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ABSTRACT
Cosmic shear tomography has emerged as one of the most promising tools to both investigate
the nature of dark energy and discriminate between General Relativity and modified gravity
theories. In order to successfully achieve these goals, systematics in shear measurements have
to be taken into account; their impact on the weak lensing power spectrum has to be carefully
investigated in order to estimate the bias induced on the inferred cosmological parameters.
To this end, we develop here an efficient tool to compute the power spectrum of systematics
by propagating, in a realistic way, shear measurement, source properties and survey setup
uncertainties. Starting from analytical results for unweighted moments and general assump-
tions on the relation between measured and actual shear, we derive analytical expressions for
the multiplicative and additive bias, showing how these terms depend not only on the shape
measurement errors, but also on the properties of the source galaxies (namely, size, magnitude
and spectral energy distribution). We are then able to compute the amplitude of the systematics
power spectrum and its scaling with redshift, while we propose a multi-Gaussian expansion
to model in a non-parametric way its angular scale dependence. Our method allows us to
self-consistently propagate the systematics uncertainties to the finally observed shear power
spectrum, thus allowing us to quantify the departures from the actual spectrum. We show that
even a modest level of systematics can induce non-negligible deviations, thus leading to a
significant bias on the recovered cosmological parameters.

Key words: cosmological parameters.

1 IN T RO D U C T I O N

A plethora of observational evidences (see, e.g. Weinberg et al. 2012
and references therein and Ade et al. 2013 for recent Planck results)
makes the picture of a spatially flat universe with a subcritical
matter content undergoing accelerated expansion a fully accepted
paradigm of modern cosmology. What is complementing the cosmic
budget and driving the cosmic speed up remains however still largely
unknown. Contrary to what typically happens, the problem here is
not the absence of a viable solution, but rather the presence of too

�
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many candidates playing the game of thrones, with no contenders
being so unequivocally superior to the other to be awarded the
dark energy crown. Most of the proposed mechanisms, from the
classic cosmological constant to dynamical dark energy fluids, from
scalar fields with a suitable potential to modified gravity theories
(see, e.g. Clifton et al. 2012 and references therein), are indeed
able to nicely fit data probing the background evolution of the
cosmos. Although they also make distinct predictions on the growth
of perturbations, this latter quantity can still not be traced well
enough by the presently available data to allow for a definitive
discrimination.

As also witnessed by the conclusions of the Dark Energy Task
Force report (Albrecht et al. 2006), weak gravitational lensing (also
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referred to, in the following, as cosmic shear) has emerged as the
most promising tool to put some order in the chaotic accumulation
of up-to-now viable models. The cosmic shear power spectrum is
indeed able to probe both the expansion rate and the growth of per-
turbations (Bartelmann & Schneider 2001; Hoekstra & Jain 2008;
Munshi et al. 2008; Huterer 2010) thus offering a potentially unique
tool to severely constrain cosmological parameters and discriminate
among theoretical models. It is therefore not surprising that great
efforts have been recently invested in this field on both theoretical
studies and observational resources, with many future surveys being
planned (e.g. PanSTARRS,1 DES,2 LSST3 and Euclid4).

The power of weak lensing as a gravity probe risks however to
be strongly diminished by systematic uncertainties, which can co-
operate to turn the observed signal into an unfaithful realization of
the underlying cosmic one. Such systematics may come from both
theoretical issues (such as the linear to non-linear mapping of the
matter power spectrum and the intrinsic alignment (IA) of source
galaxies) and observationally related problems (as, e.g. the mis-
match between the actual redshift distribution and the one inferred
from photo-z and the shear measurement method). A central role in
forecasting the precision a future survey can achieve on the cosmo-
logical parameters is therefore played by the understanding of the
impact of systematics on the cosmological parameters estimation.
Moreover, such an analysis would help in identifying which kind
of systematics drives the bias on the parameters of interest, thus
helping in fixing both the survey strategy and instrumental setup.

Motivated by this consideration, different strategies have been
proposed to address this issue. On one hand, much work has been
dedicated to estimate the impact of systematics on the shear signal;
e.g. Vale et al. (2004) demonstrated how easy it is for systemat-
ics to produce spurious B-modes and make the measured lensing
E-modes departing from the actual ones. This motivated Mandel-
baum et al. (2005) to work out a method for testing for the presence
of systematics and to apply it to the Sloan Digital Sky Survey
(SDSS) galaxy–galaxy weak lensing data. As first pointed out in
Hoekstra (2004), imperfect modelling of the point spread function
(PSF) soon appeared to be one of the most likely source of systemat-
ics, so that both Stabenau et al. (2007) and Paulin-Henriksson et al.
(2008) examined to what accuracy the PSF must be modelled in or-
der to not bias the shear signal. Since the shear field is reconstructed
from the observed shape of galaxies, it is clear that systematics in
shape measurement play a significant role as discussed in, e.g. Bern-
stein (2010). All these works are mainly concerned with the impact
of systematics on the weak lensing power spectrum, but do not per-
form a detailed analysis of how they propagate to bias the estimate
of cosmological parameters. Not surprisingly, such an issue has then
been carefully addressed in the literature under different assump-
tions about the systematics considered and about their modelling
(Huterer et al. 2006; Taylor, Kitching & Heavens 2007; Kitching,
Taylor & Heavens 2008a; Kitching et al. 2009; Bernstein & Huterer
2010). Of particular interest for our aim is the work of Amara & Re-
fregier (2008, hereafter AR08) who have presented a Fisher matrix
analysis to infer the bias on the dark energy equation of state due to
the mismatch between theoretical and observed cosmic shear power
spectrum caused by the systematics term. A similar but more de-
tailed analysis has also been carried out in Das et al. (2012), where

1 http://pan-starrs.ifa.hawaii.edu
2 http://www.darkenergysurvey.org
3 http://www.lsst.org
4 http://www.euclid-ec.org

a wider set of sources has been taken into account. Both these
works, however, assume a parametrized analytical expression for
the systematics power spectrum, so that their results hold true only
as far as this a priori description is deemed as reliable. A significant
step forward has been recently represented by the work of Massey
et al. (2013, hereafter M13) where an analytical formalism has been
developed to propagate observational uncertainties (coming from
errors in shape measurement, PSF correction and CCD defects) on
the cosmic shear power spectrum. A Fisher matrix analysis is then
used to set requirements on the amplitude of systematics asking
that they do not spoil down the efficiency of the survey in correctly
constraining cosmological parameters. These results are then used
as an input to the analysis of Cropper et al. (2013) where a list of
requirements on the different systematics is presented.

Most of the works quoted above are mainly concerned with quan-
tifying how systematics alter the cosmic shear power spectrum and
hence bias the cosmological parameter determination. Although a
careful control of the different sources can help reducing systemat-
ics, one should also be ready to deal with the possibility that they
could not be completely removed. As such, a model for their power
spectrum should be added to the lensing one in the likelihood anal-
ysis in order to reduce the bias on the cosmological parameters.
Such a model would likely be parametrized by a set of nuisance
parameters which inevitably degrade the precision in the estimate
of the cosmological ones. Finding a compromise between reducing
the bias and improving the precision is a difficult task that is worth
to be investigated. The first steps to be addressed to achieve this
goal are as follows:

(i) find a method to propagate systematics (originating from, e.g.
shape measurement and imperfect PSF modelling) on the finally
observed power spectrum;

(ii) take into account both the survey setup (PSF, filter transmis-
sion curve, magnitude limit) and the properties (size and spectral
energy distribution) of the source galaxies;

(iii) correctly describe the evolution with redshift of the system-
atics power spectrum;

(iv) model the angular scale dependence of the deviations of the
observed shear power spectrum from the lensing one.

The method we present here aims at fulfilling the above four re-
quirements under very general conditions. In order to be as general
as possible, we do not make any assumption about the sources of
systematics, but only assume that their effect on the shear estimate
can be described as a first-order deviation as usually assumed in the
literature (Heymans et al. 2006; Massey et al. 2007). Although our
method is fully general, we explicitly implement it for the Euclid
survey (Laurejis et al. 2011) using realistic assumptions for both
the filter transmission curve and PSF wavelength dependence.

The structure of the paper is as follows. In Section 2, we show how
systematics can be included in the computation of the cosmic shear
power spectrum and describe the multiplicative and additive bias.
A general formalism for computing these two terms is presented in
Section 3, while the particular case of the planned Euclid survey is
considered in Section 4, where we make a step-by-step derivation
of the systematics power spectrum. Its impact on the determination
of the cosmological parameters is investigated in Section 5 through
a Markov Chain Monte Carlo (MCMC) likelihood analysis of mock
data sets for two different systematics power spectra. A summary
of the results and some further considerations are given in the con-
cluding Section 6, while some supplementary material is presented
in Appendices A and B.
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2 O B S E RV E D V E R S U S AC T UA L SH E A R

The matter distribution along the line of a sight to a given source
alters the shape of the image due to the magnifying effect of the
convergence field κ and the change in the ellipticity due to the
shear γ . Since neither the intrinsic size nor the source ellipticity
are known, one can only resort to statistical methods to get an
estimate of both κ and γ . To this end, one first quantifies the shape
of an image introducing the second-order moments (Bartelmann &
Schneider 2001)

Qij (λ) =
∫
I(x, λ)xixj dx1 dx2∫
I(x, λ) dx1 dx2

(i, j = 1, 2), (1)

where (x1, x2) are Cartesian coordinates with origin in the galaxy
centre and I(x, λ) is the 2D energy distribution normalized in such
a way that

I (x) =
∫

I(x, λ)T (λ) dλ, (2)

F =
∫

dx1 dx2

∫
I(x, λ)T (λ) dλ (3)

with I (x) the intensity profile in a waveband with transmission
function T (λ) and F the total flux in that filter.

Rather than directly using second-order moments, it is quite more
common to use the complex ellipticity ε(λ) and the size R(λ) defined
as (see, e.g. M13)

ε(λ) = ε1(λ) + iε2(λ) =
∫
I(r, λ)r2e2iθ r dr dθ∫
I(r, λ)r2r dr dθ

, (4)

R2(λ) =
∫
I(r, λ)r2r dr dθ∫
I(r, λ)r dr dθ

, (5)

with (r, θ ) cylindrical coordinates in the image plane. These quan-
tities can also be expressed in terms of the moments as

ε(λ) = Q11(λ) − Q22(λ) + 2iQ12(λ)

Q11(λ) + Q22(λ)
, (6)

R2(λ) = Q11(λ) + Q22(λ) . (7)

The galaxy shape we observe is the outcome of the lensing effect by
the intervening matter along the line of sight. Moreover, we do not
directly record the image as it is, but after the convolution with the
PSF of the observational setup. In the weak lensing limit (γ , κ �
1), the image shape parameters, after the distortion due to lensing
and the PSF convolution, then read

R2(λ) = R2
gal(λ) + R2

PSF(λ), (8)

R2(λ)ε(λ) = R2
gal(λ)εgal(λ) + R2

PSF(λ)εPSF(λ), (9)

where we used the subscript gal (PSF) to denote quantities re-
ferred to the galaxy after the effect of lensing (the PSF). Since the
image we observe is obtained by collecting photons with different
wavelengths, we do not actually measure the wavelength-dependent
ellipticity and size, but rather their values after integration over the
filter waveband. However, it is easy to show that the above relations
equally hold for the integrated quantities so that, hereafter, we will
drop the λ-dependence and use (ε, R) to denote the wavelength
integrated ellipticity and size.

