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ABSTRACT
We present a novel, general-purpose method for deconvolving and denoizing images from
gridded radio interferometric visibilities using Bayesian inference based on a Gaussian process
model. The method automatically takes into account incomplete coverage of the uv-plane,
signal mode coupling due to the primary beam and noise mode coupling due to uv sampling.
Our method uses Gibbs sampling to efficiently explore the full posterior distribution of the
underlying signal image given the data. We use a set of widely diverse mock images with a
realistic interferometer set-up and level of noise to assess the method. Compared to results
from a proxy for point source-based CLEAN method we find that in terms of rms error and
signal-to-noise ratio our approach performs better than traditional deconvolution techniques,
regardless of the structure of the source image in our test suite. Our implementation scales as
O(np log np) provides full statistical and uncertainty information of the reconstructed image,
requires no supervision and provides a robust, consistent framework for incorporating noise
and parameter marginalizations and foreground removal.

Key words: instrumentation: interferometers – methods: data analysis – methods: statistical.

1 IN T RO D U C T I O N

The next generation of large-scale radio interferometers, such as
Australian Square Kilometre Array Pathfinder (ASKAP; Johnston
et al. 2008), Murchison Widefield Array (MWA; Lonsdale et al.
2009), Precision Array to Probe the Epoch of Reionisation
(PAPER; Parsons et al. 2010) and Square Kilometre Array (SKA;
Jarvis 2007), promise incredible scientific reward but also incredi-
ble data analysis challenges. The tremendous volume of data, high
dynamic range, wide bandwidth, large amounts of radio interfer-
ence and significant foregrounds present serious instrumentation
and analysis difficulties (Bhatnagar 2009; Norris et al. 2013). Im-
age deconvolution – the process of removing the effects of signal
mode coupling due to the primary beam, noise mode coupling due
to uv sampling, incomplete Fourier mode sampling and noise – is
an important first step in scientific analysis from these instruments
(Thompson, Moran & Swenson 2001). The ideal algorithm for per-
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forming image deconvolution suitable for these upcoming surveys
would be (1) robust to changes in the input signal and instrument
configuration, (2) parametrized by as few tunable inputs as pos-
sible, (3) as automated as possible, (4) driven by the data rather
than user-selected guesses as to the source signal, (5) as informa-
tive as possible given the difficulty of processing the data even a
single time, (6) scalable to the extreme sizes of future data sets, (7)
as fast as possible and (8) able to easily incorporate modelling of
foregrounds or other systematics.

Unfortunately, the most commonly used algorithm for interfer-
ometric image reconstruction, CLEAN (Högbom 1974), satisfies few
– if any – of these criteria. Originally developed to remove point
source foregrounds from a smooth background source image, CLEAN

works by iteratively removing the effects of high-intensity point
sources in the Fourier-transformed uv-plane. While the original al-
gorithm excels in a limited number of cases, it is not appropriate for
general reconstruction problems. Modern implementations of CLEAN

that appear in standard radio astronomy packages (e.g. CASA; Jaeger
2008) incorporate several advanced features such as simultaneous
deconvolution at multiple scales (Cornwell 2008; Rau & Cornwell

C© 2013 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/438/1/768/1041817 by guest on 22 April 2022

mailto:sutter@iap.fr


Probabilistic image reconstruction 769

2011) and time-varying analysis (Stewart, Fenech & Muxlow 2011;
Rau 2012).

However, even these more advanced versions of CLEAN require
significant fine-tuning and supervision during the deconvolution
process. Users must select thresholds for deciding which pixels
contain ‘point sources’ and the amount by which to remove the
point source effects in uv-space. The optimal choices for these
thresholds are not known in advance for a given observation. Users
may also select specific regions of the image to apply more or
fewer CLEANing iterations. CLEAN has no final end state: users must
decide when an image has been deconvolved ‘enough’ without
introducing unwanted artefacts. Finally, CLEAN gives no information
on the uncertainties in the reconstruction.

