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In the context of the geometrical analysis of weakly non-Gaussian cosmic microwave background

maps, the 2D differential extrema counts as functions of the excursion set threshold is derived from the

full moments expansion of the joint probability distribution of an isotropic random field, its gradient, and

invariants of the Hessian. Analytic expressions for these counts are given to second order in the non-

Gaussian correction, while a Monte Carlo method to compute them to arbitrary order is presented.

Matching count statistics to these estimators is illustrated on fiducial non-Gaussian Planck data.
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Random fields are ubiquitous phenomena in physics
appearing in areas ranging from turbulence to the land-
scape of string theories. In cosmology, the sky-maps
of the polarized cosmic microwave background (CMB)
radiation—a focal topic of current research—is a prime
example of such 2D random fields. Modern view of the
cosmos, developed primarily through statistical analysis of
these fields, points to a Universe that is statistically homo-
geneous and isotropic with a hierarchy of structures arising
from small Gaussian fluctuations of quantum origin. While
the Gaussian limit provides the fundamental starting point
in the study of random fields [1–3], non-Gaussian features
of the CMB fields are of great interest. Indeed, CMB
inherits a high level of Gaussianity from initial fluctua-
tions, but small non-Gaussian deviations may provide a
unique window into the details of processes in the early
Universe. The search for the best methods to analyze non-
Gaussian random fields is ongoing.

In Ref. [4] the general invariant based formalism for
computing topological and geometrical characteristics of
non-Gaussian fields was presented. The general formulas
for the Euler characteristics to all orders has been derived,
which encompasses the well-known first correction [5] and
which was later confirmed to the next order by [6]. We now
focus on the statistics of the density of extremal points that
follows directly from the formalism of [4]. Extrema counts
is an example of the real space statistical measures that
can be used to detect non-Gaussianity and place the limits
on the cosmological models that give rise to it in a way
complimentary to the spectral techniques (see e.g. [7]).
The goal of this paper is to provide an explicit recipe on
how to use this formalism in practice on idealized 2D
CMB Planck-like data.

I. EXTREMA COUNTS

Extrema counts, especially that of the maxima of the
field, have long application to cosmology (see e.g. [3]);
however, theoretical developments have been mostly

restricted to the Gaussian fields. The statistics of extrema
counts, as well as of the Euler number, requires the knowl-
edge of the one-point joint probability distribution function
(JPDF) Pðx; xi; xijÞ of the field x, its first, xi, and second,

xij, derivatives [8]. Extrema density is an intrinsically

isotropic statistics given by [1,9]

@next
@x

¼
Z

d3xijPðx; xi ¼ 0; xijÞjxijj: (1)

Under the condition of statistical isotropy of the field, the
essential form for the JPDF is therefore given in terms of
the rotation invariants—x itself, the square of the magni-
tude of the gradient q2 � x21 þ x22, and the two invariants
J1 � �1 þ �2, J2 � ð�1 � �2Þ2 of the Hessian matrix xij
(where �i are the eigenvalues of the Hessian). Introducing

� ¼ ðxþ �J1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
(where the spectral parameter

� ¼ �hxJ1i characterizes the shape of the underlying
power spectrum), leads to the following JPDF for the
Gaussian 2D field:
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�
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J21 � J2

�
: (2)

The invariant form for the extrema counts
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then readily recovers the classical results [1,3,9] when the
limits of integration that define the extrema type are
implemented, namely, J1 2 ½�1; 0�, J2 2 ½0; J21� for
maxima, J1 2 ½0;1�, J2 2 ½0; J21� for minima, and
J1 2 ½�1;1�,J2 2 ½J21 ;1� for saddle points.
In [4] we have observed that for non-Gaussian JPDF the

invariant approach immediately suggests a Gram-Charlier
expansion in terms of the orthogonal polynomials defined
by the kernel G2D. Since � , q

2, J1, and J2 are uncorrelated
variables in the Gaussian limit, the resulting expansion is
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P2Dð�; q2; J1; J2Þ ¼ G2D

�
1þ X1

n¼3

Xiþ2jþkþ2l¼n

i;j;k;l¼0

ð�1Þjþl

i!j!k!l!
h�iq2jJ1kJ2liGCHið�ÞLjðq2ÞHkðJ1ÞLlðJ2Þ

�
; (3)

where terms are sorted in the order of the field power n andPiþ2jþkþ2l¼n
i;j;k;l¼0 stands for summation over all combinations

of non-negative i, j, k, l such that iþ 2jþ kþ 2l adds to
the order of the expansion term n. Hi are (probabilists’)
Hermite and Lj are Laguerre polynomials.

