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One of the principle efforts in cosmic microwave background (CMB) research is measurement of the

parameter fnl that quantifies the departure from Gaussianity in a large class of nonminimal inflationary

(and other) models. Estimators for fnl are composed of a sum of products of the temperatures in three

different pixels in the CMB map. Since the number�N2
pix of terms in this sum exceeds the number Npix of

measurements, these�N2
pix terms cannot be statistically independent. Therefore, the central-limit theorem

does not necessarily apply, and the probability distribution function (PDF) for the fnl estimator does not

necessarily approach a Gaussian distribution for Npix � 1. Although the variance of the estimators is

known, the significance of a measurement of fnl depends on knowledge of the full shape of its PDF. Here

we use Monte Carlo realizations of CMB maps to determine the PDF for two minimum-variance

estimators: the standard estimator, constructed under the null hypothesis (fnl ¼ 0), and an improved

estimator with a smaller variance for fnl � 0. While the PDF for the null-hypothesis estimator is very

nearly Gaussian when the true value of fnl is zero, the PDF becomes significantly non-Gaussian when

fnl � 0. In this case we find that the PDF for the null-hypothesis estimator cfnl is skewed, with a long non-
Gaussian tail at cfnl > jfnlj and less probability at cfnl < jfnlj than in the Gaussian case. We provide an

analytic fit to these PDFs. On the other hand, we find that the PDF for the improved estimator is nearly

Gaussian for observationally allowed values of fnl. We discuss briefly the implications for trispectrum

(and other higher-order correlation) estimators.

DOI: 10.1103/PhysRevD.84.063013 PACS numbers: 98.70.Vc, 98.80.Cq

I. INTRODUCTION

The simplest single-field slow-roll inflation models
predict that primordial perturbations should be nearly
Gaussian [1], but with predictably small departures from
Gaussianity [2]. This is often quantified through the non-
Gaussianity parameter fnl defined by [3]

� ¼ �þ fnlð�2 � h�2iÞ; (1)

where � is the gravitational potential and � a Gaussian
random field. Standard single-field slow-roll inflation pre-
dicts fnl � 1 for the primordial field (although nonlinear
evolution of the density field may produce fnl � 1 at the
time of recombination; see, e.g., Ref. [4]). However, multi-
field [5] or curvaton [6] models, or models with sharp
features [7] or wiggles [8] may produce larger values of
fnl. Measurement of fnl has thus become one of the pri-
mary goals of cosmic microwave background (CMB) and
large-scale-structure (LSS) research. Current limits from
the CMB/LSS are in the ballpark of jfnlj & 100 [9,10].
The plot has thickened with a suggestion [11] (not univer-
sally accepted) that the WMAP 3-year data prefer (at the
2:8� level) fnl � 0, with a best-fit value fnl ’ 80 (a less
significant result of 1:5� is found in an analysis of the most
recent WMAP data release [9]). The Planck satellite [12] is
expected to achieve a sensitivity of fnl � 5.

In this paper, we address the following question: What is

the probability distribution function (PDF) PðcfnlÞ for an
estimator cfnl that is constructed from a CMB map? If the
PDF departs from the Gaussian distribution that is often
assumed, then the 99.7% confidence-level (C.L.) interval
for fnl may be different than 3 times the standard deviation
for fnl. The interpretation of measurements thus requires
knowledge of this PDF.
The question arises as the theory predicts not only the

mean value of the estimator cfnl, but it also makes a pre-

diction for the detailed functional form of the PDF PðcfnlÞ.
The consistency of a given measurement of cfnl with a
theoretical prediction for fnl depends on knowledge of

the shape of PðcfnlÞ. Thus, for example, we often evaluate
or forecast the standard error �fnl with which a given

measurement will recover the true value of fnl and then
simply assume that the error is Gaussian. If so, then with

�fnl ¼ 10, for example, a measurement of cfnl ¼ 30 would

represent a 3� departure from fnl ¼ 0 and a measurementcfnl ¼ 0 would represent a 3� departure from fnl ¼ 30.
However, if the PDF depends on the true value fnl, and if
that distribution is non-Gaussian, then it may be that a

measurement cfnl ¼ 30 could easily be consistent with a

true value fnl ¼ 0, while a measurement cfnl ¼ 0 could be
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inconsistent with fnl ¼ 30 with a confidence greater than
‘‘3�.’’ We will see below that something similar to this
actually occurs with measurements of fnl.

