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ABSTRACT

We introduce the concept of compressed convolution, a technique to convolve a given data set with a large number of non-orthogonal
kernels. In typical applications our technique drastically reduces the effective number of computations. The new method is applicable
to convolutions with symmetric and asymmetric kernels and can be easily controlled for an optimal trade-off between speed and
accuracy. It is based on linear compression of the collection of kernels into a small number of coefficients in an optimal eigenbasis.
The final result can then be decompressed in constant time for each desired convolved output. The method is fully general and suitable
for a wide variety of problems. We give explicit examples in the context of simulation challenges for upcoming multi-kilo-detector
cosmic microwave background (CMB) missions. For a CMB experiment with O(10 000) detectors with similar beam properties, we
demonstrate that the algorithm can decrease the costs of beam convolution by two to three orders of magnitude with negligible loss of
accuracy. Likewise, it has the potential to allow the reduction of disk space required to store signal simulations by a similar amount.
Applications in other areas of astrophysics and beyond are optimal searches for a large number of templates in noisy data, e.g. from a
parametrized family of gravitational wave templates; or calculating convolutions with highly overcomplete wavelet dictionaries, e.g.
in methods designed to uncover sparse signal representations.

Key words. methods: data analysis – methods: statistical – methods: numerical – cosmic background radiation

1. Introduction

Convolution is a very common operation in processing pipelines
of scientific data sets. For example, in the analysis of cosmic
microwave background (CMB) radiation experiments, convolu-
tions are used to improve the detection of point sources (e.g.,
Tegmark & de Oliveira-Costa 1998; Cayón et al. 2000), in the
search for non-Gaussian signals on the basis of wavelets (e.g.,
Barreiro & Hobson 2001; Martínez-González et al. 2002), dur-
ing mapmaking (e.g., Tegmark 1997; Natoli et al. 2001), or
Wiener filtering (Elsner & Wandelt 2013).

Convolution for data simulation presents similar if not
greater challenges: the current and next generations of CMB
experiments are nearly photon-noise limited. The only way to
reach the sensitivity required to detect and resolve B-modes or
to resolve the Sunyaev-Zel’dovich effect of clusters of galax-
ies over large fractions of sky is to build detector arrays with
N ∼ 102−104 detectors. Simulating the signal for these experi-
ments requires convolving the same input sky with N different
and often quite similar kernels.

In the simplest case, when the convolution kernel is az-
imuthally symmetric, convolution involves the computation of
spherical harmonic transformations. Although highly optimized
implementations exist (e.g., libsharp, Reinecke & Seljebotn
2013; the default back end in the popular HEALPix library,
Górski et al. 2005), spherical harmonic transformations are nu-
merically expensive and may easily become the bottleneck in
data simulation and processing pipelines.

Even more critical is the more realistic setting when the
kernels are anisotropic (e.g., when modeling the physical op-
tics of a CMB experiment or when performing edge or ridge

detection with curvelets or steerable filters, e.g., Wiaux et al.
2006; McEwen et al. 2007) In this case, the cost of convolution
additionally scales with the degree of azimuthal structure in the
kernel (Wandelt & Górski 2001) and the convolution output is
parametrized in terms of three Euler angles each taking ∼L dis-
tinct values, where L is the bandlimit of the convolution output.
Storing thousands of such objects, one for each beam, requires
storage capacity approaching the peta-byte scale.

In this paper, we show that regardless of the details of the
convolution problem, or the algorithm used for performing the
convolution, the computational costs and storage requirements
associated with multiple convolutions can be considerably re-
duced as long as the set of convolution kernels contains linearly
compressible redundancy. Our approach exploits the linearity of
the convolution operation to represent the set of convolution ker-
nels in terms of an often much smaller set of optimal basis ker-
nels. We demonstrate that this approach can greatly accelerate
several examples taken from CMB data simulation and analysis.