Realizing the shortcomings of traditional and more sophisticated
CLEAN-based algorithms, methods based on a regularized likelihood,
such as the maximum entropy method (MEM; Ables 1974; Gull &
Daniell 1978; Cornwell & Evans 1985) generated significant inter-
est. MEM produces an image estimate which minimizes the difference
between the estimate and the data given the level of noise and some
chosen metric. While MEM requires less fine-tuning and supervision
than CLEAN, the user must still choose the metric (usually expressed
as an entropy functional), and the optimal choice of the metric is
not known in advance (Starck et al. 2001). The final reconstructed
image is thus only optimal in regards to that metric. Similarly to
CLEAN, MEM gives no uncertainty information and in general tends to
underestimate the source image intensity (Starck et al. 2001; Sutton
& Wandelt 2006).

As Bhatnagar & Cornwell (2004) and Puetter, Gosnell & Yahil
(2005) pointed out, optimal reconstruction techniques must be spa-
tially adaptive and operate at multiple scales simultaneously. Many
authors have proposed relatively new alternative methods based
on compressed sensing techniques (Suksmono 2009; Wiaux et al.
2009, 2010; Wenger et al. 2010; Li et al. 2011; McEwen & Wiaux
2011; Carrillo, McEwen and Wiaux 2012, 2013b; Wolz et al. 2013),
Bayesian processes (Ayasso, Rodet & Abergel 2012) and separa-
tion of smooth and point-like components (Giovannelli & Coulais
2005).

In this work, we present a general-purpose Bayesian reconstruc-
tion algorithm to infer the source image from realistic interferomet-
ric radio data. Bayesian analysis starts with building a generative
probabilistic forward model of the data. Given this model choice,
the posterior probability density function (the posterior distribu-
tion) quantifies what is known about the source image once the data
have been obtained (Gelman et al. 2004). The purpose of this paper
is to demonstrate that a surprisingly simple choice of model for the
source image, that of an isotropic Gaussian process, performs very
well in realistically simulated examples for a test suite of widely
diverse images.

The key to practical Bayesian image analysis is to be able to
navigate efficiently through the very high dimensional parameter
space, since every pixel value is an independent parameter. For
example, in this paper we will explore posterior distributions in
104-dimensional parameter spaces. Gibbs sampling is a powerful
technique that has been used successfully for sky maps with more
than 106 pixels in the context of cosmic microwave background
signal reconstruction and power spectrum estimation (Jewell,
Levin & Anderson 2004; Wandelt, Larson & Lakshminarayanan
2004; Sutter, Wandelt & Malu 2012). Conceptually, Gibbs sam-
pling iterates between samples of the signal and its power spectrum
in a way that respects the joint posterior distribution of signal and
power spectrum given the image. This separation allows for signifi-
cant speedups compared to grid-based evaluations of the posterior:

the algorithm scales as np log np, where np is the total number of
pixels, in the ideal pre-gridded flat-sky limit discussed here.

Our assumptions for our mock observations allow us to pre-
grid the intensities before the iterative solution step. More gen-
eral curved-sky analysis would necessarily be more expensive, ei-
ther with gridding–regridding steps during the analysis in an AW-
projection method or with the spherical harmonic transform opera-
tion in a full sky. This is similar to the computational scalability of
traditional CLEAN. However, CLEAN typically completes in order ∼10
steps, whereas our method usually requires ∼100 iterations. As we
will see below, the primary computational cost in each iteration
comes from solving a matrix–vector equation. Fortunately, this is a
common problem in computational science and there are many fast,
scalable solutions available (Press, Flannery & Teukolsky 1986).

While the Gibbs sampling framework itself is independent of
prior (see e.g. Sutton & Wandelt 2006 for an implementation based
on fluxon models) we choose an isotropic Gaussian process prior.
Gaussian processes are surprisingly flexible in describing a variety
of images (Mackay 2003). Because Gibbs sampling can be under-
stood as a non-linear generalization of the least-squares optimal
signal reconstruction provided by the Wiener filter (see Section 3)
without requiring a choice of the signal covariance a priori, succes-
sive samples are always constrained by the data in regions of high
signal-to-noise ratio (SNR). In regions of low SNR, the Gaussian
process is the least informative completion to a full probabilistic
model. In this regime the method still maps out the signal likeli-
hood taking into account all modelled signals and imperfections in
the data at the two-point correlation level.

