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In this second of two papers we apply our recently developed code to search for resonance features in the
Planck CMB temperature data. We search both for log-spaced oscillations or linear-spaced oscillations and
compare our findings with results of our WMAP9 analysis and the Planck team analysis [P. A. R. Ade et al.
(Planck Collaboration), arXiv:1303.5082]. While there are hints of log-spaced resonant features present in
the WMAP9 data, the significance of these features weaken with more data. With more accurate small scale
measurements, we also find that the best-fit frequency has shifted and the amplitude has been reduced. We
confirm the presence of a several low frequency peaks, earlier identified by the Planck team, but with a
better improvement of fit (Δχ2eff ∼ 12). We further investigate this improvement by allowing the lensing
potential to vary as well, showing mild correlation between the amplitude of the oscillations and the lensing
amplitude. We find that the improvement of the fit increases even more (Δχ2eff ∼ 14) for the low frequencies
that modify the spectrum in a way that mimics the lensing effect. Since these features were not present in
the WMAP data, they are primarily due to better measurements of Planck at small angular scales. For
linear-spaced oscillations we find a maximum Δχ2eff ∼ 13 scanning two orders of magnitude in frequency
space, and the biggest improvements are at extremely high frequencies. Again, we recover a best-fit
frequency very close to the one found inWMAP9, which confirms that the fit improvement is driven by low
l. Further comparisons with WMAP9 show Planck contains many more features, both for linear- and log-
spaced oscillations, but with a smaller improvement of fit. We discuss the improvement as a function of the
number of modes and study the effect of the 217 GHz map, which appears to drive most of the
improvement for log-spaced oscillations. Two points strongly suggest that the detected features are fitting a
combination of the noise and the dip at l ∼ 1800 in the 217 GHz map: the fit improvement mostly comes
from a small range of l, and comparison with simulations shows that the fit improvement is consistent with
a statistical fluctuation. We conclude that none of the detected features are statistically significant.

DOI: 10.1103/PhysRevD.89.063537 PACS numbers: 98.80.Es

I. INTRODUCTION

In this short paper, we will apply our recent introduced
method in Ref. [1] to search for resonant features in the
recently released Planck CMB data. We consider two
distinct theoretically motivated models:
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We refer to the first model as the “log-spaced oscillations
model” and the second model as the “linear oscillations
model.” For example, axion-monodromy inflation produces

features that can be described by the logarithmic oscillations
model with A1 ¼ H2=ð8π2ϵÞ, m ¼ ns − 1, A2 ¼ δns,
ω1 ¼ −ðϕ�Þ−1 and ϕ1 ¼ ϕ�. Models that include the
effects from a possible boundary on effective field theory
(BEFT) predict features that can be described by the linear
oscillations model with B1 ¼ H2=ð8π2ϵÞ, m ¼ ns − 1,
B2 ¼ β=a0M, n ¼ 1, ω2 ¼ 2=a0H and ϕ2 ¼ π=2.
Both initial state modifications and multiverse models [2]
can also produce logarithmic oscillations, while sharp
features generate a power spectrum with linear oscillations
(although the amplitude is typically damped as a function
of scale). Constraints on oscillations in the WMAP CMB
data have been attempted in e.g. Refs. [3–9]. Note that model
(2) has a unit less frequency while model (2) has units
of Mpc. We will omit these units in the rest of the paper
for brevity.
This paper is organized as follows. We present our results

on the Planck data in Sec. II for log- and linear-spaced
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oscillations. In Sec. III we compare our results with the
WMAP9 analysis. We discuss our findings and conclude
in Sec. IV.

II. PLANCK ANALYSIS

In this analysis, we use a modified version of the publicly
available Planck likelihood code [10] to search for oscil-
lations in the primordial power spectrum. For this analysis,
we found the best-fit values for both resonance model
parameters and cosmological parameters. We vary all six
ΛCDM parameters plus the phase and the amplitude of the
oscillatory correction to the primordial power spectrum
while fixing the foreground parameters to their best-fit
values for the no oscillations model. The best fit is found
using the Metropolos-Hastings algorithm, which is not the
ideal method to look for the best fit, but it does allow us to
compute marginalized likelihoods of the parameters and
look for potential correlations.