Approaches based on singular value decompositions (SVD)
have already proven very successful in observational astronomy
to correct imaging data for spatially varying point spread func-
tions (e.g., Lupton et al. 2001; Lauer 2002). Likewise, SVDs
have been used to accelerate the search for gravitational wave
signatures (e.g., Cannon et al. 2010) using precomputed tem-
plates (Jaranowski & Królak 2005). In this paper, we show these
methods to be special cases of a more general approach that re-
turns a signal-to-noise eigenbasis that achieves optimal acceler-
ation and compression for a given accuracy goal.

The paper is organized as follows. In Sect. 2, we introduce
the mathematical foundations of our method. Using existing
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spaceborne and ground based CMB experiments as an example,
we then analyze the performance of the compressed convolution
scheme when applied to the beam convolution problem (Sect. 3).
After outlining the scope of our algorithm in Sect. 4, we summa-
rize our findings in Sect. 5.

2. Method

Starting from the defining equation of the convolution integral,
we first review the basic concept of the algorithm. Given a raw
data map d(x), the convolved object (time stream, map) s(x) is
derived by convolution with a kernel K(x, y),

s(x) =
∫

K(x, y)d(y)dy. (1)

Note that, without loss of generality, we focus on the convolution
of two-dimensional data sets in this paper.

2.1. Overview

In practice, a continuous signal is usually measured only on a
finite number of discrete pixels. We therefore approximate the
integral in Eq. (1) by a sum in what follows,

si =
∑

j

Ki, jd j = (Rik)† d. (2)

For our subsequent analysis, we introduced the operator R in the
latter equation such that Rik is the ith row of the convolution
matrix, constructed from the convolution kernel K.

For any complete set of basis functions {φ1, . . . , φN}, there
exists a unique set of coefficients {λ1, . . . , λN}, such that

Ki, j =
∑

k

λkK̂(φk)i, j, (3)

i.e., we do a basis transformation of the kernel from the standard
basis to the basis given by the {φk}.

Taking advantage of the linearity of the convolution opera-
tion, Eq. (2) can then be transformed to read

si =
∑

j

⎛⎜⎜⎜⎜⎜⎝∑
k

λkK̂(φk)i, j

⎞⎟⎟⎟⎟⎟⎠ d j =
∑

k

λk

⎛⎜⎜⎜⎜⎜⎜⎝∑
j

K̂(φk)i, j d j

⎞⎟⎟⎟⎟⎟⎟⎠
=

∑
k

λk sk
i , (4)

where the sk are the raw input map convolved with the kth mode
of the basis functions themselves. That is, the final convolution
outputs are now expressed in terms of a weighted sum of indi-
vidually convolved input maps with a set of basis kernels.

We note that for a single convolution operation, the decom-
position of the convolution kernel into multiple basis functions
in Eq. (4) cannot decrease the numerical costs of the operation.
However, potential performance improvements can be realized
if multiple convolutions are to be calculated, as we will discuss
in the following.

Consider the particular problem where a single raw map d
should be convolved with ntot different convolution kernels, i.e.,
we want to compute

s(n)
i =

∑
j

K(n)
i, j d j, (5)

where we introduced the kernel ID n ∈ {1, . . . , ntot} as a running
index.

Applying the kernel decomposition into a common set of ba-
sis functions, Eq. (4) now reads

s(n)
i =

∑
k

λ(n),k sk
i . (6)

This finding builds the foundation of our fast algorithm: the nu-
merically expensive convolution operations are applied only to a
limited number of basis modes used in the expansion. The com-
putational cost is therefore largely independent of the total num-
ber of kernels, ntot, since each individual solution is constructed
very efficiently via a simple linear combination out of a set of
precomputed convolution outputs.

2.2. Optimal kernel expansion

For the kernel decomposition in Eq. (6) to be useful in practice,
we have to restrict the total number of basis modes for which the
convolution is calculated explicitly. To find the optimal expan-
sion, i.e., the basis set with the smallest number of modes for a
predefined truncation error, we first define the weighted sum of
the expected covariance of all the elements of the convolution
output

σ2 =

〈∑
(n)

∑
i, i′

s(n)
i N(n)−1

i i′ s(n)
i′

〉
. (7)

Here, we have introduced a real symmetric weighting matrix,
N(n), which allows us to specify what aspects of the convolved
maps we require to be accurate. For the case of convolving to
simulate CMB data, a natural choice for N(n) would be the noise
covariance for the nth channel. It ensures that any given channel
will be simulated at sufficient accuracy and that after the addition
of instrumental noise, the statistics of the resulting simulation are
indistinguishable from an exact simulation.