In addition to the speed gains mentioned above, the method of
Gibbs sampling offers several advantages over traditional decon-
volution techniques: (1) it explores the full posterior shape, giving
complete statistical information on the resulting image; (2) it au-
tomatically takes into account signal mode coupling from the pri-
mary beam; (3) the sampled representation produced by the method
makes marginalization trivial; (4) it provides optimal reconstruc-
tion (i.e. Wiener filtering) without assuming a signal covariance;
(5) since we have already specified the signal prior, the method has
no tunable parameters and operates completely unsupervised and
(6) it offers a sparse reconstruction technique with a full Bayesian
motivation.

Section 2 presents our mock observations and interferometer set-
up used to assess our new method. Next, in Section 3 we outline the
method of Gibbs sampling as applied to radio interferometers. In
Section 4 we compare our method to a proxy for traditional CLEAN in
terms of reconstructed image fidelity, residuals and statistics such as
rms error and residual SNR levels. Finally, we conclude in Section 5
with a discussion of planned extensions and the potential role of this
method in future observations.

2 SI M U L AT E D O B S E RVAT I O N S

2.1 Interferometer set-up

We model the visibility data d obtained from an interferometric
observation as

d = IFAs + In, (1)

where s is a vector containing a discretization of the input sky, A
is a primary beam pattern, F is a Fourier transform operator that
converts from pixel space to the uv-plane, I is an interferometer
pattern in the uv-plane and n is a Gaussian realization of the noise.
We discretize the signal s, data d and noise n with np elements.
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We generate all input visibilities within a 20 deg2 patch dis-
cretized to 128 pixels per side, similar to the approach of Myers
et al. (2003) and Sutter et al. (2012). While this size of patch vi-
olates the strict flat-sky approximation, it allows us to explore the
validity of our technique at higher resolutions and probe the range
of scales accessible to realistic interferometers. Because it is easier
in interferometry to perform calculations in visibility space than
in image space (Baron, Kloppenborg & Monnier 2012), we do not
establish an observation wavelength for these mock observations,
since our results and conclusions are independent of wavelength.

We model the primary beam pattern A as a Gaussian with peak
value of unity and standard deviation 1.◦5. With these parameters
the primary beam decreases to a value of 10−3 halfway to the edge
of the box. This allows us to include all Fourier modes up to the
Nyquist frequency in our analysis and ensures that the periodic
boundary conditions inherent in the Fourier transform do not cause
unwanted edge effects. We prevent the primary beam from reaching
values below 10−4. This value reflects a balance between faithfully
representing the suppression of signals far from the point centre
(so that Fourier transforms have correct periodic boundaries) and
the need to preserve numerical stability in the conjugate-gradient
algorithm utilized in the method below.

We assemble the interferometer array in a simple way by ran-
domly placing 12 antennas and selecting all baseline pairs within
the uv-plane. We then allow the assembly to rotate uniformly for 6 h
while observing the same sky patch at the north celestial pole. This
choice of antenna arrangement and integration time roughly corre-
sponds to existing instruments, such as an extended configuration
of Atacama Large Millimeter/submillimeter Array (ALMA; Nyman
et al. 2010) or Very Large Array (VLA; Perley et al. 2011), although
our fiducial set-up uses fewer elements to highlight the performance
of our method in less-than-optimal observing regimes. The inter-
ferometer pattern is discretized to the same resolution as our input
images (np = 128 pixels on a side; described below). We construct
the interferometer pattern I by placing a value of one wherever a
baseline length intersects a pixel during its rotation and zeros else-
where. We show the resulting uv-plane coverage in Fig. 1. This

Figure 1. Fiducial interferometer pattern (black) after randomly placing 12
antennas and integrating for 6 h assuming a pointing at the north celestial
pole. The interferometer pattern is discretized to the same resolution as our
input images (np = 128 pixels on a side).

configuration covers roughly 70 per cent of the uv-plane, although
the coverage varies significantly for each �-bin, where � is the ra-
dius of a given annulus in the uv-plane. Some bins, especially at
very low and very high �, have zero coverage due to the lack of
baselines at that distance. However, even if these bins had adequate
coverage, we expect statistics here to be relatively poor due to the
reduced number of modes in these regions. Most bins have at least
60 per cent coverage and several bins have complete coverage.

