15 Å, a higher fraction of absorber systems is ex-
pected to occur. As can be seen in Fig. 4, the median line ratio
obtained from direct detections of absorbers reveals such a trend.
To capture this behaviour, we adopt the following formula for ab-
sorbers in this regime:

log10 DR = −0.15 log10

〈WMg II

0 〉
0.15 Å

+ log10 1.75, (15)

which is shown with the green line in the figure. In this regime, we
estimate the Mg II surface density estimator using equation (14) with
the line ratio provided by the above relation. On the corresponding
scales, i.e. at rp < 200 kpc, the fraction of saturated systems is
expected to increase compared to that on larger scales. Our surface
density estimate is therefore a minimum value of the total surface
density. In Appendix B, we investigate the effect of different line
ratio treatments and show that our conclusions are not strongly
affected by this consideration.

4.3 The velocity-space galaxy–gas correlation

The galaxy–gas correlation function is the projected surface den-
sity integrated along the line of sight, i.e. in the redshift (velocity)
space. The velocity width of the absorption lines measured in the
statistical analysis provides dynamical information of gas clouds
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around galaxies. The mean absorption line includes contributions
from a large number of clouds and its width reflects the velocity
dispersion of these clouds.

We present the velocity dispersion of Mg II gas clouds in Fig. 8,
measured from the double-Gaussian profile fitting. The errorbars
are again obtained from bootstrapping. The velocity dispersion of
Mg II gas clouds increases from about 100 kms−1 at 30 kpc to about
700 kms−1 at 20 Mpc. This is consistent with theoretical expecta-
tions. On small scales, the gas clouds are mostly from the LRG
host haloes and the velocity dispersion reflects their motion within
the halo, while on larger scales, the gas clouds reside in neighbour-
ing dark matter haloes and the velocity dispersion is determined
by the motion of the neighbouring haloes, including the Hubble
flow due to the expansion of the universe. We will discuss the
measurements in more detail in the CDM cosmological context in
Section 5.3.

5 IN T E R P R E TATI O N

5.1 The galaxy–gas correlation with the halo model

We now model the observed LRG–Mg II correlation function. The
measurement presented in Fig. 2 shows the mean Mg II rest equiv-
alent width as a function of impact parameter, ranging from about
30 kpc, where most of the gas is expected to lie within the host
dark matter halo of the LRGs, to several megaparsecs where most
of the gas is expected to be associated with galaxies in neighbour-
ing haloes. To describe the gas distribution over the entire range
of scales, we make use of the dark matter halo model, originally
developed to model the galaxy–mass and galaxy–galaxy correlation
functions (for a review, see Cooray & Sheth 2002).

The dark matter halo model assumes that halo properties, such as
density profile, abundance and galaxy occupation, are determined
solely by the halo mass. Here, we extend this assumption to the
gas distribution: we consider the gas-to-mass ratio fgas to depend
only on halo mass. This implies that, on average, the gas density
profile in a halo with virial mass M has the same NFW shape as
dark matter up to an overall normalization determined by fgas(M).
The halo model we use has three parameters:

(i) the average virial mass Mhalo,
(ii) the gas-to-mass ratio f 1h

gas(Mhalo) of the host dark matter
haloes (the one-halo term),

(iii) the mean gas-to-mass ratio f 2h
gas in the CGM of all galaxies

at z ∼ 0.5 (the two-halo term).

In this framework, the mean gas surface density around galaxies is
given by

�gas(rp) = f 1h
gas(Mhalo)�1h

m (rp|Mhalo) + f 2h
gas�

2h
m (rp|Mhalo), (16)

where the one-halo term of the total surface density �1h
m (rp|Mhalo) is

obtained by integrating the 3D NFW density profile along the line
of sight and the two-halo term �2h

m (rp|Mhalo) is calculated through
the halo-mass cross-correlation. Note that for simplicity we have
dropped the ensemble average symbol. It is also worth emphasizing
that the two-halo term f 2h

gas is the mean value over all neighbouring
haloes, which can have a wide range of gas-to-mass ratios. Galaxies
can be central or satellite systems within a dark matter halo. LRGs
being the most massive galaxies in the universe, we further assume
all of them are central galaxies and the average mass of their host
haloes is Mhalo. We have tested that if a small fraction (∼10 per
cent) of LRGs are satellite systems, our conclusions on the galaxy–

gas and the galaxy–mass correlations below are not affected, unless
the gas-to-mass ratio of the host haloes of these satellite LRGs are
orders-of-magnitude higher than other haloes. We present a detailed
prescription of our halo model in Appendix A.

The halo model describes the mean projected surface density.
As described in Section 4.2, we adopt 1.75 for the line ratio when
〈WMg II

0 〉 < 0.15 Å and equation (15) otherwise, as suggested by in-
dividual systems. We then estimate the weaker line (λ2803) strength
and the Mg II column density applying the linear relation of the curve
of growth, equation (11).