This question is particularly important for measure-
ments of non-Gaussianity (as opposed, for example, for

the CMB power spectrum), because cfnl is a sum over
products of three temperature measurements (unlike the
power spectrum, which sums over squares of temperature
measurements). Suppose the temperature is measured in
Npix pixels. There are then�N2

pix terms in the fnl estimator

(after restrictions imposed by statistical isotropy). While
these terms may have zero covariance, they are not statis-
tically independent; there is no way to construct N2

pix

statistically independent quantities from Npix measure-

ments. The conditions required for the validity of the

central-limit theorem are therefore not met, and PðcfnlÞ
will not necessarily approach a Gaussian in the Npix � 1

limit.
The PDF can be obtained fromMonte Carlo simulations,

but the simulations are very computationally intensive
(e.g., see Ref. [13]). The number of Monte Carlo realiza-
tions is thus usually limited to the number, & 1000, re-
quired to determine a 99.7% C.L. detection or sometimes
even fewer if it is just the variance that is being estimated.
Although with only 1000 realizations the results shown in
Fig. 8 of Ref. [13] show hints of a non-Gaussian PDF,
simulations done up until now do not include enough
realizations to precisely map the functional form of

PðcfnlÞ. The number of realizations required to ultimately
map the 4�, 5�, etc. ranges will be prohibitive, especially
since the simulations will need to be rerun repeatedly to
determine how the error ranges depend on cosmological
parameters, instrument-noise properties, scanning strat-
egies, etc., and they then must be run for multiple theo-
retical values fnl.

Work along these lines was begun in Ref. [14], wherein

it was shown that the variance of the distribution PðcfnlÞ
may have a strong dependence on the true underlying value
of fnl. More precisely, they evaluated the variance of the
estimator designed to have the minimum variance under
the null hypothesis fnl ¼ 0 (which we refer to frequently
below as the ‘‘null-hypothesis minimum-variance’’ estima-
tor, or NHMV estimator), and showed that the variance of
this NHMVestimator increases as f2nl increases. They then

constructed an alternative estimator cfnnl, which we call the

CSZ estimator,1 which has a PDF with a variance that
saturates the Cramer-Rao bound up to corrections of order

f2nl. Still, as we have argued above, the consistency of a

hypothesis with a measurement requires full knowledge of
the PDF of whatever estimator is used in the analysis.
To address these questions, we calculate the PDF for an

ideal (no-noise) map to understand the irreducible PDF
introduced simply by cosmic variance under the Sachs-
Wolfe approximation and on a flat sky. We hope that

lessons learned about PðcfnlÞ in this ideal case may help
interpret and understand current/forthcoming results and
assess the validity of full-experiment simulations.
We calculate these PDFs by using Monte Carlo realiza-

tions of numerous no-noise flat-sky CMB maps. The first
order of business with a map will be to determine whether a
given map is consistent or inconsistent with the null hy-
pothesis fnl ¼ 0. Therefore, we first calculate the PDF that
arises if fnl does indeed vanish, for the NHMV estimatorcfnl, and we also calculate the PDF that arises if the true
value of fnl is nonzero. We provide an analytic fit for these
PDFs in Eq. (21). If the evidence from such a measurement
were to show that fnl is nonzero, then the next step would

be to apply the CSZ estimator cfnnl for fnl � 0 [14] to obtain
a more precise value for fnl or to test consistency of the
data with a specific nonzero value of fnl. We therefore
follow by calculating the PDF for these improved non-null-
hypothesis estimators.
We find that, besides having a variance that increases

with f2nl, the PDF of the NHMV can have a significantly

non-Gaussian shape when fnl � 0 with a long non-

Gaussian tail for cfnl > jfnlj and less probability atcfnl < jfnlj than in the Gaussian case. As an example,
taking fnl ¼ 100 for an experiment which measures multi-
poles out to lmax ¼ 3000 (such as the Planck satellite [12])
and assuming a Gaussian PDF for the NHMV this experi-

ment measures 74 � cfnl � 148 at the 99.7% C.L.; the

actual PDF shows that this experiment measures 68 �cfnl � 143 at the 99.7% C.L. Applying the CSZ estimator
to the data we find it has a PDF which is well approximated

by a Gaussian with cfnl ¼ 100� 12:5 at 99.7% C.L.
This paper is organized as follows. In Sec. II we con-

struct the standard minimum-variance estimator cfnl under
the null hypothesis fnl ¼ 0 and discuss why the PDF for
this estimator is not necessarily Gaussian, even in the limit
of a large number of pixels. In Sec. III A we use

Monte Carlo calculations to evaluate the PDF Pðcfnl)
for this estimator if the null hypothesis is indeed valid,
i.e., if fnl is indeed zero. We find that the PDF in this
fnl ¼ 0 case is well approximated by a Gaussian, for
Npix � 1, even though the central-limit theorem does not

apply. In Sec. III B, we calculate the PDF assuming that
the null hypothesis is not valid, i.e., if fnl � 0. We find the
PDFs in this case can be highly non-Gaussian, skewed

to large jcfnlj, with long large-cfnl non-Gaussian tails and

1We note that the CSZ estimator, which is defined under the
Sachs-Wolfe approximation, has yet to be generalized so that it
can be applied to actual data. On the other hand a Bayesian
approach, discussed in Ref. [15], allows for an fnl inference that
saturates the Cramer-Rao bound even in the presence of non-
Gaussianity.
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less likelihood at cfnl � jfnlj relative to the Gaussian
distribution of the same variance. We provide fitting for-

mulas for the PDF as a function of the estimator cfnl, the
true value of fnl, and the maximum multipole moment lmax

of the map. In Sec. IV we discuss the PDF of the CSZ
estimator. We show that this estimator is well approxi-
mated by a Gaussian for values of fnl still allowed by
observations. In Sec. V we summarize and discuss some
possible implications of the work for other bispectra and
also for the trispectrum and other higher-order statistics.
Appendix A discusses the computational techniques we
used in order to perform our Monte Carlo simulations.

