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ABSTRACT
Fermi acceleration can develop efficiently at relativistic collisionless shock waves provided the
upstream (unshocked) plasma is weakly magnetized. This has been both indicated by analytical
theory and observed in numerical particle-in-cell simulations. At low magnetization, the large
size of the shock precursor indeed provides enough time for electromagnetic micro-instabilities
to grow, and such micro-instabilities generate small-scale turbulence that in turn provides the
scattering required for particles to undergo Fermi cycles at superluminal relativistic shock
waves. The present paper extends our previous analysis on the development of these micro-
instabilities to account for the finite angular dispersion of the beam of reflected and accelerated
particles and to account for the expected heating of the upstream electrons in the shock
precursor. Indeed, we argue that the electrons can be significantly heated during their travel in
the shock precursor and that they may even reach equipartition with protons, in agreement with
recent numerical simulations. We show that the oblique two-stream instability may operate
down to values of the shock Lorentz factor γ sh ∼ 10 (corresponding to a relatively large angular
dispersion of the beam) as long as the electrons of the upstream plasma remain cold, while
the filamentation instability is strongly inhibited in this limit; however, as electrons get heated
to relativistic temperatures, the situation becomes opposite and the two-stream instability
becomes inhibited while the filamentation mode becomes efficient, even at moderate values of
the shock Lorentz factor. The peak wavelength of these instabilities migrates from the inertial
electron scale towards the proton inertial scale as the background electrons get progressively
heated during the crossing of the shock precursor. We also discuss the emergence and the
role of current-driven instabilities upstream of the shock. In particular, we show that the
returning and accelerated particles give rise to a transverse current through their rotation in the
background magnetic field. We find that the compensating current in the background plasma
can lead to a Buneman instability which provides an efficient source of electron heating.

Key words: acceleration of particles – shock waves – cosmic rays.

1 IN T RO D U C T I O N

The acceleration of particles through repeated interactions with the
electromagnetic fields up- and downstream of a collisionless shock
front is generally taken as the source the non-thermal particle pop-
ulations that are detected in powerful astrophysical outflows. The
physics of this Fermi mechanism is relatively well understood for
non-relativistic shock velocities, at least in the test particle limit in
which one neglects the backreaction of the accelerated particles on
the shock environment. In the relativistic limit however, in which
the shock moves towards the upstream (unshocked) medium with a

�E-mail: lemoine@iap.fr (ML); guy.pelletier@obs.ujf-grenoble.fr (GP)

bulk Lorentz factor γ sh � 1, the situation becomes more intricate,
mostly because the shock now moves about as fast as the accelerated
particle. In non-relativistic shocks one can distinguish the details
of the shock structure from that of the Fermi process, as this latter
takes place on spatial scales much larger than the shock thickness.
In contrast, in relativistic shocks, the structure of the shock plays
a significant role in the Fermi process and in the process of gen-
eration of the electromagnetic turbulence. One important issue, in
particular, is the reflection of a part of the cold upstream particles
at the shock front, which together with the Fermi accelerated parti-
cles travels back upstream and initiate instabilities in the upstream
plasma.

These instabilities play a key role in the development of the
Fermi process and, consequently, in the radiative signatures of
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relativistic outflows. Indeed, at magnetized oblique ultra-relativistic
shock waves, the Fermi process may develop only if sufficient
micro-turbulence has been generated in order to prevent the ad-
vection of the accelerated particles away from the shock front into
the far downstream plasma (Begelman & Kirk 1990; Niemiec &
Ostrowski 2006; Lemoine, Pelletier & Revenu 2006). Moreover,
for the vast majority of them, ultra-relativistic shock waves are
oblique: the opposite parallel configuration only takes effect when
the magnetic field lines are oriented to an angle with the shock
normal smaller than 1/γ sh (in the unshocked plasma or upstream
rest frame). As to the meaning of ‘magnetized’ shock waves, it is
slightly ambiguous and context-dependent; above, it is meant: with
a pre-existing (upstream) magnetic field Bu such that, after compres-
sion through the shock and Lorentz transform into the downstream
frame, the typical Larmor radius of accelerated particles is much
smaller than the width of the blast, which is of the order of R/γ sh

in this frame (R denotes the shock radius). For smaller values of
Bu, the accelerated particles can explore the whole blast and be-
yond, hence they may scatter on magnetic inhomogeneities sourced
elsewhere, which would allow their repeated interactions with the
shock. Nevertheless, for such low values of Bu, the generation of
micro-turbulence is almost guaranteed, as will be discussed in the
following; hence the Fermi process should develop independently of
any extra source of magnetic inhomogeneities.1 Furthermore, there
exist evidence for amplification of the magnetic field upstream of
a relativistic shock [see e.g. Li & Waxman (2006) and Li & Zhao
(2011), which can be seen as a hallmark of the development of
micro-instabilities upstream of the shock].

On microscopic plasma scales, several instabilities may develop
in the precursor of the shock front through the penetration of
the beam of returning and accelerated particles into the upstream
plasma. The filamentation instability in particular – often referred
to as the Weibel instability in the literature – has been proposed
as the agent of amplification of the magnetic field to the level
inferred from the synchrotron interpretation of gamma-ray burst
afterglows (Gruzinov & Waxman 1999; Medvedev & Loeb 1999;
see also Wiersma & Achterberg 2004; Lyubarsky & Eichler 2006;
Achterberg & Wiersma 2007; Achterberg, Wiersma & Norman
2007). Recently, it has been found that the growth rate of two-stream
instabilities in an oblique configuration (Bret, Firpo & Deutsch
2005a) is larger than that of the filamentation mode (Bret 2009;
Lemoine & Pelletier 2010). Which instability grows faster is a key
question here, as the relativistic velocity of the shock wave and
the level of upstream magnetization strongly limit the penetration
length-scale of the accelerated particles into the upstream plasma
before these particles are caught back by the shock wave (Milosavl-
jević & Nakar 2006; Pelletier et al. 2009); and as mentioned before,
if such instabilities cannot grow, then Fermi acceleration cannot
develop (at least, in the absence of extra sources of turbulence).

The detailed conditions under which the above instabilities and
other relevant modes can grow, together with the development of
Fermi cycles as a function of the shock velocity and the upstream
magnetization, have been discussed in a previous paper (Lemoine &

1 More generally speaking, Fermi acceleration requires micro-turbulence to
be generated at distances smaller than rL,0, with rL,0 the Larmor radius
in the downstream frame shock compressed background magnetic field
(Pelletier, Lemoine & Marcowith 2009). While this is guaranteed for micro-
instabilities when they can be triggered in the precursor, this constraint
can be turned into a lower bound on the growth rate of extra sources of
turbulence, which of course differs from the constraint on the growth of
micro-instabilities discussed here and in Lemoine & Pelletier (2010).

Pelletier 2010). That paper assumed a charge neutralized beam with-
out angular dispersion propagating in a cold background plasma.
It is the aim of the present paper to revisit these assumptions and
to extend the previous calculations to a more generic situation, in
which the beam angular dispersion (which is fixed by kinematics, as
discussed below) is taken into account, and in which the effects of
heating of the upstream plasma are considered. The emergence of
current instabilities is also discussed. The present study is warranted
in particular by recent work (Lyubarsky & Eichler 2006; Rabinak,
Katz & Waxman 2011) that showed that the small opening angle of
the beam suffices to prevent the onset of the filamentation instability
in electron–proton plasmas of shock Lorentz factor γ sh � 100, in-
dependently of the length-scale of the precursor. The present study
recovers this result for a cold background plasma, but it also argues
that: (i) the two-stream instability and more precisely its oblique
mode version are less sensitive to the beam angular dispersion as
it can develop down to γ sh ∼ 10 in the same conditions; (ii) the
heating of the background plasma has a major effect in that it may
help sustain the development of instabilities down to γ sh ∼ 10.

This paper is organized as follows. In Section 2, we first review
the current understanding on the structure of the shock, relying on
the results of the most recent particle-in-cell (PIC) simulations of
relativistic collisionless shocks. We also discuss in a general way
the instabilities that may develop as a function of the two main char-
acteristics of the shock: upstream magnetization and shock velocity.
In Section 3, we then discuss how the filamentation and two-stream
instabilities are affected by the finite angular dispersion of the beam
of returning particles, assuming the background plasma to remain
cold. In Section 4, we generalize the calculations of Section 3 to a
background plasma composed of cold protons and relativistically
hot electrons. Finally, in Section 5 we discuss the possibility of cur-
rent instabilities and their role in shaping the precursor. We summa-
rize our results and draw conclusions in Section 6. In Appendix A,
we explicit the susceptibility tensor of the beam of finite angular
dispersion, modelled with a waterbag distribution in the transverse
momentum direction (transverse with respect to the shock normal)
and a Dirac distribution in the parallel momentum direction.

2 G E N E R A L C O N S I D E R AT I O N S

2.1 Shock structure and precursor

Let us first describe the general structure of a relativistic colli-
sionless shock and introduce the main quantities of interest for the
present discussion.