We determine the noise per pixel by summing the integration
time spent in that pixel by all baselines. We do not adopt a noise
model for a particular instrument; rather, we set the noise variance
to be

σ 2
i ∝ 1/tobs,i , (2)

where tobs is the observation time in pixel i. We then set an overall
SNR of 10 by multiplying all noise variances by a constant value
to maintain |IFAs|/|In| = 10. This provides a scaling of the noise
that would normally be caused by instrument effects such as the
effective area of the apertures and the system temperature in a
realistic observation. We use a Gaussian realization of this noise
variance to generate n in equation (1). We then multiply this noise
by the interferometer pattern I to maintain consistency with the
signal. Fig. 2 shows a particular noise realization for one of our test
images and the resulting data d.

2.2 Test images

Radio interferometers are used to study a wide variety of interesting
astrophysical and cosmological phenomena, such as supernova rem-
nants (Bhatnagar et al. 2011), molecular gas clouds (Gratier et al.
2010), cluster radio haloes (Cassano et al. 2010), magnetic fields in
dwarf galaxies (Heesen et al. 2011), the interstellar medium (Zhang,
Hunter & Elmegreen 2012), the galactic centre (McClure-Griffiths
et al. 2012) and the cosmic microwave background (Pearson et al.
2005). To assess the ability of our method to cope with this variety
of targets we select eight input images drawn from the CASA (Jaeger
2008) user guide,1 which we present in Fig. 3.

The test images represent a diverse variety of realistic – and a
few unrealistic – imaging scenarios, such as a protoplanetary disc, a
face-on spiral galaxy, a cluster, an active galactic nucleus (AGN) jet
and lobe and the face of Einstein. These images were provided in a
mix of resolutions and dynamic ranges. To simplify our analysis (but
without loss of generality), we remapped all images to a uniform
grid np = 128 pixels on a side and renormalized all intensities to a
peak of unity. Some test images had artificial artefacts built-in, and
the remapping procedure introduced some additional glitches in the
image. We left these artefacts intact to test the ability of our isotropic
Gaussian process prior to recover highly anisotropic portions of the
data.

3 M E T H O D O F G I B B S S A M P L I N G

Previous works have extensively discussed Gibbs samples (e.g.
Wandelt et al. 2004; Sutter et al. 2012), so we only briefly in-
troduce the relevant equations as applied to interferometric obser-
vations here. We begin with some initial guess of the angular power
spectrum C0

� and progressively iterate samples from the conditional
distributions:

si+1 ← P
(
s|Ci

�, m
)
, (3)

1 http://casaguides.nrao.edu/index.php?title=Sim_Inputs
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Figure 2. Left: noise realization used in all test cases. The noise is randomly selected assuming a variance given by equation (2) and an overall SNR of 10.
Right: example data d (equation 1) in the uv-plane for the Einstein test image.

Figure 3. Suite of test input images. All images have been rescaled to 128 × 128 pixels and have had their intensities remapped to a maximum of unity. The
repixelization process introduces some artefacts, which we leave in place to assess the ability of our isotropic prior to handle anisotropic data. Each image is
20◦ across. The colour scale ranges from 0.0 (black) to 1.0 (white).

Ci+1
� ← P (C�|si+1), (4)

where m is the least squares estimate of the signal s given the data
d (i.e. BTN−1Bm = BTN−1d , where B represents a full signal-to-
data operator). The samples (Ci

�, s
i) converge to samples from the

joint distribution P(C�, s, m) = P(m|s)P(s|C�)P(C�) after a sufficient
number of iterations.

Given an angular power spectrum sample Ci
�, we generate a new

signal sample by drawing from a multivariate Gaussian with mean
Si(Si + N)−1m and variance ((Si)−1 + N−1)−1. Here S and N are the
signal and noise covariance, respectively. We do this by solving the
set of equations

Msi+1 = ATF−1I (INI )−1d + F−1S−1/2Fξ1

+ ATF−1I (INI )−1/2Fξ2, (5)

where we define the matrix operator M as

M ≡ F−1S−1F + ATF−1I (INI )−1IFA. (6)

In the above equations AT is the primary beam transpose and F−1 is
the inverse Fourier transform. The first term in the right-hand side
of the above equation provides the solution for the Wiener-filtered
map, while the second and third terms of equation (5) provide
random fluctuations with the required variance. The vectors ξ 1 and
ξ 2 are of length np with elements drawn from a standard normal
distribution. As an illustration, Fig. 4 shows an example Wiener-
filtered map (i.e. from just solving the first term in the right-hand
side) and full signal sample si at a single iteration for the Einstein
test case. We see that the fluctuation terms in equation (5) fill in
regions weakly constrained by the data with a guess that mimics the
known portions of the signal given the level of noise.
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Figure 4. Sample iteration of the Gibbs sampling algorithm for the Einstein
test image, showing the Wiener-filtered signal (left) and full sample recon-
struction with mock fluctuations added (right). Each image is 20◦ across.
The colour scale ranges from 0.0 (black) to 1.0 (white).

