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We present a novel analytic extraction of high-order post-Newtonian (pN) parameters that govern
quasicircular binary systems. Coefficients in the pN expansion of the energy of a binary system can be
found from corresponding coefficients in an extreme-mass-ratio inspiral computation of the change ΔU in
the redshift factor of a circular orbit at fixed angular velocity. Remarkably, by computing this essentially
gauge-invariant quantity to accuracy greater than one part in 10225, and by assuming that a subset of pN
coefficients are rational numbers or products of π and a rational, we obtain the exact analytic coefficients.
We find the previously unexpected result that the post-Newtonian expansion of ΔU (and of the change ΔΩ
in the angular velocity at fixed redshift factor) have conservative terms at half-integral pN order beginning
with a 5.5 pN term. This implies the existence of a corresponding 5.5 pN term in the expansion of the
energy of a binary system. Coefficients in the pN series that do not belong to the subset just described are
obtained to accuracy better than 1 part in 10265−23n at nth pN order. We work in a radiation gauge, finding
the radiative part of the metric perturbation from the gauge-invariant Weyl scalar ψ0 via a Hertz potential.
We use mode-sum renormalization, and find high-order renormalization coefficients by matching a series
in L ¼ lþ 1=2 to the large-L behavior of the expression for ΔU. The nonradiative parts of the perturbed
metric associated with changes in mass and angular momentum are calculated in the Schwarzschild gauge.

DOI: 10.1103/PhysRevD.89.064042 PACS numbers: 04.25.Nx, 04.30.Db, 04.70.Bw

I. INTRODUCTION

The principal approximation methods used to compute
the inspiral of compact binary systems are the post-
Newtonian expansion, in which an orbital angular velocity
MΩ serves as the expansion parameter; and the self-force
or extreme-mass-ratio-inspiral (EMRI) approach, in which
the small parameter is the mass ratio m=M of the binary’s
two components. Previous work by Blanchet et al. [1,2]
used an overlapping regime where both approximations are
valid to check the consistency of the renormalization
methods used in the two approaches and to find numerical
values of pN coefficients at orders beyond the reach of
current analytical work.
In the present paper, by working with much higher

numerical accuracy—maintaining precision of at least one
part in 10225 in an EMRI computation of the perturbed
orbital frequency and redshift factor, and by considering
orbits at much larger separation—with orbital radii

extending to 1030M, we obtain two surprising results not

seen in the previous study:
(1) A subset of the pN parameters in lower-order

analytical work had been found to be either rationals
m=n or to be sums of rationals multiplied by powers
of π, the Euler constant γ and square roots of
integers. Our high precision allows us to extract
the exact analytical form of the subset of coefficients
that are rationals or products of the form rational × π
from our numerical values up to 10 pN order,
corresponding to corrections smaller by ðv=cÞ22 than
the Newtonian value.

(2) In a pN expansion, conservative terms (terms even
under the interchange of outgoing and ingoing
radiation) are initially encountered at integral pN
orders; dissipative terms (odd under the interchange
of outgoing and ingoing) first enter at 2.5 pN order.
At higher order, dissipative terms can occur at either
integral or half-integral order, depending on the
details [3], while conservative terms enter at each
integral order. We find that conservative terms of
5.5 pN order appear in the expression for the redshift
at fixed angular velocity (and thus in the expressions
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for the angular velocity at fixed redshift and in the
expression for the energy of an orbit with given
angular velocity). These quantities are conservative,
and the presence of half-integral pN terms was
unexpected.