The shock is characterized by a small number of parameters: (i)
the composition ahead of the shock front, in the upstream plasma –
in what follows, we assume except otherwise noted that the plasma
is composed of electrons and protons with densities ne = np ≡ nu;
(ii) the equation of state of the upstream plasma, which will be taken
cold or composed of relativistically hot electrons but cold protons
(see also further below for more details on this point); (iii) the
shock velocity, written as βshc as measured in the upstream frame,
with corresponding Lorentz factor γ sh; (iv) the magnetization of the
upstream plasma, written as σ u and defined as

σu ≡ B2
u

4πnumpc2
. (1)

The magnetic field strength Bu is here measured in the upstream
frame. The shock structure also depends on the obliquity of the
background magnetic field, but in what follows and except otherwise
noted, we will focus on the generic superluminal case in which the
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1150 M. Lemoine and G. Pelletier

angle with respect to the shock normal exceeds 1/γ sh. Then, in the
shock front rest frame, the magnetic field lies mostly perpendicular
to the flow direction, as the transverse components are amplified
by a factor γ sh while the parallel component remains unchanged
by the Lorentz transform. For an oblique shock wave, the above
magnetization parameter thus measures (up to a sin2�B ∼ 1 factor,
with �B the angle between the shock normal and the magnetic field
in the upstream rest frame) the ratio of the magnetic energy in the
shock front frame relative to the incoming matter flux γ 2

shnumpc2

crossing the shock front.
Collisionless shock waves can be mediated by three generic types

of mechanisms: by an electrostatic potential for incoming protons
in an e − p shock, by a magnetic barrier or, if the magnetic field
is negligible, by a reflection due to the ponderomotive force of
growing waves ahead of the shock transition layer. In the case of
the external shock of a gamma-ray burst outflow propagating in the
interstellar medium, for example, the reflection can take place on a
potential barrier or through a ponderomotive force, as the ambient
magnetic field is then particularly weak, σ u ∼ 10−9 for Bu ∼ 1 μG
and nu ∼ 1 cm−3. However, even weak, the ambient magnetic field
can play an important role, as will be seen further on.

The magnetic field at a relativistic shock front is associated with a
motional electric field Eu|sh = βshBu|sh when measured in the shock
front frame (as indicated by the |sh subscript), with Bu|sh � γ shBu

(again, up to a factor sin �B). Since the magnetic field is frozen
in most parts of the plasma, the transverse component is further
increased by the velocity decrease as the upstream incoming plasma
approaches the shock transition layer, as seen again in the shock
front rest frame. This magnetic barrier may reflect back a fraction
of the incoming protons. In the strongly magnetized case, σ u �
0.1, the coherent gyration of the incoming protons and electrons
gives rise to the emission of large amplitude electromagnetic waves
through the synchrotron maser instability (Langdon, Arons & Max
1988). As these waves travel back upstream, they lead to a form
of wakefield acceleration of the electrons, which leads to electron
heating at the expense of the incoming protons (Lyubarsky 2006;
Hoshino 2008).

The rise of an electrostatic barrier can be described as follows.
To reach thermalization through the shock transition layer, the elec-
trons need to absorb part of the wave energy, possibly through a
kind of anomalous Joules heating. Whatever the mechanism, the
length required for the electron heating is several inertial length
δe ≡ c/ωpe, much smaller than the length-scale of the precursor. As
electrons remain approximatively in Boltzmann equilibrium, their
density increase in the shock transition by a compression factor
r is accompanied by a potential variation 	
 such that e	
 ∼
Te ln r. If the electrons are heated to equipartition with the protons
in the downstream plasma, their temperature Te ∼ Tp ∼ γ shmpc2 in
the downstream plasma. In an electron–proton shock, it thus seems
unavoidable to have a potential barrier that reflects part of the in-
coming protons (see also Gedalin, Balikhin & Eichler 2008); this is
an important difference with an electron–positron plasma.

If intense waves are excited in the precursor by the reflected
particles or by emitted electromagnetic waves, their growth may
also reflect part of the particles, notably electrons. In particular,
such a mechanism is warranted to ensure the shock transition in an
unmagnetized pair plasma, as evidenced by various PIC simulations
(see e.g. Spitkovsky 2008b).

The composition of the beam of returning particles is an impor-
tant issue with respect to the development of instabilities in the
upstream plasma, in particular whether charge neutralization has
been achieved or not. In that respect, it should be noted that, if

electrons are heated to near equipartition with the incoming pro-
tons in the shock precursor, the shock itself must behave as if
it were a pair shock. Then, the electrostatic barrier can be ex-
pected to be negligible and the returning beam is essentially charge
neutralized.

Whether and to what amount the electrons are heated in the shock
precursor depend in turn on the instabilities that are generated in
this precursor. Let us denote by χ e ≤ 1 the fraction of the incoming
(proton) energy carried by the electrons as they reach the shock
transition layer. Then, χ e = me/mp if the electrons have not been
heated in the precursor, and χ e = 1 if equipartition with the ions
has been reached. This parameter χ e is now measured by massive
PIC simulations (Spitkovsky 2008a; Sironi & Spitkovsky 2009,
2011): generally speaking, it is found that χ e ∼ 1 for strongly
magnetized plasmas, χ e < 1 in the intermediate magnetization
regime σ u ∼ 10−4 to 10−2 and χ e rises up to unity again at lower
magnetizations.

As discussed in Lemoine & Pelletier (2010), the returning pro-
tons and the first generation of accelerated particles form a forward
beam of energy γ 2

shmpc2. In the following, we write γ b = γ 2
sh the

Lorentz factor of the protons composing the beam. If the electrons
composing the beam have been heated to equipartition with the
protons before being reinjected towards upstream, either through
reflection or through shock crossing from downstream toward up-
stream, they carry a same energy γ 2

shmpc2 hence their beam plasma
frequency is also similar.

In the precursor, the trajectory of a reflected proton is a cy-
cloid with an extension upstream that determines the width of the
‘foot’ region (i.e. the precursor) �f|sh = γ shmpc2/eBu|sh (measured
in the shock front rest frame). As measured in the upstream frame,
this length-scale �f|u = �f|sh/γ sh; this corresponds to rL|u/γ 3

sh with a
Larmor radius rL|u = γ 2

shmpc2/eBu; the factor γ 3
sh comes from the

fact that the reflected protons are caught up by the shock front after
having travelled along the Larmor circle only rL|u/γ sh before be-
ing caught back by the shock front (Gallant & Achterberg 1999;
Achterberg et al. 2001), keeping in mind that the distance between
the particle and the front is reduced by a factor 1 − βsh � 1/(2γ 2

sh)
(Milosavljević & Nakar 2006; Pelletier et al. 2009).

When the Fermi process develops through cycles of particles
crossing the front back and forth, the first cycle always occurs
and the particles participating in this first cycle have an energy
comparable to that of the reflected protons. One can thus assimilate
the reflected protons to those first cycle particles, and the number of
particles involved in the Fermi process will only slightly increase
with further cycles. We will note ξ b the ratio of the incoming energy
density converted into the pressure of these supra-thermal particles:

ξb ≡ nbmpc
2

γshnumpc2
, (2)

and nb denotes the proper density of the beam particles (i.e. mea-
sured in the shock front rest frame). This parameter ξ b approxi-
mately corresponds to the ratio of the supra-thermal particle density
over the upstream particle density measured in this same shock rest
frame.

2.2 Instabilities at a relativistic collisionless shock

In the case of a current neutralized charged beam, meaning a beam
carrying positive and negative charges but zero net current along the
shock normal, the leading instabilities at small magnetization are
the filamentation mode, the two-stream instabilities, in particular
the Čerenkov resonance mode with electrostatic modes (or with
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Instabilities at relativistic shock waves 1151

modes of wavenumber parallel to the magnetic field in the case
of a magnetized plasma) or with Whistler modes (for an electron–
proton plasma). The filamentation instability takes place at small
real frequencies Rω ∼ 0 and small parallel wavenumber k‖ 	 k⊥
relatively to the transverse wavenumbers (parallel and transverse
are defined relatively to the shock normal), while the two-stream
electrostatic instability takes place at resonance Rω � ωp, k‖ �
ωp/c in the upstream rest frame, with ωp = (4πnue

2/me)1/2 the
background plasma frequency.

Such charge-driven current neutralized instabilities are of course
generic in the case of pair shocks. However, even in that case, one
must expect a transverse current to rise at the tip of the precursor, as
a consequence of charge splitting in the external magnetic field. This
current then generates a compensating current in the background
plasma, which induces a Buneman instability, which itself leads to
efficient heating of the background electrons in the shock precursor.
This issue will be addressed in Section 5.

In the case of an electron–proton plasma, the beam can be cur-
rent neutralized if, as mentioned above, the incoming upstream
electrons are preheated to near equipartition with the protons dur-
ing the crossing of the precursor; then, for all practical matters,
the shock transition resembles that of a pair shock and the returning
beam carries a vanishing current. Of course, in that case as well, one
expects the transverse current to emerge in a magnetized upstream
plasma and give rise to a Buneman type instability (see Section 5).
As mentioned before, such near equipartition has been observed
in PIC simulations in both the high and low magnetization limits
in oblique collisionless shock waves (Sironi & Spitkovsky 2011).
At high magnetization, electron heating in the precursor is due to
wakefield acceleration associated with the ponderomotive force of
the large amplitude waves emitted by the synchrotron maser in-
stability (Lyubarsky 2006; Hoshino 2008). At low magnetization,
electron heating appears to be related to the development of micro-
instabilities in the shock precursor.