It is now easy to see how to decompose the kernels into a
basis such a way as to concentrate the largest amount of variance
in the first basis elements. Define the Hermitian matrix

Mnm =

〈 ∑
i, i′ , i′′

N
(n)− 1

2
i′ i s(n)

i N
(m)− 1

2
i′ i′′ s(m)

i′′

〉
=

∑
i, i′

[(
N(n)− 1

2

)†
N(m)− 1

2

]
i i′

(
Ri′k

(m)
)

C
(
Rik

(n)
)†
, (8)

where C is the covariance of the input signal and N(n) 1
2 is any

matrix such that (N(n) 1
2 )†N(n) 1

2 = N(n).
Then we can rewrite the scalar Eq. (7) as a matrix trace over

the kernel IDs

σ2 = 〈tr (M)〉 =
∑
n, i, i′

N(n)−1
i i′ (Ri′k

(n))C(Rik
(n))†. (9)

Since the matrix in Eq. (9) is Hermitian, its ordered diago-
nal elements cannot decrease faster than its ordered eigenval-
ues by Schur’s theorem. Finding the eigensystem of M therefore
results in the kernel decomposition that converges faster than
any other decomposition to the result of the direct computation.
In other words, the decomposition is optimal because discard-
ing the eigenmodes with the smallest eigenvalues results in the
smallest possible change in the overall signal power.

If we denote the eigenvectors of M by ur, with corresponding
eigenvalues νr, the optimal compression kernel eigenmodes are
given by φ(n)

i =
∑

m u(n)
(m)k

(m)
i , and the mean square truncation error

is the sum of the truncated eigenvalues.
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Considering the CMB case of a convolution on the sphere
with azimuthally symmetric convolution kernels and multipole-
dependent diagonal weights, N�, Eq. (8) simplifies to

Mnm =
∑
�

2� + 1
4π

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ C�√
N(n)
�

N(m)
�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ K(n)
�

K(m)
�
, (10)

and Eq. (9) becomes

σ2 =
∑
�, n

2� + 1
4π

⎛⎜⎜⎜⎜⎜⎝ C�
N(n)
�

⎞⎟⎟⎟⎟⎟⎠ K(n)
�

K(n)
�
, (11)

which clearly shows the signal-to-noise weighting at work.
Note, that the expression for the variance can be promoted to

a matrix in a dual way,

Mll′ =
∑

n

√
2� + 1

4π
C�

N(n)
�

√
2�′ + 1

4π
C�′
N(n)
�′

K(n)
�

K(n)
�′ , (12)

which gives rise to an alternative way to calculate the optimal
compression basis.

This dual approach will be computationally more convenient
than the other approach if the number of kernels is larger than
the number of multipoles in the �-range considered. The result-
ing compression scheme will be identical in both cases. This
is so because both approaches are optimal by Schur’s theorem
and each gives a unique answer if none of the eigenvalues are
degenerate1.

2.3. Truncation error estimates

In case the kernels are of similar shape, or differ only in regimes
that are irrelevant due to low signal-to-noise, the eigenvalues of
the individual modes will decrease quickly. As a result, we can
truncate the expansion in Eq. (6) at nmodes � ntot. This will in-
duce a mean square truncation in the weighted variance of the
convolution products of

∑ntot
r = nmodes + 1 νr .

The error ΔK introduced by the truncation can be calculated
for each kernel explicitly,

ΔKi, j =

ntot∑
k = nmodes + 1

λkK̂(φk)i, j. (13)

For the convolution of a data set with power spectrum C� on the
sphere, for example, the mean square error will then amount to

σ2
total =

�max∑
�= 0

(2� + 1)
4π

ΔK2
� C�, (14)

where ΔK� is the expansion of the beam truncation error into
Legendre polynomials.