We generate Monte Carlo simulations spanning the three-
parameter (Mhalo, f 1h

Mg II
, f 2h

Mg II
) space and find the best fitting model

to be

log10 Mhalo/M� = 13.5+0.3
−0.3 (17)

log10 f 1h
Mg II

= −8.3+0.2
−0.2 (18)

log10 f 2h
Mg II

= −8.1+0.1
−0.1. (19)

The reduced chi-square is χ2/d.o.f. = 0.72. The errors reflect 1σ

confidence level and do not include uncertainties in the conversion
from rest equivalent width to column density, which we present
separately in Appendix B. Fig. 5 shows the best fitting halo model
and the fractional residuals. The small residuals show how well
this halo model with only three parameters fits the data across
about three orders of magnitude in scale. In Fig. 6, we show the
joint likelihood distributions in the Mhalo − f 1h

Mg II
(green) and the

Mhalo − f 2h
Mg II

(orange) sub-spaces. The halo mass and gas-to-mass
ratios are degenerate because they affect the overall amplitude in
the same direction.

The best fitting halo mass of LRGs is in excellent agreement with
constraints from the halo modelling of the LRG–LRG autocorre-
lation by White et al. (2011), who estimated the mean halo mass
of BOSS LRGs to be about 2−4 × 1013 M�. Galaxy–galaxy lens-
ing analyses for the BOSS LRG sample are not yet available. We
therefore choose to compare our results to the findings of Mandel-
baum et al. (2006) who used a sample of LRGs at redshift z ∼ 0.2
(red sub-sample 6). This sample has a similar average stellar mass
and number density as the BOSS LRGs and the host halo mass is
also consistent with that obtained from the LRG–LRG correlation
by White et al. (2011). The best fitting halo mass of this sample
is (2.3 ± 0.6) × 1013 M�, shown with the vertical grey band in
Fig. 6. The excellent agreement between the constraints from dif-
ferent correlations shows our dark matter–gas halo model, with the
assumption that gas shares the same density profile as dark matter,
works well in describing the cool gas distribution in the cosmolog-
ical context.

5.2 Gas-to-mass ratio from observations

Having showed that the halo model applied to the gas distribution
around LRGs provides us with a halo-mass estimate consistent with
what is found with other methods, we now focus on the value of the
Mg II gas-to-mass ratio inferred from the same fit and assumption
that on average the distribution of Mg II gas follows that of dark
matter.

To constrain the gas distribution with respect to mass from ob-
servations in a model-independent way, we can simply divide the
observed galaxy–gas correlation (the projected gas density profile),
in our case the observed LRG–Mg II correlation, by the observed
galaxy–mass correlation (the projected mass density profile). To
do so, we use again the red sub-sample 6 at redshift z ∼ 0.2 in
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3146 G. Zhu et al.

Figure 5. The best fitting halo model. Upper panel shows the best fitting halo model, decomposed into one-halo and two-halo terms. Lower panel shows the
fractional residuals. The halo model has three parameters: average LRG host halo mass Mhalo, Mg II gas-to-mass ratio in the host halo f 1h

Mg II
, and mean Mg II

gas-to-mass ratio of all galaxies f 2h
Mg II

.

Figure 6. Joint likelihood distributions for halo mass and gas-to-mass ra-
tios. The contours indicate 1σ (68.3 per cent), 2σ (95.4 per cent), and 3σ

(99.7 per cent) confidence intervals.

Mandelbaum et al. (2006). The observations are presented in the
top and middle panels of Fig. 7. Galaxy–galaxy lensing analyses
probe the difference between the average surface density within a
radius and the surface density at that radius: ��m(rp) = �m(<rp) −
�m(rp). For a direct comparison, we estimate the average surface

density within an aperture �m(<rp) using their best fitting halo
model and subtract the observable ��m(rp) from it. The halo model
is overlaid in the middle panel. As done previously, we ignore the
effect of satellite systems. Because the impact parameter binning
is different, we use the best fitting halo model for interpolation to
estimate the projected surface density at a given impact parameter
�m(rp).3 Since the LRG–mass correlation is measured at z ∼ 0.2,
we also evolved the measurements to z = 0.52 under the adopted
cosmology.

We present the observed Mg II gas-to-mass ratio around LRGs as
a function of impact parameter in the bottom panel of Fig. 7, where
we have overplotted a horizontal light blue band to encompass the
maximum and minimum value. We find the mean Mg II-to-mass
ratio to depend only weakly on scale. It varies by roughly a factor
of 2 over three orders of magnitude in radius. This range of Mg II-
to-mass ratio is also shown in Fig. 6 as a blue region. We find it
to be consistent with the constraints obtained from the halo model
of the galaxy–gas correlation. Having applied the halo model to
the gas distribution and found halo mass and gas-to-mass ratios in
agreement with other methods suggests that it might be possible

3 We note that, using magnification instead of shear would allow us to
directly infer the surface density �m rather than ��m, and interpolation
with the halo model would not be necessary.
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Figure 7. Direct constraints on the Mg II gas-to-mass ratio: the top panel
shows the LRG–Mg II correlation function at z ∼ 0.5, the middle one shows
the LRG–mass correlation by Mandelbaum et al. (2006) at z ∼ 0.2 from
galaxy–galaxy lensing, with the lines showing the halo model with their best
fitting halo mass 1013.4 M�. The lower panel shows the ratio between these
two quantities and provides us with a measurement of the Mg II gas-to-mass
ratio as a function of impact parameter.

to apply the halo model to galaxy–gas correlations to constrain the
mass of dark matter haloes.