Such micro-turbulent heating can be understood as follows. Con-
sider for simplicity the fully unmagnetized limit and select the up-
stream rest frame; assume further that the shock has reached a sta-
tionary state. The micro-turbulence is excited on a length-scale �′

f|u
that differs from the previous value of the foot length �f|u, as we now
neglect any pre-existing magnetic field and assume that scattering
is dominated by the micro-turbulence (see Milosavlejvić & Nakar
2006; Pelletier et al. 2009). The magnitude of this length-scale is
such that the transverse momenta of returning particles diffuse by
an amount 〈	p2

b,⊥〉 ∼ pb
2/γ 2

sh during their travel time 2γ 2
sh�

′
f|u/c in

this precursor. The prefactor 2γ 2
sh corresponds, as before, to the

difference between the return time-scale of the accelerated parti-
cles and the precursor light crossing time. For returning/accelerated
particles, the momentum pb ∼ γ 2

shmpc. Diffusion of momenta takes
place through scatterings on small (plasma) scale electromagnetic
fields. Such small-scale fields equally contribute to heating the up-
stream plasma electrons, provided that the electric wave energy
content is not much smaller than its magnetic counterpart. How-
ever, the upstream electrons only experience the length-scale �′

f|u
during a light crossing time �′

f|u/c. Consequently, their momentum
dispersion amounts to 	p2

u ∼ mp
2c2/2 once the electrons reach the

shock front, which corresponds to equipartition with the incoming
ions.

To go one step further, one can easily conceive that the preheating
of the electrons to near equipartition in the precursor provides the
only means to achieve near neutralization of the returning particle
current. If indeed electrons are not preheated in the precursor but
simply overturned (by, say, the micro-turbulence), their Lorentz

factor is increased by a factor γ 2
sh but their energy remains a factor

me/mp below that of the returning proton beam. Consequently, their
penetration length-scale is also a factor me/mp smaller and, for
all relevant purposes, the beam can be considered as essentially
composed of protons.

In short, a net current along the shock normal in the upstream
plasma may arise if and only if the electrons have not been heated
to equipartition with the incoming ions by the time they reach the
shock front. According to the recent PIC simulations of Sironi &
Spitkovsky (2011), parallel shock waves offer such an example
in which the electrons reach the shock transition with an energy
that is significantly less than that of the protons. It is then natural
to expect current instabilities, such as the Bell (2004) instability
– more exactly, its relativistic generalization (see Reville, Kirk &
Duffy 2006) – to develop in the upstream plasma (Lemoine &
Pelletier 2010). This will be discussed in Section 5.

In Sections 3 and 4, we concentrate on the filamentation and two-
stream instabilities and we discuss their development once the fi-
nite angular dispersion of the beam of accelerated particles has been
taken into account, and considering the possibility that the electrons
of the background (upstream) plasma have been preheated through
the micro-turbulence to relativistic temperatures. Following the ap-
proximation scheme discussed in our previous paper (Lemoine &
Pelletier 2010), we consider the micro-instabilities triggered in the
ambient plasma by the returning beam over a length-scale that is
limited by a low background magnetization. In that paper, which
discussed the instabilities under the assumption of a unidirectional
beam and a cold ambient plasma, we showed that the Weibel-
filamentation instability and the oblique two-stream instability in
particular are very weakly modified by the magnetic field during
their linear growth, notably because the maximum length-scale of
the precursor is always much smaller than the Larmor radius of the
beam. Moreover the magnetization of the ambient plasma is always
assumed much smaller than unity. Thus, in this paper, we neglect
the contribution of the magnetic field to the dispersion tensor. Of
course, such a contribution cannot be neglected when discussing
the development of Whistler waves. However we do not consider
such an instability in the present paper as one of our conclusions
is that upstream electrons are heated towards equipartition, which
quenches the development of Whistler waves.

3 INSTA BILITIES WITH A C OLD
BAC K G RO U N D P L A S M A A N D F I N I T E B E A M
A N G U L A R D I S P E R S I O N

3.1 Beam geometry

Henceforth, we consider a current neutralized beam composed of
electrons and protons moving with bulk Lorentz factor γ b in the
upstream rest frame. In this section, we furthermore assume the
background plasma to be cold.

We model the beam with the following axisymmetric waterbag
distribution function:

fb(u) = 1

πu2
⊥

δ(ux − u‖)�
(
u2

⊥ − u2
y − u2

z

)
, (3)

introducing the velocity variables ui = pi/(mc), where pi denotes the
i-component of the beam momentum. The beam thus propagates
towards +x (parallel direction) and suffers from angular dispersion
in the perpendicular plane, as characterized by the ratio u⊥/u‖.

In the case of particles returning from or through a relativis-
tic shock of Lorentz factor γ sh and propagating in the unshocked

C© 2011 The Authors, MNRAS 417, 1148–1161
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/417/2/1148/984294 by guest on 22 April 2022



1152 M. Lemoine and G. Pelletier

plasma, the amount of angular dispersion is known to be u⊥ �
u‖/γ sh. This result is dictated by kinematics: given that the shock
front is always trailing right behind the accelerated particle, once
the parallel velocity of this latter drops below βsh, i.e. once the per-
pendicular velocity of this latter exceeds c/γ sh, the particle is caught
back by the shock wave (Gallant & Achterberg 1999; Achterberg
et al. 2001). As the beam (proton) Lorentz factor γ b � γ 2

sh and γ sh �
1, this implies u⊥ 	 u‖, hence u‖ � γ b and u⊥ � γsh � √

γb. This
hierarchy allows us to calculate the susceptibility tensor of the beam
by neglecting in a systematic way u2

y and u2
z in front of u2

x . Of course,
one must pay attention not to neglect uy, uz in the poles of the form
ω− k ·βc = ω−kiuic/γb. The corresponding beam susceptibility
tensor χ b

ij is detailed in Appendix A.
In the final expression for χ b

ij, the angular dispersion enters
through the ratio k⊥u⊥c/R‖, with R‖ = γ bω − k‖u‖c (see Ap-
pendix A). Therefore, its impact on the growth of instabilities is
determined by k⊥, γ sh and the nature of the instability which de-
termines R‖. At the Čerenkov resonance, R‖ � γ bωkδ, with ωk

the eigenmode pulsation, and δ a complex number of modulus
|δ| 	 1; at leading order, δ is a cubic root of unity in the limit
u⊥ → 0 (see Lemoine & Pelletier 2010), hence the growth rate
Iω = ωkIδ ≈ |R‖/γb| (at resonance). Consequently, the ra-
tio |k⊥u⊥c/R‖| ≈ k⊥β⊥c/Iω. If k⊥β⊥c/Iω > 1, the angular
dispersion terms dominate over the resonance poles, hence one
expects growth to be inhibited. Formally, the beam susceptibil-
ity changes structure in this limit, as discussed in Appendix A.
Physically, one recovers the argument of Akhiezer (1975) that
the particles travel in the perpendicular direction more than one
wavelength of the unstable mode on an e-folding time-scale of
the instability, hence coherence is lost and growth inhibited, as
discussed recently by Rabinak et al. (2011). Another important in-
stability in the precursor of relativistic shocks is the filamentation
mode, with Rω ∼ 0, k‖ 	 k⊥. Then k⊥u⊥c/R‖ ∼ k⊥β⊥c/Iω

as well.
Assuming, as we do in Appendix A, that the transverse compo-

nent of the wavenumber lies along y, the dispersion relation to be
solved reads(
ω2 − ω2

p − k2
⊥ + χ b

xxω
2
) (

ω2 − ω2
p − k2

‖ + χ b
yyω

2
)

− (
k‖k⊥ + χ b

xyω
2
)2 = 0.

(4)

The susceptibility tensor χ b
ij scales as the ratio squared of the beam

plasma frequency to the background plasma frequency, i.e.(
ωpb

ωp

)2

= ξb
me

mp
, (5)

with ξ b defined in equation (2). In the following, we solve numer-
ically the dispersion relation for the growth rates of these various
instability modes and discuss the inhibition of instabilities due to
the angular dispersion of the beam. In all numerical calculations
below, we fix ξ b = 0.1.

3.2 Oblique two-stream instability

The oblique two-stream instability corresponds to the Čerenkov
resonance of the relativistic beam with the Langmuir modes of
the background plasma. In the case of a magnetized background
plasma, the electrostatic modes that are excited propagate along the
background magnetic field. Since the treatment is similar, we focus
here on the unmagnetized case.