The signal covariance matrix S is diagonal in the uv-plane for
isotropic signals (which we assume as part of our Gaussian pro-
cess prior), so S�,�′ = C�δ�,�′ , where � = 2πu, with u being the
radial distance in the uv-plane. Here and throughout we assume
the flat-sky approximation that makes this identity valid. By con-
struction, Gibbs sampling explores the exact posterior and therefore
treats the couplings introduced by partial sky coverage optimally
(Wandelt et al. 2004). The algorithm ‘knows’ about the couplings
since they are contained in the data model (equation 1) which under-
lies the analysis. However, to a very good approximation the noise
covariance matrix N is diagonal, and thus we will assume this for
simplicity. We assign to the matrix N entries equal to Ni,j = σ 2

i δi,j ,
where σ i is the noise variance for the ith pixel in the uv-plane. The
construction I(INI)−1 provides a pseudo-inverse of N, so that any
locations in the uv-plane with no antenna coverage do not yield
infinities when taking the inverse.

We solve numerically the above matrix–vector equation using a
preconditioned conjugate-gradient scheme (Press et al. 1986). The
preconditioner approximates the diagonal components of M and is

P −1 = F−1I (INI )−1IF (F−1Ã2), (7)

where Ã is the Fourier transform of the primary beam pattern.
We implemented the code to solve the above equations with the
open-source PETSc library (Balay et al. 1997, 2010, 2011) and the
MPI-parallelized version of FFTW (Frigo & Johnson 2005).

Given the latest signal sample, si, we generate a new angular
power spectrum sample from equation (4) by computing the vari-
ance π2

l in annuli of constant � on the Fourier-transformed signal.
We then use this variance to draw from the probability density
P(C�|si), which follows an inverse Gamma distribution, by creating
a vector p� of length n� (assuming a Jeffreys’ ignorance prior) and
unit Gaussian random elements. Here, n� is the number of pixels in
the bin �. The next power spectrum sample is then simply

Ci+1
� = π�

|p�|2
. (8)

In the above, we assume �(� + 1)C� to be constant across the
width of each annulus in the uv-plane. The width of each annulus can
be set as desired. For the test cases which we work with in this paper
we chose the width to be 8π/L, where L is the longest baseline of
the interferometer. This is four times the uv-space resolution. This
choice limits correlations between angular power spectrum bins
which develop as a consequence of partial sky coverage. All �-bins
have uniform width except for the first, which we restrict to cover
only the central zone where we enforce Ci

0 = 0, since our analysis

Figure 5. Posterior signal variance in image space (left) and acceptance
mask derived from the variance (right) for the Einstein test image. The
variance map is 20◦ across, and to show the detailed shape of the variance
mask, we have zoomed in on the inner 10◦. The acceptance region of the
mask is shown in black.

cannot constrain the DC mode. We wish to capture as much power
spectrum information as possible, so we correspondingly widen the
width of the second bin to close this gap.

To determine convergence so that our iterative samples from
the conditional distributions (equation 4) are indeed samples from
the joint distribution, we employ multiple chains with different
random number seeds. Our convergence criterion is the Gelman–
Rubin (G–R) statistic, which compares the variance among chains
to the variance within each chain. The G–R statistic asymptotes
to unity, so convergence is said to be achieved when this statistic
is below a given tolerance level for each �-bin (Gelman & Rubin
1992). For our test images we stopped iterating when the G–R
statistic reached less than 1.1, which took from 500 to 1500 steps,
depending on the image.

After convergence, we take the mean of the signal samples as
our reconstructed image and simply calculate the variance for each
pixel to assess the uncertainty in the reconstruction. Fig. 5 shows the
variance for the Einstein test image. We naturally see insignificant
variance in the centre of the primary beam where the data support is
strongest, with steadily increasing variance away from the pointing
centre.