II. NON-GAUSSIANITY ESTIMATORS

A. Formalism

We assume a flat sky to avoid the complications (e.g.,
spherical harmonics, Clebsch-Gordan coefficients, Wigner
3j and 6j symbols, etc.) associated with a spherical sky,
and we further assume the Sachs-Wolfe approximation. We

denote the fractional temperature perturbation at position ~�

on a flat sky by Tð ~�Þ and refer to it hereafter simply as the
temperature.

The field Tð ~�Þ has a power spectrum Cl given by

hT~l1
T~l2

i ¼ ��~l1þ~l2;0
Cl; (2)

where � ¼ 4�fsky is the survey area (in steradian),

T~l ¼
Z

d2 ~�e�i~l� ~�Tð ~�Þ ’ �

Npix

X
~�

e�i~l� ~�Tð ~�Þ (3)

is the Fourier transform of Tð ~�Þ, and �~l1þ~l2;0
is a Kronecker

delta that sets ~l1 ¼ �~l2. The power spectrum for Tð ~�Þ is
given by

Cl ¼ 2�A

l2
; (4)

where the amplitude, A ’ 10�10. The bispectrum
Bðl1; l2; l3Þ is defined by

hT~l1
T~l2

T~l3
i ¼ ��~l1þ~l2þ~l3;0

Bðl1; l2; l3Þ: (5)

The Kronecker delta insures that the bispectrum is defined

only for ~l1 þ ~l2 þ ~l3 ¼ 0, i.e., only for triangles in Fourier
space. Statistical isotropy then dictates that the bispectrum
depends only on the magnitudes l1, l2, and l3 of the three
sides of this Fourier triangle.

B. The null-hypothesis minimum-variance estimator

We now review how to construct the minimum-variance
estimator for fnl under the null hypothesis. This is the
quantity that one would first determine from the data to
check for consistency of the measurement with the null
hypothesis fnl ¼ 0.

From Eq. (5), each triangle ~l1 þ ~l2 þ ~l3 ¼ 0 gives an
estimator,

ðcfnlÞ123 ¼ T~l1
T~l2

T~l3

�Bðl1; l2; l3Þ=fnl ; (6)

and under the null hypothesis this has a variance propor-
tional to

�3Cl1Cl2Cl3

½�Bðl1; l2; l3Þ=fnl�2
: (7)

The null-hypothesis minimum-variance estimator is con-
structed by adding all of these estimators with inverse-
variance weighting. It is [16,17]

cfnl 	 �2
fnl

X
~l1þ~l2þ~l3¼0

T~l1
T~l2

T~l3
Bðl1; l2; l3Þ=fnl

6�2Cl1Cl2Cl3

; (8)

and it has inverse variance,

��2
fnl

¼ X
~l1þ~l2þ~l3¼0

½Bðl1; l2; l3Þ=fnl�2
6�Cl1Cl2Cl3

: (9)

C. Non-Gaussianity of the PDF

If the number of pixels in the CMBmap isNpix, then there

are also Npix statistically independent T~l. But there are a

much larger number, / N2
pix, of triplets T~l1

T~l2
T~l3

, included

in the estimator [cf., Eq. (8)], and so the number of individ-
ual ‘‘data points’’ (i.e., triplets) used in the minimum-
variance estimator scales similar to N2

pix�Npix. Since the

number of terms included in the estimator is greater than the
number of independently measured data points the standard
central-limit theorem does not apply. Thus, we cannot
assume that the PDF of the estimator will approach a
Gaussian in the Npix ! 1 limit.

This contrasts with the estimator Ĉl /
P jT~lj2 of the

power spectrum Cl. While the PDF for Ĉl is not necessarily
Gaussian (it has a �2

2lþ1 distribution), it is the sum of the

squares of statistically independent quantities. The central-

limit theorem therefore applies, and the distribution for Ĉl

does indeed approach a Gaussian for large l. The problems
we address here for fnl estimators parallel those discussed
in the literature for the quadrupole moment C2, as the
distribution for quadrupole-moment estimators will be
highly non-Gaussian and will also depend on the under-
lying theory (see, e.g., Ref. [18]).