To evaluate numerically the growth rate, we proceed as follows.
We impose the resonance condition k‖ = ωp/(βbc) and look for

Figure 1. Contour map of the log10 of the left-hand side of the dispersion
relation equation (4) for a cold background plasma, including the beam
contribution. Top panel: γ b = 105, the electrostatic eigenmode includes one
branch with zero imaginary part and one growing mode (as well as one
decaying mode, not shown here), as indicated by the darker regions. Bottom
panel: γ b = 102, the growing mode has disappeared due to the increased
angular dispersion of the beam. In both plots, it is assumed ω2

pb/ωp
2 =

0.1me/mp, k‖ = ωp/(βbc) (resonance condition) and k⊥ = ωp/c.

solutions of the full dispersion relation in the half plane (Rω, Iω >

0), including the beam contribution, for each given value of k⊥. As
the beam slightly modifies the real part of the root, this latter is
slightly displaced from its unperturbed value ωp. Fig. 1 offers an
example of this procedure. It shows the locations of the roots of the
dispersion relation in the (Rω,Iω) plane for γ b = 105 (top panel)
and γ b = 102 (bottom panel), with k⊥ = ωp/c in both cases. The
growing mode is clearly seen in the top panel, but absent in the
bottom panel in which the condition k⊥β⊥c < Iω is violated due
to the smaller value of γ b.

To leading order in χ b, the growth rate reads (see Lemoine &
Pelletier 2010)

Iω �
√

3

24/3

(
ω2

pbωp

)1/3

(
k2

⊥c2 + ω2
p/γ

2
b

k2
⊥c2 + ω2

p

)1/3

. (6)

Therefore, the condition k⊥β⊥c 	 Iω amounts to

γsh � ξ
−1/3
b

(
me

mp

)−1/3 (
k⊥c

ωp

)1/3 (
ωp

γb
	 k⊥c 	 ωp

)
.

(7)

One can thus check that, indeed, for γ sh = 10 (corresponding to
γ b � 100), the above condition is violated at k⊥c/ωp = 1, while it
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Figure 2. Growth rate of the oblique two-stream instability versus k⊥c/ωp

for various values of γ b: from left to right, γ b = 102, 103, 104, 105. The
cut-offs at high frequency are associated with the inhibition of growth due
to angular dispersion of the beam; ω2

pb/ωp
2 = 0.1me/mp, k‖ = ωp/(βbc)

(resonance condition). The dotted line shows the analytical solution to the
growing mode (see Lemoine & Pelletier 2010).

is satisfied for γ sh = 300 (γ b = 105), in nice agreement with the
numerical evaluations.

The effect of the beam temperature on the growth of the two-
stream oblique instability has been discussed previously by Bret,
Firpo & Deutsch (2005b) and Bret, Gremillet & Bénisti (2010), al-
though in a slightly different context. They show that the two-stream
instability is rather immune to angular dispersion contrary to the fil-
amentation mode, as we find here, although the maximum growth
rate of the oblique two-stream mode decreases with increasing dis-
persion; our findings also match these conclusions. In particular, as
the angular dispersion increases, the maximum growth rate is found
at smaller values of k⊥, with a reduced growth rate.

Fig. 2 presents the numerical evaluation of the growth rate as a
function of k⊥ (solid line) for various values of γ b (hence, various
values of u⊥). This figure clearly reveals the wavenumber cut-offs
that correspond to the finite beam angular dispersion.

The smallest value of γ sh that allows growth of the oblique two-
stream instability corresponds to setting k⊥ →ωp/γ b in equation (7),
which leads to

γsh � ξ
−1/5
b

(
me

mp

)−1/5

. (8)

Note that, at values k⊥ � ωp/γ b, the oblique two-stream mode has
reduced to the standard parallel two-stream instability. Furthermore,
one must keep in mind that the above condition dictates whether
growth may occur when angular dispersion is taken into account, yet
for growth to occur, other conditions must be met. Most notably, the
growth time-scale must be shorter than the precursor crossing time-
scale. This latter condition depends on the degree of magnetization
of the ambient medium, as discussed in detail in Lemoine & Pelletier
(2010).

3.3 Filamentation instability

The filamentation instability appears at small values of k‖ and Rω,
as the solutions to the dispersion relation given in equation (4).
The effect of the beam angular dispersion on the growth rate of the
filamentation instability has been discussed by Bret et al. (2005b,
2010), and in the context of relativistic shocks by Lyubarsky &
Eichler (2006) and recently by Rabinak et al. (2011). This instability

Figure 3. Same as Fig. 2, but for the filamentation instability. The calcula-
tion assumes k‖ = 0. Only the growth rate for γ b = 105 is shown, as smaller
values of γ b did not lead to exact growing solutions.

turns out to be extremely sensitive to the beam angular dispersion,
and as soon as γ b � 104, the growth is inhibited for all values of
k⊥. One important difference relative to the oblique two-stream
instability is the smaller growth rate of the filamentation instability,
all things being equal, which implies that the condition k⊥β⊥c >

Iω is more easily satisfied at given values of γ b and k⊥. This
is notably illustrated by Fig. 3, which shows the growth rate of
the filamentation mode for various values of γ b. This numerical
calculation considers the limit k‖ → 0 and finds the roots of the
dispersion relation for various values of k⊥, as before.

In detail, the growth rate of the filamentation instability in a cold
background plasma is given at leading order by

Iω = ωpb

(
k2

⊥c2

k2
⊥c2 + ω2

p

)1/2

, (9)

therefore, Iω � k⊥β⊥c implies

γsh � ξ
−1/2
b

(
me

mp

)−1/2 (
k⊥c 	 ωp

)
, (10)

independently of the value of k⊥ as long as k⊥c 	 ωp. At larger
values of k⊥, the right-hand side of equation (10) must be multiplied
by k⊥c/ωp hence the condition is more stringent.

For ξ b = 0.1, the numerical solution confirms that the filamen-
tation instability disappears as soon as γ b � 104, while it exists at
wavenumbers shorter than ωp/c for γ b = 105. This agrees well with
the above discussion.

4 IN S TA B I L I T I E S I N A H OT BAC K G RO U N D
PLASMA WI TH A FI NI TE BEAM ANGUL AR
DI SPERSI ON

As discussed in some length in Section 2, one expects the incoming
electrons to be heated to relativistic energies as they approach the
shock front. Most notably, this preheating has been observed in
various configurations in the latest PIC simulations of Sironi &
Spitkovsky (2011). In particular, at low magnetization, the incoming
upstream electrons carry about as much energy as the ions when
they cross the shock transition. If half of the incoming proton kinetic
energy density is transferred to the electron component and both
electrons and protons retain a same bulk Lorentz factor, then one
can easily show that the electrons are heated to a thermal Lorentz
factor γ e ∼ mp/me in the electron fluid rest frame.
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1154 M. Lemoine and G. Pelletier

We thus consider here a hot electron background plasma, in the
ultra-relativistic limit; we assume that the protons remain cold. We
also retain the unmagnetized background plasma approximation
and assume a ultra-relativistic Maxwellian distribution,

fe( p) = ne
c3

8πk3
BT 3

e

e−pc/kBTe . (11)

The longitudinal and transverse (with respect to k) permittivities
then read (e.g. Silin 1960; see also Hakim & Mangeney 1971;
Melrose 1982; Braaten & Segel 1993; Bergman & Eliasson 2001)

εL = 1 + μω2
p

k2c2

[
1 + ω

2kc
ln

(
ω − kc

ω + kc

)]
, (12)

εT = 1 − μω2
p

2k2c2

[
1 + ω2 − k2c2

2ω kc
ln

(
ω − kc

ω + kc

)]
, (13)

with γ e = 3/μ, μ = mec2/(kBTe).
In what follows, the relativistic background plasma frequency is

written as �p ≡ ωp/
√

γe.

4.1 Two-stream instability

In the fully relativistic regime, the longitudinal mode has a refrac-
tive index smaller than unity for all values of k, hence the Čerenkov
resonance with the unperturbed eigenmode can never be fully sat-
isfied. In all rigor, one should derive the dispersion tensor allowing
for corrections of order in mec2/kBT , as one is seeking a resonance
at a refractive index of the order of 1/βb � 1 + 1/(2γ b)2 with a back-
ground plasma in which the mean Lorentz factor γ e is much smaller
than γ b. Such a dispersion tensor has been proposed by Braaten &
Segel (1993). It takes the same form as that given in equations (12)
and (13) although all kc must be replaced by kv∗, where v∗ is an
effective thermal velocity of electrons in the background plasma;
hence v∗ �βec. Then, one finds that the refractive index of the longi-
tudinal mode becomes larger than unity (i.e. the dispersion relation
crosses the light cone) at some value k∗ � √

3 (ln(4γe) − 2)1/2 ωp/c.
For k � k∗, resonance is then possible. However, extrapolating the
form of the dispersion tensor to the light-like region, one finds that
the growth rate of the Čerenkov resonant mode with the unperturbed
eigenmode is exponentially suppressed. We thus ignore this branch
in the following.

Once the beam contribution to the dispersion relation is taken
into account, one finds that an approximate resonance takes place
for ω ��p, k‖ = ω/βbc for small values k⊥ � �p/c. This reso-
nance solves exactly the dispersion relation and leads to growth
of the modes. Neglecting the effect of angular dispersion, this can
be understood analytically as follows.