The work reported here involves a binary system that, at
zeroth order in the mass ratio, is described by a test particle
in a circular geodesic about a Schwarzschild black hole. At
first order in m=M, the orbital parameters are altered by a
metric perturbation hαβ produced by the orbiting particle:
the perturbed motion can be described by saying that
the particle moves on a circular geodesic of the metric
gαβ þ hrenαβ , where h

ren
αβ is the renormalized metric perturba-

tion. The perturbed spacetime is helically symmetric, with a
helical Killing vector kα that is tangent to the particle’s
4-velocity,

uα ¼ Ukα: (1)

The constant of proportionality U is termed the redshift
factor (first introduced by Detweiler [4]), and can be
thought of as a contribution to the redshift, measured from
the perturbed orbit of the massm, that is independent of the
internal geometry of the mass. With the perturbed space-
time chosen so that the perturbed and unperturbed helical
Killing vectors coincide, the change in ΔU at fixed angular
velocity Ω has the form

ΔU ¼ −U 1

2
hrenαβ u

αuβ≕ −UHren; (2)

and it is invariant under gauge transformations generated by
helically symmetric gauge vectors.
A pN expansion of ΔU, written in terms of a dimension-

less R≔ðMΩÞ−2=3, has the form

ΔU ¼ − 1

R
þ
X
n¼1

αn
1

Rnþ1
þ
X
n¼4

βn
logR
Rnþ1

þ
X
n¼7

γn
log2R
Rnþ1

þ
X
n¼10

δn
log3R
Rnþ1

þ � � � ; (3)

where the post-Newtonian order n can take half-integral as
well as integral values, starting at α5.5 and β8.5. That is,
integral values of coefficients of logk R=Rnþ1 start at pN
order n ¼ 3kþ 1; half-integral values appear to start at
n ¼ 3kþ 5.5, but we do not carry our numerical expansion
far enough to find the first half-integral value for k ¼ 2
(γ11:5) or for larger k. We compute ΔU at a set of radii
extending to 1030M and match to a series of this form. As
noted in the abstract, the high numerical accuracy ofΔUðrÞ
allows us to find the coefficients αn, βn, and γn with a
precision at least as high as one part in 10265−23n. At each
pN order, we find that the coefficient of the highest
occurring power of logR is rational when n is an integer;
and it has the form rational × π when n is a half-integer.

The remaining coefficients for a given value of n are not of
this form.
Because the presence of α5.5 and higher-order half-

integral coefficients was not expected, we performed an
elaborate set of checks. Our calculations were carried out in
a radiation gauge, but we repeated the entire numerical
calculation of ΔU in a Regge-Wheeler gauge, obtaining
numerical agreement to 368 places of accuracy; that is, the
retarded values of huu for each l mode in the radiation
gauge and the Regge-Wheeler-Zerilli gauge agree to more
than 368 digits. This serves as a demanding test of both the
numerical code and of the analytical computation on which
it is based. Because the numerical calculation is performed
in Mathematica, the comparison is also a check of
Mathematica’s claimed numerical precision. Adrian
Ottewill and Marc Casals kindly used their codes to
perform an independent radiation-gauge computation to
compare with ours at double-precision accuracy for small
R. Specifically, for the s ¼ l ¼ m ¼ 2 term, we compared
our values of the invariant, AlmRHR∞ [see Eq. (7) below],
at r=M ¼ 103, 106. Finally, we analytically computed α5.5
(see Sec. III A).
In Sec. II we briefly review the calculation of the

renormalized ΔU in a modified radiation gauge. In
Sec. III we present the results of matching a sequence of
values ΔUðrÞ to a series of the form (3).
We work in gravitational units (G ¼ c ¼ 1) and use

signature þ − − − to conform to Newman-Penrose
conventions.

II. REVIEW OF ΔU COMPUTATION

We consider a particle of mass m orbiting a
Schwarzschild black hole of mass M. At zeroth order in
m=M, the trajectory is a circular orbit of radius r0.
In Schwarzschild coordinates, its angular velocity is

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffi
M=r30

q
, and its 4-velocity is given by

uα ¼ Uðtα þ ΩφαÞ; with U ¼ ut ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M=r0

p :

(4)

We compute the change ΔU at first order in m=M in a
modified radiation gauge, as detailed in [5]. We briefly
review the formalism here, noting first that Eq. (3) for ΔU
involves a single component Hren of the renormalized
metric perturbation.
For multipoles with l ≥ 2, the metric perturbation can be

found in a radiation gauge from the the spin-2 retarded
Weyl scalar, ψ0, which has the form [5–7],