III. THE PDF OF cfnl FOR THE LOCAL MODEL

We now restrict our attention to a family of non-

Gaussian models in which the temperature Tð ~�Þ has a
non-Gaussian component; i.e.,

Tð ~�Þ ¼ tð ~�Þ þ 3fnlf½tð ~�Þ�2 � h½tð ~�Þ�2ig; (10)
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where tð�Þ is a Gaussian random field with a power spec-
trum Cl given in Eq. (4). To zeroth order in fnl, the power

spectrum and correlation function for Tð ~�Þ are the same as

those for tð ~�Þ. Note that Tð ~�Þ is, strictly speaking, the

temperature fluctuation, so hTð ~�Þi ¼ 0 ¼ T~l¼0. The bis-

pectrum for this model is

Bðl1; l2; l3Þ ¼ 6fnlðCl1Cl2 þ Cl1Cl3 þ Cl2Cl3Þ: (11)

The temperature Fourier coefficients can be written
T~l ¼ t~l þ fnl�t

2
~l
with

�t2~l 	
3

�

X
~l0
t~l�~l0 t~l0 : (12)

Formally, the sum goes from 0< j~l0j � 1, but for a finite-
resolution map, the sum is truncated at some lmax such that
the number of Fourier modes equals the number of data
points.

We now proceed to evaluate Pðcfnl; fnl; lmaxÞ, the PDF
that arises if the true value is fnl for the NHMV estimatorcfnl and for a map with lmax. To do so, we generated large
numbers of Monte Carlo realizations of maps according to
Eq. (12), for some assumed value of fnl, and then applied
the estimator in Eq. (8) to these maps. Each map is simu-
lated in harmonic space from lmin ¼ 2 up to a maximum
multipole lmax. In order to produce a large number of
realizations we reexpressed the generation of maps and
implementation of the estimator in terms of fast Fourier
transforms as discussed in Appendix A.

A. The PDF of the null-hypothesis minimum-variance
estimator with fnl ¼ 0

First we consider the shape of Pðcfnl; fnl ¼ 0; lmaxÞ, the
PDF for the NHMVestimator in Eq. (8) applied to a purely
Gaussian (fnl ¼ 0) map. To do this we generated 106

Gaussian realizations and applied the estimator in Eq. (8)

to generate a histogram of values of cfnl. From this histo-

gram we determined Pðcfnl; fnl ¼ 0; lmaxÞ out to 4 times the
root variance, as shown in Fig. 1.

First we note that our simulations verify that the variance
of the distribution for the null case is well approximated by
the analytic expression [16,17],

�2
fnl


 1

72Al2max lnðlmaxÞ
: (13)

Additionally our simulations show that out to at least

4 times the root variance, the PDF Pðcfnl; fnl ¼ 0; lmaxÞ is
well approximated by a Gaussian for lmax * 25, even
though the conditions for the central-limit theorem to apply

are not satisfied. Therefore, a measurement of cfnl that
differed from 0 at more than 3 times the root variance
would indeed constitute a ‘‘99.7% confidence-level’’ in-
consistency with the fnl ¼ 0 hypothesis.

B. The PDF of the null-hypothesis minimum-variance
estimator with fnl � 0

We now consider the form of Pðcfnl; fnl; lmaxÞ when
fnl � 0, the PDF for the null-hypothesis minimum-
variance estimator if the null hypothesis is in fact not valid.
In this case, the non-Gaussian statistics of the T~l’s impart

some non-Gaussianity to the cfnl PDF.
In Fig. 2 we show Pðcfnl; fnl; lmaxÞ calculated using 106

realizations with fnl ¼ 1500 and lmax ¼ 25. Clearly the
PDF in this case is highly non-Gaussian.

Non-Gaussianity of Pðcfnl; fnl; lmaxÞ for a central value
fnl � 0 may be significant for the interpretation of data.
Suppose, for example, that a CMB measurement returnscfnl ¼ 0 with a root variance �fnl ¼ 40. If the PDF was

assumed to be Gaussian the measurement cfnl ¼ 0 would
rule out fnl ¼ 100 at the 2:5� level, but given the asym-
metric PDF of Fig. 2 it may rule out fnl ¼ 100 at a much
higher significance.
In order to better understand the origin of the non-

Gaussian PDF, it is useful to expand the minimum-variance
estimator in Eq. (8) to linear order in fnl [14]:

cfnl 
 E0 þ fnlE1 þ � � � ; (14)

where

E0 ¼ �2
fnl

X
~l1þ~l2þ~l3¼0

t~l1 t~l2t~l3
6�2fnlCl1Cl2Cl3

Bðl1; l2; l3Þ; (15)

FIG. 1 (color online). Numerical evaluations of Pðcfnl; fnl ¼
0; lmaxÞ. The left (right) two panels show the PDF for lmax ¼ 5
and lmax ¼ 25 for 106 realizations for a scale-invariant power
spectrum. In all panels the PDF has been normalized to have a
unit variance, and the corresponding Gaussian PDF (with the
same variance) is shown as the red dashed curve. As lmax gets
larger, the PDF tends toward a Gaussian. This is not guaranteed
by the central-limit theorem since the majority of the terms that
appear in the estimator are not statistically independent.
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E1 ¼ �2
fnl

X
~l1þ~l2þ~l3¼0

�t2~l1
t~l2 t~l3

2�3Cl1Cl2Cl3

Bðl1; l2; l3Þ: (16)

Since E0 � t3 and E1 � t4, it is clear that hE0i ¼ 0
and hE0E1i ¼ 0, and the normalization guarantees that
hE1i ¼ 1. Furthermore, since we have already established

that PðcfnlÞ approaches a Gaussian in the large lmax limit if
fnl ¼ 0, we know that, to leading order, the non-Gaussian

shape of Pðcfnl; fnl; lmaxÞ for fnl � 0 is being generated
by E1.