The full dispersion relation reads(
�xx + χ b

xx

) (
�yy + χ b

yy

) − (
�xy + χ b

yy

)2 = 0, (14)

with

�xx = k2
‖

k2
εL + k2

⊥
k2

εT − k2
⊥c2

ω2
, (15)

�yy = k2
⊥

k2
εL + k2

‖
k2

εT − k2
‖c

2

ω2
, (16)

�xy = k‖k⊥
k2

(
εL − εT + k2c2

ω2

)
. (17)

Consider now the limit k⊥ 	 �p/c, keeping in mind that reso-
nance implies k‖ � �p/c. The dispersion relation then boils down
to that of the longitudinal mode with

εL + χ b
xx � 0. (18)

We now use the form of the dispersion tensor proposed by Braaten &
Segel (1993) and set ω = βpk‖c(1 + δ), with |δ| 	 1 as is customary.
In this limit, the longitudinal response reduces to

εL � 4 + 3

2
ln

(
1

4γ 2
e

+ δ − ε⊥
2

)
, (19)

where ε⊥ ≡ (k − k‖)/k‖ = k2
⊥/2k2

‖ 	 1. Then the dispersion relation
is solved provided

δ2 = ω2
pb

�2
p

(
1

γ 2
e

+ k2
⊥c2

�2
p

)
1

εL
. (20)

Due to the smallness of the argument of the log in εL, the real
part of εL is negative, hence the dispersion relation admits growing
solutions. The argument of the log depends on δ, hence the following
solution

Iω � 0.3
ωpb

�p

k⊥c

�p
(21)

is valid up to a logarithmic correction (also assuming k⊥ � �p/γ bc).
In the opposite limit k⊥ � �p/c, one finds two branches: the

Čerenkov resonance with ω ∼ kc, which is exponentially suppressed
as mentioned above, and the continuation of the above approximate
resonance, with ω � k‖c � �p. This latter, however, is nothing but a
form of filamentation instability, since it corresponds toRω 	 k⊥c

and k‖ 	 k⊥. This branch will therefore be discussed in the section
that follows (see in particular equation 28).

Let us discuss now the effect of angular dispersion, focusing
on the Čerenkov resonance at k⊥c 	 �p � Rω � k‖c. Using
equation (21), one finds that angular dispersion can be neglected,
i.e. k⊥β⊥c 	 Iω provided

γeγb � 100ξ−1
b

(
me

mp

)−1

, (22)

independently of the value of k⊥, as long as k⊥ 	�p/c. This inequal-
ity involves both the thermal Lorentz factor γ e of the background
plasma and the Lorentz factor of the beam γ b � γ 2

sh. Thus, growth
can occur provided the temperature of the background plasma is
sufficiently high; the corresponding threshold temperature scales as
γ −2

sh .
Fig. 4 shows the results of a numerical evaluation of the growth

rate as a function of k⊥, for two different background temperatures,
with in each case various values of the beam Lorentz factor. The
agreement with equation (22) is found to be quite satisfactory: for
γ e = 30, the instability disappears at values γ b � 104, while for
γ e = 300, it exists down to values of γ b ∼ 103. Note that the growth
rate peaks at a value k⊥c ∼ ωp/

√
γe = �p, as one should expect.

4.2 Filamentation instability

The filamentation instability in the hot background plasma can be
recovered in the limitRω → 0, k‖c → 0. We thus write ω ≡ iw, k‖ =
0 and neglect for the purpose of analytical calculations the angular
dispersion of the beam. This form of instability has been discussed
recently in Achterberg & Wiersma (2007). The background plasma
response can be approximated as

εL � 1 + 3
�2

p

k2
⊥c2

+ 3i
w3�2

p

k5
⊥c5

, (23)

C© 2011 The Authors, MNRAS 417, 1148–1161
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/417/2/1148/984294 by guest on 22 April 2022



Instabilities at relativistic shock waves 1155

Figure 4. Growth rate of the two-stream instability in a relativistically hot
background plasma versus k⊥c/ωp (ωp non-relativistic plasma frequency of
the background plasma) for various values of γ b at mean Lorentz factor
γ e = 30 (top panel) and γ e = 300 (bottom panel) of the background plasma
electrons. From left to right: γ b = 103 (bottom panel only), γ b = 104, 105.
The calculation assumes k‖c = �p/βb.

εT � 1 + 3π

4

�2
p

k⊥cw
− 3i

2

�2
pw

k3
⊥c3

. (24)

Including the beam contribution, the dispersion relation equa-
tion (14) can be rewritten to leading order as(

1 + 3π

4

�2
p

k⊥cw
+ k2

⊥c2

w2

) (
1 + 3

�2
p

k2
⊥c2

)
− 3

ω2
pb

�2
p

�4
p

w4
� 0. (25)

We have implicitly assumed k⊥c �w in the above equation. Equa-
tion (25) can be solved in the three following limits.

If k⊥c 	w1/3�2/3
p , then �2

p/(k⊥cw) � k2
⊥c2/w2 � 1 and

�2
p/k⊥2c2 � 1, so that one obtains

Iω �
(

4

3π

)1/3 (
ωpb

�p

)2/3

k⊥c
(
k⊥c 	 ω

1/3
pb �2/3

p

)
. (26)

The inequality written in parentheses corresponds to the assumption
k⊥c 	w1/3�2/3

p .

If ω
1/3
pb �p

2/3 	 k⊥c 	 �p, one rather obtains

Iω � ωpb

(
ω

1/3
pb �2/3

p 	 k⊥c 	 �p

)
, (27)

which corresponds to the standard filamentation growth rate in a
background plasma at high wavenumbers. The width of the band

Figure 5. Same as Fig. 4 for the filamentation instability. The calculation
assumes k‖ = 0. In the upper panel, γ e = 30 while in the lower panel, γ e =
300. From left to right: γ b = 102 (lower panel only), γ b = 103, 104, 105.

here is governed by (�p/ωpb)1/3 � γ −1/6
e ξ

−1/6
b (me/mp)−1/6. It should

thus not be much larger than unity.
Finally, if k⊥c � �p, one finds

Iω �
√

3
ωpb

�p

�p

k⊥c

(
�p 	 k⊥c

)
. (28)

Regarding the effect of angular dispersion, one finds that it can
be safely neglected provided as before, k⊥β⊥c 	 Iω, or

γ 1/3
e γ

1/2
b � ξ

−1/3
b

(
me

mp

)−1/3

, (29)

assuming k⊥c 	 ω
1/3
pb �2/3

p .
Fig. 5 presents the result of a numerical evaluation of the fila-

mentation growth rate in a relativistically hot background plasma,
for various values of γ b, taking into account the angular dispersion.
In the left-hand panel, the mean background Lorentz factor is γ e =
30 while in the right-hand panel, γ e = 300. As expected the growth
rate peaks at k⊥c ∼ �p. The angular dispersion shuts off the fil-
amentation instability at values of k⊥ that scale with γ b: indeed,
in the range k⊥c ��p, the condition k⊥β⊥c 	 Iω is much more
restrictive, as the right-hand side of equation (29) is to be multiplied
by (k⊥c/�p)2.

However, in contrast to the results for a cold background plasma
shown in Fig. 3, the growth rate at small wavenumbers is not strongly
affected by the angular dispersion. In this way, the relativistic tem-
perature of the background sustends the filamentation instability at
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1156 M. Lemoine and G. Pelletier

small wavenumbers (relatively to �p/c) and moderate values of the
beam Lorentz factor.

4.3 Summary

Before turning to the current-driven instabilities, it may prove useful
to briefly summarize the above results. We have discussed how the
filamentation and the oblique two-stream instabilities are affected
by the finite angular dispersion of the beam and the relativistic tem-
perature of the electrons of the background plasma. In accordance
with previous works (Lyubarsky & Eichler 2006; Rabinak et al.
2011), we find that the filamentation instability is strongly sensi-
tive to the angular dispersion in a cold background plasma. For an
electron–proton plasma, a Lorentz factor γ sh � 100 shuts off the
filamentation instability in a cold background plasma due to the
finite angular dispersion, the extent of which varies in inverse pro-
portion to γ sh. Due to its higher growth rate, the oblique two-stream
instability is much less sensitive to the finite angular dispersion and
growth may take place at small wavenumbers for γ sh as small as
10–20. As we have stressed, this does not take into account the lim-
itation that is imposed by the size of the precursor: for the mode to
actually grow in a shock precursor, its growth time-scale must also
be smaller than the precursor crossing time. This latter condition is
discussed in detail in Lemoine & Pelletier (2010) and, as it depends
directly on the level of magnetization of the upstream plasma, we
do not discuss it here for simplicity.

Once the electrons are heated to relativistic temperatures, the
picture becomes substantially different. Then, the filamentation
mode becomes rather insensitive to the angular dispersion at small
wavenumbers, while the oblique two-stream instability is strongly
inhibited. In both cases, the growth rate of the instability is maximal
at a wavenumber k⊥ ∼ �p/c, which varies as the inverse square root
of the electron temperature. Conversely, a larger electron tempera-
ture implies a larger spatial scale for the mode of maximum growth
rate.

5 CURRENT INSTABILITIES

Section 2.2 has discussed the possibility of current-driven instabil-
ities at relativistic shocks. In particular, we have argued that a net
parallel current in the beam of returning particles may emerge at
oblique shock waves (in the upstream frame) if the electrons of the
upstream plasma are not heated to equipartition with the protons by
the time they are overtaken by the shock front. We have also indi-
cated that, independently of charge neutralization of the returning
beam, a net perpendicular current may rise through charge splitting
in an external magnetic field. In the following, we discuss these
possibilities in turn.