ψ0ðxÞ ¼ ψ ð0Þ
0 þ ψ ð1Þ

0 þ ψ ð2Þ
0 ; (5)

with
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ψ ð0Þ
0 ¼ 4πmut

Δ2
0

r20

X
lm

Alm½ðl − 1Þlðlþ 1Þðlþ 2Þ�1=2RHðr<ÞR∞ðr>Þ2Ylmðθ;φÞȲlm

�
π

2
;Ωt

�
; (6a)

ψ ð1Þ
0 ¼ 8πimΩutΔ0

X
lm

Alm½ðl − 1Þðlþ 2Þ�1=22Ylmðθ;φÞ1Ȳlm

�
π

2
;Ωt

�

×

�
½imΩr20 þ 2r0�RHðr<ÞR∞ðr>Þ þ Δ0½R0

Hðr0ÞR∞ðrÞθðr − r0Þ þ RHðrÞR0
∞ðr0Þθðr0 − rÞ�

�
; (6b)

ψ ð2Þ
0 ¼ −4πmΩ2ut

X
lm

Alm2Ylmðθ;ϕÞ2Ȳlm

�
π

2
;Ωt

�

× f½30r40 − 80Mr30 þ 48M2r20 −m2Ω2r60 − 2Δ2
0 − 24Δ0r0ðr0 −MÞ þ 6imΩr40ðr0 −MÞ�RHðr<ÞR∞ðr>Þ

þ 2ð6r50 − 20Mr40 þ 16M2r30 − 3r0Δ2
0 þ imΩΔ0r40Þ½R0

Hðr0ÞR∞ðrÞθðr − r0Þ þ R0
∞ðr0ÞRHðrÞθðr0 − rÞ�re

þ r20Δ2
0½R00

Hðr0ÞR∞ðrÞθðr − r0Þ þ R00
∞ðr0ÞRHðrÞθðr0 − rÞ þW½RHðrÞ; R∞ðrÞ�δðr − r0Þ�g; (6c)

where Δ ¼ r2 − 2Mr; the functions RH and R∞ (indices l, m are suppressed) are the solutions to the homogenous radial
Teukolsky equation that are ingoing and outgoing at the future event horizon and null infinity, respectively, and a prime
denotes their derivative with respect to r; W½RHðrÞ; R∞ðrÞ� ¼ RHR0

∞ − R∞R0
H; and the quantities Alm, given by

Alm≔
1

Δ3W½RHðrÞ; R∞ðrÞ�
; (7)

are constants, independent of r. The functions RH and R∞ are calculated to more than 350 digits of accuracy using
expansions in terms of hypergeometric functions given in [8], namely,

RH ¼ eiϵxð−xÞ−2−iϵ X∞
n¼−∞

anFðnþ νþ 1 − iϵ;−n − ν − iϵ;−1 − 2iϵ; xÞ; (8)

R∞ ¼ eizzν−2
X∞
n¼−∞

ð−2zÞnbnUðnþ νþ 3 − iϵ; 2nþ 2νþ 2;−2izÞ; (9)

where x ¼ 1 − r
2M, ϵ ¼ 2MmΩ; and z ¼ −ϵx. We refer the reader to [8,9] for the derivation of ν (the renormalized angular

momentum), and the coefficients an and bn. Here F and U are the hypergeometric and the (Tricomi’s) confluent
hypergeometric functions.
The computation of the spin-weighted spherical harmonics sYl;mðθ;φÞ is done analytically using [7].
Once ψ0 is computed, the components of the metric perturbation are found from the Hertz potential, Ψ, whose angular

harmonics are related to those of ψ0 by an algebraic equation,

Ψlm ¼ 8
ð−1Þmðlþ 2Þðlþ 1Þlðl − 1Þψ̄l;−m þ 12imMΩψlm

½ðlþ 2Þðlþ 1Þlðl − 1Þ�2 þ 144m2M2Ω2
(10)