We may use the variance to build a mask of the final reconstructed
image in which we only accept pixels below a given variance thresh-
old. While this certainly is not necessary for the method to work, it
provides an easy way to combine the posterior mean and variance
information in a single plot. First, we compute the asymptotic vari-
ance σ asmp, or the mean of the variance along the outer edge of image
plane. We then reject any pixel whose variance σ is greater than
σ asmp/2 and whose SNR s/

√
σ < 1. This last criterion prevents us

from masking low-intensity, but still well-constrained, pixels. The
values chosen to create the mask are arbitrary, and we choose them
solely on aesthetic merit. We repeat: this mask is not necessary to
perform the deconvolution and produce a reconstructed signal. We
only use it to neatly incorporate the measured uncertainty informa-
tion in the plotted images.

As we see in Fig. 5, the acceptance mask generally follows
the primary beam pattern. The detailed shape near the mask
edge is influenced by the relative SNR levels and highlights the
non-obvious nature of the regions of reliable reconstruction. We
also notice an asymmetry in the acceptance mask: this is in
response to the asymmetric nature of the fiducial interferometer
set-up (Fig. 1) and provides strong evidence that the symmetric na-
ture of our Gaussian process prior does not greatly influence our
inference.
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4 C O M PA R I S O N TO CLEAN

We compare images recovered by Gibbs sampling, as described in
the previous section, to those recovered by a proxy for the point
source-based CLEAN algorithm. CLEAN is implemented in various
radio interferometric imaging packages (such as CASA). However, it
is not straightforward to use these packages to reconstruct images
from simulated visibilities already defined on gridded coordinates;
these packages are instead tailored to analyse observations made
by real interferometric telescopes, with data in a specific format.
Consequently, we compare to reconstructions made with a proxy
for the point source-based CLEAN algorithm. While there are more
sophisticated implementations of CLEAN that would undoubtedly
perform better with our test images, this gives us a simple standard of
comparison allowing us to demonstrate the viability of our method.
We will include further comparisons in future work.

It was shown by Wiaux et al. (2009) that �1 reconstruction with
the Dirac basis (i.e. pixel basis) results in very similar reconstruc-
tion quality to CLEAN (see Wiaux et al. 2009, fig. 1). This is to be
expected since it is known already that CLEAN is closely related to
�1 reconstruction with the Dirac basis (Marsh & Richardson 1987).
We thus take a similar approach to that taken by recent studies
(McEwen & Wiaux 2011; Carrillo et al. 2012, 2013b; Wolz et al.
2013) and use �1 reconstruction with a Dirac basis as a proxy
for the CLEAN algorithm. The reconstructed image that serves as a
CLEAN proxy is therefore given by the solution of the optimization
problem:

min ‖s‖1 such that ‖d − IFAs‖2 ≤ ε, (9)

where ‖ · ‖1 denotes the �1 norm and ε is related to a residual noise
level estimator (see e.g. Wiaux et al. 2009; Carrillo et al. 2012). We
solve this problem using the Sparse Optimisation (SOPT)2 package
(Carrillo et al. 2012, 2013a), using the Douglas–Rachford splitting
algorithm (Combettes & Pesquet 2007). Note that the SOPT package
is a versatile code, capable of solving much more sophisticated
optimization problems than the straightforward �1 minimization
performed here (for examples of more extensive use see Carrillo
et al. 2012, 2013b; Wolz et al. 2013).

Figs 6 and 7 are galleries of the input images (without noise), our
posterior mean reconstruction using Gibbs sampling and a standard
reconstruction using our implementation of CLEAN. For all these
images we have zoomed in to the inner 10◦ where the primary beam
selects the most prominent signal. We have applied our variance-
based acceptance mask for our Gibbs sampling reconstructions.
We see that Gibbs sampling is able to recover the complete range
of source images to very high fidelity. We even faithfully recover
glitches in the input image, such as the asymmetric protoplanetary
disc in the SWOLF image and discontinuous lobe structure in the
3c288 image. This emphasizes the power of the Wiener filter: in
regions of strong data support, our samples are driven to the data
regardless of choice of prior. We also recover low-intensity portions
of the image both in the centre of the image and towards the edge
of the primary beam, such as the regions between the spiral arms in
the M51HA image. However, there are other low-intensity regions,
such as the lower portion of the moustache in the Einstein image,
where the signal is too low to distinguish it from the noise, and our
mask rejects those pixels.