2.4. Connection to the SVD

While Eq. (9) provides us with the optimal kernel decomposi-
tion, the power spectrum of the data or their noise properties to
construct the kernel weights may not necessarily be known in
advance. For uniform weightings, N ∝ �, and assuming a flat
signal power spectrum, the equation simplifies and we obtain

1 If some eigenvalues do happen to be degenerate then the solutions
will differ in ways that are not relevant to the compression efficiency.

the mode expansion from a singular value decomposition of the
collection of kernels.

Although not strictly optimal, we note that it is possible to
obtain good results with this simplified approach in practice. To
compute the kernel expansion, we reshape the convolution ker-
nels into one-dimensional arrays of length m and arrange them
into a common matrix T, with size ntot × m. The singular value
decomposition of this matrix,

T = UDV†, (15)

computes the ntot × ntot matrix U, the ntot × m matrix D, and
the m × m matrix V. The decomposition then provides us with
a set of basis functions, returned in the columns of V. Their rel-
ative importance is indicated by the entries of the diagonal ma-
trix D, and their individual coefficients λ are stored in U.

2.5. Summary

In summary, the individual steps of the algorithm are as follows:
we first find the eigenmode decomposition of the set of convo-
lution kernels using either the optimal expansion criterion or a
simplified singular value decomposition. Then, we identify the
number of modes to retain to comply with the accuracy goal.
As a next step, we perform the convolution of the input map for
each eigenmode separately. To obtain the final results, we com-
pute the linear combination of the convolved maps with optimal
weights for each kernel.

It is worth noting that compressed convolution can never in-
crease the computational time required for convolution, except
possibly for some overhead of sub-leading order, attributed to
the calculation of the optimal kernel expansion (this computa-
tion has to be done only once for a given set of kernels). This
can be seen explicitly in the worst case scenario of strictly or-
thogonal kernels: all modes must be retained and the method
becomes equivalent to the brute force approach.

3. Application to CMB experiments

After having outlined the basic principle of the algorithm, we
now analyze the performance of the method when applied to the
beam convolution operation of current CMB experiments.

3.1. Planck

We use the third generation CMB satellite experiment Planck
(Planck Collaboration 2011) as a first example to illustrate the
application of the algorithm. We make use of the 217 GHz
HFI instrument (Planck HFI Core Team 2011) and consider the
beam convolution problem of CMB simulations. Azimuthally
symmetrized beam functions for the six individual detectors at
that frequency are available from the reduced instrument model
(Planck Collaboration 2014).

A comparison of the eigenvalues of a singular value decom-
position reveals that the beam shapes are sufficiently similar to
be represented with only a limited number of basis functions
(Fig. 1). As shown in Fig. 2, selecting the first three eigenmodes
for a reconstruction is sufficient to represent the beams to an ac-
curacy of the order O

(
10−3

)
, better than the typical precision to

which the beams are known.
To illustrate the impact of the weighting scheme, we also

show the resulting eigenmodes using the optimal kernel expan-
sion (Eq. (12)) in Fig. 3. Here, we assumed a white noise power
spectrum, N� = const., in combination with a signal covariance
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Fig. 1. All six Planck beams at 217 GHz (left panel) have very similar shapes. As a result, the eigenvalues of their singular value decomposition
decrease quickly (right panel), allowing half of the modes to be safely discarded.
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Fig. 2. Left panel: retaining the first three out of six Planck 217 GHz beam eigenmodes allows to reduce the relative truncation error of all
convolution kernels to the order O

(
10−3

)
. Right panel: we compare the eigenmodes used in the convolution (solid lines) to the discarded modes

(dotted lines). Results in this plot have been obtained from a SVD, i.e. using kernel weights (2� + 1)C�/N(n)
� = const.
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Fig. 3. Kernel weights allow for a full control over truncation errors. Same as Fig. 2, but for a (2� + 1)C�/N(n)
� ∝ (2� + 1)/(� (� + 1)) weighting

scheme, enforcing a more precise kernel reconstruction on large angular scales at the cost of increased errors at high multipoles.

of C� ∝ 1/(� (�+1)), reflecting the approximate scaling behavior
of the CMB power spectrum.