A. Log-spaced oscillations

Figure 1 shows the improvement in fit as a function of
frequency, where the frequency of the oscillation was
varied in 1201 steps between 1 ≤ ω1 ≤ 250 [11]. We
observe several frequencies that could be hints of primor-
dial oscillations. We confirm a number of features first
observed in Ref. [12]. Our method improves the best-fit
peak identified by the planck team [12] at low frequencies
with Δχ2eff ∼ 3 (with best-fit frequency ω1 ¼ 29.2) [13].
After inspecting the resulting fit, we expected some
correlation with smooth parameters. We found that varying
Alens enables a further improvement in the fit by another
Δχ2eff ∼ 2 [15], but the best fit has shifted towards a lower
frequency ω1 ¼ 13.2. In Fig. 2 we show the marginalized
contour between the lensing amplitude Alens and the
amplitude of the oscillations at the best-fit frequency.
Further investigation shows that this mild correlation
actually shifts slope from peak to peak, which can
be explained by the fact that the improvement of fit is at

l > 1500 (see Sec. III); for these low frequencies the
contribution to the power spectrum is rather smooth and the
lensing amplitude effectively smooths the peak structure.
Oscillations can help enhance or reduce this effect, and the
correlation coefficient can therefore change signs depend-
ing on the phase of the oscillation.

B. Linear-spaced oscillations

In Fig. 3, we show the improvement as a function of
frequency for the linear-spaced oscillations model. Again,
we vary the phase and amplitude of the oscillation, together
with the cosmological parameters, for each of 881 steps in
frequency space. For linear-spaced oscillations, the result-
ing improvement is extremely irregular, with no particu-
larly preferred region. The best fit is at a frequency of
ω2 ¼ 7340, where the Δχ2 ∼ 13.

III. WMAP9 VERSUS PLANCK1

A. Log-spaced oscillations

In Figs. 4 and 5 we compare the improvement of fit in
our analysis of WMAP data to the improvement in fit in our

FIG. 1 (color online). We plot the improvement of fit versus
frequency ω1 Planck 1 and log-spaced oscillations. The biggest
improvement are found at low frequencies. Here we allowed Alens
to vary freely. We zoom in on the shaded regions in Figs. 4 and 5.

FIG. 2 (color online). Marginalized probability distribution of
the lensing amplitude versus the amplitude of the (log-spaced)
oscillations.

FIG. 3 (color online). We plot the improvement of fit versus
frequency ω2 Planck 1 and linear-spaced oscillations.
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analysis of Planck data. Figure 4 clearly shows new peaks
at the low frequency end in the Planck data, features that are
absent in the WMAP data. At high frequencies, the feature
that was seen in the WMAP analysis is less significant and
has shifted. Note that some of this shift is due to different
precomputed transfer function, which for high frequencies
have a small but non-negligible effect on the projected
frequency [1]. For lmax ∼ 500, where WMAP and Planck
are both cosmic variance limited, we expect the features to
coincide. As shown in an analysis in Ref. [16], the location
of the feature shifts as one lowers lmax to ∼500, confirming

that a better fit at small scales or high l is the source of
the shift.
Since the low frequency features are absent in the

WMAP data, their presence should be primarily due to a
better fit in the range 500 ≤ lmax ≤ 2500. The correlation
between Alens and the amplitude of the oscillations is a
result of the fit being driven by the high l Planck data. In
Fig. 6 we show improvement of fit compared to no
oscillations as a function of lmax for our best-fit frequency
ω1 ¼ 13.2. Indeed this plot shows that the improvement
comes from multipoles around l ¼ 1800 and l ¼ 1100
(roughly between the 3rd and 4th peak). In the likelihood
for our parameters we use the 100 GHz data up to
lmax ¼ 1200, the 143 GHz data to lmax ¼ 2000 and the
217 GHz data up to lmax ¼ 2500. As was shown in
Ref. [17] the 217 GHz map drives some of the standard
ΛCDM parameters away from their best-fit WMAP values
and the 217 × 217 GHz power spectrum contains a feature
at l ¼ 1800 that is not seen in the 143 × 217 GHz power
spectrum. C. By removing the 217 GHz data we find that
the improvement drops to Δχ2eff ∼ 6 with lmax ¼ 2500.
Note that the better fit at l ¼ 1000 is also unconstrained
by WMAP.

B. Linear-spaced oscillations

Interestingly, in comparison with WMAP, the Planck
data seems to contain many more low frequency features as
shown in Fig. 7. As was the case for WMAP, the Planck
data shows that higher frequencies can result in bigger the

FIG. 4 (color online). We plot the improvement of fit for the
lowest frequencies for both WMAP9 (solid, black) and Planck 1
(red, dashed). Although some peaks are seen in WMAP 9, Planck
has relatively large improvements at the low frequency end,
suggesting these are due to the a better fit at small angular scales.
We confirm that our code reproduces the findings by the Planck
team, but typically with a bigger improvement in χ2 due to
allowing both the oscillation parameters and the cosmological
parameters to vary.