The Gram-Charlier coefficients, h�iq2jJ1kJ2liGC �
ð�1Þjþlj!l!hHið�ÞLjðq2ÞHkðJ1ÞLlðJ2Þim that appear in the

expansion can be related to the more familiar cumulants of
the field and its derivatives (we use h im for statistical
moments while reserving h i for statistical cumulants),
actually being identical to them for the first three orders
n ¼ 3, 4, 5. See Ref. [10] for lookup tables of the relation-
ship between Gram-Charlier cumulants and statistical
cumulants. As an illustration, one sixth-order nontrivial
cumulant would be hJ31J2�iCG¼hJ31J2�iþhJ31ihJ2�iþ
3hJ1J2ihJ21�i. It is prudent to stress that the Gram-
Charlier series expansion is distinct from the perturbative
expansions. For instance, while the linear Edgeworth or
fNL expansion match solely to the first-order n ¼ 3 Gram-
Charlier coefficients, quadratic terms require knowledge
of the Gram-Charlier terms to n ¼ 6, while the cubic ones
to n ¼ 9.

Integrals over J1 and J2 for extremal points can be carried
out analytically even for the general expression (3).

Different types of critical points can be evaluated sepa-
rately by restraining the integration domain in the
J1 � J2 plane to ensure the appropriate signs for the
eigenvalues.
The effect of the non-Gaussian cubic correction on the

total number of the extrema of different types is given by

nmax=min ¼ 1

8
ffiffiffi
3

p
�R�2

� 18hq2J1i � 5hJ31i þ 6hJ1J2i
54�

ffiffiffiffiffiffiffi
2�

p
R�2

;

nsad ¼ 1

4
ffiffiffi
3

p
�R�2

; (4)

where we have restored (see note [11]) the dimensional
scaling with R� ¼ �1=�2, the characteristic separation
scale between extrema. The total number of saddles, as
well as of all the extremal points, nmax þ nmin þ nsad, are
preserved in the first-order (the latter following for the
former, as topological considerations imply nmax � nsad þ
nmin ¼ const), but the symmetry between the minima and
the maxima is broken.
The differential number counts with respect to the

excursion threshold � are given by
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where K1, K2, K3 are polynomials with coefficients expressed in terms of the cumulants. Here we give explicit expressions
for the first non-Gaussian order, while the next order can be found at [10].

The term K1ð�; �Þ has a special role determining the Euler number �ð�Þ via @�=@� ¼ @=@�ðnmax þ nmin � nsadÞ ¼ffiffiffiffiffiffiffiffiffi
2=�

p
R�2� expð��2=2ÞK1ð�; �Þ. As such, its full expansion has been given in [4], Eq. (7), and confirmed to the second order

in [6]. To the leading non-Gaussian order

K1 ¼ �2

8�

�
H2ð�Þ þ

�
2
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hq2J1i þ 1

�2
hxJ12i �

1

�2
hxJ2i

�
H1ð�Þ �

�
hxq2i þ 1

�
hx2J1i

�
H3ð�Þ þ 1

6
hx3iH5ð�Þ

�
: (7)

Introducing scaled Hermite polynomials H�
n ð�; �Þ � ��nHnð�=�Þ, the polynomial K2ð�; �Þ, the only one

that determines the distribution of saddle points, can be written as
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K2 ¼ 1
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2
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�
�;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2=3�2
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: (8)

The remaining term K3ð�; �Þ is the most complicated one. It is expressed as the expansion in Hþ
n ð�;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p Þ:

K3 ¼ ð1� �2Þ
2ð2�Þ3=2ð3� 2�2Þ3
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�
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q �
þ

�
1

2
�3ð1þ �2 � 26�4 þ 28�6 � 8�8Þhx3i

� �4ð26� 28�2 þ 8�4Þhx2J1i þ �ð1� �2Þð1þ 2�2Þð3� 2�2Þ2hxq2i � �ð24� 26�2 þ 8�4ÞhxJ21i
þ �ð15� 23�2 þ 8�4ÞhxJ2i þ 4ð1� �2Þð3� 2�2Þ2hq2J1i � ð10� 12�2 þ 4�4ÞhJ31i þ 6ð1� �2Þð2� �2ÞhJ1J2i

�

� 1

6
ð�ð27þ 36�2 � 224�4 þ 192�6 � 48�8Þhx3i þ ð108� 324�2 þ 216�4 � 48�6Þhx2J1i

þ 6�ð3� 2�2Þ3hxq2i � 36�hxJ21i � 18�hxJ2i � 8�2hJ31i � 12�2hJ1J2iÞHþ
2

�
�;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q ��
: (9)

Equations (5) and (6) (together with the next order ex-
pansion available online) are the main theoretical result of
this paper.

II. IMPLEMENTATION

Evaluating these estimators requires computing the cu-
mulants appearing in Eqs. (7)–(9). In non-Gaussian models
where the field is represented by the functional of a
Gaussian field this may be possible directly, while in
general, as shown in [6], such cumulants can be found as
weighted marginals of the underlying bispectrum (to third
order), trispectrum (to fourth order), etc. On a sphere, the
high-order marginals are particularly cumbersome and
time consuming to compute, as they also involve the con-
tractions of n� j Wigner symbols. Here we suggest a
different route, based on the assumption that scientists
interested in fitting extrema counts to non-Gaussian maps
are typically in a position to generate realizations of such
maps. In that case, it becomes relatively straightforward to
draw samples of such maps, and estimate the correspond-
ing cumulants. The HEALPIX [12] library provides in fact a
direct estimate of the derivatives of such maps up to second
order, which is all that is required to compute the cumu-
lants of the JPDF.