Equations (8)–(9) can be combined into a single relation for the
reduced shear g = γ /(1 − κ). To this end, it is convenient to
introduce the following auxiliary quantity

ξ = R2ε = Q11 − Q22 + 2iQ12 (10)

and note that (see Appendix A) the transformation rules for (ξ , ω)
under the effect of shear and PSF convolution read

ξ = 2 gω0 + ξ0 + ξPSF (11)

ω = ω0 + ωPSF, (12)

where quantities with the 0 subscript refer to the galaxy before
the effect of lensing and PSF convolution and hereafter we define
ω = R2. It is then only a matter of algebra to get

2 g = ξ − ξPSF − ξ0

ω − ωPSF
. (13)

Equation (13) makes a step further towards the estimate of the re-
duced shear g, but cannot still be used because of the term ξ 0 which
cannot be observationally measured. Moreover, since shape mea-
surement methods are not perfect, the observed values (ξobs, ωobs)
could also differ from the actual ones, (ξ , ω). On the other hand, as
we will show later, in order to compute the PSF shape parameters,
we need to know not only the PSF intensity profile, but also the
spectral energy distribution (SED) of the galaxy. Should this latter
not be exactly known, both (ξPSF, ωPSF) must be replaced by some
estimate (ξ est, ωest) which is obtained by integrating the PSF inten-
sity profile over λ with a different SED (for instance, the SED of
the nearby stars used to infer the PSF profile). Neglecting the intrin-
sic ellipticity ξ 0 (since averages to zero) and explicitly taking into
account the difference between the true and estimated PSF shape
parameters, we then obtain the following reduced shear estimator:

2gobs = ξobs − ξest

ωobs − ωest
. (14)

In order to estimate the difference between the actual reduced shear
g and the estimated one gobs, we will first assume that the following
linear relations hold:{

ξobs = (1 + mξ )ξ + cξ

ωobs = (1 + mω)ω + cω

, (15)

{
ξest = (1 + μξ )ξ + γξ

ωest = (1 + μω)ω + γω

. (16)

Although equations (15) and (16) extend only to first order, they are
actually well motivated. Indeed, all the shape measurement codes
(see, e.g. the list in Bridle et al. 2010) are designed in such a way to
reduce as much as possible the difference between (ξobs, ωobs) and
(ξ , ω) so that a linear relation is a good approximation. Following
the literature, we will refer to (mξ , mω) and (cξ , cω) as the shape
measurement multiplicative and additive bias, respectively. On the
other hand, we will show later that the linear parametrization given
by equation (16) also provides an excellent approximation for the
relation among the guessed and actual PSF shape parameters for
most cases of practical interest.

Inserting equations (15) and (16) into equation (14), using the
weak lensing limit of equations (A2)–(A3) and averaging over a
large sample of galaxies, we finally get

gobs = (1 + m)g + c (17)
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with

m =
〈

(1 + mξ )ω0

(1 + mω)ω0 + (mω − μω)ωPSF + (cω − γω)
− 1

〉
(18)

c =
〈

1

2

(1 + mξ )ξ0 + (mξ − μξ )ξPSF + (cξ − γξ )

(1 + mω)ω0 + (mω − μω)ωPSF + (cω − γω)

〉
, (19)

which we will refer to as the multiplicative and additive bias, re-
spectively. It is worth stressing that (m, c) are obtained by averaging
over the properties of a sample of galaxies centred on the position
in the sky where the shear has to be estimated. Since the values of
(m, c) for each individual system depend on the galaxy properties
(structural parameters and SED), equations (18) and (19) actually
provides only the first-order description of the distribution of (m,
c) values. One should, however, consider also the width of the
distribution since the wide range in galaxy properties can lead to
a non-negligible spread of the individual values around the mean
ones given by equations (18)–(19) above.

2.1 Sources of systematics and bias derivation

With the near to come advent of future large surveys able to strongly
reduce statistical errors, a careful analysis and quantification of sys-
tematics has become one of the top priorities in the study of cosmic
shear as a cosmological probe. The method we are presenting here
aims at offering a further insight into this hot topic. Before contin-
uing in its description, it is worth to preliminarily wonder which
kind of systematics it holds for.

In the following, we will use equations (18)–(19) to estimate
the multiplicative and additive bias in the shear estimate and hence
infer how the amplitude of the bias scales with the redshift and the
source galaxies properties. Equations (18)–(19) rely on two main
ingredients, namely:

(i) the shear estimator (14) which has been obtained starting from
how shear and PSF convolution change the unweighted moments
of the observed galaxy;

(ii) the use of equations (15) and (16) to model the departures of
the estimated moments from the actual ones.

We address both points in the following paragraphs.

2.1.1 Weighted versus unweighted moments

What a galaxy looks like on an image is always the result of the
convolution with the instrument PSF and the addition of noise. As
a consequence, even after image deconvolution, the unweighted
moments of the galaxy are difficult to measure because of the noise
mainly affecting the outer regions blurring in the sky background.
To circumvent this problem, one typically measure the weighted
moments defined as

Qw
ij =

∫
I(x)W(x)xixj dx1 dx2∫
I(x)W(x) dx1 dx2

, (20)

where, without loss of generality, we have assumed the weight
function W(x) does not depend on the wavelength. Starting from
equation (20), it is immediate to define weighted counterparts of (ξ ,
ω), but it is possible to show that the relation among the weighted
shape parameters (ξw , ωw) and the galaxy ones (ξ 0, ω0) after PSF
convolution and shear is no more given by equations (11)–(12). As
a result, one cannot simply replace the unweighted (ξ , ω) with the
weighted ones (ξw , ωw) in the shear estimator (14) to then obtain
equations (18)–(19) for the multiplicative and additive bias.

Actually, a possible way to still rely on the above expressions
for (m, b) can be obtained if one limits his attention to galaxies
with high S/N. In such a case, W(x) will give approximately equal
weights to the full galaxy so that weighted and unweighted moments
will be only slightly different. Alternatively, if the galaxy surface
brightness is concentrated enough, i.e. Reff/Rw � 1 (with Reff and
Rw the galaxy effective radius and the characteristic size of the
weight function), the main contributions to both Qij and Qw

ij will
come from the inner noise free regions so that again the difference
between weighted and unweighted moments is marginal. In both
cases, we can safely assume that{

ξ = (1 + mw
ξ )ξw + cw

ξ

ω = (1 + mw
ω )ωw + cw

ω

(21)

so that, inserting these relations into equation (15), we again get
equations (18)–(19) provided we redefine (mξ , cξ , mω, cω).

How large should the S/N ratio or how small Reff/Rw must be in
order equations (21) hold depend on the galaxy properties and the
image noise so that we cannot quantify it a priori. We will therefore
still rely on unweighted moments, but we stress that the results
should qualitatively hold also if unweighted moments are used at
least for systems with high S/N and/or compact surface brightness
profiles.

2.1.2 Sources of systematics

Systematics can come from different sources and impact the com-
parison between theory and observations in cosmic shear tomogra-
phy differently depending on what is originating them. It is therefore
not surprising that the procedure we have started to set up here (and
will continue to develop in the rest of the paper) do not describe all
kind of systematics. We briefly sketch here the different sources of
systematics highlighting the cases falling into our analysis.

A first set of systematics may be related, generally speaking, to
theory failures, that is to say we are interpreting the data within a
theoretical framework where some ingredients are systematically
missing. A typical example is neglecting the IA correction (see, e.g.
Hirata & Seljak 2004; Joachimi & Bridle 2010; Kirk et al. 2011
and references therein). In this case, the observed power spectrum
should be compared to the sum of the cosmic shear one and two
further terms coming from IA and from correlation between the
shear and the intrinsic ellipticity of the galaxies. Another example
is represented by errors in the photometric redshift which makes
the effective redshift distribution of the sources in a given bin dif-
ferent from the actual one (Ma, Hu & Huterer 2006; Kitching et al.
2008a). In both cases, the systematics may be taken into account by
adjusting the theoretical estimate, but do not directly alter the shear
estimate. As such, they do not fit into our scheme and multiplica-
tive and additive bias due to these terms cannot be estimated from
equations (18)–(19).

A second set of systematics are related to different effects which
makes the measured shape parameters to differ from the actual ones.
As an example, we may quote the colour gradient of galaxies which
causes the effective PSF to depend on the galaxy SED (Cypriano
et al. 2010; Voigt et al. 2012; Semboloni et al. 2013). It is worth
noting that, as shown in Semboloni et al. (2013), colour gradients
do not introduce any bias on the unweighted moments so that,
strictly speaking, we should include them in our analysis by using
equation (15) with mξ = cξ = mω = cω = 0. Actually, one would
measure weighted moments which are, on the contrary, biased when
neglecting colour gradients (with cξ = cω = 0 and mξ ∼ mω ∼ 10−3
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depending on the galaxy structural parameters). As far as a linear
relation between (ξ , ω) and (ξw , ωw) holds, we can roughly include
the systematics from colour gradient in our analysis assuming only
a multiplicative bias and no additive one.

As a further case, we can consider model and noise bias. The
first effect comes from discrepancies between the assumed galaxy
model (e.g. a Sérsic profile or the sum of a de Vaucoculeurs bulge
and exponential disc) and the actual one and causes a bias in the
measured ellipticity even if the image is noise free Bernstein (2010);
Voigt et al. (2012). In contrast, noise bias (Melchior & Viola 2012;
Refregier et al. 2012; Kacprzak et al. 2012) is due to the non-
linearity induced by noise when passing from the pixel space to the
parameters space under the assumption that the chosen model is
a perfect representation of the input galaxy. In realistic situations,
both effects are present thus originating a further bias term due to the
interactions between them (Kacprzak et al. 2013). Analytical for-
mulae for the bias on the cosmological parameters due to noise bias
only or noise + model bias have been recently derived in Refregier
et al. (2012) and Kacprzak et al. (2013), respectively. However, we
are here interested in understanding whether these effects can be
parametrized as described by equation (15). Although a full deriva-
tion is not available, we nevertheless note that Viola, Kitching &
Joachimi (2013) have recently derived the probability distributions
of ellipticity under the effect of noise bias. It indeed turns out that
the mean ellipticity deviates from the true mean value by an amount
depending on the true ellipticity itself. The multiplicative bias turns
out to be approximately constant with ε unless the S/N is smaller
than few units. We can therefore argue that noise bias too can be
parametrized as in equation (15).

Finally, a third set of systematics may be related to incorrect PSF
modelling. In a moment-based approach as the one we are consid-
ering here, errors in the PSF description makes the estimated PSF
moments to differ from the actual ones so that they nicely fit into
the scheme described by equation (16) provided the reconstructed
PSF is not dramatically different from the input one. Two sources of
systematics may be considered here. First, the PSF model can be too
simple (e.g. a Gaussian or Moffat PSF) neglecting deviations from
axisymmetry or broad tails. Such a case has been investigated in
Paulin-Henriksson et al. (2008) and Paulin-Henriksson, Refregier
& Amara (2009) showing that this effect introduces a bias on the
measured galaxy ellipticity which can be modelled as a linear func-
tion of the intrinsic and PSF ellipticities with coefficients depending
on the galaxy and PSF size. It is only a matter of algebra to show
that both contributions can indeed be rearranged so that equations
(15) and (16) indeed hold. As a second case, we can consider errors
in the PSF due to interpolation. Indeed, a way to model a spatially
varying PSF relies on measuring the PSF of stars on the image and
then interpolate over the image plane. Depending on the number of
stars, such an interpolation may fail in reproducing the details of the
PSF so that a bias is introduced. Both the amplitude and dependence
on the input PSF properties will likely depend on the details of the
instrument setup (determining the spatial variation of the PSF) and
the number of stars in the image (which is also a function of the
field to be observed and the magnitude cuts) so that we cannot
anticipate whether a linear approximation as in equation (16) still
hold. We nevertheless note that the PSF variation for future surveys
will likely be well characterized based on detailed studies of the
optical design so that we can optimistically assume that the residual
uncertainties will be so small that our first order approximation is
realistic enough.

Summarizing, we can therefore conclude that equations (15) and
(16) can faithfully describe a large range of systematics related to

both errors in shape measurement and PSF reconstruction. As a
consequence, the method we are going to develop for the estimate
of the systematics power spectrum based on equations (18) and (19)
for the multiplicative and additive bias can be used to reliably take
into account a large range of realistic systematics.

3 T H E S H E A R POW E R S P E C T RU M

Although equation (17) has been obtained assuming a particular
shear estimator, this expression is actually quite general. Indeed,
whatever is the estimator used, the observed shear will typically
differ from its actual value because of measurement errors and
uncontrolled systematics. Should the reconstruction method be ef-
ficient enough, one can postulate a simple linear relation between
the true and observed values so that we set (Heymans et al. 2006;
Massey et al. 2007)

γobs(θ, z) = [1 + M(z)]γlens(θ, z) + γadd(θ, z) (22)

for the observed shear of a galaxy at redshift z and with position
on the sky given by θ = (θ1, θ2). Equation (22) tells us that the
observed shear is related to the one due to the lensing effect, denoted
γlens(θ, z), through the multiplicative bias M(z) and the additive
bias γadd(θ, z). Note that we are here assuming that the multiplicative
bias does not depend on the position on the sky which is a quite
good approximation considering that m(z) � 1. Although equations
(18)–(19) explicitly refers to the reduced shear g, in the weak lensing
limit, κ � 1 so that g � γ with great care. We can therefore set
M = m and γadd = c and use the above relations to get an estimate
of the multiplicative and additive bias.