We can now put strong constraints on the Mg II gas-to-mass ratio
around LRGs, with consistent results from the halo modelling of
the galaxy–gas correlation function itself, and the combination of
the observed galaxy–gas and galaxy–mass correlations. We can
conclude that, in the LRG host haloes at redshift 0.5, (i) the Mg II

gas-to-mass ratio is scale independent, i.e. the average Mg II gas
density profile follows the same NFW shape as dark matter; and (ii)
the Mg II gas-to-mass ratio is the same as the cosmic value within
errors, which is about 10−8.

We first examine the measured value of the Mg II gas-to-mass
ratio. We emphasize that on large scales, the two-halo term f 2h

Mg II

is the mean value in the CGM of all galaxies in the universe at
redshift 0.5. Neglecting the possible evolution of Mg II abundance
from redshift 0.5 to present day, the value of 10−8 indicates

�CGM
Mg II

= �m × f 2h
Mg II

≈ 3 × 10−9. (20)

Taking the solar abundance of Mg ([Mg/H] = 4 × 10−5) as the
maximum, this means Mg II probes at least 10−4 of total baryons
in the universe. If the mean Mg II abundance is only 0.1 solar,
as in High-Velocity Clouds/Magellanic Stream, then it traces about
10−3 × (0.1/[Mg II/H]) of total baryons. In the one-halo regime, the
Mg II-to-mass ratio in the LRG host haloes is the same as the cosmic
value. Assuming 0.1 solar abundance again, the cool gas traced
by Mg II in the LRG host haloes would be about 1010−1011 M�,
much more than their interstellar gas content (about 109 M�, e.g.
Oosterloo et al. 2010; Young et al. 2011).

5.3 The gas cloud velocity dispersion with the halo model

The velocity width of the mean absorption lines provides dynamical
information of gas clouds around galaxies. We present the line-
of-sight velocity dispersion measurements in Fig. 8. The velocity

Figure 8. The velocity dispersion of gas clouds traced by Mg II absorption. The lines are the halo model decomposed into one-halo and two-halo terms. With
the halo mass (1013.5 M�) fixed, there is only one free parameter in the model, the velocity bias μ ≡ σ gas/σm ≈ 1/2.
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dispersion of Mg II gas clouds increases from about 100 kms−1 at
30 kpc to about 700 kms−1 at 20 Mpc. We now use the halo model
to investigate such spatial dependence of the gas cloud velocity
dispersion. We fix the best fitting halo mass Mhalo = 1013.5 M� and
gas-to-mass ratios and constrain the motion of gas with respect to
the predicted motion of collisionless dark matter.

As the surface density, the total line-of-sight velocity dispersion
is decomposed into one-halo and two-halo terms:

σ 2
los(rp|M) = μ2(M)A1h(rp|M) σ 2

1h,los(rp|M)

+ A2h(rp|M) σ 2
2h,los(rp|M), (21)

where A is the mass contribution of each term:

A1h(rp|M) = �1h(rp|M)

�1h(rp|M) + �2h(rp|M)
,

A2h(rp|M) = �2h(rp|M)

�1h(rp|M) + �2h(rp|M)
, (22)

and μ ≡ σ gas/σ m is the velocity bias between gas and dark matter.
Note Mhalo is simplified to be M above.

On scales less than about 1 Mpc, the velocity dispersion is domi-
nated by the motion of particles within the host halo. This one-halo
term is obtained by solving Jeans equation of the NFW density
profile for the virial motion of dark matter. On larger scales, the
two-halo term is the width of redshift-space correlation function,
determined by the statistics of peculiar velocities, which describe
the relative motion of neighbouring haloes and of particles within
them, with respect to the background comoving frame (i.e. the
Hubble flow). We estimate each contribution in the standard lin-
ear theory. A detailed prescription of the halo model for velocity
dispersion is presented in Appendix A2.

The halo model is presented with the observations in Fig. 8. On
large scales, the velocity dispersion is dominated by the Hubble
flow and varies roughly linearly with scale. The observed width of
the Mg II absorption is in good agreement with the expectation from
the theory of dark matter fluctuations, indicating the contributing
gas clouds reside in neighbouring dark matter haloes. On small
scales, we observe that the velocity dispersion of the Mg II gas
clouds is smaller than the virial velocity dispersion of collisionless
dark matter. This implies that Mg II clouds found within the virial
radius of LRGs are gravitationally bound and will not escape. It
also shows that these clouds do not trace satellite galaxies within
the halo. Their slower motion might be due to the fact that they are
subject to the pressure of the hot gas filling the halo.

To fully characterize the radial distribution of gas velocity dis-
persion, we fit the observational results with equation (22), using
the best fitting halo mass derived above. We find the velocity bias μ

to be about 1/2, i.e. the gas cloud velocity dispersion around LRGs
is a factor of 2 smaller than that of dark matter. Finally, we point
out that, having previously estimated the mean halo mass of LRGs,
a model having only one free parameter, the velocity bias μ, is able
to fit the data across three orders of magnitude in scale.