where Ψ ¼ P
l;mΨlmðrÞ2Ylmðθ;ϕÞe−imΩt and ψ0 ¼

P
l;mψlmðrÞ2Ylmðθ;ϕÞe−imΩt. The components of the metric along

the Kinnersley tetrad are

h11 ¼
r2

2
ðð̄2Ψþ ð2Ψ̄Þ; (11)

h33 ¼ r4
�∂2

t − 2f∂t∂r þ f2∂2
r

4
− 3ðr −MÞ

2r2
∂t þ

fð3r − 2MÞ
2r2

∂r þ
r2 − 2M2

r4

�
Ψ; (12)
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h13 ¼ −
r3

2
ffiffiffi
2

p
�
∂t − f∂r − 2

r

�
ð̄Ψ; (13)

where f ¼ Δ=r2 and the operators ð and ð̄, acting on a
spin-s quantity, η, are given by

ðη ¼ −ð∂θ þ i csc θ∂ϕ − s cot θÞη;
ð̄η ¼ −ð∂θ − i csc θ∂ϕ þ s cot θÞη: (14)

The metric recovered from ψ ren
0 above only specifies the

radiative part of the perturbations (l ≥ 2) and the full
metric reconstruction requires one to take into account
the changes in mass and angular momentum of the
Schwarzschild metric which are associated with l ¼ 0
and l ¼ 1 harmonics, respectively. The contribution to the
full H from the change in mass (HδM) and angular
momentum (HδJ) of the Schwarzschild metric are given
by [see Eqs. (137)–(138) of [5]]

HδM ¼ mðr0 − 2MÞ
r1=20 ðr0 − 3MÞ3=2

; (15)

HδJ ¼
−2Mm

r1=20 ðr0 − 3MÞ3=2
: (16)

The renormalization of H is described in detail in [5–7].
The related quantity ΔΩ that gives the OðmÞ change in the
angular velocity of a trajectory at fixed redshift factor is

ΔΩ ¼ − 1

uϕut
Hren ¼ ΔU

uϕut
2 : (17)

III. RESULTS

In this section we present the pN coefficients of ΔU.
Prior to this work, the following analytical coefficients
were known [1,10]:

ΔU ¼ −1
R

þ−2
R2

þ−5
R3

þ−3872þ 123π2

96R4

þ−592384− 196608γ þ 10155π2 − 393216 logð2Þ
7680R5

þ 64 logðRÞ
5R5

þ−956 logðRÞ
105R6

: (18)

We calculate ΔU for a set of R values from 1×; 3×; 5×;
8 × 1020 to 1029 in logarithmic intervals of 10 with an
accuracy of one part in 10227 for R ¼ 1020, 10242 for
R ¼ 1025 and 10252 for R ¼ 1030. We then match this data
toapNseries toextract theunknowncoefficients. Indoingso,
we find nonzero half-integer (n:5) pN coefficients that come
from the tail-of-tail terms in pN computations [11]. To
confirm its presence we analytically calculated the 5.5 pN
term, the coefficient of 1=R6.5, and found that it agreed with
the numerically extracted coefficient to 113 significant
digits. (The analytic calculation is described briefly below.)
The high accuracy of the numerically extracted coefficients,
however, allows us to extract their exact analytical expres-
sions, without an analytic calculation. For example, the
numerically extracted value of the 6-pN log term is

−90:398589065255731922398589065255731922398589065255731922
3985890652557319223985890652557319223985890485251879955… (19)

More than five repetition cycles of the string 398589065255731922 tells us that it is the rational number −51256=567. In a
similar fashion we extract analytical values of other coefficients making the pN series of analytically known coefficients
the following:

ΔUanalytically known ¼
−1
R

þ −2
R2

þ −5
R3

þ −3872þ 123π2

96R4
þ −592384 − 196608γ þ 10155π2 − 393216 logð2Þ

7680R5

þ 64 logðRÞ
5R5

þ −956 logðRÞ
105R6

þ −13696π
525R6.5 þ −51256 logðRÞ

567R7
þ 81077π

3675R7.5 þ
27392log2ðRÞ

525R8

þ 82561159π

467775R8.5 þ
−27016log2ðRÞ

2205R9
þ −11723776π logðRÞ

55125R9.5 þ −4027582708log2ðRÞ
9823275R10

þ 99186502π logðRÞ
1157625R10:5 þ 23447552log3ðRÞ

165375R11
: (20)

Arational numberwith fewer than ten digits in its numerator and in its denominator is determined by the first eleven digits in its
decimal expansion; thus if one assumes that the rationals occurring in the coefficients of (20) have this character, they are
uniquely determined by the numerical accuracy. Without the assumption, the probability that the first n digits in a decimal
representation of a randomly chosen number will match a rational with nn and nd digits in numerator and denominator is less
than 10nnþnd−n, when n > nn þ nd.
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After using the above analytical coefficients, a numerical
fit for the other numerical coefficients in (3) gives the
values listed in Table I.

A. Exact, analytic 5.5 pN value

As mentioned above, as a check on the work, we
analytically compute the 5.5 pN term. To do so, we use
the fact that the renormalization parameters that characterize
the singular part of Hret have no n.5 pN terms: the pN
expansion of Hsing does not include half-integer powers of
1=R. Studying the pN expansion of the first few multipoles
of Hret, we find that the 5.5 pN term comes only from the
l ¼ 2; m ¼ �2 multipole of Hret. That is, the numerical
coefficient of the 5.5 pN term we obtain by matching Hren

coincides exactly with that obtained by matching the sum of
the l ¼ 2; m ¼ �2 multipoles of Hret to a pN series. The
analytic calculation was thus restricted to the l ¼ 2;
m ¼ �2 multipoles of RðpÞ

H RðqÞ
∞ =ðRHR0

∞ − R0
HR∞Þ (where

p andq, thenumberof radial derivatives, each runfrom0 to2).
We use the hypergeometric series Eqs. (8) and (9) to express
eachof thesefunctionsasTaylorseries inpowersof1=R.From
these series, we obtain in turn the pN expansions of the l ¼ 2,
m ¼ �2 contributions to ψ0, Ψ and their first two radial
derivatives and, finally, the pN series of Hret

2;�2.

IV. NUMERICAL EXTRACTION AND
ERROR ANALYSIS

We describe in this section the way we numerically
extract the pN coefficients and check the accuracy with
which they are determined. We compute ΔUðRÞ for
R ¼ 1×; 3×; 5×; 8 × 1020 to 1029 in logarithmic intervals
of 10. From this data, after subtracting the known terms of
Eq. (18), we match it to

X
n¼5

αn
1

Rnþ1
þ
X
n¼6

βn
logR
Rnþ1

þ
X
n¼7

γn
log2R
Rnþ1

þ
X
n¼10

δn
log3R
Rnþ1

þ � � � : (21)

The accuracy with which the coefficients are extracted
depends on the number of terms in the series. The fit is done
in Mathematica, and, for each extracted coefficient, the
number of terms kept in each of the series in Eq. (21) is
chosen to maximize the accuracy of that coefficient. To
illustrate the procedure, let k be highest power of R−1 kept
in a fitting series, and denote by α5.5ðkÞ the value of α5.5
obtained by truncating the series after R−k. To extract the
value of α5.5, we then look at the fractional difference
jα5.5 ðk� 1Þ=α5.5 ðkÞ − 1j, find the cutoff k ¼ k0 at which
the fractional difference is minimum, and use the value
α5.5 ðk0Þ. For further details we refer the reader to Sec. Vof
[7] where a similar fitting is done. The fitting procedure is
done twice here: we first extract the new analytical pN
coefficients [the terms in Eq. (20) minus Eq. (18)]; we then
subtract the analytical coefficients from the data and do
another set of fits to extract the coefficients in Table I.