In order to constrain cosmological parameters, one is actually not
interested to the shear value for single galaxies and how it changes
with position and redshift, but rather to its power spectrum. We
therefore first define the real space correlation functions:

ξ±(φ, z, z′) = 〈γ1(θ, z)γ1(θ + φ, z′)〉 ± 〈γ2(θ, z)γ2(θ + φ, z′)〉
(23)

and then compute the power spectrum as

C(�, z, z′) =
∫

φdφ
[
ξ+(φ, z, z′)J0(�φ) − ξ−(φ, z, z′)J4(�φ)

]
,

(24)

where Jn(x) is the Bessel function of the order of n. Using equation
(22) and assuming that the additive systematic term is uncorrelated
with the signal, one straightforwardly gets

〈γi(θ, z)γi(θ + φ, z′)〉 = [1 + m(z) + m(z′) + m(z)m(z′)]

× 〈γi,lens(θ, z)γi,lens(θ + φ, z′)〉
+ 〈γi,add(θ, z)γi,add(θ + φ, z′)〉, (25)

so that it is only a matter of trivial algebra to substitute this relation
into the definition (23) and then the result into equation (24) to
finally obtain:

Ĉij (�) = (1 + Mij )Cij (�) + Aij (�), (26)

where Ĉij (�) is the observed power spectrum between two bins (i,
j) centred on (zi, zj), respectively, Cij (�) the lensing contribution
(evaluated as described in, e.g. Hu 1999), Mij = m(zi) + m(zj ) +
m(zi)m(zj ) the correction due to the multiplicative bias, and Aij (�)
the term originating from the additive systematics. In order to com-
pute the observed power spectrum in equation (26), we need a way
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to estimate both the multiplicative bias Mij and the additive bias
power spectrum Aij (�) which we will do in the next section.

It is worth stressing that equation (26) do not depend on the
use of unweighted moments, but only on equation (22) where the
problem is how to correctly estimate the multiplicative M(z) and
additive A(z) biases. As stated above, we have here set M = m

and A = c with (m, c) inferred from equations (18)–(19) which
have been obtained using unweighted moments. However, as we
have argued in Section 2.1.1, as long as equations (21) hold, we can
still rely on (18) (19) provided the different terms entering them
are suitably redefined. From a practical point of view, imposing the
validity of equations (21) may reduce the sample of galaxies thus
increasing the errors on the final shear power spectrum. However,
this by no way alters the validity of equation (26). In order to
avoid the uncertainties in the choice of the weight function and
its parameters, we will hereafter assume that one can confidently
estimate unweighted moments and keep on setting (M,A) = (m, c)
estimating these latter quantities from equations (18)–(19) without
any redefinition of the shape and PSF bias parameters.

As a final remark, we warn the reader that, here, we have not
taken into account corrections to the theoretical power spectrum
due to the IA of the galaxies. While this can be done (see, e.g.
Hirata & Seljak 2004; Kirk et al. 2011), one should introduce fur-
ther unknown parameters thus weakening the constraints on the cos-
mological parameters and increasing possible degeneracies among
them. Since we are interested in checking the impact of neglecting
systematics when forecasting the accuracy on model parameters,
we prefer to not include the IA terms in order to consider the most
favourable case.

4 THE SY STEMATICS POWER SPECTRU M

Let us now consider how to estimate the (m, c) in a given position on
the sky. Equations (18)–(19) show that this is only possible if one
preliminary knows the set of quantities which we briefly discuss
below.

4.1 Shear measurement bias: (mξ , cξ , mω, γ ω)

These quantities are related to the measurement method adopted and
the characteristics of the images one is dealing with. Ideally, one
should therefore use end-to-end simulations to take into account all
the features of both the image analysis pipeline and the ellipticity
determination software. This is the underlying philosophy inspiring
the GREAT challenges (Bridle et al. 2010; Kitching et al. 2012) which
have, however, not yet included all the realistic noise properties so
that the results should be taken with some care.

A correct breakdown of the different source terms contributing
to the shear measurement bias (Cropper et al. 2013) can, however,
help in finding out how the multiplicative and additive bias should
scale with the galaxy size. According to M13, three terms mainly
contribute to the shear measurement systematics, namely imperfect
PSF modelling, imperfect correction for detector effects and shape
measurement bias. Using a Taylor expansion based on moments,
they get5 M = m2R

−2
gal + m4R

−4
gal and A = aR−4

gal where (M,A)
actually refer to the errors in estimate of ε and (m2, m4, a) depend on
the errors on the PSF shape parameters. A different scaling with the

5 Actually, the results in M13 refer to RPSF/Rgal averaged over many galax-
ies, but we have here simplified their formulae to highlight how the shear
measurement bias scales with the galaxy size.

galaxy size R has, however, been found by Miller et al. (2013) who,
based on using the LENSFIT code (Miller et al. 2007; Kitching et al.
2008b) on simulated images reproducing the characteristics of the
Canada–France–Hawaii Lens Survey (CFHTLenS) (Heymans et al.
2012), have found a negligible additive bias and a multiplicative
bias scaling as m ∝ exp (−αRlfν)/log ν, with ν the S/N ratio and
Rlf a typical galaxy size quantity. A further contribution to the
shear measurement bias can also come from the so-called noise
bias (Melchior & Viola 2012) which introduces a deviation of the
measured moments from the actual one which correlates with the
galaxy ellipticity.

Although some significant steps have been done towards under-
standing how the shear measurement bias can be modelled, one do
expect that the detailed dependence of noise will change according
to which shape measurement method one is using with moment-
based methods likely giving different scalings than fitting-based
algorithms. We can nevertheless note that, notwithstanding the de-
tails of the shape measurement process, the higher is the S/N ratio
of the galaxy and the larger is its size compared to the PSF one, the
closer will the inferred shear be to the intrinsic one. We can therefore
qualitatively model the shear measurement bias parameters as

y = ys

(
R2

0

R2
PSF

)−αy

ν−βy , (27)

where y stands for one of the quantities (mξ , cξ , mω, cω), ys is scaling
quantity and (αy, βy) are positive numbers fixing the slope of the
dependence on the size and S/N ratio. Based on the results of M13,
we could set αy = 2(4) for the multiplicative (additive) bias, while a
reasonable choice for the S/N scaling is βy = −2. As we will show
later, we have an estimate of the galaxy size R2

0 and the PSF one RPSF

so that the first factor in equation (27) can be estimated. In contrast,
image simulations taking into account both the galaxy properties,
the sky background and the instrument noise are needed in order
to guess the S/N value. A possible way out could be replacing S/N
with the galaxy apparent magnitude, but again how the S/N scales
with this quantity cannot be a priori guessed. In order to avoid these
uncertainties, we set βy = 0. Note that, since βy is positive, forcing
βy = 0 causes an overestimate of the shape measurement parameters
y. For instance, the errors in the determination of the shape for two
galaxies having the same R0/RPSF value, but different luminosities
will be the same, while it is expected that a smaller error occurs for
the brighter one. Moreover, compared to the above quoted scaling
formulae, equation (27) typically gives larger biases (unless αy is
unrealistically large) for a given galaxy size so that we expect that
our results would overestimate the impact of bias thus making us err
on the conservative side. As a further remark, we note that, although
we have made a particular choice for the scaling of y with the size of
the galaxy, we are nevertheless left with 12 parameters6 to set. The
vast number of possible combinations will allow us the possibility
to mimic a large range of shape measurement systematics.

Equation (27) is, by definition, only an approximation of how the
bias depends on the galaxy properties. As such, it will be affected
by a given scatter σ y = fy × y (with fy the fractional uncertainty)
thus forcing us to introduce six more parameters. For simplicity, we
assume that the actual y value for a galaxy with given (ω0, S/N)
values may be extracted from a normal distribution centred on y and

6 Since ξ is a complex number, (mξ , cξ ) are actually two-component quan-
tities thus leading to 2 × 2 = 4 quantities to be fixed. Each of them is
set assigning the three parameters (ys, αs, fy) thus leading to a total of
2 × 2 × 3 = 12 parameters.
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with variance σ 2
y . Although simplified, such an approach allows us

to realistically estimate the multiplicative and additive bias due to
the imperfect recovery of the shear.

4.2 PSF bias: (μξ , γ ξ , μω, γ ω)

In order to understand why the estimated PSF (ξ est, ωest) can be
different from the actual ones (ξPSF, ωPSF), it is worth first remem-
bering that these latter are defined as

ξPSF =
∫

ξPSF(λ)S(λ)T (λ) dλ, (28)

ωPSF =
∫

ωPSF(λ)S(λ)T (λ) dλ, (29)

where the λ-dependent shape parameters only depend on the PSF
intensity profile and wavelength dependence, while S(λ) and T (λ)
are the galaxy-dependent SED and the filter transmission curve. It
is worth noting that such a coupling between the PSF and galaxy
SED is a consequence of the large width of the Euclid filter. Indeed,
should the filter be narrow, one could neglect the λ dependence
of the PSF and hence avoid the integration. Such an effect was
first quantified in Cypriano et al. (2010), but here we make a step
further explicitly propagating it to the systematics power spectrum
considering the actual galaxy SEDs.

The presence of the S(λ) term in equations (28)–(29) tells us that
errors in the estimate of the PSF shape parameters can also come
from an imperfect determination of the galaxy SED. Actually, one
can assume that the intensity profile and wavelength dependence
of the PSF are very well known so that the main error on the PSF
indeed comes from those on the SED. In order to simulate this ef-
fect, we will consider two kinds of errors. First, we consider the
optimistic case that the shape of the SED has been well determined,
while a possible redshift mismatch is left with �z randomly ex-
tracted from a Gaussian distribution centred on 0.002(1 + z) and
variance 0.05(1 + z) and z the actual redshift. As a pessimistic
case, we assume that also the shape of the SED has been wrongly
estimated. To mimic such errors, we randomly shift by a quantity
of the order of 10 per cent the age of both the bulge and disc so that
the colours are approximately the same as expected from a typical
photo-z code. We denote with (ξ est, ωest) the PSF shape parameters
estimated with the wrong SED and fit equations (16) for the rela-
tion among true and guessed PSF values. It turns out that, within a
very good approximation, we can set μξ = μω = 0, while the addi-
tive terms (γ ξ , γ ω) depend on the redshift bin and the SED errors.
We have, moreover, checked that the optimistic approach leads to
(γ ξ , γ ω) values which are orders of magnitude smaller than the
pessimistic model. We therefore consider only this second option in
the following in order to be safely conservative. Finally, to estimate
the wavelength-dependent PSF shape parameters, we have relied
on the simulated PSF model worked out by the Euclid consortium
(J. Amiaux, private communication) on the basis of the instrumental
setup (telescope and CCD camera) which will be actually used on-
board the satellite. We can therefore be confident that our treatment
of the PSF moments is fully realistic.

4.3 Multiplicative and additive bias

The two previous paragraphs have demonstrated that the multiplica-
tive and additive bias (m, c) depend on the properties of the galaxy
used to infer the shear estimate. In particular, the size and the lumi-
nosity (through its impact on the S/N ratio) determine (mξ , cξ , mω,

Table 1. Redshift binning used in our analysis.
The redshift range of every bin is chosen in such
a way that each bin contains 10 per cent of the
galaxies observed by the survey.

bin z bin z

1 0−0.496 6 1.031−1.163
2 0.496−0.654 7 1.163−1.311
3 0.654−0.784 8 1.311−1.502
4 0.784−0.907 9 1.502−1.782
5 0.907−1.031 10 1.782−5.000

cω), while (μξ , γ ξ , μω, γ ω) are set by the galaxy SED. We have
therefore generated a catalogue7 of two components (bulge + disc)
galaxies which can be used as input for the estimate of (m, c) ac-
cording to the procedure sketched below.

(i) Pick up a galaxy from the catalogue and estimate the intrinsic
shape parameters (ξ 0, ω0) from the bulge + disc intensity profile
and PSF ones (ξPSF, ωPSF) according to its composite SED.

(ii) Set the shear measurement parameters (ys, αy, fy) and use
equation (27) and the ω0 = R2

0 value to estimate both the mean and
the variance of (mξ , cξ , mω, cω).

(iii) Set (mξ , cξ , mω, cω)gal for the given galaxy by randomly
sampling from a Gaussian distribution with mean and variance
computed above.

(iv) Set the PSF bias parameters (μξ , γ ξ , μω, γ ω) randomly
sampling from a Gaussian distribution with mean and variance
estimated as described in Section 4.2.

(v) Repeat steps (i)–(iv) for N galaxies and finally estimate (m,
c) averaging over the sample values.