6 SU M M A RY

The phase-space distribution of baryons and in particular metals en-
codes key information on galaxy formation processes. Absorption
line spectroscopy is a powerful tool to probe gaseous matter but
on large scales around galaxies, where densities are low, the direct
detection of absorber systems is challenging. In this paper, we use
a statistical approach aimed at measuring absorption lines typically

weaker than the noise level of individual background sources. We
present a measurement of the mean Mg II λλ2796, 2803 absorption
around LRGs, based on cross-correlating the positions of about one
million red galaxies at z ∼ 0.5 and the flux decrements induced in
the spectra of about 105 background quasars from the SDSS (see
also Pérez-Ràfols et al., in preparation). We use quasar continuum
estimates from Zhu & Ménard (2013a) with calibration improve-
ments to remove large-scale, sub-percent variations. Our ability to
measure the absorption signal over a broad range of scales allows us
to interpret the phase-space distribution of the gas in a cosmological
context. Our results are summarized as follows.

(i) We measure the LRG–Mg II correlation function from 30 kpc,
where gas is associated with the LRG host halo, to about 20 Mpc,
where it is dominated by contribution from neighbouring haloes.
This galaxy–gas correlation reveals a change of slope on scales of
about 1 Mpc, consistent with the expected transition from a dark
matter halo dominated environment to a regime where clustering
is dominated by halo–halo correlations. We use the observed rest
equivalent width as a function of scale to obtain an estimate of the
gas surface density, taking into account mild saturation effects on
the smallest scales.

(ii) We find the standard halo model to provide an accurate de-
scription of the gas distribution over three orders of magnitude in
scale under the simple assumption that the average distribution of
Mg II gas follows that of dark matter up to a gas-to-mass ratio. Only
three parameters are needed to describe the full range of measure-
ments: the average host halo mass Mhalo, gas-to-mass ratio in the
host halo f 1h

Mg II
, and mean gas-to-mass ratio in all neighbouring

haloes f 2h
halo. We find that a halo mass Mhalo = 1013.5 M� provides

an excellent fit to the data. This LRG host halo mass is in good agree-
ment with the constraints from the galaxy–galaxy and galaxy–mass
correlation functions. Moreover, we find f 1h

halo to be consistent with
f 2h

halo.
(iii) Combining observations of the galaxy–mass and galaxy–gas

correlation functions we obtain direct constraints on the gas-to-mass
ratio around LRGs f 1,2h

halo and find it to be roughly scale independent.
This implies that (i) the average cool gas density profile around
LRGs is consistent with the NFW profile, (ii) the density of Mg II

clouds around LRGs is consistent with the cosmic value, estimated
to be �CGM

Mg II ≈ 3 × 10−9.
(iv) From linewidth estimates, we show that the velocity dis-

persion of the gas clouds also displays the expected one-halo and
two-halo behaviours. On large scales the gas distribution follows
the Hubble flow, whereas on small scales we observe the velocity
dispersion of Mg II gas clouds to be lower than that of collisionless
dark matter particles within their host halo, by a factor of about
2. This indicates that Mg II gas clouds are gravitationally bound to
their host haloes and are likely falling towards the centre of the
potential unless a pressure gradient is large enough to stop them.

These results provide us with a new set of constraints on the large-
scale distribution of gas. Extending the analysis to other species
and different types of galaxies will help understanding the cosmic
baryon cycle.

Large and homogeneous surveys of the sky have allowed us to
probe the distribution of matter in low-density environments. From
the SDSS only, we now have measurements of the galaxy–galaxy
correlation function from clustering analyses (e.g. Zehavi et al.
2005), the galaxy–mass correlation from gravitational lensing (e.g.
Mandelbaum et al. 2006), the galaxy–dust correlation from redden-
ing measurements (Ménard et al. 2010) and, from this paper, the
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galaxy–gas correlation function obtained by measuring statistical
absorption by metals. The velocity-space distribution of galaxies
is also measured with various surveys (e.g. Jing, Mo & Boerner
1998; Conroy et al. 2007). Our work extends these measurements
to one tracer of the gas distribution. These correlation functions are
successfully interpreted in the standard CDM cosmological con-
text and provide us with a more complete description of the matter
distribution around galaxies in the phase space.

Our analysis demonstrates the power and potential of absorption
line studies using the ever-growing data from large surveys. The
methods we developed in Zhu & Ménard (2013a,b) and this paper
are generic and readily applicable to any large data set from future
surveys eBOSS (Comparat et al. 2013), BigBOSS (Schlegel et al.
2011), and PFS (Ellis et al. 2012). These surveys will provide large
samples of different types of galaxies at higher redshift where more
species are accessible from the ground and a golden opportunity to
improve our understanding of the gas distribution and the cosmic
baryon cycle. This work also shows that a detection of the baryon
acoustic oscillation feature with Mg II absorption is within reach.
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L5

A P P E N D I X A : TH E DA R K M AT T E R – G A S H A L O MO D E L

A1 The projected surface density

The halo model (e.g. Ma & Fry 2000; Peacock & Smith 2000; Seljak 2000; Scoccimarro et al. 2001; Berlind & Weinberg 2002; Cooray & Sheth
2002, and references therein) provides a simple tool linking observations of the large-scale distribution of matter to theoretical predictions
by dark matter cosmological models that is much less expensive than N-body/hydrodynamic simulations. It was originally developed to
investigate the galaxy and dark matter distribution, we here extend its use to the galaxy–gas correlation function.