We chose the beam with the largest reconstruction error for
an explicit test on simulated CMB signal maps. In Fig. 4, we
plot the difference map computed from the brute force beam

convolution and the compressed convolution with three eigen-
modes. A power spectrum analysis confirms that the truncation
induced errors are clearly subdominant on all angular scales.

The test demonstrates that the algorithm can be applied
straightforwardly to the beam convolution problem. In case of
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�

Fig. 4. Truncation errors are negligible. Using the kernel with the largest truncation error as worst case scenario, we plot the beam convolved
simulated CMB map used in this test of the Planck 217 GHz channels (left panel, we show a 10◦ × 10◦ patch). Middle panel: the difference map
between the results obtained with the exact convolution and the compressed convolution with three beam modes. Right panel: compared to the
fiducial power spectrum of the input map (dashed line), the power spectrum of the difference map is subdominant by a large margin on all angular
scales.

the six Planck 217 GHz detectors, we reduce the number of
computationally expensive spherical harmonic transformations
by a factor of two. This finding is characteristic for the scope
of the algorithm: for a small total number of convolution ker-
nels, the reductions in computational costs can only be modest.
However, already for the latest generation of CMB instruments,
the compressed convolution scheme can offer very large perfor-
mance improvements as we will demonstrate explicitly in the
next paragraph.

3.2. Keck

Exemplary for modern ground based and balloon-borne CMB
experiments, we now discuss the application of the algorithm
for the Keck array, a polarization sensitive experiment located
at the south pole that started data taking in 2010 (Sheehy et al.
2010). Its instrument currently consists of five separate receivers,
each housing 496 detectors, and scanning the sky at a common
frequency of 150 GHz.

Measurements have shown that the 2480 Keck beams can be
described by elliptic Gaussian profiles to good approximation
(Vieregg et al. 2012),

K(x) ∝ e−
1
2 (x−x0)C−1(x−x0), (16)

where the beam center is located at x0. Here, the beam size and
ellipticity is parametrized by the covariance matrix,

C = σ2

(
1 + ε 0

0 1 − ε
)
, (17)

with the receiver specific parameters σ and ε reproduced in
Table 1.

To simulate the optical system of the full Keck array, we
drew 2480 realizations of beam size and ellipticity according to
the receiver specifications and then used Eq. (16) to construct in-
dividual beams. We finally rotated the beams around their axes
with randomly chosen angles between 0 ≤ φ < 2π. Applying
fully random rotations is conservative since beams of bolome-
ters in the same receiver are known to have similar orientations.

We found that only the first eight common eigenmodes are
necessary to approximate all 2480 individual beams to a preci-
sion of at least the order O

(
10−3

)
. We illustrate this set of eigen-

modes in Fig. 5. In Fig. 6, we show as an example the beam with
the largest reconstruction error. For about 90 % of the detectors,
the truncation errors are below O

(
10−4

)
.

Table 1. Keck beam parameters as provided by Vieregg et al. (2012).

σ/[◦] ε

Receiver 0 0.214 ± 0.005 0.010 ± 0.007
Receiver 1 0.213 ± 0.006 0.012 ± 0.006
Receiver 2 0.213 ± 0.006 0.012 ± 0.007
Receiver 3 0.216 ± 0.008 0.013 ± 0.010
Receiver 4 0.218 ± 0.013 0.013 ± 0.010

We verified the results with a CMB simulation in flat sky ap-
proximation, high-pass filtered to suppress signal below � < 50.
We plot the difference map computed from a direct convolution
and the compressed convolution with eight eigenmodes in Fig. 7.
The error is subdominant on all angular scales.

The example outlined here demonstrates the full strength of
the algorithm. Computing beam convolutions for the Keck array,
we are able to reduce the number of computationally expensive
convolution operations from 2480 to only eight, an improvement
by a factor as high as 310.