Some of the statistics associated with E1 have already
been explored in Ref. [14]. There it is noted that the

variance of cfnl is dominated by E1 in the high S=N limit
leading to a slower scaling of the S=N than the
l�2
maxln

�1ðlmaxÞ scaling expected if the estimator saturated
the Cramer-Rao bound [14]. We explored the same limit
using our Monte Carlo realizations, as shown in Fig. 3,
and found the same qualitative trend but with a dif-
ferent dependence on lmax. Reference [14] found
hð�E1Þ2i / ln�2ðlmaxÞ, whereas our simulations show
hð�E1Þ2i / ln�3ðlmaxÞ. We have checked the scaling found
with our simulations by computing the variance analyti-
cally, as we further discuss in Appendix B. Figure 3 shows
the agreement between our analytic calculation (solid
curve) and simulations (data points).

Our simulations allow us to generate the full PDF for E1,
not just the variance. Figure 4 shows this PDF for various

choices of lmax (thin solid lines). An important conclusion
from Fig. 4 is that the shape of the PDF approaches a
universal form in the lmax � 1 limit. We provide a fit to
the PDF (thick red dashed line), accurate to �10% (40%)
out to 3 (4) times the root variance, using the fitting
formula

FIG. 3 (color online). The dependence of hð�E1Þ2i on lmax.
The points correspond to the results of our Monte Carlo simu-
lations for 1000 realizations at different values of lmax. The solid
curve shows the analytic calculation of the variance presented in
Appendix B which is well fit by the function hð�E1Þ2i ¼
½14:0ðlmaxÞ0:433�=½ln5:1ðlmaxÞ� 
 4:5ln�3ðlmaxÞ.

FIG. 2 (color online). The PDF PðcfnlÞ when cfnl ¼ 1500 using
the estimator in Eq. (8) with lmax ¼ 25. The upper (lower) panel
shows the PDF on a linear (log) scale. We can see that the PDF is
significantly non-Gaussian with an exponential drop-off to the
left of mean and a power-law to the right. We provide a fitting

formula for Pðcfnl; fnl; lmaxÞ in the text.

FIG. 4 (color online). The PDF of E1 calculated using 106

realizations. The thin solid curves correspond to PðE1Þ with
lmax ¼ 25 (green, middle curve), lmax ¼ 50 (purple, right curve),
and lmax ¼ 100 (black, left curve). Since the functional form of
the PDF for each choice of lmax is nearly identical, we conclude
that PðE1Þ approaches an asymptotic functional form in the
large-lmax limit. The thick red dashed curve corresponds to a
fit to PðE1Þ, accurate to �10% out to 3 times the root variance,
using the fitting formula in Eq. (17) with parameter values xp ¼
�0:22, � ¼ 0:80, and c ¼ 0:91.
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log½FðxÞ� ¼ N �
8<:�ðx� xpÞ2=ð2�2Þ; x � xp;

� c
�2 ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xpÞ2 þ c2

q
� cÞ; x > xp;

(17)

where N 	 ffiffiffiffiffiffiffiffiffi
2=�

p
�þ c exp½c2=�2�K1ðc2=�2Þ and K1ðxÞ

is a modified Bessel function of the first kind, c quantifies
the non-Gaussianity of the distribution (and approaches
a Gaussian in the c ! 1 limit), and xp is the value of

ðE1 � hE1iÞ=�E1
at the peak of the distribution. The dashed

red curve in Fig. 4 shows Eq. (17) with parameter values
xp ¼ �0:22, � ¼ 0:80, and c ¼ 0:91.

We are now in a position to write down a semianalytic

expression for Pðcfnl; fnl; lmaxÞ, accurate to �10% (40%)
out to 3 (4) times the root variance, as a function of fnl and
lmax. Letting �0 and �1 denote the standard deviations of
the distributions for E0 and E1, respectively, we have

�2
0 


1

72Al2max lnðlmaxÞ
; (18)

�2
1 


f2nl
2ln3ðlmaxÞ

: (19)

A good approximation to the PDF of cfnl is provided by the
convolution of the PDF of E0 and fnlE1:

Pðcfnl; fnl; lmaxÞ 
 4

9
ffiffiffiffiffiffiffi
2�

p
�0�1

Z 1

�1
G0ðcfnl � xÞ

� Fð½x� fnl�=�1Þdx; (20)

where G0ðxÞ is a Gaussian with zero mean and standard
deviation �0 and Fð½x� fnl�=�1Þ is given by Eq. (17) with
xp ¼ �0:22, � ¼ 0:80, and c ¼ 0:91.