We start with the formal definition of the projected galaxy–gas correlation function (equation 2):

ωgal−gas(rp) ≡ 〈δgal(r
′) × δgas(r

′ + rp)〉, (A1)

where the ensemble average is performed over the entire area of interest. When the galaxy field is discretized, the ensemble average is
restricted to the galaxy positions. The projected galaxy–gas correlation function is then equivalent to the excess of the surface density, given
by equation (5), which we rewrite here:

〈�gas(rp)〉gal ≡ �gas ωgal−gas(rp). (A2)

Below we will drop the ensemble symbol for simplicity.
In the halo model, we divide the surface density into one-halo and two-halo terms:

�gas(rp) = �1h
gas(rp) + �2h

gas(rp). (A3)

For central galaxies, the one-halo term is obtained by integrating the host halo density profile along the line of sight and the two-halo term is
computed through the cross-correlation function between the centre position of the host halo and gas in other haloes. For satellite galaxies,
the one-halo term includes contribution from its own host (sub-)halo and its parent halo, and the two-halo term is again the contribution from
neighbouring haloes. We assume all LRGs are central galaxies and will therefore only present the central-galaxy terms below. For an example
of modelling the satellite contribution in the galaxy–mass correlation, we refer the reader to Mandelbaum et al. (2005).

The essential assumption of the dark matter halo model is that the properties (e.g., profile, density bias, abundance, galaxy occupation) of
a dark matter halo are solely determined by its mass M (e.g. Press & Schechter 1974; Sheth & Tormen 1999). Though it has been shown
recently that the formation history also plays an important role (the assembly bias, e.g. Gao, Springel & White 2005; Wechsler et al. 2006;
Zhu et al. 2006), we ignore this subtlety here. To apply the halo model to the galaxy–gas correlation function, we further assume that the
gas-to-mass ratio (fgas) depends only on the halo mass, and does not depend on scale, i.e. the shape of the density profile is the same for gas
and dark matter. The halo model we use has three parameters:

(i) the average virial mass M of the host dark matter haloes,
(ii) the gas-to-mass ratio f 1h

gas(M) of the host dark matter haloes (the one-halo term),
(iii) the mean gas-to-mass ratio f 2h

gas of all galaxies at the same redshift (the two-halo term).

The mean excess of the gas surface density around galaxies then follows

�gas(rp|M) = f 1h
gas(M) �1h

m (rp|M) + f 2h
gas �2h

m (rp|M). (A4)

We note that the two-halo term f 2h
gas is the mean value over all neighbouring haloes, which can have a wide range of gas-to-mass ratios.

We now present the ingredients for the one-halo and two-halo mass terms �1h
m (rp|M) and �2h

m (rp|M).

(i) One-halo term. The one-halo term is obtained by integrating the 3D density profile along the line of sight. We assume the dark matter
density profile follows the NFW form (Navarro, Frenk & White 1996, 1997):

ρm(r|M) = ρs

(r/rs)γ (1 + r/rs)3−γ
, (A5)

where γ = 1. We express the scale radius rs in terms of concentration c and virial radius rvir: rs = rvir/c. The virial radius for a given halo
mass M is determined through

M = 4π

3
ρ̄m�virr

3
vir, (A6)
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where ρ̄m is the mean matter density and �vir is the critical overdensity for virialization, for which we adopt the fitting formula by Bryan &
Norman (1998):

�vir(z) = 1

�m(z)

{
18π2 + 82 [�m(z) − 1] − 39 [�m(z) − 1]2

}
. (A7)

We assume the concentration c follows

c(M, z) = c0

1 + z

[
M

M�

]−β

. (A8)

We take c0 = 9 and β = 0.13 (e.g. Bullock et al. 2001; Hu & Kravtsov 2003). The non-linear scale mass M� = 1012.7 M� for the adopted
cosmology. The scale density ρs is then determined through the integration of the profile:

M =
∫ rvir

0
4πr2 ρm(r|M) dr = 4πρsr

3
vir

c3

[
ln(1 + c) − c

1 + c

]
,

(A9)

where the second equal sign holds only for the NFW slope γ = 1 (see Takada & Jain 2003 for analytic formulae for other profiles).
To obtain the surface density, we integrate the NFW density profile along the line of sight:

�1h
m (rp|M) =

∫ +∞

−∞
ρm

(√
r2

p + s2|M
)

ds. (A10)

On large scales, the projected density profile follows r−2
p .