V. DISCUSSION

In [12] it was established that a relation exists between,
on the one hand, coefficients in the pN expansion of the
redshift variable and, on the other hand, coefficients in the
expansion of the pN binding energy and angular momen-
tum for the binary system; for explicit results, see, for
example, Eqs. (2.50a)–(2.50d) and (4.25a)–(4.25d) in [12].
Subsequently, using essentially Eqs. (2.40), (4.19) and
(4.23) in [12], Le Tiec et al. (see [13]) transformed these

TABLE I. Numerical values of the coefficients in the expansion (2) of ΔU for which analytic expressions could not be inferred.

Coefficient Numerical value

α5 −243.17681446467430758729358896693800234737272817232786539528868308827
94813055787844008820951887564926056965827710452637773038028704808a

α6 −1305.0013810787096557410900682717136851595808847394760333078920251334
98776905927112179825227138960576902431854a

α7 −6343.8744531990306527270512066053061390446046295187692031581328657892063930482892366
α8 −11903.4729472013044159758685624140826902285745341620173222629
α8.5 −8301.37370829085581136384718573193317705504946743
α9 −32239.6275950925564123677060345920962
α9.5 −10864.625586706244075245767
α10 −221316.52514302
α10:5 6.035 × 104

β7 536.405212471024286871789539475038911270206269552321207927883360240368736326766131833a

β8 1490.55508569589074380119740989883951669927243111359379504747a

β9 −3176.929181153969206392338832692666088
β10 −7358.271055677
β10:5 5013.2
γ10 2105.92718670257

aSee Note added at the end of the paper.
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relations to obtain, for arbitrary pN order, elegant expres-
sions for the energy and angular momentum directly in
terms of the self-force redshift variable and its first
derivative; see, in particular, Eqs. (4a)–(4b) in [13].
Self-force extensions of the pN binding energy and

angular momentum have been long sought after, since
they were known to have the potential to contribute to the
effective-one-body (EOB) formulation (see [14,15]) of the
binary inspiral problem—mimicking, as far as possible,
the reduced mass form of the Newtonian problem, but in a
fully four-dimensional, space-time setting. Thus, in a
follow-up paper to [13], Barausse et al. [16] found a very
compact result, expressing the relevant EOB function
directly in terms of the self-force variable alone; see their
Eq. (2.14) for this important relation, subsequently also
reported in [17].
There is a very clear synergy between self-force results,

and their applications in pN and EOBwork, and knowledge
of our new results will have an immediate impact though
the application of the relations discussed in the previous
two paragraphs. Since the completion of our calculation, a
corresponding computation has been performed to directly
evaluate the 5.5 pN coefficient through conventional pN
analysis, in which it is known to arise from a tails-of-tails

contribution. The ensuing result, as reported in a
companion paper [11], is in exact agreement with the
5.5 pN term in our Eq. (20).
The reader should be aware that the works cited in this

section express Ω as x3=2=ðM þmÞ rather than our
R3=2=M, and use zðxÞ ¼ 1=UðRÞ as the redshift variable.
The notation used throughout the rest of this paper was first
introduced by Detweiler [4].
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from Nathan Kieran Johnson-McDaniel [18] that α5 could
be represented as

205680256þ 7342080γ − 31680075π2 þ 28968960 logð2Þ − 13996800 logð3Þ
403200

:

An equivalent result and an exact expression for α6 have
subsequently appeared in [19]. It has since been possible to
show that our numerical results for β7 and β8 can be
represented by

β7 ¼
5163722519

5457375
− 109568

525
γ − 219136

525
logð2Þ

and

β8 ¼
769841899153

496621125
þ 108064

2205
γ þ 1787104

3675
logð2Þ

− 18954

49
logð3Þ:

An explanation of these results and the methods used
to obtain them will be discussed in a forthcoming
paper [20].
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