A comparison to the CLEAN images especially highlights the abil-
ities of our Gibbs sampling reconstruction technique. In all images,

2 http://basp-group.github.io/sopt/

we recover a broader range of fluxes over a wider extent than CLEAN

(as in e.g. the cluster reconstruction). Furthermore, Gibbs sampling
is able to recover portions of the image further into the edges of the
primary beam, as can be easily seen in the 3c288 and HCO+4-360
images. Finally, in images with glitches, such as SWOLF, CLEAN

tends to exaggerate the asymmetries.
Fig. 8 shows the residuals (i.e. difference maps) between the

mean posterior signal generated by Gibbs sampling and the in-
put test image. In all cases the variance-based acceptance mask
has been applied. We see that the maximum residual occurs in
the centre of the Einstein test image, where the Gibbs method
slightly underestimates the source intensity. This is probably due
to the method attempting to average the very high contrast fea-
tures adjacent to the centre. The Einstein image turns out to be
the most difficult: the residuals for all other images are typically
an order of magnitude smaller. While the residuals are somewhat
correlated with the distributions of the source image, like the Ein-
stein test image it appears that our method performs poorest in
regions of high intensity contrast. However, these differences are
very mild: typically on the order of 1 per cent of the input source
intensity.

We may further quantify the differences between the input sig-
nals and their reconstructions with CLEAN and our Gibbs sampling
method by binning the intensities, as we do in Fig. 9. Bounding
the histograms of the posterior mean are 2σ error bars measured
from the variance in the generated samples. This is another example
of the kind of information unavailable in traditional reconstruction
techniques. For almost all test images and intensity bins, our pos-
terior mean reconstruction is within two standard deviations of the
input signal. This is unsurprising: our Bayesian method automati-
cally discovers the local variance because that variance is directly
related to the relative level of signal and noise in a given bin. In a few
bins, such as the high-intensity bin of the Einstein test image, our
method tends to underestimate the true intensity. This is due to the
high pixel-by-pixel contrast in the central image region discussed
above.

While the CLEAN image intensities largely fall within the un-
certainty ranges of the Gibbs reconstruction, there is a system-
atic steepening of the distributions: CLEAN tends to have too
many low-intensity pixels and correspondingly too many high-
intensity pixels. This validates the discussion above which noted
that CLEAN does not fully reproduce the observed range of input
fluxes.

Finally, we may further simplify the comparison by reducing
our measurement error to a single scalar. Two error metrics are
commonly used: the rms of the residual map, and the SNR. This
last quantity itself has several variations; we take that of Carrillo
et al. (2012):

SNR ≡ 20 log10
σs

σs−ŝ
, (10)

where σx is the standard deviation of image x, with s denoting the
original image and ŝ denoting the reconstructed image. For both
measures we first apply our variance-based acceptance mask before
calculating the error metrics.

Fig. 10 shows the rms and SNR for each of our test images for
both Gibbs sampling and traditional CLEAN. As expected from our
residuals, Gibbs sampling performed most poorly in terms of rms
with the Einstein test image due to its highly complex structure. With
the exception of that image and g41.1-0.3.b, all rms errors are below
4 × 10−3. The SNR for all reconstructions with Gibbs sampling fall
between 10 and 25. In both rms and SNR measures Gibbs sampling
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Figure 6. Beamed input images without noise added (As; left-hand column), posterior mean signal after 500 Gibbs sampling iterations (middle column) and
CLEAN reconstruction (right-hand column). Axes are marked in degree. For clarity we have zoomed in on the innermost 10◦ where the signal is most prominent.
The colour scale ranges from 0.0 (black) to 0.6 (white).
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Figure 7. Same as Fig. 6 but for the remaining four test images.

outperforms CLEAN for all test images. The largest differences occur
in images with high degrees of symmetry (e.g. M51HA, SWOLF)
since in these cases our isotropic Gaussian process prior performs
best in marginal SNR portions of the image.