(ii) Two-halo term. The two-halo term is obtained by integrating the 3D cross-correlation function between the centre position of the halo
and matter of neighbouring haloes ξ hm:

�2h
m (rp|M) = ρ̄m

∫ +∞

−∞
ξhm(

√
r2

p + s2|M) ds. (A11)

Note that we have again dropped the background term so that this is the excess of the surface density. The correlation function ξ hm in
the halo model involves convolution of the halo–halo correlation function and the halo density profile. Since convolution in real space is
simply multiplication in Fourier space, it is easier to calculate the power spectrum Phm(k) first then obtain the correlation function by Fourier
Transformation. The two-halo power spectrum is given by

Phm(k) = b(M)Plin(k)
∫ Mmax

Mmin

dνfνb(ν)u(k|ν), (A12)

where we have followed the convention and used the overdensity peak height ν (e.g. Bardeen et al. 1986):

ν ≡ δc(z)

D(z)σ (M)
. (A13)

Here, D(z) is the growth factor and δc(z) is the overdensity threshold for spherical collapse, for which we use the fitting formula given by
Weinberg & Kamionkowski (2003):

δc(z) = 3

20
(12π)2/3

[
1 + 0.013 log10 �m(z)

]
. (A14)

The σ (M) term is the present-day rms fluctuation in the mass density, smoothed with a top-hat filter of radius R(M) ≡ (3M/4πρ̄m)1/3:

σ 2(M) =
∫ +∞

0

dk

k

k3Plin(k)

2π2
W 2(kR), (A15)

where W is the Fourier transform of the top-hat window function:

W (x) = 3

x3
(sin x − x cos x). (A16)

For the large-scale bias b, we use the fitting formula:

b(M, z) = b(ν) = 1 + 1√
aδc

[√
a(aν2) + √

ab(aν2)1−c − (aν2)c

(aν2)c + b(1 − c)(1 − c/2)

]
, (A17)

with a = 1/
√

2, b = 0.35, and c = 0.8 (Sheth, Mo & Tormen 2001a; Tinker et al. 2005). The mass function f(ν) is defined as

dn

dM
dM = ρ̄m

M
f (ν)dν, (A18)

and we use the fitting formula given by Sheth & Tormen (1999):

νf (ν) = A

√
2aν2

π

[
1 + (aν2)−p

]
exp

(
−aν2

2

)
, (A19)
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Figure A1. The best fitting halo models (left-hand panel) and fractional residuals (right-hand panel) for three halo masses: 1011 M�, 1013.5 (the best fitting
mass) and 1015.5 M�. The best fitting Mg II gas-to-mass ratios are (log10 f 1h

gas, log10 f 2h
gas) = (−6.2,−7.6), (−8.3, −8.1) and (−9.6, −9.1), respectively. The

line styles are the same as in Fig. 5, with different colours representing different masses.

with a = 0.707 and p = 0.3. The coefficient A is set by the normalization condition:∫ +∞

0
f (ν)dν = 1, (A20)

and is 0.129 in the cosmology we adopted. The u(k|ν) term is the Fourier transform of the density profile:

u(k|ν) =
∫

4πr2dr ρ(r|M)
sin kr

kr
. (A21)

For the linear power spectrum Plin(k), we use the fitting formula given by Eisenstein & Hu (1999). Note that the power spectrum is given in
comoving space and after the Fourier transformation we convert the correlation function into physical space.

The integral of the halo-mass power spectrum (equation A12) is performed from Mmin = 103 M� to Mmax = 1017 M�. On large scales,
the integral must equal 1, so we also scale the integral such that it satisfies this condition. For metals, there is a lower halo-mass limit below
which no stars can form and metals can only come from stars formed in other haloes (Rees 1986). It is yet unknown what this lower limit is
(e.g. Gnedin 2000; Okamoto, Gao & Theuns 2008), but it only affects the overall amplitude of the integral, which we force to be one on large
scales, so we keep Mmin = 103 M�. The upper limit could be adjusted to take into account the halo exclusion effect, which only affects the
small-scale power where the one-halo term dominates, so we keep Mmax = 1017 M�.

Fig. A1 shows examples of halo models with different halo masses, with the best fitting Mg II gas-to-mass ratios determined by minimizing
the chi-square. For M = 1011 M�, the lowest mass we probe, the profile is too steep on small scales and cannot capture the transition between
the one-halo and the two-halo terms. For M = 1015.5 M�, the largest mass we probe, the profile is too flat on small scales. The best fitting
halo mass, M = 1013.5 M�, provides an excellent fit to the measurements.

A2 The line-of-sight velocity dispersion

The total line-of-sight velocity dispersion of particles around a halo with mass M is the mass-weighted summation, in quadrature, of the
velocity dispersion of all particles along the line of sight:

σ 2
los(rp|M) = 1

�(rp|M)

∫ +∞

−∞
ρm

(√
r2

p + s2|M
)

σ 2
los(rp, s) ds, (A22)

where the line-of-sight dispersion at a given separation (rp, s) is given by combining the radial (σ ‖) and tangential (σ⊥) dispersions:

σ 2
los(rp, s) = σ 2

‖
(√

r2
p + s2

)
sin2 θ + 1

2
σ 2

⊥
(√

r2
p + s2

)
cos2 θ, (A23)

with θ being the angle between the projection direction and the 3D separation, i.e. θ = arctan(s/rp). The radial (σ ‖) and tangential (σ⊥)
velocity dispersions are related by the velocity anisotropy:

β = 1 − σ 2
⊥

2σ 2
‖
. (A24)
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The integral can be rewritten as

σ 2
los(rp|M) = 1

�(rp|M)

∫ +∞

−∞
ρm

(√
r2

p + s2|M
) (

1 − β
r2

p

r2
p + s2

)
σ 2

‖
(√

r2
p + s2

)
ds. (A25)

We assume velocity isotropy, i.e. β = 0, throughout this analysis.
We decompose the total line-of-sight velocity dispersion into one-halo and two-halo terms, as for the surface density:

σ 2
los(rp|M) = μ2(M)A1h(rp|M) σ 2

1h,los(rp|M) + A2h(rp|M) σ 2
2h,los(rp|M), (A26)

where A is the mass contribution of each term:

A1h(rp|M) = �1h(rp|M)

�1h(rp|M) + �2h(rp|M)
, A2h(rp|M) = �2h(rp|M)

�1h(rp|M) + �2h(rp|M)
, (A27)

and μ ≡ σ gas/σ m is the velocity bias between gas and dark matter.