As an illustration, let us generate sets of parameterized
non-Gaussian maps using the package SKY-NG-SIM [13]
of HEALPIX. In this so-called harmonic model, the
PDF of the pixel temperature T is given by
expð�T2=2�2

0Þj
P

n
i¼0 �iCiHiðT=�0Þj2, where Ci are nor-

malization constants. In this paper, we use NSIDE=2048,
‘max ¼ 4096, n ¼ 2, �0 ¼ 1 and vary �1 and �2. We
also consider the second option of SKY-NG-SIM, which
produces non-Gaussian field as even power, 	 of unit
variance zero mean Gaussian fields. For each set
of maps, we compute its derivatives, and arithmetically

average the corresponding cumulants, using a code,
MAP2CUM, relying on the HEALPIX routine ALM2MAP_DER.

Invariant variables J1 and J2 on a sphere are defined via the
mixed tensor of covariant derivatives J1 ¼ x;i

;i and J2 ¼
J21 � 4jx;i;jj. The differential counts are then evaluated for

a range of threshold, � 2 ½�5; 5�. For each of these maps,
the number of extrema is computed by the procedure
MAP2EXT that implements the following algorithm: for

every pixel a segment of quadratic surface is fit in the
tangent plane based on the temperature values at the pixel
of origin and its HEALPIX neighbors. The position of the
extremum of this quadratic, its height, and its Hessian are
computed. The extremum is counted into the tally of the
type determined by its Hessian if its position falls within
the original pixel. Several additional checks are performed
to preclude registering extrema in the neighboring pixels
and minimize missing extrema due to jumps in the fit
parameters as region shifts to the next pixel. Masks are
treated by not considering pixels next to the mask bound-
ary. Pixel-pixel noise covariance can be included while
doing the local fit. On noise-free maps the procedure
performs with better than 1% accuracy when the map is
smoothed with a Gaussian filter with FWHM exceeding six
pixels. Both MAP2CUM and MAP2EXT are available upon
request. Figure 1 illustrates the very good agreement be-
tween the theoretical expectation of the differential number
counts and the low-frequency � dependency of the mea-
sured ones for both the harmonic and the power-law
models.
We have also successfully explored an alternative nu-

merical procedure based on Monte Carlo (see e.g. [11])
evaluation of the integral (1) over the distribution function.
This procedure is likely to be more practical for expansion
beyond the fourth order for 2D topological invariants.
Starting from Eq. (3), we reexpress both the polynomials
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in J1, J2, � , and q2 and G2D in terms of the six field
variables, ðx; xi; xijÞ. It is then straightforward to draw large

sets of random number triplets x11, x22, x12 satisfying
the Gaussian marginal distribution G�ðx11; x12; x22jx ¼
�; x1 ¼ x2 ¼ 0Þ. The integrand then consists of the correc-
tion to the JPDF in Eq. (3) times jJ21 � J2j=4. Each triplet
element constitutes a Hessian matrix and is sorted to
contribute to either minima, saddle, or maxima count based
on the signs of its eigenvalues. The sum of the integrand
over all triplets yields a Monte Carlo estimate of @next=@�.

We note that all of the presented analysis allows
for straightforward generalization to 3D (notably the
Monte Carlo method), as shown in [14], to describe the
large scale distribution (LSS) of matter. Indeed in this
context, the gravitational instability that nonlinearly maps

the initial Gaussian inhomogeneities in matter density into
the LSS induces strong non-Gaussian features culminating
in the formation of collapsed, self-gravitating objects such
as galaxies and clusters of galaxies.
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FIG. 1. (Top) Predicted (solid line) number of maxima (right), saddle (middle), and minima (left) in �� ¼ 0:25 bins as a function of
the threshold, �, on top of the measured count from a single realization full-sky NSIDE=2048 HEALPIX map (histogram). The temperature
field is smoothed with the Gaussian filter of 10 arcmin FWHM, resulting in R� � 5:5arcmin � 3 pixels. The dashed line corresponds
to the Gaussian prediction. The left panel corresponds to the harmonic oscillator model of non-Gaussianity with �1 ¼ 0:6, �2 ¼ 0:6
(for which hx3i ¼ �0:07), while the right panel corresponds to the power-law non-Gaussianity with 	 ¼ 2 (for which hx3i ¼ 0:1).
(Bottom) Departure from Gaussianity for the two models as predicted (solid line) and measured (dashed line) for maxima (light grey),
minima (dark grey), and saddle points (grey). Note that the corrections of Eqs. (5) and (6) (solid line) give a very accurate match to the
low-frequency � behavior of the measured PDF. As is seen, different models of non-Gaussianity can be distinguished by their effects
on extrema.
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