The number ofN of galaxies should ideally be very large in order to
accurately trace the distribution of the galaxy properties. However,
in a realistic application, N is limited by the number density of
the survey and the need to avoid averaging over too large areas in
order to not smooth a spatially varying shear signal. For a survey
with number density ng, one has to average over an area of radius
ϑ � (N /π ng)1/2 so that the power spectrum cannot be estimated
for scales larger than �max = π/ϑ . If we set ng = 30 gal arcmin−2 and
N = 300, we get ϑ ∼ 1.8 arcmin leading to �max � 6000. Actually,
since we are interested in tomography, we bin galaxies in redshift
according to the binning reported in Table 1 so that ng will be smaller
than the quoted value in the highest redshift bins. We therefore set
N = 100 so that �max � 1900 n1/2

g which is still reassuringly large
also for unrealistically small ng values in the highest z bins.

As a final caveat, we warn the reader that we have relied up
to now on unweighted moments to derive equations (18)–(19).
Actually, unweighted moments have formally infinite noise (hence
S/N = 0) requiring to use weighted moments. This introduces a fur-
ther bias due to the galaxy colour gradients (M13, Semboloni et al.
2013) which is not explicitly accounted for in our multiplicative
and additive bias estimate. However, Semboloni et al. (2013) have
shown that the colour gradient bias can be corrected for leaving a
residual effect that can be modelled as a linear perturbation of the
observed shape parameters and hence still as in our equations (15).
We therefore argue that equations (18)–(19) can still be considered
approximately valid after calibrating the colour gradient bias.

7 The catalogue build up and how each galaxy property have been set are
briefly described in Appendix B, while a forthcoming paper will present
further details and demonstrate its reliability.
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4.4 From the real space to the power spectrum

The above procedure allows us to set the values of (m, c) for the
shear estimated in a given position θ on the sky. In order to compute
the correlation functions ξ±(φ, z, z′), we now need to know how the
multiplicative and additive bias change as function of the position
of the galaxy on the sky. Actually, this is far to be trivial. First,
we note that most of the systematics may come from instrument
related problems (e.g. charge transfer inefficiency, CCD defects,
incorrect flat-field correction) or the shape measurement process
(which typically depends on the galaxy properties). As such, they
are not dependent on θ . In contrast, one can also think of other more
subtle sources of systematics errors which may change on the plane
of the sky (e.g. inaccuracies of the photometry calibration depending
on the line of sight to the galaxy crossing a region affected by the
Milky Way dust or incorrect subtraction of the light coming from a
star close in projection to the galaxy of interest). Modelling these
effects is hardly possible (if not at all) although some steps have
been done in the context of the GREAT10 challenge (Kitching et al.
2012).

In order to parametrize our ignorance, we may phenomenologi-
cally proceed setting8

cν(θ, z) = 〈cν〉(z)Fν(θ, z),

where we have used the notation cν(z) to denote the ν component
of the additive bias c for galaxies in the redshift bin centred on z

and 〈cν〉(z) is estimated as described in Section 4.3. One can then
naively obtain the following expression for the real space correlation
functions in bins (i, j):

ξ
(ij )
± (φ) = 〈c1〉(zi)〈c1〉(zj )

∫
F1(θ, zi)F1(θ + φ, zj ) dθ

± 〈c2〉(zi)〈c2〉(zj )
∫

F2(θ, zi)F2(θ + φ, zj ) dθ .

Let us now assume that the systematics errors are isotropic so that
they only depend on |θ |. Using polar coordinates in the integrals,
we finally get

ξ
(ij )
± (η)/(2πϑ2

s ) = 〈c1〉(zi)〈c1〉(zj )F1(η, zi, zj )

± 〈c2〉(zi)〈c2〉(zj )F2(η, zi, zj ) (30)

with η = φ/ϑ s, ϑ s a characteristic scale of the additive systematics
and we have introduced the unknown functions

Fν(η, zi, zj ) =
∫

Fν(ζ, zi)Fν(ζ + η, zj )ζ dζ (31)

with ζ = |θ |/ϑs = (θ2
1 + θ2

2 )1/2/ϑs . The power spectrumAij (�) can
then be computed by inserting equations (30)–(31) into equation
(24) provided the functions Fν(η, zi, zj ) have been given.

To this end, we use an NF -order multi-Gaussian expansion
setting

Fν(η, zi) =
NF∑
k=1

wνk(zi) exp

[
−1

2

(
η − ηk

σk

)2
]
, (32)

where the weights wνk(zi) are normalized so that

NF∑
k=1

wνk(zi) exp

[
−1

2

(
ηk

σk

)2
]

= 1, (33)

8 Hereafter, we will only consider the additive bias having assumed that the
multiplicative one is scale independent.

and we force (ηk, σ k) to be smaller than unity so that ξ
(ij )
± will have

a starting value set by the amplitudes defined above and then are
smoothly truncated for φ 
 ϑ s. Although equation (32) has been
introduced as useful mathematical tool, it can nevertheless be qual-
itatively motivated by considering the case of different sources of
systematics, each one characterized by an amplitude 〈cν〉(zi) and a
scale ϑ s. Without loss of generality, we can scale all the amplitudes
with respect to a common value which then plays the role of the
amplitude entering equation (30). Similarly, the different scales can
be expressed as fractions of the largest one thus originating the σ k

values in our multi-Gaussian expansion. The only strong assump-
tion is the Gaussian profile for the correlation functions of each
component of the full systematics budget. However, the combina-
tion of NF Gaussian functions can mimic quite well a large class of
functions if NF 
 1. Equation (32) therefore definitely allows us
to explore a wide range of possible behaviours for the systematics
correlation functions and hence different power spectrum profiles.

A key role in determining Aij (�) is here played by the scale
parameter ϑ s. Indeed, since the correlation function fades off for
φ > ϑ s, the power spectrum will be negligibly small for � ≤ π/ϑs .
Although such a feature of the power spectrum is a consequence of
the multi-Gaussian expansion, it is also motivated by the physical
consideration that it is difficult to think of a source of systematic
errors which correlates galaxies far away from each other on the
plane of the sky. In contrast, should the systematics mainly come
from something related to the image scale, we should put ϑ s ∼
1 deg, this one being the maximum distance two galaxies can have
if they are in the same image.

The procedure sketched in Sections 4.3 and 4.4 allows us to in-
clude in the power spectrum of the additive systematics all the dif-
ferent terms contributing to the final additive bias and to parametrize
our poor knowledge of its scaling with the position through a multi-
Gaussian expansion. Fig. 1 shows Aij (�) for two different models,
referred to in the following as SysA and SysB, obtained setting
ϑ s = 0.1 and 0.7 deg, respectively, and NF = 10 components in the
multi-Gaussian expansion with randomly generated values of (ηk,
σ k, wνk). The amplitude of the systematics depends on the parame-
ters described in Section 4.1 which we set by trial and errors in such
a way that the rms percentage deviation of the total power spectrum
from the input lensing one is smaller than 0.1(1) per cent, respec-
tively. For sake of shortness, we only plot the i = j = 1 case, i.e.,
we consider only the autocorrelation for the lowest redshift bin. As
a general feature, Aij (�) can be roughly approximated as a power
law or a logarithmic function for � < �s = π/ϑs , while somewhat
flattens and possibly starts oscillating for larger �. If we compare
to a typical lensing power spectrum, we find that, for reasonable
values of the systematics parameters, Aij (�) has a very small im-
pact for � < �s, while it may be comparable to Cij (�) in the high �

regime. Such a behaviour could suggest that the systematics have a
very negligible impact on the cosmological parameters since they
induce a displacement of the observed power spectrum from the
actual one only on a quite limited � range. However, we warn the
reader that the answer to this question depends on the size of the sta-
tistical uncertainties and on how the systematics scale with redshift
so that a full analysis is required.

4.5 Comparison to previous works

As already hinted in the introduction, the study of the impact of
systematics on cosmic shear tomography and its role on the de-
termination of cosmological parameters is not new. It is therefore
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Figure 1. Power spectrum of the additive systematics for the bin combination (i, j) = (1, 1) for the SysA (left) and SysB (right) models with ϑs = 0.1 and
0.7 deg, respectively. Red, blue and green curves refer to our, Amara & Refregier (2008) and Amara et al. (2010) models, respectively. Note that the wiggles
in the right-hand panel derive from the choice of using a logarithmic scale on the y-axis, although A11(�) is negative for the plotted model in some � ranges.

worth comparing our method to estimate the systematics power
spectrum to previous literature results, in order to highlight both
similarities and differences.

Although previous attempts were already made before (see the
summary in the introduction), AR08 first presented a parametrized
model for the power spectrum of additive systematics, namely

A11(�) = AAR08
δ log (�/�0) + 1

�(� + 1)
, (34)

where we limit our attention to the i = j = 1 for definiteness and we
arbitrarily set δ = 0.4 in the following. A double power-law function
has been proposed in Amara, Refregier & Paulin-Henriksson (2010)
setting:

A11(�) = AA10

(
1 + �

�0

)β2−β1
(

�

�0

)β1

, (35)

with (β1, β2) = (−1.5, −3.0) as fiducial values. In order to make
a meaningful comparison with our power spectrum, we set the two
parameters (�0,Ak) (with k = AR08, A10) so that all the models
match at �s = π/ϑs and have the same value for the variance of the
power spectrum, defined as (AR08)

σ 2
sys = 1

2π

∫ �max

�min

|A11(�)|�(� + 1) d ln �, (36)

with (�min, �max) = (10, 10 000). Note that this quantity is first
estimated from our model so that its value depends on the shear
measurement and PSF bias parameters.

Setting their parameters as described above, we plot both the
AR08 and AR10 models in Fig. 1 to compare them with our own. It
is clear that our model is comparable to the AR08 and Amara et al.
(2010) ones in the �>�s regime, while it predicts a definitely smaller
power spectrum for smaller � values. This is a consequence of the
multi-Gaussian expansion which introduces a smooth truncation
of the systematics on scales larger than ϑ s. Since such a cutoff is
physically motivated, we are confident that the mismatch with the
AR08 and Amara et al. (2010) models is not a worrisome problem,
but rather a nice improvement.

Actually, it is worth stressing that our aim is not to reproduce
any given analytical formula. In contrast, we model the additive
systematics power spectrum Aij (�) in a non-parametric way as the
product of a redshift-dependent amplitude 〈c(zi)〉〈c(zj)〉, computed
following the steps detailed in Section 4.3, and a non-parametric
scale-dependent profile derived starting from the multi-Gaussian
expansion described before. Indeed, a significant difference with

the works of both AR08 and AR10 is represented by how we set
the parameters determining the systematics power spectrum. While
(AAR08, �0, δ) for the AR08 and (AAR10, �0, β1, β2) for the AR10
models are set by hand, the amplitude of our A11(�) profile is the
result of propagating the errors on shape and PSF parameters taking
into account the galaxy properties. Although we do not show it here,
our method also allows us to infer the redshift dependence of the
multiplicative bias M(z) as a consequence of the evolution of the
relevant galaxy properties (such as size and SED). In contrast, both
in AR08 and AR10, parametrized analytical expressions for M(z)
are postulated so that the estimate of the bias on the cosmologi-
cal parameters depend on the (somewhat arbitrary) assumptions on
the model parameters. Such degree of arbitrariness is absent in our
approach since the shape and PSF bias parameters can be prelim-
inary estimated based on, e.g. simulations testing the accuracy of
the shape measurement methods as for the GREAT challenges (Bridle
et al. 2010; Kitching et al. 2012), while the redshift evolution of
galaxy properties may be inferred from photometric and spectro-
scopic surveys.

A different approach has been recently taken by M13. Rather than
assuming any analytical model for the additive systematics power
spectrum, they setAij (�) = σc(�, zi)σc(�, zj ) and then draw the val-
ues of σ c(�, zi) in each (�, z) bin from Gaussian PDF centred on the
null value and a redshift-independent width. A boxcar smoothing
in both (�, z) bins is then performed to reflect the expected continu-
ous form of systematics and to avoid underestimating their impact
because of uncorrelated power from one bin to another. Although
this approach correctly takes into account our ignorance of the scale
dependence of systematics, it is nevertheless still affected by a large
degree of arbitrariness and risks to lead Aij (�) profile which are un-
realistic. First, we note that the amplitude of the systematics turns
out to depend on the assumed width of the Gaussian PDF which is,
moreover, taken constant with z. In contrast, in our approach, this
amplitude is determined by how the different systematics propagate
depending on the evolution of galaxy properties. Secondly, although
the smoothing alleviates this problem, the values of Aij (�) from one
(�, z) bin to another are uncorrelated, while we know that they are
determined by the same (unknown) function Fν(η, z) describing the
scale dependence of the additive bias. Put in other words, it is possi-
ble that no Fν(η, z) exists able to give the Aij (�) model constructed
following the form filling (Kitching et al. 2009) approach used by
M13. Should this be the case, such a model should be excluded. This
risk is, on the contrary, avoided by our method where the system-
atics power spectrum profile is self-consistently evaluated starting
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from a single function. Note that the multi-Gaussian expansion ap-
proximation still allows us to get a wide range of possible models
so that a large range of systematics can be explored.

