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We propose, in a heuristic way, a relativistic modified gravity model as an alternative to particle dark

matter at galactic scales. The model is based on a postulated preferred time foliation described by a

dynamical scalar field called the Khronon. In coordinates adapted to the foliation, it appears as a

modification of general relativity violating local Lorentz invariance in a regime of weak gravitational

fields. The model is a particular case of noncanonical Einstein-æther theory, but in which the æther vector

field is hypersurface-orthogonal. We show that this model recovers the phenomenology of the modified

Newtonian dynamics (MOND) in the nonrelativistic limit, and predicts the same gravitational lensing as

general relativity but with a modified Poisson-type potential.

DOI: 10.1103/PhysRevD.84.044056 PACS numbers: 04.50.Kd, 95.35.+d, 95.36.+x

I. INTRODUCTION

Modifying gravity in the regime of weak gravitational
fields or accelerations, is the leitmotiv of MOND—the
Modified Newtonian Dynamics [1–3]. The MOND para-
digm is very successful at solving the problem of the flat
rotation curves of galaxies without the need of dark matter
(see [4] for a review), and at explaining the correlations
between the distribution and dynamics of ordinary matter
versus dark matter [5,6]. However, it is based on a non-
relativistic formula and needs to be generalized in order to
be applied in cosmology and to the gravitational lensing
observed at galaxy cluster scale [7–9], which are part of the
great successes of the standard cosmological paradigm
�-CDM based on particle cold dark matter [10] and the
cosmological constant �.

We adopt for MOND the modification of the nonrela-
tivistic Poisson equation [11],

r �
�
�

�
g

a0

�
r�

�
¼ 4�G�; (1.1)

where � is the density of ordinary (essentially baryonic)
matter, � is the gravitational potential, g ¼ �r� is the
gravitational field and g ¼ jgj its ordinary Euclidean
norm. The MOND function � depends on the single argu-
ment g=a0, where a0 ¼ 1:2� 10�10 m=s2 is a constant
acceleration scale. In the limit of weak gravitational fields
i.e. g � a0, the MOND function is linear, �ðg=a0Þ ¼
g=a0, while in the strong field regime g � a0 (though
nonrelativistic), � tends to one so that (1.1) reduces to
the usual Poisson equation.

Several relativistic extensions of MOND have been
proposed (see [12,13] for reviews). The Tensor-Vector-
Scalar (TeVeS) theory of Bekenstein and Sanders
[14–16] extends general relativity with a timelike vector

field and one scalar field. Einstein-æther theories [17,18]
involve a unit timelike vector field which is nonminimally
coupled to the metric, and were originally used to describe
the phenomenology of local Lorentz invariance violation.
Those theories, when modified to involve noncanonical
kinetic terms, have been shown to provide interesting
examples of relativistic MOND theories [19,20]. The vec-
tor field postulated in TeVeS is in fact analogous to the
vector field in Einstein-æther theories [21,22]. The cos-
mology in TeVeS and Einstein-æther theories has been
extensively studied [23–26]. The parametrized post-
Newtonian parameters, included the preferred-frame pa-
rameters crucial in the presence of a vector field, have been
worked out for both the canonical Einstein-æther theory
[27] and TeVeS [28]. More recent proposals for relativistic
MOND include a bimetric theory of gravity [29,30], a
refinement of TeVeS using a Galileon ‘‘k-mouflage’’ to
prevent deviations from general relativity at small dis-
tances [31], and a nonlocal extension of general relativity
[32]. One can also invoke some new exotic properties of
the dark matter rather than modifying gravity [33,34].
On the other hand, much interest focused recently on the