5.1 Parallel current

If the shock foot does not preheat the incoming electrons efficiently,
a parallel current with typical (upstream rest frame) intensity

j‖ ∼ ξbγ
2
shnuec (30)

rises in the shock precursor. Even if a substantial fraction of the
incoming electrons were reflected at the shock front, the above
current would rise, simply because these electrons would carry an
energy ∼me/mp that of the reflected protons (in the absence of
preheating), hence their penetration length-scale in the upstream
would be very small compared to that of the protons.

This current gives rise to a compensating return current in the
upstream plasma, which may destabilize the pre-existing magnetic
field on large spatial scales (see Reville et al. 2007 for parallel
relativistic shock waves).

It is interesting to note that, for realistic values of ξ b and γ sh, the
current exceeds nuec, hence it cannot be simply compensated by a
non-relativistic drift of the upstream electrons relatively to the ions.
In order to understand how compensation takes place, it is instruc-
tive to go to the shock frame, in which the parallel current j‖|sh =
ξ bγ shnuec is associated with the charge density ξ bγ shnue. Note that
the parallel current can be maintained in the shock front frame only
if there is a net flow of particles escaping towards upstream; this
therefore implicitly means a subluminal (parallel) shock configura-
tion. Although the shock structure is not strictly speaking stationary
in this case, we assume here that it evolves on long time-scales. In
this frame, the incoming electrons and protons enter the precursor
with the Lorentz factor γ sh and density γ shnu. If the electron fluid is
suddenly slowed by an obstacle from velocity βsh down to velocity
βex, its shock frame density jumps by a factor βsh/βex but the elec-
tron current jex = γ exβexnexec – which is positive as the electrons
flow in the negative x direction – remains conserved. Therefore, the
total incoming e + p current must remain zero. Given that imme-
diately before entering the precursor, the incoming e + p current
vanishes, while immediately within the precursor, the cosmic ray
current does not vanish; it is easy to see that one cannot balance the
current by simply slowing down the incoming electrons or protons.

In order to achieve charge and current neutralization within the
precursor, it is actually necessary to reflect part of the electrons.
Let us assume that a fraction κe is reflected back towards upstream
at entrance into the precursor and that electrons and protons move
with respective velocities βex and βpx within the precursor. The
incoming proton current jpx = −γ shβshnuec, the incoming electron
current jex = γ shβsh(1 − κe)nuec, the incoming proton charge ρpx =
γ pxnpxe = γ shnueβsh/βpx and the incoming electron charge ρex =
−γ exnex(1 − κe)e = −γ shnu(1 − κe)eβsh/βex. Charge and current
neutralization within the precursor thus requires

κe = ξb, βex = βsh

ξb + βsh/βpx
(1 − κe) . (31)

In this case, most of the compensating current in the background
plasma is carried by the incoming protons, while the repelling and
the slowing down of the electrons ensure charge balance. As the
incoming protons are further decelerated by energy exchange with
the incoming electrons through micro-instabilities, the above re-
lation between βex and βpx must remain valid to preserve charge
neutralization. Of course, ξ b itself varies with location, decreasing
roughly exponentially ahead of the shock front. Then, the above
indicates that electrons are slowed down progressively as they cross
the precursor; in the limit βpx → βsh, βex → (1 − 2ξ b), leading to
efficient slowing down of the electrons.

Clearly, one should seek this effect in current PIC simulations.
The PIC simulations of Sironi & Spitkovsky (2011) indicate that the
generation of turbulence does not lead to efficient preheating of the
electrons in the upstream. One may likely relate this to the magnetic
nature of the modes excited by the Bell instability, which do not
contain significant electric wave energy in the upstream frame. None
the less, the precursor length-scale increases in time in the case of
parallel shock waves, because a fraction of the accelerated particles
can propagate to upstream infinity in such a configuration (Lemoine
& Pelletier 2010). Hence, the structure of the precursor should
itself evolve in time: as the length-scale of the precursor increases,
incoming electrons experience heating for a longer duration and
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arrive at the shock front with a larger fraction of the incoming ion
energy; if this fraction eventually becomes comparable to unity, the
upstream parallel current disappears and the Bell instability shuts
off. Unfortunately, present PIC simulations have not been able to
explore the evolution of the precursor on such long time-scales.

In the case of oblique shock waves, the simulations of Sironi &
Spitkovsky (2011) indicate that the preheating of the electrons does
not take place efficiently at intermediate magnetizations 10−4 �
σ u � 10−2. There is no parallel current in this case in the shock
frame, only a net charge as discussed in Pelletier et al. (2009). A
priori, one might expect preheating to occur through a Buneman
instability induced by the perpendicular current (see further below).
However, as will be shown in Section 5.2, the magnetization is so
large that the Buneman mode does not have time to grow before it
is advected through the shock front, unless the shock Lorentz factor
takes quite moderate values. Hence, it should not bear a significant
impact on the structure of the precursor.

5.2 Current-induced Buneman instability

Let us assume that the accelerated particle beam carries a net cur-
rent and induces a compensating return current in the background
plasma. This situation applies equally well to the case of a parallel
(Section 5.1) or a perpendicular current (Section 5.3). The relativis-
tic motion of the background electrons relative to the background
ions then induces a relativistic version of the Buneman instability
(Buneman 1959).

In the upstream rest frame, the relevant dispersion relation, in-
cluding the relativistic motion of the background electrons with
velocity v0 (Lorentz factor γ 0) but neglecting the beam contribu-
tion, takes the form

1 − ω2
pi

ω2
− ω2

pe

γe (ω − k · v0)2

[
1 − (k · v0)2

k2c2

]
= 0. (32)

The instability develops at frequencies |ω| 	 ω0 ≡ k · v0, as the
small denominator lies in the second term, not the third one. Thus,
we may approximate the dispersion relation as

1 − me

mp

ω2
pe

ω2
− ω2

pe

ω2
0

k2
tr

k2

(
1 + 2

ω

ω0

)
� 0, (33)

where ktr = [k2 − (k · v0)2]1/2 represents the component of k trans-
verse to the current. The above expression then leads to the most
unstable mode:

ωk �
(

me

2mp

)1/3

γ
−1/6
0

(
ktr

k

)1/3
(

−1

2
+ i

√
3

2

)
ωp. (34)

ω0 ≡ k · v0 = ωpe√
γ0

ktr

k
. (35)

As measured in the upstream frame, the advection time across
the foot is (γ shωci)−1, with ωci = eBu/(mpc) the proton cyclotron
frequency in the background magnetic field. Thus the Buneman
instability can effectively grow if I(ωk) � γshωci which leads to a
condition on the ambient magnetization, as in Lemoine & Pelletier
(2010):

σu 	
(

mp

me

)1/3 1

γ 2
sh

, (36)

neglecting the γ
1/6
0 dependence. This Buneman mode turns out to be

the fastest instability, although the oblique two-stream mode does
lie far behind as its growth condition is given by almost the same

inequality, except that the right-hand side term is multiplied by ξ
1/3
b .

Nevertheless, it is well known (at least in the non-relativistic regime)
that this Buneman instability saturates rapidly by heating the elec-
trons to a temperature such that the anisotropy due to the electron
current is drowned by the broadened distribution (i.e. v̄e ∼ ve in
non-relativistic regime, v̄e being the electron thermal velocity, and
γ̄e ∼ γe in relativistic regime), in agreement with the discussion of
Section 3. In practice, and if conditions permit it (notably, magne-
tization), this Buneman mode thus serves as an efficient source of
electron heating. In turn, this helps the filamentation mode develop
at moderate values of γ sh, which could not develop in a cold back-
ground plasma given the amount of angular dispersion of the beam,
as discussed above.

5.3 Perpendicular current in a magnetic field

We now consider an oblique shock wave. In the shock front, the
magnetic field lies perpendicular to the shock normal, to a good
approximation; we assume that Bu|sh = Bu|sh y. As discussed in
Section 2.1, the returning or accelerated proton undergoes a cy-
cloidal trajectory in the Lorentz transformed background field and
accompanying motional electric field, as measured in the shock
front frame. Even if the beam does not carry a net parallel current
at the beginning of the foot, the charge splitting in the background
field leads to a cosmic ray current oriented along z. Its magnitude
in the upstream rest frame can be straightforwardly estimated as
jz,b ∼ ξ bγ shnuec, given that the apparent density of cosmic rays in
this rest frame reads ξ bγ

2
shnu but that their effective perpendicular

velocity is vz ∼ c/γ sh.

5.3.1 Magnetic field structure in the precursor

The vertical current tends to strongly modify the initial magnetic
field in a diamagnetic way. Indeed, the choice of orientation of
the field, directed towards +y, implies that the vertical current is
directed towards +z, so that the magnetic field increases towards
+x, from the shock ramp to the external edge of the foot where
it reaches its external value. A consistent solution thus requires a
reduced mean field in the foot. This remains fully compatible with
the shock crossing conditions, which implies an enhancement of
the magnetic field strength downstream, when one realizes that a
similar current develops behind the shock over a distance measured
by a typical Larmor radius. This current develops in an opposite
direction downstream to that upstream and thus leads to a reduction
of the magnetic field from its far downstream (asymptotic) value to
the low value close to the ramp. Note that the cycloidal trajectories
upstream and downstream have different characteristic gyroradii,
due to the compression of the magnetic field.