(i) One-halo term. The one-halo term σ 2
1h is obtained by solving Jeans equation (Binney & Tremaine 1987):

dσ 2
‖ (r)ρ(r)

dr
+ 2β(r)

r
σ 2

‖ (r)ρ(r) = −ρ(r)
dφ

dr
= −ρ(r)

GM(< r)

r2
. (A28)

For NFW profile and constant velocity anisotropy β, Łokas & Mamon (2001) provides analytic solutions to the Jeans equation (equations
13–16 in their paper). The velocity anisotropy has been shown to weakly depend on scale, increasing from around 0.15 at small radius to
about 0.4 at virial radius (Colı́n, Klypin & Kravtsov 2000; Diemand, Moore & Stadel 2004). The small anisotropy has little effect on the final
line-of-sight velocity dispersion, so we assume velocity isotropy (β = 0), in which case the radial velocity dispersion is given by equation 14
in Łokas & Mamon (2001):

σ 2
‖ (x) = 1

2
V 2

vir g(c)cx(1 + x)2

[
π2 − log x − 1

x
− 1

(1 + x)2
− 6

1 + x

+
(

1 + 1

x2
− 4

x
− 2

1 + x

)
log(1 + x) + 3 log2(1 + x) − 6Li2(1 + x)

]
, (A29)

where x ≡ r/rs = cr/rvir, c is the concentration, Vvir is the circular velocity at virial radius:

Vvir =
√

GMvir

rvir
, (A30)

and

g(c) = 1

log(1 + c) − c/(1 + c)
, (A31)

and Li2 is the dilogarithm:

Li2(z) =
∫ z

1

log t

1 − t
dt . (A32)

The one-halo term of the line-of-sight velocity dispersion can then be obtained by integrating equation (A25). As we discussed in the main
text, around LRGs this collisionless dark matter velocity dispersion is larger than the observed gas cloud velocity dispersion by about a factor
of 2, i.e. μLRG ≈ 1/2.

(ii) Two-halo term. The two-halo term σ 2
2h is the width of the correlation function in the redshift (velocity) space, and is determined by

two factors: (1) the relative motion of the neighbouring haloes with respect to the host halo (Peebles 1980; Hamilton et al. 1991; Mo, Jing &
Borner 1997; Sheth & Diaferio 2001; Sheth et al. 2001b) and of particles within these neighbouring haloes, with respect to the background
comoving frame; (2) the Hubble flow with peculiar velocity, which determines the Kaiser limit of the redshift-space correlation function (e.g.
Kaiser 1987; Hamilton 1992). We present these two terms separately below. Alternatively, one can also fold the relative motion of haloes
with respect to the background (the first term) into the Kaiser-limit redshift-space correlation function (e.g. Fisher 1995; Scoccimarro 2004).

We first present the prescription of the first term. The velocity dispersion between the centre of the host halo with mass M and gas in
another halo with mass m at a distance r (in 3D) can be decomposed into four terms:

σ 2
Mm(r) = σ 2

halo(M) + σ 2
halo(m) + μ2(m)σ 2

vir(m) − 2�Mm(r), (A33)

where σ halo(m) is the cosmic velocity dispersion of haloes with mass m, σ vir(m) is the mean virial motion of particles within the halo, which
can be obtained by solving the Jeans equation and taking the mass-weighted average, μ(m) is the velocity bias between gas and dark matter,
and �Mm(r) is the velocity correlation between two haloes because their velocities are not independent. For the two-halo term, we assume
μ(m) to be 1, but it has little effect since the virial motion of particles plays a sub-dominant role on scales where two-halo term dominates.

Following Sheth & Diaferio (2001), the halo velocity dispersion from linear theory is given by

σhalo(m) = H0f (�m)σ−1

√
1 − σ 4

0 /σ 2
1 σ 2

−1, (A34)

MNRAS 439, 3139–3155 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/439/3/3139/1113180 by guest on 24 April 2022



3154 G. Zhu et al.

where f (�m) = d log D/ log a ≈ �0.55
m and

σ 2
j (m) = 1

2π2

∫
dk k2+2jP (k)W 2[kR(m)], (A35)

with W(x) being the Fourier transform of the top-hat smoothing window, as equation (A16). The square root term is to correct the fact that
overdensities are not completely random patches. For �m ∼ 0.3, the halo velocity dispersion depends only weakly on mass and we use the
fitting formula given by Sheth & Diaferio (2001):

σhalo(m) = σfit

1 + (R/Rfit)η
. (A36)

For the adopted cosmology and at redshift z = 0.52, we find Rfit = 50 Mpc, and η = 0.85, and σ fit = 400 kms−1 provide a good fit.
The velocity correlation function from linear theory is given by Gorski (1988) and Sheth et al. (2001b):

�Mm,‖/⊥(r) = [H0f (�m)]2 (1 − σ 4
0 /σ 2

1 σ 2
−1)

1

2π2

∫
dk P (k)W [kR(M)]W [kR(m)]K‖/⊥(kr), (A37)

where for the radial (�Mm, ‖) and tangential (�Mm, ⊥) velocity correlations,

K‖(x) = sin x

x
− 2

x3
(sin x − x cos x) , K⊥(x) = 2

x3
(sin x − x cos x), (A38)

respectively. The total velocity correlation is �Mm(r) = �Mm, ‖(r) + �Mm, ⊥(r) and can be obtained by simply replacing K‖/⊥(x) with K(x) =
sin x/x.