To obtain an analytic expression for the PDF we can
approximate the convolution in Eq. (20) to write

Pðcfnl; fnl; lmaxÞ 
 2

9
exp

�
� X2

2ð�2
0 þ �2

1�
2Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

�2
1ð�2

0 þ �2
1�

2Þ

s �
�1�

�
1þ erf

�
�2

0 þ �1�
2ðX þ �1Þ

�0�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�2

0 þ �2
1�

2Þ
q ��

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

0 þ �2
1�

2
q �

1� erf

�
c�2

0 þ �1�
2ðX þ �1Þffiffiffi

2
p

�0�1�
2

��
exp

�
1

2

�
c2�2

0

�2
1�

4
þ 2c½X þ �1c

2�
�1�

2
þ X2

�2
0 þ �2

1�
2

���
;

(21)

where X 	 fnl þ xp�1 � cfnl.
Another useful way of quantifying the non-Gaussian

shape of Pðcfnl; fnl; lmaxÞ is to measure its skewness,

hð�cfnlÞ3i, as a function of fnl and lmax. We show this in
Fig. 5 for fnl ¼ 100. An analytic fit to the skewness is
given by

hð�cfnlÞ3i
�3

fnl

¼
�
fnl
100

�
3
�

1

1þ 3:7 exp½�ðlmax � 5:1Þ=740� � 0:26

�
;

(22)

with the variance of the distribution, �2
fnl
, given by

�2
fnl


 1

72Al2max lnðlmaxÞ
�
1þ 36Af2nll

2
max

ln2ðlmaxÞ
�
: (23)

Finally, we note that the shape of Pðcfnl; fnl; lmaxÞ departs
significantly from a Gaussian when �0 ’ �1. This occurs
when

fnlA
1=2 *

lnðlmaxÞ
6lmax

: (24)

Therefore, for the Planck satellite (i.e., lmax ¼ 3000) the

non-Gaussian features of Pðcfnl; fnl; lmaxÞ for the NHMV
estimator are significant if fnl * Oð10Þ. Thus, given that
Planck is expected to measure fnl with a variance � 
 5,

FIG. 5. The skewness, hð�cfnlÞ3i, as a fraction of the variance

of Pðcfnl; fnl; lmaxÞ as a function of lmax for fnl ¼ 100. We provide
an analytic fitting formula in Eqs. (22) and (23) as a function of
fnl and lmax.
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these PDFs may need to be taken into account to assign a
precise confidence region with Planck data.

IV. THE PDF OF AN IMPROVED ESTIMATOR
WHEN fnl � 0

As we saw in the previous section the standard (null-

hypothesis) minimum-variance estimator cfnl is constructed
under the null hypothesis, so its variance is strictly mini-
mized only when applied to maps with fnl ¼ 0 [14]. In

particular, the variance of cfnl is given in Eq. (23) so that
when 36Af2nll

2
max=ln

2ðlmaxÞ * 1, the variance scales as the
ln�3ðlmaxÞ, as opposed to l�2

maxln
�1ðlmaxÞ. This indicates that

when fnl � 0 there may be other estimators with smaller
variances.

For a flat sky and under the Sachs-Wolfe approximation,
Ref. [14] introduced an improved estimator for fnl � 0
which has a variance that continues to decrease as
1=½l2max lnðlmaxÞ� in the high signal-to-noise limit. To
achieve this scaling they introduced a realization-
dependent normalization,

N 	 �2
fnl

X
~l1þ~l2þ~l3¼0

�~l1
T~l2

T~l3

2Cl1Cl2Cl3

Bðl1; l2; l3Þ; (25)

where

�~l 	
X
~k

T~l� ~kT ~k: (26)

By construction hN i ¼ 1. They then define a new estima-
tor constructed under the non-null hypothesis:

cfnnl 	 cfnl
N

: (27)

To explore the properties of the PDF of cfnnl, we expand the

normalization as N 
 N 0 þ fnlN 1 þ � � � and write

cfnnl 
 E0

N 0

þ fnl
E1N 0 � E0N 1

N 2
0

þ � � � ; (28)

	 E0 þ fnlE1 þ � � � : (29)

In order to determine the shape of PðcfnnlÞ, we computed

PðE0Þ and PðE1Þ for various values of lmax. We found, as in

the cfnl case, that these PDFs approach asymptotic shapes in
the lmax � 1 limit. We show these PDFs in Fig. 6 deter-
mined by 106 realizations for lmax ¼ 25. It is clear that
PðE0Þ is very well approximated by a Gaussian, whereas

PðE1Þ has significant non-Gaussian wings. As in the PðcfnlÞ
case, this implies that the level of non-Gaussianity inPðcfnnlÞ
is significant only when the ratio f2nlhð�E1Þ2i=hð�E0Þ2i*1.
Our simulations show

hð�E0Þ2i 
 1

72Al2max lnðlmaxÞ
; (30)

hð�E1Þ2i 
 ln2ðlmaxÞ
l3max

; (31)

so that the PDF will be significantly non-Gaussian when

fnlA
1=2 *

1

3

�
lmax

8 lnðlmaxÞ
�
1=2

: (32)

Therefore, for Planck (with lmax ¼ 3000) Pðcfnnl; fnl; lmaxÞ
will be significantly non-Gaussian only if fnl * Oð1000Þ.
Since this has already been ruled out by observations

[9,10], we conclude that Pðcfnnl; fnl; lmaxÞ will be effectively
Gaussian.