5 BI A S O N C O S M O L O G I C A L PA R A M E T E R S

The procedure described in the previous sections allows us to esti-
mate both the redshift-dependent multiplicative bias M(z) and the
additive power spectra Aij (�), so that the observed power spectra
Ĉij (�) can be naively computed provided that a reference cosmolog-
ical model is set as an input for the lensing power spectrum. We can
therefore evaluate the impact of the systematics on cosmological pa-
rameters by using a two steps approach. First, we generate a mock
data set including the systematics terms, i.e. we use as an input the
power spectra computed according to equation (26). We then per-
form a MCMC analysis, fitting the mock data with the theoretical
unbiased shear power spectrum, i.e. setting M(z) = Aij (�) = 0.
The comparison between the input parameters and the recovered
ones will highlight to which extent the cosmological parameters
are biased by the presence of uncorrected systematics. It is worth
stressing that we are considering here the worst case scenario where
one is fully unaware of the presence of systematics. A step forward
would be represented by a likelihood analysis fitting both for the
cosmological parameters and a nuisance set of quantities introduced
to model the systematics. Up to now, such a modelling is unavail-
able so that we will investigate this second step in a forthcoming
paper.

Our fiducial cosmological model is the � cold dark matter
(�CDM) standard scenario where the dark energy component is
described by the cosmological constant � with a constant equa-
tion of state w = −1. We first study the impact of systematics on
the �CDM parameters, and then assume a CPL parametrization
for dark energy (Chevallier & Polarski 2001; Linder 2003). In this
model, the dark energy equation of state reads w(a) = w0 + wa(1 −
a), where w0 and wa are the present-day value of the equation of
state and its derivative and a is the scale factor.

Before discussing the results of such a test, it is worth comparing
it to the previous works in the literature. As yet said in the intro-
duction, the impact of systematics on the cosmological parameters
was first addressed in AR08 through a Fisher matrix analysis. Al-
though important as a first step, the AR08 results are affected by two
shortcomings. First, their systematics power spectrum was given a
priori without any connection with what is actually originating the
systematics. Although Fig. 1 shows that the AR08 model gives a
reasonable approximation of our Aij (�) profile, its parameters were
set by hand so that the inferred results can hardly be related to the
actual amplitude of the multiplicative and additive bias. In contrast,
we determine both M(z) and Aij (�) by taking into account the
characteristics of both the Euclid survey and the source galaxies,
while the shape measurement uncertainties and PSF reconstruction
errors are correctly propagated.

A similar underlying philosophy drives the work of M13 where
the errors from shape measurement and charge transfer inefficiency
are propagated on the final estimate of the shear. Our approach
shares with M13 the adoption of first-order relations between in-
put and measured moments and a non-parametric description of
the scale dependence of the additive systematics power spectrum.
However, we use a different way to propagate shear and PSF un-
certainties on the amplitude of the systematics, in order to take into
account the details of the galaxy shape parameters and SED. As a
further difference, we are not interested in budgeting the impact of
each kind of systematics (see also Cropper et al. 2013), but rather in

an overall analysis. These differences are mainly motivated by the
targets of the two works. While M13 aims at defining requirements
to reduce the different sources of systematics, we are here more
concerned with estimating the systematics power spectrum taking
into account the characteristics of the target galaxies and the survey
setup. From this point of view, our work can be considered as a sort
of cross check of their results. Should we find a bias on the cosmo-
logical parameters when the systematics amplitude is larger than
their limits notwithstanding the different modelling of the system-
atics power spectrum, their requirements on the systematics would
be enforced.

Furthermore, in AR08 and M13 the authors add the systematics
power spectrum to the input one and rely on a Fisher matrix analysis
to estimate the final bias. In this work, instead, we take the advantage
of analysing mock data with the standard MCMC technique to
constrain cosmological parameters.

On one hand, we are forced to make this choice because we
cannot work out an analytical likelihood term for the systematics
given the way we have computed the related terms.

On the other hand, the Fisher matrix analysis gives a good esti-
mate of the parameters constraints with small computational effort,
provided that the likelihood function is well described by a multi-
Gaussian distribution close to its maximum. This might be already
a good enough estimate given the fact that we are forecasting re-
sults for future experiments with some optimistic approximations
and, moreover, it has been shown that for weak lensing analysis
the Fisher approach underestimates the marginalized errors on cos-
mological parameters only by 5 per cent with respect to an MCMC
investigation (see Wolz et al. 2012 for a detailed discussion). In this
work, we choose however to perform an MCMC-based analysis to
avoid this latter uncertainty and to not make any a priori assump-
tion on the parameters distributions, a Fisher matrix analysis could
infact fail to recover some pathological behaviours of the posterior
distribution of exotic parameters, as described in Martinelli et al.
2011; this is indeed not the case for the dark energy parametriza-
tion used in this work, but this effect could become important when
more complicated alternatives to �CDM are considered.

5.1 Mock data sets

We simulate cosmic shear power spectra with and without sys-
tematics contributions, and we consider a flat �CDM cosmolog-
ical model as the fiducial input cosmology. We set the cosmo-
logical parameters to the Wilkinson Microwave Anisotropy Probe
7 (WMAP7) mean marginalized values (Komatsu et al. 2011):
�bh2 = 0.022 58 and �ch2 = 0.1109 for the baryon and CDM
physical matter densities, ns = 0.963 for the scalar spectral index,
As = 2.43 × 10−9 for the scalar amplitude as evaluated at a pivot
scale k = 0.002 Mpc−1. Furthermore, we use the value of the Hubble
constant, H0 = 70.767 km s−1 Mpc−1, derived from the marginal-
ized mean value of the angular size of the sound horizon at last
scattering surface, θ = 0.010 388.

The weak lensing data set has been simulated according to the
specifications in Table 2, in agreement with what is expected for
the Euclid survey (Laurejis et al. 2011). The mission will observe
ng � 30 gal arcmin−2 over an area � = 15 000 deg2 and the same
redshift distribution adopted to generate the galaxy catalogue used
to quantify the systematics. The large galaxy number density and
the wide area observed will allow Euclid to perform a tomographic
reconstruction of the weak lensing signal. We therefore divide the
redshift space in 10 bins with the same ranges assumed in the sys-
tematics power spectra computation (see Table 1). We then generate
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Table 2. Specifications for the Euclid like
survey considered in this paper. The table
shows the number of galaxies per square ar-
cminute (ngal), redshift range, sky coverage
and intrinsic ellipticity (γ 2

rms) per component.

ngal (arcmin−2) 30
redshift 0 < z < 5
Sky coverage (deg2) 15 000
γ rms 0.30

the shear power spectrum Clens(�, z, z′) following the prescription
described in De Bernardis et al. (2011). The 1σ uncertainties on
the convergence power spectrum can be computed as in Cooray
(1999):

σ� =
√

2

(2� + 1)fsky��

[
P (�) + γ 2

rms

ngal

]
, (37)

where �� is the width of the �-bin used to generate the data. Here,
we simply choose �� = 1 for the full range considered, i.e. � ∈
[2, 2500]. Note that we do not consider higher � in order to avoid
both the modelling of non-linear effects and the impact of baryons
on the lensing power spectrum (Semboloni, Hoekstra & Schaye
2011), which can cause a systematic offset between the theoretical
power spectrum and the actual one.

We compute a mock data set for Euclid introducing the effect
of systematics as in equation (26) focusing on the two SysA and
SysB models shown in Fig. 1 and described in Section 4.4. Note
that the Euclid’s field of view will roughly be 0.7 × 0.7 deg2 so
that the choice ϑ s = 0.7 deg made for the SysB model means that
we are assuming that the systematics are related to some unde-
tected phenomenon acting on the scale of the image. Similarly,
ϑ s = 0.1 deg = 6 arcmin is typically the smallest scale where the
shear correlation function is reliably measured so that this choice
for model SysA mimics the optimistic assumption that no signif-
icant systematics are present on larger scales. We also remind the
reader that the rms percentage deviation of the systematics is of the
order of 0.1 per cent (1 per cent) for model SysA (SysB). By con-
sidering these two cases, we are therefore investigating the impact
of systematics under both optimistic and pessimistic assumptions
on their impact.

5.2 Results

As anticipated, we discuss here whether the presence of uncorrected
systematics in the shear power spectrum introduces a significant bias
in the inferred cosmological parameters. To this end, we perform
an MCMC analysis based on a modified version of the publicly
available package COSMOMC (Lewis & Bridle 2002) and a modified
version of the weak lensing module developed by Lesgourgues et al.
(2007). We check for convergence of the chains through the Gelman
& Rubin (1992) test. We explore a �CDM model sampling over
the following parameters:

p = (�ch
2, H0, ns, As)

adopting flat priors on all of them. We also consider an extended
w0waCDM model that includes, besides the above mentioned four
�CDM parameters, two additional parameters, w0 and wa (still
assuming flat priors on these latter). We do not vary the baryon
density �bh2, but rather keep it fixed to the WMAP7 value. We
have indeed verified that degeneracies between �bh2 and other
parameters are so large that it is nearly impossible to constrain this

parameter if it is let free to vary. We have verified that imposing
a strong Gaussian prior, at the 1 per cent level (compatible with
the measurements performed by cosmic microwave background
experiments such as Planck), on this parameter, yields to results
that are qualitatively similar to the ones obtained by fixing its value.
We thus present the results derived in this second case.

As already mentioned above, the analysis performed here rep-
resents the first step in a detailed investigation of the impact of
systematics in weak lensing surveys. In particular, we here want
to verify the validity of a zeroth-order approach, where one erro-
neously assumes that systematics have been reduced to such a small
level that the residual ones can be neglected in the fitting procedure.
In other words, we here investigate to which extent such (somewhat
optimistic) assumption would bias the constraints on cosmological
parameters in presence of unaccounted systematics. A future further
step forward will be represented by the inclusion of a parametrized
model for the systematics, i.e. a parametrized profile for M(z) and
Aij (�), in the MCMC procedure. Should such a model be detailed
enough, one could be able to avoid any bias on the cosmological pa-
rameters. As a downside however, the more the model is detailed,
the larger it is the set of nuisance parameters describing it. This
might open new degeneracies that could weaken the constraints on
cosmological parameters. Investigating this point will be addressed
in a forthcoming work.

5.2.1 Effects on fit statistics

The MCMC procedure allows us to search for the model that best
fits the mock data set, but does not ensure that the match between
this model and the data is actually good in general terms. This is
clearly shown comparing how the maximum likelihood value (or,
equivalently, the χ2 for the best-fitting model) worsens when in-
cluding systematics in the mock data. In building our mock data
sets, we do not include statistical errors in the central values of the
data points, we then expect to recover exactly the fiducial cosmo-
logical model in input. In this scenario, one can define an effective
χ2, measuring the goodness of the fit of the C�, s and normalized
such that if the observed C�, s match the fiducial model χ2 = 0. This
effective χ2 estimator will lead to big departures from 0 even for
small differences between the fiducial and the recovered model. As
can be read from Table 3 for both the �CDM and w0waCDM mod-
els, the best-fitting χ2 is roughly two (four) orders of magnitude
larger for the SysA (SysB) models compared to the ideal case with
no systematics.

If statistical errors were instead included in the mock data we
would have observed a good reduced χ2 for the no sys case and a
similar trend with a worse best-fitting χ2 for the systematics cases.