To compute the total 3D velocity dispersion with respect to the host halo, we need to integrate σ 2
Mm over all neighbouring haloes:

σ 2
2h,3D(r|M) =

∫
dm n(m)m [1 + ξMm(r)] σ 2

Mm(r)∫
dm n(m)m [1 + ξMm(r)]

. (A39)

The line-of-sight velocity dispersion, ignoring the Hubble flow for the time being, is then obtained by inserting this quantity into the integral
A25:

σ 2
no Hubble(rp|M) = 1

�2h(rp|M)
ρ̄m

∫ +∞

−∞
ξhm

(√
r2

p + s2|M
) 1

3
σ 2

2h,3D

(√
r2

p + s2|M
)

ds, (A40)

where we have assumed velocity isotropy (β = 0). This equation involves a quadruple integral, one over m, one over k for σ 2
j , another over k

for ξ , and one over r along the line of sight at rp. In practice, we find that choosing a typical neighbouring halo mass without doing the integral
over m can provide a good approximation, and tests show that the results are insensitive to the chosen halo mass between 1010 and 1014 M�.
This is because the halo velocity dispersion only weakly depends on mass, and the presence of the velocity correlation further cancels out
most of the dependence. We therefore use a typical halo mass 1012 M� to circumvent the computational difficulty and do not perform the
integral over m.

We now turn to the second term, the width of the Kaiser-limit redshift-space correlation function along the line of sight. We estimate this
term by measuring the full width at half-maximum (FWHM) and dividing it by 2.35, i.e. �v = FWHM/2.35. We model the correlation
function with the standard spherical Legendre expansion method (Kaiser 1987; Hamilton 1992), and empirically determine the width of its
line-of-sight projection as a function of impact parameter. For the adopted cosmology, at redshift z = 0.5, we find the following linear relation
is a good approximation for the velocity width (FWHM/2.35):

�v(rp) ≈ 90 kms−1 rp

Mpc
+ 100 kms−1. (A41)

This approximation is valid between about 1 and 20 Mpc but over-estimates the width beyond 20 Mpc. We do not go beyond 20 Mpc in this
analysis.

The final two-halo term of the velocity dispersion is then given by

σ 2
2h,los(rp|M) = [�v(rp)]2 + σ 2

no Hubble(rp|M). (A42)

A P P E N D I X B: SATU R AT I O N E F F E C T S

In Section 5, we adopt line ratio 1.75 when 〈WMg II

0 〉 < 0.15 Å, and equation (15) otherwise, as suggested by the median line ratios of individual
Mg II absorbers. We then convert the rest equivalent width of the weaker line (λ2803) to the Mg II surface density. We here investigate two
different extreme line ratio treatments: (1) line ratio equals 1 across all scales, i.e. the contributing absorption is all saturated; (2) line ratio
equals 2 at 〈WMg II

0 〉 < 0.15 Å, and 1 otherwise, i.e., the contributing absorption is all unsaturated at 〈WMg II

0 〉 < 0.15 Å, and all saturated
otherwise.

The best fitting halo models with these two line ratio treatments are presented in Fig. B1. The joint likelihood distributions are shown in
Fig. B2. For comparison, we have also overplotted the same vertical grey and horizontal light blue bands as in Fig. 6, the constraints from the
galaxy-mass correlation. The best fitting halo parameters shift by about 0.2–0.5 dex (1–2σ ), showing these extreme line ratio treatments do
not have a significant effect on our conclusions.
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Figure B1. Saturation effects on column density and halo modelling. The left-hand panel shows the best fitting halo model if we adopt line ratio 1 everywhere.
The right-hand panel shows the best fitting halo model if we adopt line ratio 2 when 〈WMg II

0 〉 < 0.15 Å, and 1 otherwise.

Figure B2. Joint likelihood distributions of halo mass and gas-to-mass ratios for different line ratio treatments. The vertical grey band and horizontal blue
band are the same as in Fig. 6.

It is worth pointing out that what we measure is the minimum surface density because a fraction of the contributing absorbers must be
saturated, even though accurate line ratio measurement and the choice of the weaker line can offer an estimate close to the true surface density.
The saturation effect may become a major uncertainty when studying CGM of star-forming galaxies where we expect higher gas density
(Bordoloi et al. 2011; Tumlinson et al. 2011; Zhu & Ménard 2013b). It is therefore necessary to develop more sophisticated models to include
not only column density, but also Doppler broadening factor, covering fraction and other physical properties.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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