4. Scope of the algorithm

As shown in Sect. 3, the algorithm has the potential to provide
huge speedups for the beam convolution operation of modern
experiments with a large number of detectors, necessary to im-
prove the sensitivity of CMB measurements in the photon noise
limited regime. Fast beam convolutions are not only important
for the simulation of signal maps for individual detectors. They
also play a crucial role in the mapmaking process, the iterative
construction of a common sky map out of the time ordered data
from different detectors observing at the same frequency.

Current experiments already deploy several hundreds to
thousands of detectors, making them ideal candidates for the
algorithm, e.g., SPTpol (about 800 pixels, Austermann et al.
2012), POLARBEAR (about 1300 pixels, Kermish et al. 2012),
EBEX (about 1400 pixels, Reichborn-Kjennerud et al. 2010),
Spider (about 2600 pixels, Filippini et al. 2010), ACTPol
(about 3000 pixels, Niemack et al. 2010). For future experi-
ments, the number of detectors can be expected to increase fur-
ther, e.g., for PIPER (about 5000 pixels, Lazear et al. 2013),
the Cosmic Origins Explorer (about 6000 pixels, The COrE
Collaboration 2011), or POLARBEAR-2 (about 7500 pixels
Tomaru et al. 2012), making the application of the algorithm
even more rewarding.
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Fig. 5. Simulated 2480 asymmetric Keck beams at 150 GHz are similar enough to be represented by only eight distinct beam eigenmodes to high
precision.
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Fig. 6. Left panel: we show the beam with the largest reconstruction error for the simulated Keck array. Right panel: using the first eight beam
eigenmodes, the truncation error is at most of the order O
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Fig. 7. Same as Fig. 4, but for the worst case of the simulated Keck experiment. Using eight beam modes for the convolution is sufficient to reduce
the truncation error to negligible levels.

The new method also allows a fast implementation of
matched filtering on the sphere (or other domains) if the size
of the target is unknown (e.g., to detect signatures of bubble

collisions in the CMB, McEwen et al. 2012), or analogously for
continuous wavelet transforms, frequently used in the context
of data compression or pattern recognition (e.g., Mallat 1989).
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Here, the input signal is convolved with a large set of scale dila-
tions of an analyzing filter or wavelet. Since the resulting convo-
lution kernels are of similar shape by construction, the decom-
position into only a few eigenmodes can be done efficiently. Our
new method therefore has the potential to increase the numerical
performance of such computations by a substantial factor.

Finally, besides from the reduction in computational costs,
we note that compressed convolution may also offer the possi-
bility to reduce the disk space required to store convolved data
sets. Instead of saving the convolved signal for each kernel sep-
arately, it now becomes possible to just keep the compressed
output for the most important eigenmodes, and efficiently de-
compress it with their proper weights for each individual kernel
on the fly as needed.

5. Summary

In signal processing, a single data set often has to be convolved
with many different kernels. With increasing data size, this oper-
ation quickly becomes numerically expensive to evaluate, possi-
bly even dominating the execution time of analysis pipelines.

To increase the performance of such convolution operations,
we introduced the general method of compressed convolution.
Using an eigenvector decomposition of the convolution ker-
nels, we first obtain their optimal expansion into a common
set of basis functions. After ordering the modes according to
their relative importance, we identify the minimal number of
basis functions to retain to satisfy the accuracy requirements.
Then, the convolution operation is executed for each mode sepa-
rately, and the final result obtained for each kernel from a linear
combination.

This algorithm offers particularly large performance im-
provements, if

– the total number of kernels to consider is large, and
– the kernels are sufficiently similar in shape, such that they

can be approximated to good precision with only a few
eigenmodes.

In case of the analysis of CMB data, we use the beam convolu-
tion problem as an example application of the compressed con-
volution scheme. On the basis of simulations of the Keck array
with 2480 detectors (Vieregg et al. 2012), we demonstrated that
the compressed convolution scheme allows to reduce the number
of beam convolution operations by a factor of about 300, offer-
ing the possibility to cut the runtime of convolution pipelines
by orders of magnitude. Additional improvements are possible
when used in combination with efficient convolution algorithms
(e.g., Elsner & Wandelt 2011).
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