The order of magnitude increase of the best-fitting χ2 can be qual-
itatively explained looking at Fig. 2, where the relative difference
between the fiducial power spectrum and the systematics plagued
ones is shown for both the SysA and SysB cases. The negligibly
small additive power spectrum Aij (�) of the SysA model makes the
observed lensing spectrum Ĉij (�) differ from the fiducial one mainly
because of a multiplicative term. Should this latter be constant with

Table 3. Best-fitting χ2 values for the performed analy-
sis with �CDM and w0waCDM.

no sys SysA SysB

�CDM 0.006 94 30 276
w0waCDM 0.23 57 29 911
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Figure 2. Relative difference between the fiducial shear power spectrum
and the same spectrum when systematics are included.

z, the fit could be adjusted by scaling one of the parameters such as,
e.g. the matter density �m. However, the SysA multiplicative bias
mildly depends on redshift, so that such scaling is unable to fully
compensate the effect of the systematics, thus leading to a small
increase of the best-fitting χ2. Moreover, although hardly visible in
Fig. 2, the contribution of the additive power spectrum introduces
some very small oscillations in the observed power spectrum which
cannot be reproduced by the best-fitting model. The extremely high
sensitivity of Euclid makes this oscillation non-negligible, thus mo-
tivating the rise of the χ2 value with respect to the case with no
systematics. Things get even worse for the SysB case, where the
additive bias Aij (�) can be comparable to the fiducial lensing power
spectrum in the high � regime. As a consequence, both the ampli-
tude and the profile of the observed power spectrum differs from the
fiducial one in a way that can no more be compensated by the shift
in the cosmological parameters. The very small error bars predicted
for such a good quality survey as the Euclid one then boosts the χ2

to spectacularly large values even if the rms deviation introduced
by the systematics is still as small as ∼1 per cent for the already
pessimistic SysB case.

Should such large values of the χ2 be found also when analysing
real data, they could be read as a hint that the considered theoretical
model and no systematics is not a good fit. One should then consider
either extended cosmological models or an analysis that explicitly
takes systematics into account through a suitable parametrized de-
scription. As a conservative conclusion, we can nevertheless notice
that the smallness of the statistical errors allows us to detect the
presence of systematics even if their impact on the observed power
spectra is as low as 0.1 per cent of the underlying cosmological
signal.

As a further instructive remark, we would like to stress that the
high discrepancy in χ2 values could only be unveiled thanks to
our full MCMC analysis of the mock data set. Should we have
relied on the usual Fisher matrix approach, we would have obtained
a legitimate estimate of the bias on the cosmological parameters
based on the assumption that the likelihood can be approximated as
a Gaussian around the fiducial model. However, we could not have
verified if the latter provides a good match to the data.

5.2.2 Effect on parameters estimation

We are now interested in quantifying the bias on the cosmologi-
cal parameters due to neglecting the systematics in the likelihood
analysis.

As a first case, we consider the �CDM model. We first check
that we recover the fiducial cosmological parameters when fitting

a mock data set without systematics (no sys in the following), e.g.
obtained setting both the multiplicative bias and the power spectrum
of the additive systematics to zero. We then run two further cases
adding the SysA and SysB systematics to the lensing power spectra
before generating the mock data sets.

Fig. 3 shows the constraints on the most relevant cosmological
parameters. As it can be noticed, we correctly recover the fiducial
values of the cosmological parameters when no systematics are
present, while results are clearly biased in the other cases con-
sidered. Furthermore, likelihood profiles appear to be slightly
non-Gaussian in some cases, specially for the derived parameters
(�m, ��, matter and dark energy density, respectively). As a way to
quantify the observed bias, we report in Table 4 the mean marginal-
ized values and the standard deviations for the most relevant pa-
rameters and the corresponding relative bias �/σ where (�, σ ) are
the shift from the fiducial model and the standard deviation, respec-
tively. We underline here that due to the slight non-Gaussianity of
the likelihood distributions, the standard deviations do not necessar-
ily correspond to the 68 per cent c.l. bounds. Different definitions
of the uncertainty σ might thus lead to slightly different quantifica-
tions of the bias. However, we verified these changes do not affect
our overall conclusions.

Figure 3. Marginalized 1D likelihood profiles for a �CDM model. The
upper four plots refer to sampled parameters, while the bottom two refer
to derived ones. We show results for Euclid mock data assuming no Sys
(black), SysA (red) and SysB (blue) cases. The green dashed lines show the
fiducial cosmological parameters.
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Table 4. Mean marginalized values and standard deviations of the most relevant cosmological parameters for the �CDM
model in the no Sys (second column), SysA (thrid column) and SysB (fifth column) cases. The first column shows the fiducial
model, while the fourth (sixth) column shows the bias, defined as the difference (�) between the mean marginalized value
of the SysA (SysB) case and the fiducial value, divided by the 1σ uncertainty of the SysA (SysB) case.

Parameter Fiducial No sys SysA |�/σ | SysB |�/σ |

�m 0.266 54 0.266 58 ± 0.000 28 0.266 240 ± 0.000080 − 3.6 0.267 65 ± 0.000 34 3.2
ns 0.963 0.9624 ± 0.0029 0.9637 ± 0.0025 0.28 0.9623 ± 0.0029 − 0.23
log[1010As ] 3.19 3.1873 ± 0.0089 3.1962 ± 0.0080 0.77 3.1789 ± 0.0094 − 1.2
H0 70.77 70.85 ± 0.37 70.71 ± 0.34 − 0.17 70.86 ± 0.38 0.24
�� 0.733 47 0.733 42 ± 0.000 28 0.733 760 ± 0.000 080 3.6 0.732 35 ± 0.000 34 − 3.2

Following M13, we can deem as biased a parameter if �/σ ex-
ceeds the value �/σ > 0.31 because of the presence of systematics.
As Table 4 shows, the derived parameters (�m, ��) are severely
biased for both the SysA and SysB cases, while the amplitude As

of the perturbations is shifted by a small but yet non-negligible
amount. In contrast, both the slope of the primordial power spec-
trum ns and the Hubble constant H0 do not significantly shift from
the fiducial value, so that their determination is robust against the
impact of systematics. Although we used a different approach to
estimate �/σ , it is nevertheless worth noting that this conclusion is
consistent with that of M13. They indeed find that, in order for the
systematics to not bias the estimate of cosmological parameters, the
two following conditions must be fulfilled:

M̄ < 4 × 10−3 , Ā ≤ 1.3 × 10−12,

having defined

M̄ =
∑

ij

∫ �max

�min

∣∣Mij (�)
∣∣2

�2 d ln �∑
ij

∫ �max

�min
�2 d ln �

,

Ā =
∑

ij

∫ �max

�min

∣∣Aij (�)
∣∣2

�2 d ln �∑
ij

∫ �max

�min
�2 d ln �

,

where the sum runs over the different bins combinations9 and (�min,
�max) = (10, 10 000). For the SysA model, we get

M̄ = 4.2 × 10−3 , Ā = 5.1 × 10−16 ,

while it is

M̄ = 4.5 × 10−3 , Ā = 3.2 × 10−14,

for the SysB systematics. In both cases, the multiplicative bias is
larger than the M13 limit, confirming that the bias on cosmological
parameters is expected also from this kind of criterion. Furthermore,
such a conclusion is also qualitatively consistent with AR08 sug-
gesting that it is the multiplicative systematics which plays the most
important role in biasing the estimate of cosmological parameters.
One could naively be surprised that �/σ takes such large values
considering that, for both systematics models, the condition on Ā
is fulfilled, while the one on M̄ is only mildly violated. However,
one should be aware that the M13 limits have been obtained based
on a Fisher matrix approach. Since this method is known to under-
estimate the limits on the bias, it is not surprising that our MCMC
fitting of mock (but yet realistic) data gives larger bias values. We
therefore recommend to rely on such a method to rederive conser-
vative limits on the (M̄, Ā) parameters, which is outside our aims
here.

9 Note that, since we have assumed the multiplicative bias is scale indepen-
dent, M̄ reduces in our case to a simple average over the redshift bins.

Figure 4. Same as Fig. 3 but for the w0waCDM model, where the two
parameters (w0, wa) are added to the fit.

As a second test, we now analyse the bias on cosmological pa-
rameters for a w0waCDM model, allowing the dark energy equa-
tion of state to deviate from the constant cosmological constant
value w = −1 using the CPL parametrization. Fig. 4 shows the
constraints on the most relevant cosmological parameters, while
Table 5 shows the shifts between the recovered parameters and the
input fiducial model. While this is consistent with the above expec-
tations based on the M̄ values, it is worth noticing how the shifts
are now significantly larger than in the �CDM case. This is due
to the fact that increasing the number of free parameters allows a
better fit of the mock data sets that include systematics. Leaving
w0 and wa free to vary does in fact improve the best-fitting χ2

shown in Table 3. However, this has the downside that, due to the
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Table 5. Same as Table 4 but for the w0waCDM model.

Parameter Fiducial No sys SysA |�/σ | SysB |�/σ |

�m 0.266 54 0.266 29 ± 0.000 84 0.271 32 ± 0.000 95 5.0 0.272 52 ± 0.000 30 20.5
ns 0.963 0.9623 ± 0.0031 0.9675 ± 0.0027 1.7 0.9856 ± 0.0028 8.1
log[1010As ] 3.19 3.189 ± 0.010 3.179 ± 0.011 − 0.96 3.2582 ± 0.0084 8.1
H0 70.77 70.90 ± 0.41 69.80 ± 0.36 − 2.7 67.66 ± 0.35 8.9
�� 0.733 47 0.733 71 ± 0.000 84 0.728 68 ± 0.000 95 5.0 0.727 48 ± 0.000 30 −20.5
w0 −1.0 − 1.0034 ± 0.0096 − 0.937 ± 0.010 6.2 − 0.8803 ± 0.0054 22
wa 0.0 0.013 ± 0.036 − 0.230 ± 0.040 5.8 − 0.208 ± 0.018 −12

correlations between parameters, best-fitting models can be deter-
mined by extremely more biased cosmological parameters.

6 C O N C L U S I O N S

Cosmic shear tomography has emerged as one of the most promising
ways to help cosmologists to end the debate on whether GR-based
quintessence models or modified gravity scenarios are the best can-
didate to solve the dark energy rebus. The possibility to probe both
the background evolution and the growth of structures makes the
shear power spectrum an ideal tool to break the degeneracies be-
tween the two competing proposals. It is therefore mandatory to be
sure that nothing intervenes to degrade this possibility. The next-to-
come weak lensing surveys are designed to reduce to a negligible
level the statistical errors so that the main remaining task is to take
care of the systematics. Great efforts are therefore ongoing to both
determine which are the main sources of systematics and to investi-
gate their impact on the estimation of the cosmological parameters.

As a preliminary but yet fundamental step, we have here pre-
sented a general formalism to make a step-by-step derivation of the
multiplicative bias and of the additive systematics power spectra
originating from shape measurement errors and uncertainties on the
PSF reconstruction. Moreover, the proposed algorithm explicitly
takes into account the properties of the target galaxies so that the
redshift evolution of the systematics is consistently computed rather
than imposed a priori. To the best of our knowledge, this is the first
time that the systematics power spectra are inferred from the survey
design (entering through the PSF wavelength dependence and filter
transmission curve) and the galaxies photometric properties.

Two quite general assumptions are at the core of our procedure.
First, we have assumed that both the reconstructed PSF and mea-
sured galaxy shape moments can be related to the actual ones by
linear relations (15) and (16). Rather than getting lost in the details
of the PSF reconstruction procedure and shape measurement algo-
rithm, we have parametrized all these systematics in the parameters
(mξ , cξ , mω, cω) and (μξ , γ ξ , μω, γ ω) which can be set a posteriori
once they have been determined (based on, e.g. a comparison with
simulations) for the given measurement process. For the application
presented in this work, we have estimated the (μξ , γ ξ , μω, γ ω) pa-
rameters considering the impact of the PSF wavelength dependence,
while (mξ , cξ , mω, cω) have been given as function of the S/N and
apparent magnitude of the target galaxy. Although the details of our
choice could be questioned, we are nevertheless confident that our
algorithm offers the unique possibility to estimate the amplitude of
the systematics and its redshift evolution according to the features
of the different players entering the game hence representing a sig-
nificant step forward towards a fully realistic description of these
fundamental aspect of the cosmic shear analysis.

While our method represents a step forward for what concerns
the amplitude of the systematics, the shape of their scale profile still

remains to be set by hand. In order to parametrize our ignorance of
this issue, we have proposed a multi-Gaussian expansion allowing
us to consistently derive the additive power spectra provided the
typical scale of the systematics and the coefficients of the expan-
sion are set. Although still a large degree of arbitrariness is left, this
approach nevertheless allows us to mimic a wide set of shape pro-
files, preserving a link with some quantities which can be inferred
from an analysis of the possible sources of systematics. In order to
move forward, one must unavoidably rely on simulations looking
for a correlation of the shape measurement bias parameters (mξ ,
cξ , mω, cω) with the properties of the galaxy population. Let us as-
sume, for instance, that they correlate with the colour of the galaxy
and hence with the morphology (early-type galaxies being typically
redder than late-type ones). Since clustering properties of ellipticals
are different from those of spiral ones, one could then expect that
the power spectrum of this kind of systematics is somewhat related
to the galaxy ones, thus gaining a first hint on its shape profile.
Unfortunately, a similar analysis is unavailable at the moment so
that we are forced to leave free the coefficient of our multi-Gaussian
expansion.