This diamagnetic effect could be very prohibitive if the perpen-
dicular current were not compensated by the background electrons.
Indeed, in the absence of compensation, one would find an induced
field Bind such that

Bind

(
Bu|sh − Bind

)
4π

∼ ξbγ
2
shnumpc

2. (37)

The modification of the magnetic profile can be calculated as
follows. First we remark that the motional electric field that com-
pensates βxBy is uniform throughout the shock transition because
rot E = 0, hence Ez = βshBu|sh. Then, in order to characterize the
compensation of the current, we introduce an effective resistivity
η of the background plasma electrons. At the tip of the precursor,
where the beam current is the strongest, one cannot exclude that a
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1158 M. Lemoine and G. Pelletier

‘double layer’ type of structure forms, as in the case of a parallel
shock wave. For the discussion that follows, we ignore this and
describe the current compensation on phenomenological grounds
by introducing this effective resistivity. In the precursor and in the
shock ramp, this resistivity may result from turbulent scattering at
frequency νe, with η = 4πνe/ω

2
pe. Ohm’s law for the background

plasma then leads to

βshBu|sh + βxBy = η

γsh
jz,pl, (38)

with jz,pl the background plasma compensating current along z. Now
the field variation is produced by both the plasma current jz,pl and
the diamagnetic cosmic ray current jz,b:

∂By

∂x
= 4π

c

(
jz,pl + jz,b

)
. (39)

Using Ohm’s law to relate jz,pl with By, one thus obtains the fol-
lowing differential equation that governs the spatial profile of the
magnetic field:

�r

γsh

∂By

∂x
− βxBy = βshBu|sh + 4π�r

γshc
jz,b, (40)

where �r denotes the resistive length, �r ≡ ηc/4π = δ2
e νs/c. The

boundary conditions are as follows: for x → −∞ (far downstream),
βx → −1/3, the current vanish and By → 3Bu|sh; for x → +∞
(far upstream), βx → −βsh � −1, the currents vanish again and
By → Bu|sh. In the downstream region in which there is a cosmic
ray current jz,b < 0, By decreases below 3Bu|sh; correspondingly,
in the upstream region in which jz,b > 0, By increases towards its
asymptotic value Bu|sh.

In the situation that we consider, the magnetic field energy is
weak and the incoming plasma is able to provide a compensating
current. The typical length-scale over which the compensating cur-
rent is established, �r, is much smaller than the length-scale over
which the cosmic ray current is induced �f|sh, hence one derives the
modification of the magnetic field at x > �r as By = Bu|sh + 	B+

with

	B+ � − 4π�r

γshβshc
jz,b, (41)

and the compensating current

jz,pl = c

4π

∂By

∂x
− jz,b = −

(
1 + �r

γsh

∂

∂x

)
jz,b. (42)

The discrepancy with respect to neutralization of the diamagnetic
current is expressed by the derivative term in the above expression,
and is of the order of �r/γ sh�f . Thus, the diamagnetic current up-
stream produces a modification of the magnetic field of a maximum
amount given by

	B+

Bu|sh
∼ 4π�rnbc

γshBu|sh
∼ 4πξbγ

−1
sh

�r

δe
σ−1/2

u

(
me

mp

)−1/2

. (43)

The modification thus remains small if

σu � ξ 2
b

(
me

mp

)
γ −2

sh ∼ 10−10. (44)

The right-hand side is of the order of 10−6γ −2
sh , hence it should be

verified in most relevant cases.
The above transverse current leads to a compensating current in

the background plasma which induces a Buneman instability, as dis-
cussed in Section 5.2. As the beam transverse current is generated
at the tip of the precursor, where most of the rotation in the back-
ground field takes place, the Buneman instability effectively takes
place in a cold background plasma. It may then lead to efficient
heating of the electrons, as discussed in Section 5.2.

6 D I SCUSSI ON AND C ONCLUSI ONS

The present work has discussed the electromagnetic micro-
instabilities triggered by a beam of shock-reflected/accelerated par-
ticles propagating in the unshocked upstream plasma. In particular,
it has taken into account the finite angular dispersion of the beam
of returning particles as well as the possible effects of heating of
the background plasma electrons. Regarding the development of
the filamentation and two-stream instabilities, the salient results are
summarized in Section 4.3. Let us discuss here how these results
affect our understanding of the development of instabilities at ultra-
relativistic shock waves, as a function of the shock Lorentz factor
γ sh.

(1) At large values of γ sh � 300, both the filamentation and
modified two-stream instabilities can develop in the cold or rel-
ativistically hot background plasma limits. As mentioned earlier,
this statement only considers the effect of angular dispersion and
plasma temperature. For the waves to actually grow, one must sat-
isfy another condition: the growth time-scale must be shorter than
the precursor crossing time-scale. This latter condition depends on
the magnetization of the upstream plasma and is discussed in detail
in Lemoine & Pelletier (2010). In the rest of this discussion, we do
not consider this limitation, which amounts to considering a very
weakly magnetized upstream plasma.

(2) At lower values of γ sh, the filamentation instability is inhib-
ited by the finite angular dispersion of the beam – the extent of
which is inversely proportional to γ sh – in the cold background
plasma limit, but not in the relativistically hot background plasma
limit. The oblique two-stream instability is inhibited in the hot
background plasma limit, at least up to some threshold temperature
which scales as γ −2

sh (see equation 22).
(3) We have uncovered a situation that leads to the develop-

ment of a Buneman instability at the tip of the precursor, which
may efficiently preheat the electrons to relativistic temperatures.
The Buneman instability is usually triggered by a parallel current.
But, for the generic case of an oblique relativistic shock wave, the
rotation of the beam in the background magnetic field leads to a
perpendicular current of large intensity. This leads to a compen-
sating transverse current in the background plasma, which in turn
leads to the Buneman instability, possibly in the relativistic regime.
As is well known, this instability saturates through the heating
of the electrons such that the thermal energy becomes compara-
ble with the drift energy, thereby drowning the anisotropy of the
electron distribution. The growth rate of the Buneman instability
is larger than that of the oblique two-stream instability or the fil-
amentation mode in the cold background zero angular dispersion
limit.

(4) The above then suggests that efficient preheating of the up-
stream electrons may take place through the Buneman instability
and through the two-stream instability. As soon as the electrons
are heated to relativistic temperatures, the filamentation instability
becomes the dominant mode. As indicated by equation (29), this
instability can indeed operate down to values γ sh ∼ 10 in the rela-
tivistically hot background plasma limit. For smaller values of γ sh,
the ultra-relativistic shock limit that we have assumed throughout is
no longer applicable. One should expect different physics to come
into play in the mildly relativistic limit.

The upstream electrons are heated to larger thermal Lorentz fac-
tors γ e as they come closer to the shock front, hence the above
picture must pertain up to the shock front. If the electron temper-
ature reaches the threshold discussed previously, the two-stream

C© 2011 The Authors, MNRAS 417, 1148–1161
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/417/2/1148/984294 by guest on 22 April 2022



Instabilities at relativistic shock waves 1159

instability also becomes efficient. For reference, if the electrons
reach equipartition with the protons, γ e becomes as large as mp/me.
At equipartition, the filamentation instability thus becomes similar
to that occurring in a pair plasma. As for the Whistler wave insta-
bility, it develops only if there is a sufficient contrast between the
electron and proton masses. It thus disappears when the electron
relativistic mass reaches the proton mass and the modes become
right Alfvén waves, which do not have time to grow unless the pre-
cursor has been substantially extended through diffusion (see the
discussion in Lemoine & Pelletier 2010).

(5) The typical perpendicular spatial scale at which the filamen-
tation and two-stream instability growth rates reach their maximum
scales as

√
γe due to the evolution of the background plasma fre-

quency in the ultra-relativistic limit. This suggests that the typical
spatial scale of the inhomogeneities increases from the electron
inertial scale c/ωpe to the proton inertial scale c/ωpi as the modes
come closer to the shock front. Note that the growth rate of the
filamentation instability does not depend on the temperature of the
background plasma and takes the same value as in the cold plasma
limit.