FIG. 5 (color online). We plot the improvement of fit for the
highest frequencies for both WMAP9 (solid, black) and Planck 1
(red, dashed).

FIG. 6 (color online). This figure shows the improvement of the
fit versus a reference fit for log-spaced oscillations. Two features
stand out at lmax ¼ 1800 and lmax ¼ 1100. The first of this
features is probably caused by the 217 GHz map. Removing this
map from the data indeed reduces the improvement to a level
comparable to setting lmax ¼ 1800.

TABLE I. Best-fit parameter values for log- and linear-spaced oscillations.

Parameter ω1=ω2 Ωbh2 Ωch2 τ H0 ns log 1010As A2=B2 ϕ1=ϕ2 Alens

Best-fit (log) 13.2 0.022036 0.11661 0.083943 68.6 0.963 3.19 0.022 −0.48704 1.23
Best-fit (lin) 7340 0.021877 0.12003 0.079958 67 0.956 3.21 0.179 −0.448 1 (fixed)
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improvements of the fit. In WMAP we found were able to
identify a single frequency that appeared to be favored over
other frequencies. Despite the difference, a high oscillation
feature persists in Planck data although the frequency has
shifted slightly (7500 → 7340). Because of the similarities
between the two data sets, this feature is most likely not due
to a feature at small angular scales. For this reason we again
investigate the improvement of fit as a function of lmax.
This is shown in Fig. 8. Interestingly, this fitting appears
rather gradual, which would favor a true feature interpre-
tation. Regarding the feature in the 217 GHz map, the
improvement of the fit actually decreases after l ¼ 1800.
The plot shows that most of the improvement comes from
low multipoles, consistent with this feature appearing both
in WMAP and in Planck at a similar frequency.
A summary of the best-fit parameters associated with

log- and linear-spaced oscillations is provided in Table I.

IV. DISCUSSION AND CONCLUSIONS

In this second of two papers we have applied our recently
developed code to search for resonant features in the Planck

data. Our code recovers the results found by the Planck
collaboration, but adds to these findings by significantly
extending the frequency range of the search. In addition,
our method finds larger improvements of fit for low
frequencies because it varies all parameters to find the
best fit, not just the amplitude and frequency of the
oscillatory signal.
Our analysis has given us several important insights.

First of all, the improvement at the low frequency of
logarithmically spaced oscillations are caused or at least
enhanced by a varying lensing amplitude. For example, in
comparison with the Planck paper result, we find that
allowing the lensing amplitude to vary shifts the best-fit
frequency to lower values, and improves the overall fit. For
linear-spaced oscillations we find the largest improvement
at the highest frequencies, with a best-fit frequency that is
close to that found in WMAP9. We showed that including
this feature mostly improves the fit to the spectrum
below l ∼ 1000.
Further comparison between our WMAP9 and Planck

analyses shows the improvement of fit for log-spaced
oscillations has flipped, i.e. while for WMAP9 the
improvements were at high frequencies for Planck the best
fit is at low frequencies, although a feature at high
frequencies does appear in the Planck data. The fact that
none of the found oscillations in Planck are present in
WMAP9, suggested that most improvement is coming from
high l, which we confirmed by computing the improve-
ment as a function of lmax. As the Planck team has noted,
there is a feature present near l ¼ 1800 in the 217 ×
217 GHz spectrum that does not appear in the other
frequencies. Our results suggest that the improvement at
low frequencies is predominately due to this feature.
Second, in our companion paper we tested our method

on simulated data. The primary goal of these tests was to
assess the reliability of our perturbative method. Here we
use the same simulations to assess the significance of the fit
improvements to determine whether we have detected an
oscillatory contribution to the primordial power spectrum.
We found that for amplitudes as small as those that best fit
the data, we expect an improvement of fit that exceeds what
we find the data. We ran two full pipelines on maps that did
not include a signal, for which we found improvements up
to Δχ2eff ∼ 10 [18]. Furthermore we also ran a large number
of (simplified) simulations in order to address the following
question: what is the typical maximum improvement
expected from fitting the noise? This analysis showed that
the noise typically leads to Δχ2eff ∼ 10, and has the potential
to improve the fit Δχ2eff ∼ 25. We found these improve-
ments with lmax ¼ 500. We have improved on these
simulations, by randomly generating Gaussian noise using
the weighted error bars directly synthesized from the
Planck data for multipoles ranging from l ¼ 32 to
l ¼ 2479. We ran 1000 of these higher resolution feature-
less simulations and found that applying both log- and

FIG. 7 (color online). Comparison between the improvement of
fit for linear oscillations as a function of frequency between
WMAP 9 (solid, black) and Planck (dashed, red).