V. DISCUSSION

Here we have argued that the PDF for non-Gaussianity
estimators cannot be assumed to be Gaussian, since the
number of triplets used to construct these estimators may
greatly exceed the number Npix of measurements. The

99.7% confidence-level interval cannot safely be assumed
to be 3 times the 66.5% confidence-level interval. We
found, however, that the standard minimum-variance esti-

mator cfnl constructed under the null hypothesis is well
approximated by a Gaussian distribution in the lmax � 1
limit if the null hypothesis is correct (i.e., when applied to
purely Gaussian maps).

FIG. 6 (color online). The PDF PðE0Þ (left panels) and PðE1Þ
(right panels) for lmax ¼ 25 determined with 106 non-Gaussian
realizations. The top panels show the PDF on a linear scale; the
bottom panels show the PDF on a log scale. We have confirmed
that the shape of the PDF is unchanged for larger values of lmax.
The PDF of E0 (left panels) is well approximated by a Gaussian.
However, the PDF of the first-order correction E1 (right panels)
has significant non-Gaussian wings. This implies that the full

PDF of cfnnl is also non-Gaussian, even if the true value of fnl
matches that assumed in the construction of the CSZ estimator.
Quantitatively, however, the level of non-Gaussianty will be
small for Planck, as the variance of E1 is hð�E1Þ2i 

9ln2ðlmaxÞ=ðl3maxÞ.
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We then calculated the same PDF PðcfnlÞ under the
hypothesis that the true value of fnl is nonzero. We found
that the PDF is non-Gaussian in this case, skewed to largecfnl if fnl > 0 and vice versa for fnl < 0. The PDF for small

positive or for negative cfnl is significantly smaller for
fnl > 0 than the Gaussian PDF with the same variance.

Thus, for example, if the NHMVestimator gives cfnl > 0, it
may actually rule out fnl ¼ 0 with a smaller statistical
significance than would be inferred assuming a Gaussian
distribution of the same variance. For Planck (with
lmax ’ 3000) we find that the non-Gaussian shape of

PðcfnlÞ is significant if fnl * Oð10Þ. Thus, the non-
Gaussian shape of the PDF may need to be taken into
account, even in the case of a null result, to assign a pre-
cise 99.7% confidence-level upper (or lower, for fnl < 0)
limit to fnl. We also provide, in Eq. (21), an analytic fit to
these PDFs.

The non-Gaussian shape of PðcfnlÞ when fnl � 0 is ac-
companied by a variance that decreases only logarithmi-
cally with increasing lmax. Because of this, Ref. [14]
constructed an improved estimator under the fnl � 0 hy-
pothesis with a variance that saturates the Cramer-Rao
bound and continues to decrease as 1=½l2max logðlmaxÞ�. We
found that for observationally allowed values of fnl this
improved estimator has a PDF that is well approximated by
a Gaussian shape. However, this estimator has only been
defined under the Sachs-Wolfe approximation and it is not
immediately clear how it should be generalized to be
applied to actual data. An alternative, Bayesian, approach
to measuring fnl which also saturates the Cramer-Rao
bound in the presence of fnl � 0 is presented in Ref. [15].

The results presented here are made within the flat-sky,
Sachs-Wolfe approximation. As such our conclusions
should be taken as an order of magnitude estimate of

PðcfnlÞ calculated on the full sky and with the full transfer
function (see Ref. [14] for a further discussion). However,
we note that a comparison between the exact and approxi-
mate scaling of the signal-to-noise ratio with lmax shows
the agreement to be better than an order of magnitude [16].

We have restricted our attention to the bispectrum in the
local model, but the PDF must be similarly determined for
the non-Gaussianity parameter for bispectra with other
shape dependences, e.g., the equilateral model [19,20] or
that which arises with self-ordering scalar fields [21]. It
should also be interesting to explore the PDF for maximum
likelihood, rather than quadratic, estimators (see, e.g.,
Ref. [14]). Ultimately, a variety of experimental effects
and more precise power spectra and bispectra, rather than
the Sachs-Wolfe-limit quantities used here, will need to be
included in interpreting the results of realistic experiments.