5 C O N C L U S I O N S

We have presented an innovative method for deconvolving radio in-
terferometric images using the Bayesian method of Gibbs sampling.
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Figure 8. Residuals (differences between reconstructed signal and beamed input signal As) for the Gibbs sampling algorithm for all test images. All images
are 20◦ across. The colour scale ranges from 0.0 (black) to 1.0 (white).

Figure 9. Histograms of sky intensities in the beamed input signal As (red), CLEAN reconstructed sky (green) and Gibbs sampling reconstructed sky (blue).
Error bars (light blue) on the Gibbs sampling intensities are 2σ uncertainties calculated from the posterior signal samples.

Our method naturally offers several advantages over traditional de-
convolution approaches. It fully accounts for signal and noise mode
coupling and incomplete uv-plane coverage in an automatic and
well-motivated fashion, requires no fine-tuning or supervision as
the method progresses and provides an informative description of
the uncertainty information in the signal reconstruction. We choose
an isotropic Gaussian process image prior, though we do not specify
the signal covariance in advance.

We have tested our method with a realistic interferometric ob-
serving scenario of a wide variety of source images. These images
represent typical targets, including protoplanetary discs and AGN
jet and lobe systems. Note that our choice of prior is wrong for all
test cases, but the iterative application of the Wiener filter allows
us to discover the source images within the noise and incomplete
uv-plane coverage. We find that our method is quite robust: regard-
less of the structure of the source image we are able to recover
the intensity distribution to a very high fidelity. Our method out-

performs traditional point source-based CLEAN in terms of intensity
distributions, rms error and reconstruction SNR. As expected given
our isotropic Gaussian process prior, we perform best on images
with large amount of symmetry, though the Wiener filter provides a
route for reliable reconstructions of asymmetric images in regions
of strong data support regardless of source structure.

Using our method we can also easily incorporate uncertainty
information in the reconstructed image. As discussed in earlier
works (Wandelt et al. 2004), the error model generated from the
isotropic Gaussian process prior tends to underestimate the true
errors, but this situation is far preferable to no error model at all.
With our error model we can construct acceptance masks based on
the local (i.e. pixel-by-pixel) signal-to-variance ratios. The desired
threshold can be adjusted based on the desired level of confidence
in the deconvolution. Since the sample variance is directly tied to
the relative level of noise by way of the Wiener filter, our method
naturally and self-consistently determines this mask.
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Figure 10. Quantitative assessment of the errors. We show rms error between the beamed input signal As and the reconstructed images in the left-hand plot.
In the right-hand plot we show the SNR as defined by equation (10). For each image we compare the Gibbs sampling reconstructed sky (red) to the CLEAN

reconstruction (blue). For the rms (SNR) error measurement, smaller (larger) values indicate better performance.

While the test cases we have presented in this work use an in-
terferometric set-up with realistic noise levels, primary beam shape
and antenna array, they do represent a relatively simplistic observing
scenario. A fully implemented method would include simultaneous
solutions of multiple frequencies, mosaicked images and wide band-
width observations. Also, we have specified an overall SNR of 10
for our fiducial observations, and we must examine the performance
of this method in different regimes.

Additionally, future large-scale interferometers will deliver in-
credibly high volumes of data. Image deconvolution from even
a single pointing at a single frequency will tax most computing
systems. To accommodate future data sets we have implemented
our algorithm using the MPI-parallelized PETSc (Balay et al. 2011)
toolkit, so our approach automatically grows with the size of the
data without loss of scalability. Algorithmically, the most expensive
portion of our approach is the solution to equation (5), which scales
as O(np log np) in the ideal pre-gridded flat-sky approximation we
have presented here.

While we have not discussed foreground removal in this work,
this method easily accommodates modelling in two fashions. First,
partial signal or foreground information, if known in advance, can
enter as an additional prior. Alternatively, foreground models can be
added as an additional sampling step within the algorithm (Wandelt
et al. 2004). The resulting posterior mean signal will thus automat-
ically include marginalizations over the unconstrained parameters
of the model. The same approach can be taken with the noise: if,
for example, the noise spectrum is known but the absolute ampli-
tude is not, we can sample over that amplitude. This flexibility, in
addition to the other strengths discussed above, suggests that Gibbs
sampling is a promising response to the challenges of contemporary
and future radio interferometric observations.
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