Summarizing, the main features of our approach to compute the
systematics power spectrum are sketched below.

(i) Systematics in shape measurement (coming from, e.g. colour
gradients, model and noise bias) and PSF reconstruction (such as
deviations from axial symmetry or incorrect modelling of the broad
tails) are propagated on the shear estimator to infer an analytical
expression for the multiplicative and additive bias (m, c).

(ii) The shear bias parameters (m, c) are estimated as function
of the survey setup (PSF shape and wavelength dependence and
magnitude cut) and the source galaxy properties (size and SED)
thus allowing us to consistently determine their amplitude and how
they evolve with redshift. This represents a significant step forward
in the modelling of systematics whose redshift evolution has been
up to now parametrized a priori instead of being correctly inferred
a posteriori from the evolution of galaxy properties.

(iii) The scale dependence of the additive systematics power
spectrum is modelled self-consistently as a function of the scale
dependence of (m, c). Such an approach allows us to avoid the risk
of a wrong estimate of the bias on cosmological parameters due to
the incorrect assumptions of analytical profiles or overestimating it
because of inclusion of non-parametric yet unrealistic profiles.

The reliable procedure presented here to compute the systemat-
ics power spectrum provides us the necessary input to investigate
their impact on the determination of cosmological parameters. Two
effects are actually possible. Although much effort will be dedi-
cated in future surveys to reduce as much as possible the sources
of systematics, it is nevertheless possible that some of them will go
undetected, so that the observed shear power spectra differ from the
underlying cosmological one. One can therefore wonder to which
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extent fitting the data assuming that no systematics are present can
bias the cosmological parameters. This is the point we have ad-
dressed here performing an MCMC analysis on mock data with and
without added systematics. We find that the best-fitting models trace
the data at low multipoles, but poorly fits the high �’s, thus leading
to very large χ2 values. This result suggests that a possible signature
of the systematics is represented by the large χ2 values due to the
poor performance of the best-fitting models at high multipoles, i.e.
over a range where statistical errors are quite small, although the
same effect could also be provided rather by the need of a different
theoretical model to describe the data. One could, however, decide
to still trust the inferred cosmological parameters assuming that the
large χ2 is only a consequence of the residual systematics. Such
a choice will however lead to strongly biased constraints with the
recovered parameters shifting from the input one many times the
1σ error. This is in agreement with previous results in the literature
(in particular with the outcomes of the M13 analysis) which is a
reassuring test considering we have relied on a different and amelio-
rated derivation of the systematics multiplicative bias and additive
power spectra and an MCMC fit to mock data instead of a Fisher
matrix analysis.

As a further improvement to the procedure presented in this
paper, one could be less optimistic and admit that some undetected
systematics are present in the data. The point is now how to model
them and to which extent fitting for their corresponding parameters
degrades the constraints on the cosmological ones. In a sense, this
is a complementary question to the previous one. We are now no
more concerned in the bias, but rather in the accuracy. To this end,
one should first find an analytical description of the systematics
multiplicative term and additive power spectra. The procedure we
have presented allows us to work out a large range of realistic M(z)
and Aij (�) functions which can drive the choice of the better way
to model the systematics. As Fig. 1 shows, the previous proposed
parametrization available in the literature are unable to correctly
mimic the systematics power spectra so that their use should be
avoided. In contrast, a more reliable strategy would be to generate
a large set of M(z) and Aij (�) functions and fit them with an
analytical approximation flexible enough to mimic them, but with
not too many parameters in order to avoid a severe weakening of
the accuracy on the cosmological parameters. This will be subject
of a forthcoming publication.

As a concluding remark, we would like to draw the weak lensing
community attention on the need for a realistic derivation of the
systematics power spectra. Notwithstanding which method is used
to investigate the bias on the cosmological parameters (should it be
based on a Fisher matrix approach or an MCMC fitting of mock
data), the main point is to fully take into account all the players
entering the game. As we have shown here, this means to realis-
tically describe not only the shape measurement bias and the PSF
reconstruction errors, but also the distribution and the evolution
with redshift of the galaxy properties. It is only a combined analy-
sis of all these factors which can finally lead us to avoid the most
dangerous pitfalls undermining the potential of cosmic shear to put
an end to the quintessence versus modified gravity fight for the dark
energy throne.
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APPEN D IX A : SHAPE TRANSFORMS

Our derivation of the multiplicative and additive bias in equations
(18) and (19) relies on the use of the (ξ , ω) shape parameters. These
are slightly different from the conventional ones (ε, R) so that we
find it useful to briefly sketch the derivation of the effect of lensing,
PSF convolution and λ integration in the moments space and find
out how the measurable values of ξ and ω relate to the reduced
shear.

A1 Lensing transform

As well known, lensing provides an achromatic mapping between
the image and the lens planes. To the first order, this mapping can

be linearized as

xs
i = Aij (x)xj ,

where x (xs) are the coordinates in the image (source) plane and the
Jacobian matrix A(x) is related to the lensing deflection potential
ψ(x) as Aij (x) = δij − ψ,ij (x) and is usually parametrized in terms
of the convergence κ and the reduced shear g = γ /(1 − κ). The
inverse mapping will be

xi = A−1
ij (x)xs

j ,

while the area elements transforms as dx1 dx2 = detA−1 dxs
1 dxs

2.
Because of the achromatic nature of the lensing phenomenon, the
Liouville theorem ensures that the 2D energy distribution is con-
served so that E(x, λ) = E(xs , λ). Using this relation and the above
geometric transformations, it is then possible to get the following
rule for the moments:

Qij (λ) = A−1
im Q0

mn(λ)A−1
nj , (A1)

so that it is only a matter of algebra to finally get

ξ (λ) = 2 gω0(λ) + ξ0(λ) + g2ξ�
0 (λ)

(1 − κ2)(1 − |g|2)2
+ ξPSF(λ), (A2)

ω(λ) = (1 + |g|2)ω0(λ) + 2R(gξ�
0 (λ))

(1 − κ2)(1 − |g|2)2
+ ωPSF(λ), (A3)

which, for γ , κ � 1, indeed reduce to equations (11)–(12).

A2 PSF convolution

For a given wavelength λ, the energy distribution E(x, λ) of a galaxy
after convolution with a λ-dependent PSF with energy distribution
EPSF(x, λ) reads:

E(x, λ) =
∫

E0(x, λ)EPSF(x − x′, λ) dx1 dx2 .

In the moments space, the convolution becomes a linear operation
so that the following relation holds:

Qij (λ) = Q0
ij (λ) + QPSF

ij (λ), (A4)

where, without loss of generality, we have assumed that, at each
given λ, the PSF is centred on the galaxy. It is then not surprising
that the ellipticity and size of the galaxy after convolution will be
simply given by

ξ (λ) = ξ0(λ) + ξPSF(λ), (A5)

ω(λ) = ω0(λ) + ωPSF(λ) . (A6)

Note that, because of the λ dependence, the impact of the PSF will
be different at different wavelengths.

A3 Wavelength integration

In common applications, the galaxy is imaged through a broad-band
filter so that what one measure is the wavelength integrated energy
distribution, i.e. the intensity I (x) defined above. It is then possible
to correspondingly define the integrated moments as

Qij =
∫

I (x)xixj dx1 dx2∫
I (x) dx1 dx2

(i, j = 1, 2) (A7)

and the λ-integrated ellipticity and size as

ξ = Q11 − Q22 + 2iQ12, (A8)
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ω = Q11 + Q22 . (A9)

Comparing Qij and Qij(λ) immediately gives

Qij =
∫

Qij (λ)S(λ)T (λ) dλ (A10)

with S(λ) the flux normalized SED, i.e.
∫
S(λ)T (λ) dλ = 1. It is

then easy to get

ξ =
∫

ξ (λ)S(λ)T (λ) dλ, (A11)

ω =
∫

ω(λ)S(λ)T (λ) dλ (A12)

thanks to the linearity of the λ integration. Similarly, one can now
integrate over λ equations (28)–(29) to show that the ellipticity
and size of a galaxy convolved with a wavelength-dependent PSF
and observed with a broad-band filter are still given by equations
(28)–(29) provided [ξ 0(λ), ω0(λ)] are replaced by their λ-integrated
counterparts and the PSF quantities are defined as

ξPSF =
∫

ξPSF(λ)S(λ)T (λ) dλ, (A13)

ωPSF =
∫

ωPSF(λ)S(λ)T (λ) dλ . (A14)

It is worth stressing that the effective PSF ellipticity and size
(ξPSF, ωPSF) are defined in terms of the normalized SED of the
galaxy. As a consequence, the impact of the PSF will be different
for galaxies having, e.g. the same ellipticity and size, but different
stellar populations (hence, a different SED). This is an important
point to keep in mind since it shows that it is not possible to define
a unique effective PSF for an image, but rather the specific features
of each galaxy have to be taken into account.

A P P E N D I X B: MO D E L L I N G G A L A X I E S

A basic role in the computation of the multiplicative and additive
bias is played by the galaxy structural parameters and its SED.
It is therefore of paramount importance that the simulated galaxy
catalogue used to infer the systematics power spectrum is based
on a realistic modelling of these galaxy properties. The way we
choose the SED of each galaxy and details on how the bulge and
disc structural parameters have been set and on their wavelength
and redshift dependence are described below.

B1 Galaxy model and SED assignment

A galaxy is modelled as a two component system made out by a
Sérsic (1968) bulge and an exponential (Freeman 1970) disc, i.e.
the intensity profiles in a given filter f read

Ib(x1, x2) = Lbb
2n
n

2πnR2
effebn�(2n)

× exp

{
−bn

[(
X2

b1 + X2
b2/q

2
b

R2
eff

) 1
2n

− 1

]}
, (B1)

Id (x1, x2) = Ld

2πR2
d

exp

[
(X2

d1 + X2
d2/q

2
d )1/2

Rd

]
, (B2)

with{
Xi1 = x1 cos θi + x2 sin θb

Xi2 = −x2 sin θi + x2 cos θb

. (B3)

A galaxy is then assigned by setting the value of the geometric
quantities (qb, θb, qd, θd) and the structural parameters for the bulge
(n, Reff, Lb) and the disc (Rd, Ld). Moreover, such quantities can be
both wavelength and redshift dependent. We therefore first simulate
a sample of galaxy at redshift z = 0 setting the parameters as
summarized below.

(i) We randomly generate the bulge position angle θb and then
set the disc one as θd = θb + �θ with −25o ≤ �θ ≤ 25o. The two
components are taken to be concentric, while their axes ratios (qb,
qd) are generated according to the distribution given by Crittenden
et al. (2001).

(ii) In order to set the SED of the galaxy, we rely on the colour–
magnitude diagrams of the sample of local galaxies collected in the
New York University Value Added Galaxy Catalog (NYU-VAGC,
Blanton et al. 2005) based on the SDSS survey (York et al. 2000).
After having randomly chosen a galaxy from the sample, we set the
(u − g, g − r, g − i, g − z) colours of the simulated galaxy equal to
the average value of a sample of 2000 NYU-VAGC galaxies having
i mag within 0.1 of the starting one. We then assign to the simulated
galaxy an SED chosen from a large library of single burst stellar
population models10 obtained by varying the age, the metallicity
and the bulge-to-total luminosity ratio (B/T). In order to choose
the SED, we minimize the difference between the theoretical and
observed colours over a 5D space (B/T plus bulge and disc age and
metallicity).

(iii) Having thus chosen the SED of the galaxy, we can scale the
bulge luminosity from the i to the B band and use a set of empirically
motivated scaling relations (summarized in Appendix B and detailed
in Cardone et al., in preparation) to set the bulge and disc structural
parameters. The luminosity of the two components and the value
of their parameters in other wavebands are then fixed according to
some simple rules inferred from observations of real galaxies.