There is also interest in using higher-order correlation
functions to measure fnl from CMB maps. Our argu-
ments should apply also to these higher-order correlation
functions, such as the trispectrum, etc. For example, the

estimator for the amplitude of the n-point correlation
function (e.g., n ¼ 3 for the bispectrum, n ¼ 4 for the

trispectrum, etc.), will be constructed from �Nðn�1Þ
pix =n!

combinations of n pixels, and this number of combinations
scales even more rapidly with Npix than that for the bispec-

trum. Thus, although the signal-to-noise ratio scales more
rapidly with Npix for these higher-order correlation func-

tions than that for the bispectrum [17,22,23], concerns
about the PDF for these estimators should be even more
serious than for the bispectrum. It will thus be necessary to
understand the PDF for these higher-order estimators to
confidently forecast the statistical significance of measure-
ments [24].
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APPENDIX A: COMPUTING NON-GAUSSIANITY
ESTIMATORS USING FAST FOURIER

TRANSFORMS (FFT)

We are interested in using Monte Carlo simulations to

determine the shape of the PDF of cfnl as a function of the
fiducial choice of fnl and the number Npix of pixels mea-

sured in a given observation. Applying the estimator in
Eq. (8) to the local-model bispectrum [Eq. (11)] it can be
rewritten

cfnl ¼ �2
fnl

X
~l1þ~l2þ~l3¼0

T~l1
T~l2

T~l3

�2Cl3

: (A1)

The estimator in Eq. (A1) takesN2
pix operations to evaluate.

Since current CMB observations have Npix � 106 this es-

timator would take a prohibitively long time to evaluate for
a significant number of realizations, especially since we are
interested in probing the shape of the PDF far into the tail
of the distribution (� 3–4�).
As discussed at length in Ref. [25] this is even more of

a problem when measuring non-Gaussianity on the full sky

where the number of operations scales as N5=2
pix . In order to

make the problem tractable Ref. [25] rewrites cfnl in terms
of real-space quantities reducing the number of operations

to N3=2
pix .
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We can do the same for cfnl in the flat-sky approximation.
Noting that

�~l1þ~l2þ~l3;0
¼

Z d2�

�
ei

~��ð~l1þ~l2þ~l3Þ; (A2)

and writing

Að ~�Þ 	 1

�

X
~l

ei
~l� ~�T~l; (A3)

Bð ~�Þ 	 1

�

X
~l

ei
~l� ~� T~l

Cl

; (A4)

cfnl can be written

cfnl ¼ ��2
fnl

Z d2�

�
A2ð ~�ÞBð ~�Þ: (A5)

Next, in order to compute the integral in Eq. (A5) we use

the Nyquist sampling theorem and the fact that both Að ~�Þ
and Bð ~�Þ have finite Fourier spectra (truncated at a maxi-
mum frequency lmax). This allows us to rewrite the integral
as a discrete sum

cfnl ¼ ��2
fnl

N2

XN
i¼1

XN
j¼1

A2

�
2�

i� 1

N
; 2�

j� 1

N

�

� B

�
2�

i� 1

N
; 2�

j� 1

N

�
; (A6)

where N 	 2ð2lmax þ 1Þ.
Since Eqs. (A3) and (A4) are discrete inverse Fourier

transforms we can use a fast Fourier transform (FFT)
algorithm so that the number of operations scale as
Npix lnðNpixÞ.

We can use the same computational trick when evaluat-
ing the non-Gaussian contribution for each realization by
also employing a forward FFT in order to compute the
convolution in Eq. (12).

APPENDIX B: ANALYTIC CALCULATION
OF hð�E1Þ2i

In order to verify that our simulations are correct we
performed an analytic calculation of the variance of E1

[Eq. (16)] defined by

E1 ¼ �2
fnl

X
~l1þ~l2þ~l3¼0

�t2~l1
t~l2 t~l3

2Cl1Cl2Cl3

Bðl1; l2; l3Þ: (B1)

A straightforward but tedious calculation shows that the
variance is given by

hð�E1Þ2i ¼ 9�4
fnl
ðA1 þ 8A2 þ A3 þ 4A4Þ; (B2)

where

A1 	
X
f~lg;f ~kg

BðlÞ
Cl1

BðkÞ
Ck1

�~l1þ ~k1;0
; (B3)

A2 	
X
f~lg;f ~kg

BðlÞ
Cl1

BðkÞ
Ck1

�~l3þ ~k3;0
; (B4)

A3 	
X
f~lg

BðlÞ2
C2
l1
Cl2Cl3

Xlmax

j ~mj¼1

Cj~l1� ~mjCm; (B5)

A4 	
X
f~lg;f ~kg

BðlÞBðkÞ
Cl1Ck1Ck3

Cj~l1þ ~k2j�l3þk3;0; (B6)

where f~lg indicates the sum is over ~l1 þ ~l2 þ ~l3 ¼ 0 and
BðlÞ 	 Bðl1; l2; l3Þ. Computing these terms as a function of
lmax we find that the variance is well fit by the function

hð�E1Þ2i ¼ 14:0l0:433max

ln5:1ðlmaxÞ
: (B7)

In Fig. 3 we show how that this analytic calculation of the
hð�E1Þ2i is reproduced by the results of the Monte Carlo
simulations.
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