FIG. 8 (color online). This figure shows the improvement of the
fit versus a reference fit for linear-spaced oscillations. As expected,
because of the similarities between the two features in Planck and
WMAP, the improvement of fit is due to a feature at lowmultipoles.
The feature at l ¼ 1800 in the 217 GHz has the opposite effect;
after l ¼ 1800 the improvement of the fit decreases.
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linear-spaced templates showed the measured (data)
improvements are in the 90–94 percentile range. To be
more precise, Δχ2 ≃ 25 is at the 3σ level. These simu-
lations are grid based, with 6 points in phase space, 12
points in the amplitude and 240 and 220, respectively, for
log- and linear-spaced oscillations in the frequency param-
eter. As a result, the derived distribution is conservative
and not as accurate as a full simulation running an MCMC;
with higher resolution we expect a distribution skewed
towards higher improvements. Note that the resulting
distribution is not a χ2 distribution, because this is a highly
nonlinear problem. For example, assuming a cosmic
variance limit experiment and a template that oscillates
as Cl × glðA;ω;ϕÞ, we find

Δχ2;iðA;ω;ϕÞ ¼ fs
2

X
l

ð2lþ 1Þ

× ½g2l − 23=2f−1s glRi
lð2lþ 1Þ−1=2�:

Here fs is the sky fraction and Ri
l is a Gaussian random

variable with variance 1, independently drawn for each
l and Universe i. gl is oscillating and contains three free
parameters. To get the best-fit distribution for Δχ2 one
would need to do an integral over the random variable, with
best-fit gl which will now be a function of that same
random variable (see Fig. 9). This result together with the
full simulation using our code on mock data in the previous
paper, suggests that the improvements in fit found in our
Planck analysis are consistent with expected statistical
fluctuations for a realization from a featureless primordial
model.
Third, both for linear- and log-spaced oscillations,

improvements appear local in l space. One might expect
a real oscillation to lead to an improvement that would be
more gradual as a function of the number of modes

observed, though we recognize that this is not a rigorous
argument: the biggest improvements arise from the modes
with the highest signal to noise.
Lastly, we have studied linear oscillations with the

frequency at which the Planck team found a 3σ detection
in the bispectrum [19]. We found that this frequency is very
close to the baryon acoustic oscillation (BAO) and we find
no evidence in the power spectrum that there is such an
oscillations (roughly corresponding to ω2 ¼ 220). Our
current understanding would suggest that varying the
BAO parameters in the search for features in the bispectrum
would probably reduce the significance (in addition to look
elsewhere effects).
For the future, we plan to implement MULTINEST as our

sampler as this will significantly speed up the code. As we
go to higher frequencies we should include higher-order
terms to the derivative. In particular, for an accurate
measurement of Ωb, Ωc and H0 it may be necessary to
include derivatives of these parameters in the expansion.
When the Planck polarization data is available, we

should be able to improve our search. Oscillations should
produce features in both temperature and polarization
spectra (and cross spectra). Potentially, polarization mea-
surements from ground-based experiments can probe out to
l≃ 4000 enabling even more sensitive searches for oscil-
latory features. However, searches based on ground-based
data would be limited to lower-oscillation frequencies since
the power spectrum likelihood will have l − l0 correlations
due to mode coupling effects. We can get additional insight
from three point measurements as models that predict
oscillations in the power spectrum typically also predict
oscillations in higher order correlation spectra (see e.g.
Refs. [20–24]). While there have been initial attempts to
search for oscillations in the Planck bispectrum measure-
ments [19], computational cost has limited these searches
to low frequencies. Alternative approaches have been
proposed to optimize this search [25,26], but as of yet
no attempt has been made to cover a large range of
frequencies and phases. A first step would be to search
the bispectrum measurements at frequencies suggested by
analyses of the CMB power spectrum. Detecting features in
both spectra would improve the statistical significance of
the result—a promising direction for future study.
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FIG. 9 (color online). Derived Δχ2 distribution for log-spaced
oscillations derived from simulating Gaussian Planck noise di-
rectly from the diagonal data covariance. The best fits were found
using −π ≤ ϕ1 ≤ ϕ (Δϕ1 ¼ π=3), 10 ≤ ω1 ≤ 250 (Δω1 ¼ 1) and
0 ≤ Aeff

2 ≤ 0.06 (ΔAeff
2 ¼ 0.005) and l ≤ 32 ≤ 2479.
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