(iv) While points (i.)–(iii.) allow us to build up a sample of z = 0
galaxies in good agreement with the observed luminosity, colour and
colour–magnitude diagrams, we are interested to z > 0 systems. To
this end, we first assign a redshift z to a galaxies sampling from the
distribution:

p(z) ∝
(

z

z0

)a

exp

[
−

(
z

z0

)b
]

with (a, b, z0) = (2.0, 1.5, 1.412zm) and zm = 0.9 the median
redshift expected for the Euclid survey. We then use the galaxy
SED to estimate the bulge and disc luminosity in the RIZ filter,
while structural parameters have been scaled according to empirical
relations (see Appendix B).

(v) Finally, we include a galaxy in the catalogue if and only if
its apparent magnitude in the RIZ filter mRIZ passes the selection
cut mRIZ ≤ 24.5 and its wavelength integrated ellipticity and size
parameters have no anomalous values.

The galaxy catalogue thus constructed has the correct distribution
for luminosity, colours and colour gradient and correctly traces the
evolution of the galaxy properties with redshift. We are therefore

10 To this end, we use the GALAXEV code by Bruzual & Charlot (2003). Note
that we do not consider more complicated models in order to not boost the
number of unknown parameters to be set.
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confident that the inferred intrinsic ellipticity and size distributions
are quite realistic and can be reliably used as input to the estimate
of the mean and variance of the (m, b) bias parameters.

B2 Bulge parameters at z = 0

The surface brightness profile of both early-type galaxies (ETGs)
and the bulges of late-type ones are known to be well fitted by the
Sérsic (1968) law (Caon, Capaccioli & D’Onofrio 1993; Graham
& Colless 1997; Prugniel & Simien 1997) so that we adopt this
model for the red component of our simulated galaxies. As can be
read from equation (B1), the Sérsic model parameters are the total
bulge luminosity Lb, the slope n of the profile and the effective
radius Reff, while the position angle θb and the axial ratio qb sets the
shape of the bulge. To this end, we start by choosing the Johnson
B band as reference and assign the luminosity Lb as explained in
Section 4.1 above. The other parameters are set according to the
following recipe.

(i) Position angle. Assuming there is no preferred orientation (as
it is expected for a field galaxy population), we randomly extract θb

from a uniform distribution over the full (0, 2π) range.
(ii) Axial ratio. Rather than generating qb, we first sample the

following distribution (Crittenden et al. 2001):

P (ε) = ε
[
cos

(πε

2

)]2
exp

[
−

(
2ε

B

)C
]

(B4)

with ε = (1 − q2
b )/(1 + q2

b ) and (B, C) = (0.05, 0.18). Note that
we manually cut the distribution at ε = 0.9 to avoid unrealistically
flattened bulges. The bulge axial ratio is then obtained by solving
for qb from the generated ε value.

(iii) Sérsic index. Following Coppola, La Barbera & Capaccioli
(2009), we assume that the Sérsic index is correlated with the bulge
absolute magnitude11 M(B)

b as

log n = −0.1219M(B)
b − 1.6829 (B5)

with

M(B)
b = −2.5 log Lb + B


and B
 = 5.33 the Sun absolute magnitude in the B band. Since the
M(B)

b –n correlation is affected by a ∼30 per cent scatter, for a given
M(B)

b , we generate the Sérsic index from a Gaussian distribution
centred on the value predicted by equation (B5) and a variance set
equal to 30 per cent of the mean value.

(iv) Effective radius. It is well known that the effective radius of
a galaxy is correlated with its luminosity. In particular, according to
Shen et al. (2003), the ln Reff distribution is well approximated by a
Gaussian profile

P (ln Reff ) = 1√
2πσln Reff (M(B))

× exp

{
−1

2

[
ln Reff − 〈ln Reff〉(M(B))

σln Reff (M(B))

]2
}

11 Hereafter, we adopt the following convention that the underscript b (d)
will denote quantities referring to the bulge (the disc), while an upperscript
(f) labels the filter adopted.

with

〈ln Reff〉 = −0.4aeffM(B) + beff,

σln Reff = σ1 − σ2

1 + dex(M(B) − M0)

and we have defined dex(x) = 10x. It is worth noting that Shen
et al. (2003) actually fitted the observed galaxy surface brightness
with a single Sérsic profile and then separated the sample in early-
and late-type systems according to some selection criteria. As such,
M(B) is actually the absolute magnitude of the full galaxy and not
of the bulge component only. However, since bulges share most
properties of ETGs, we will use the above distribution setting (aeff,
beff) = (0.65, −5.06) and (σ1, σ2,M0) = (0.35, 0.27, −20.91) as
found for ETGs.

Having thus set the model parameters in the B band, we now have
to address their wavelength dependence. To this end, we rely on the
literature to infer some approximate but nevertheless reasonable
prescriptions. First, we will assume that the two geometric parame-
ters (θb, qb) are the same in all the filters. The Sheroids Pancromatic
Investigation in Different Environmental Regions (SPIDER) col-
laboration (La Barbera et al. 2010, hereafter LaB10) has collected
a large sample of low-redshift galaxies and fitted single Sérsic pro-
files to the surface brightness data in the griz YJHK photometric
bands. Fig. 12 in LaB10 shows that the median and variance of
the distribution of the axial ratio is almost the same over the full
photometric system so that we are confident that our assumption is
statistically well motivated. In the same paper, LaB10 also shows
that the Sérsic index and effective radius distributions are roughly
consistent with each other, that is to say, the median and variance
are almost the same along the full wavelength range covered by
the griz YJHK filters. Actually, such a consistency is mainly due to
the large variance of the distributions, while a marked trend of the
median values is indeed present. We have then decided to fit these
median values as function of the effective wavelength of the filter
thus finding

n(f ) � n(B) + 5.75 × 10−5
[
λ

(f )
eff − λ

(B)
eff

]
, (B6)

log R
(f )
eff � log R

(B)
eff − 9.32 × 10−6

[
λ

(f )
eff − λ

(B)
eff

]
, (B7)

with λ
(f )
eff in nm and a root mean square of the residuals of the

order of 10 per cent for both fits. To take care of this scatter, we
then generate (n, log Reff) in a given band f by randomly sampling
Gaussian distributions centred on the above values and variance
equal to the rms of the residuals.

B3 Disc parameters at z = 0

Having thus fixed the bulge component, we now turn our attention
to the disc one modelled with the standard exponential profile in
equation (B2) assuming there is no offset between the bulge and
disc centres. The disc position angle is no more generated randomly,
but is rather set as θd = θb + �θ with �θ randomly sampled
between (−25, 25) deg. Such a limitation has been imposed to avoid
generating systems with a large misalignment between the bulge
and the disc since they are quite unrealistic or a signature of barred
systems which we are not interested in. The disc axial ratio is instead
generated according to the same functional distribution in equation
(B4), but setting (B, C) = (0.19, 0.58) as found by Crittenden et al.
(2001) for late-type systems.
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The SED assignment procedure gives an estimate of the bulge-to-
total luminosity ratio so that the disc luminosity Ld is automatically
set after having chosen the total luminosity and the SED. In order to
be sure that the total galaxy profile is realistic, we then rely on the
bulge-disc decomposition of ∼10 000 galaxies of the Millennium
Galaxy Survey (Liske et al. 2003) made by Allen et al. (2006).
We select galaxies well fitted by the sum of a Sérsic component
and an exponential profile and with measured redshift z ≤ 0.1 and
use this subsample (comprising ∼50 per cent of the full sample)
to investigate the dependence of the disc parameters on the bulge
ones. In particular, we have looked for a correlation between the
disc to bulge scalelength ratio12 Rd/Reff and the bulge parameters
themselves. We indeed find that the relation

log

(
Rd

Reff

)
= −0.0653Mb − 0.8640 log Reff − 0.7715 (B8)

provides a reasonable well fit to the data with an rms scatter
of the residuals ∼30 per cent. We therefore extract the quantity
log (Rd/Reff) from a Gaussian distribution with centre and variance
defined by our fit and then use this value to set Rd given the bulge
effective radius.

While the above scaling relations allow us to set the disc param-
eters in the B band, we have still to decide how to assign them in
other filters. To this end, we first scale the disc luminosity accord-
ing to the SED stressing that, since the scaling is not the same for
bulge and disc, the bulge luminosity fraction fb will be wavelength
dependent too. This is consistent with the common sense intuition
that fb will be larger in the redder wavebands being the bulge made
out of an older population than the disc. In order to scale the disc
scalelength radius Rd, we should have a model for the wavelength
dependence of the Rd/Reff ratio. Unfortunately, we cannot rely on
the Millennium Galaxy Catalogue since this is a monochromatic
survey so that we will make the rough assumption that the ratio
Rd/Reff is constant within 25 per cent over the wavelength range
covered by the SDSS and Euclid filters we have used to generate
the catalogue. As a consequence, we will set Rd in the other bands
randomly generating log (Rd/Reff) from a Gaussian distribution cen-
tred on the B-band value and with a variance set to 25 per cent of
this value. We then set R

(f )
d multiplying the sampled Rd/Reff by the

bulge effective radius in the filter of interest, evaluated using the
scaling introduced above.

B4 Redshifting structural parameters

The above procedure allows us to set, in a realistic way the bulge
and disc structural parameters for a galaxy at z = 0. Actually, the
galaxies in the simulated catalogue are not local ones so that we
need a procedure to relate the present-day parameters to their high-
z counterpart. While this is quite easy for the total luminosities
using the assigned SED, redshifting the galaxy components back in
time has also to take into account whether and how the structural
parameters evolve. To this end, we adopt the strategy we briefly
sketch below.

(i) Sérsic index. In a hierarchical formation scenario, ETGs may
come out from the merging of two LTGs. From the point of view

12 We neglect here the small difference between the Johnson B filter used
to define the bulge quantities and the BMGC filter of the Millennium Galaxy
Survey.

of galaxy modelling, we therefore expect that, as z gets larger, we
find galaxies described by a single Sérsic component with a median
index n becoming closer to the disc value (n = 1) as we go back
in time. Tracking the redshift dependence of n is actually a prob-
lematic task since estimating n for galaxies at high z is quite hard
given that one has to fit a three-parameter model to data covering
only a very limited range. As such, one has first to check whether
the fitting procedure is reliable or not and then can rely on the es-
timated n to investigate the dependence on z. Notwithstanding all
these caveats, some studies of limited samples can be found in lit-
erature (Chiboucas et al. 2009; Cassata et al. 2010; Szomuru et al.
2011). We have therefore collected the values reported in these pa-
pers and fit a power-law relation, n(z) ∝ (1 + z)ν , finding that ν

� −0.87 fits the data with an rms residual of ∼15 per cent. Such a
scatter could be narrowed down binning galaxies according to their
specific star formation rate or stellar mass, both quantities which
are unavailable for our simulated galaxies. Although we are well
aware that the power-law fit only provides a crude approximation
(since we have also not fully corrected for the different rest-frame
bands probed), this simple scaling allows us to mimic the flattening
of n with z which is expected in a scenario where the ETGs fraction
decreases with the redshift. We will therefore set the Sérsic index
in the B band at redshift z extracting its value from a Gaussian
distribution centred on n(B)(z = 0)(1 + z)−ν and with a variance
equal to 15 per cent of the mean value. We then use the same scal-
ing with λ adopted for z = 0 to get the Sérsic index in the other
filters.

(ii) Scalelengths. Observations tell us that the scalelengths also
evolve with z. We follow here Trujillo et al. (2006) who have com-
piled a large catalogue of galaxies observed by the SDSS, GEMS
and FIRES surveys to study the evolution of the galaxy size over the
redshift range (0, 3). Separating the galaxies in two groups accord-
ing to the value of the Sérsic index n, they find that the evolution
of the effective radius for high n systems (which can be identified
with ETGs) is well fitted by

Reff (z) = Reff (z = 0)(1 + z)α (B9)

with α = −1.01 ± 0.08, while it is

Rd (z) = Rd (z = 0)Eα(z) (B10)

with α =−0.83 ± 0.05 for low n systems (approximating LTGs). We
use equations (B9) and (B10) to scale the B-band bulge effective
radius and the disc scalelength to the redshift of the galaxy. In
order to simulate the scatter around the best-fitting lines, we set
α randomly sampling from a Gaussian distribution with mean and
variance given by the measured values. The same scaling is applied
to all the filters, i.e., we assume that equations (B9) and (B10)
are invariant under a filter change. Although there is no empirical
evidence in favour or against this assumption, we prefer to start
from this zero-order approximation since (at our best knowledge)
there are no studies investigating the wavelength dependence of the
redshift scaling of Reff and Rd.

Using these observationally motivated prescriptions, we can red-
shift our simulated galaxies and then compute their shape param-
eters thus finally getting all the ingredients needed to estimate the
multiplicative and additive bias.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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