(6) The micro-turbulence that is generated by these instabili-
ties leads to efficient electron heating. This has been discussed in
Section 2.2, where it has been argued, in particular, that in the un-
magnetized limit, the large scale of the precursor must guarantee
heating of the electrons to equipartition with the protons if the wave
electric energy content is comparable to the magnetic content. Let
us now account for a finite upstream magnetic field, assuming in
particular that this magnetic field sets the length-scale of the pre-
cursor. The heating process takes place through the diffusion of the
electron energy in the bath of micro-turbulence: in fluctuating elec-
tric fields Ē on coherence scales lc, electrons reach a thermal energy
ε̄e such that ε̄2

e � 2e2Ē2lc�f|u after crossing the precursor of length
�f|u. The turbulence is supposed to reach a level such that it con-
tributes to form the shock, i.e. Ē2/(4π) = ξEnumpc

2 with ξE being a
conversion factor not too far below unity. This implies a thermal en-
ergy ε̄e ∼ ξ

1/2
E σ−1/4

u γ
−1/2
sh mpc

2. For fiducial values ξE ∼ 10−2, σ u ∼
10−9, γ sh ∼ 300, the prefactor is of the order of unity. If one imposes
furthermore that the magnetization is small enough to guarantee the
growth of the filamentation mode, one finds σ u < ξ b/γ 2

sh (Lemoine
& Pelletier 2010), the electrons are heated to Lorentz factors γ e �
ξ

1/2
E ξ

−1/4
b mp/me, close again to equipartition.

Thus, the electrons can be heated in the precursor and roughly
thermalized with the protons.

(7) The above considerations agree well with recent PIC simula-
tions, at least where comparison can be made. In particular, electron
heating to near equipartition has been observed at small magnetiza-
tion by Sironi & Spitkovsky (2011), although the detailed physical
process that is responsible for this heating has not been identified
in these simulations. The micro-instabilities have been observed to
take place at moderate values of the shock Lorentz factor γ sh ∼
20 and small magnetization σ u � 10−4 (assuming in these simu-
lations an electron-to-proton mass ratio of 1/16). Furthermore, the
typical scale of the fluctuations apparently grows from the tip of the
precursor to the shock front.

(8) Finally, we question the possible non-linear saturation of the
instabilities in the precursor. First of all, one can show that these
instabilities cannot be saturated by beam particle trapping because
the time-scale to cross a coherence scale lc is much less than the
growth time-scale of the waves Iω−1; in other words, trapping of
the beam particles would require a prohibitive level of turbulence.
This can be seen best by going to the rest frame of the waves in
which the electromagnetic fields are static. In this rest frame, the

particle crosses the transverse coherence length lc in a time-scale
τnl|w = (pb|wlc/eĒ|w)1/2, which takes into account the static force
exerted by the fields on the particle in this rest frame. As we are in-
terested in the transverse dynamics, one can transform the relevant
quantities to the upstream frame as τ nl|u = γ w|uτ nl|w, pb|w � pb �
γ 2

shmpc and E|w � γw|uĒ. Consider now the example of the fila-
mentation instability, the growth rate of which is ξ

1/2
b (me/mp)1/2ωp.

Saturation by trapping would require ξE � γ 2
w|uξ

2
bγ

4
sh(lc/δp)2, which

is obviously prohibitive. This negative conclusion obviously holds
equally well for the other instabilities that grow faster, in particu-
lar the two-stream instability, the Whistler mode and the Buneman
instability.

Non-linear effects related to mode coupling thus appear more
likely. Even when the electrons have turned relativistically hot, the
rate of non-linear evolution of the unstable modes – as for instance
coupling of oblique two-stream modes with transverse waves or
acoustic waves – is expected to be of the order of ωpeĒ

2/(4πγemec
2)

according to Zakharov (1972), which leads to saturation once the
growth rate is balanced by the rate of energy conversion into the
other stable modes. For the particular example of the two-stream
instability, with growth rate ξ

1/3
b (me/mp)1/3ωp, this leads to ξE ∼

ξ
1/3
b (me/mp)4/3γ e, which is therefore not far below ξ b if the elec-

trons have reached equipartition with the ions. As a note of caution,
one should point out that the above estimates of saturation ignore
a possible bulk Lorentz factor of the upstream electrons once they
have been heated in the precursor. Such estimates should neverthe-
less remain correct in the limit of moderate γ sh.

The main conclusion of this study of the dispersion and of the
thermal effects on the growth of micro-instabilities in the foot of a
relativistic shock is that electron preheating can occur, and that this
leads to the attenuation of micro-instabilities except the filamenta-
tion instability, which keeps the same growth rate, the wavelength
of the instability peak migrating from the electron to the proton in-
ertial scale as the electrons are heated to equipartition. The plasma
that reaches the shock ramp is roughly thermalized and behaves like
an electron–positron plasma. Hence the following question arises:
what makes the reflection of a part of the incoming particles? Under
the assumed conditions of a weak magnetization, such that it allows
the growth of micro-instabilities, especially the filamentation insta-
bility, the role of the ponderomotive force exerted by the growing
waves is probably more important than the electrostatic barrier. This
has to be further investigated with dedicated PIC simulations.
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APPENDIX A : BEAM SUSCEPTIBILITY
T ENSOR

The susceptibility tensor is written as (Melrose 1986):

χ b
ij = 4πnbe

2

mω2

∫
d3u

⎡
⎣ui

γ

∂

∂uj

fb

+ uiuj

γ

1

γω − kmumc + iε
klc

∂

∂ul

fb

⎤
⎦, (A1)

with ui ≡ pi/(mc), γ � (1 + u2
x)1/2 in the above equation and nb the

beam density (in the upstream plasma rest frame). We recall the
axisymmetric waterbag distribution function adopted here:

fb(u) = 1

πu2
⊥

δ
(
ux − u‖

)
�(u2

⊥ − u2
y − u2

z). (A2)

The integral in equation (A1) can be carried out analytically under
the approximation discussed in Section 3: we neglect in a systematic
way u2

y and u2
z in front of u2

x but we do not to neglect uy, uz in the poles
of the form ω − k · βc = ω − kiuic/γb. For simplicity, we rotate
the perpendicular axes in such a way as to align the perpendicular
component of the wave vector along y, i.e. k⊥ = k⊥ y. One then

obtains

χ b
xx = ω2

pb

ω2

⎧⎨
⎩− 1

γ 2
b

− 2k‖u‖

⎡
⎣

[(
2 − β2

b

)
1

R‖
+ u‖

γb

S‖
R2

‖

]
Pxx1(z)

− u‖
γb

S‖
R2

‖
Pxx2(z)

⎤
⎦

+ 2
u2

‖k
2
⊥c2

R2
‖

Pxx3(z)

⎫⎬
⎭ , (A3)

χ b
xy = ω2

pb

ω2

⎧⎨
⎩−2

k‖
k⊥

⎡
⎣

(
1

γ 2
b

+ 2
u‖
γb

S‖
R‖

)
Pxy1(z)

+ u‖
γb

S‖
R‖

Pxy2(z)

⎤
⎦

+2
u‖k⊥c

R‖
Pxy3(z)

⎫⎬
⎭, (A4)

χ b
yx = χ b

xy (A5)

χ b
xz = χ b

xz = 0, (A6)

χ b
yy = ω2

pb

ω2

⎧⎨
⎩−1 − 2

k‖
k⊥

⎡
⎣

(
− u‖

γ 2
b

R‖
k⊥c

+ 3
S‖

k⊥cγb

)
Pyy1(z)

+ S‖
k⊥cγb

Pyy2(z)

⎤
⎦

+ 2Pyy3(z)

⎫⎬
⎭, (A7)

χ b
zz = ω2

pb

ω2

⎧⎨
⎩−1 − 2

k‖
k⊥

⎡
⎣

(
− u‖

γ 2
b

R‖
k⊥c

+ 3
S‖

k⊥cγb

)
Pzz1(z)

− S‖
k⊥cγb

Pzz2(z)

⎤
⎦

+ 2Pzz3(z)

⎫⎬
⎭ , (A8)

χ b
yz = χ b

yz = 0, (A9)

with

z ≡ k⊥u⊥c

R‖
,

R‖ ≡ γbω − k‖u‖ c,

S‖ ≡ u‖ω − k‖γb c. (A10)
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The beam plasma frequency is defined as usual: ωpb ≡
[4πnbe

2/(γbm)]1/2. The beam velocity βb = u‖/γ b.

Pxx1(z) = z−2
[
1 − (1 − z2)1/2

]
,

Pxx2(z) = (1 − z2)−1/2,

Pxx3(z) = z−2
[
1 − (1 − z2)−1/2

]
,

Pxy1(z) = z−2

[
1 − z2

2
− (1 − z2)1/2

]
,

Pxy2(z) = 1 − (1 − z2)−1/2,

Pxy3(z) = Pxx3(z),

Pyy1(z) = Pxy1(z),

Pyy2(z) = Pxy2(z),

Pyy3(z) = z−2

[
1 + z2

2
− (1 − z2)−1/2

]
,

Pzz1(z) = z−2

3

[
−1 + 3z2

2
+ (1 − z2)3/2

]
,

Pzz2(z) = −Pxx1(z),

Pzz3(z) = [
1 − (1 − z2)1/2

]
.

(A11)

The above are defined for k⊥u⊥c < |R‖|. In the opposite limit, i.e.
when the effects of angular dispersion become substantial, the inte-
gral in equation (A1) contains poles. Using the Plemelj–Sohotsky
formula to evaluate the integrals over these resonance poles, one
finds that the above equations (A3, A4, A6, A7, A8, A9) for the
beam susceptibility tensor are continued to the region k⊥u⊥c > |R‖|
by the substitution (1 − x2)1/2 → i (x2 − 1)1/2, with x = k⊥u⊥c/R‖
in the expressions for the χ b

ij components.
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