possible violation of the local Lorentz invariance in a
completion of general relativity at high energy. This
Hořava-Lifshitz approach [35] is motivated by the con-
struction of a power-counting renormalizable quantum
theory of gravity. The Lorentz invariance violation results
from a preferred time foliation which is described in a
4 -dimensional covariant formulation by a dynamical sca-
lar field sometimes called the Khronon [36]. A consistent
extension of the (nonprojectable version of the) Hořava
gravity has been proposed [36,37] to avoid some problems
regarding the stability of the theory. In this extension, the
added terms crucially involve the acceleration of the con-
gruence normal to the preferred family of hypersurfaces. It
has been shown that the low energy limit of the extended
Hořava gravity is equivalent to an Einstein-æther theory in
which the vector field is hypersurface-orthogonal [36,38].
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In the present paper, we revisit some works on Einstein-
æther theories with noncanonical kinetic terms (notably
[19,20]), but in the framework of a preferred time foliation,
inspired by these recent approaches to quantum gravity.
We propose a relativistic MOND theory which modifies
general relativity by terms depending on the acceleration
in a way somewhat similar to the extended Hořava
gravity [35–37]. However, our motivation is quite different
from that in [35–37], as it is purely classical, and we are
not concerned with the problem of quantizing gravity. In
particular, the violation of Lorentz invariance will be ef-
fective at low energy, for very weak gravitational fields.
Our aim is to provide a phenomenologically viable alter-
native to the particle cold dark matter (at least at galactic
scales).

The modification we propose consists of introducing in
the Lagrangian of general relativity a single free function
of the norm a of the acceleration of the congruence normal
to the preferred hypersurfaces. (Unlike in [36,37], we are
not considering a finite number of terms including this
acceleration, each one with a coupling constant scaling
with the Planck mass, but a fully nonlinear function.)
The theory will be a particular case of noncanonical
Einstein-æther theory but in which the æther field is
hypersurface-orthogonal. We shall present the theory in
both a 3þ 1 decomposition and 4-dimensional covariant
form, and shall explicitly prove the equivalence of the two
formulations. In agreement with general studies on non-
canonical Einstein-æther theories [19,20], we will show
that it is possible, by specifying the asymptotic behavior of
the function of the acceleration when a � a0, to recover
the Bekenstein-Milgrom Eq. (1.1) in the nonrelativistic
limit. The theory will also be viable regarding the gravita-
tional lensing of photons, which will be the same as in
general relativity but with a Newtonian potential obeying
the modified Poisson equation.1

The plan of this paper is as follows. In Sec. II, we present
the 4-dimensional version of the theory, introducing the
dynamical Khronon field defining the space-time foliation,
and investigating the resulting field equations. In Sec. III,
we switch to an alternative 3þ 1 point of view, for which
the time coordinate coincides with the Khronon field, and
where the new terms associated with the acceleration in the
action may be interpreted as Lorentz invariance breaking
terms due to a preferred-frame effect. In Sec. IV, we
investigate the nonrelativistic limit and the conditions
under which one can retrieve the nonrelativistic MOND
Eq. (1.1). Section V contains some concluding remarks.
Finally, Appendix A is devoted to the proof of equivalence
between the 4d covariant formulation and the 3þ 1
formalism, while Appendix B presents the canonical

decomposition of the energy-momentum tensor associated
with the Khronon field when interpreted as a matter field.

II. COVARIANT FORMULATION

In the 4-dimensional covariant formulation, we extend
general relativity by means of the additional Khronon
scalar field denoted by �. We define a preferred foliation
of space-time according to the constant-� hypersurfaces, so
we will require � to be smooth and free of extrema. In
Sec. III below, we consider a frame adapted to this foliation
in which the time coordinate t will coincide with �, but
in the present section we investigate the fully covariant
formalism.
As in the usual 3þ 1 formalism, we introduce the unit

timelike vector n�, oriented toward the future (n0 > 0),
orthogonal to the constant-� hypersurfaces, and normal-
ized to g��n

�n� ¼ �1.2 Thus, we have n� ¼ �N@��,

where N will later correspond to the ordinary lapse in
adapted 3þ 1 coordinates and reads

N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g��@��@��
p : (2.1)

The vector n� is invariant by reparametrization � ! ~�ð�Þ
where ~�ð�Þ denotes any strictly increasing function. We
also define the projector on the constant-� hypersurfaces
by ��� ¼ g�� þ n�n�, and as usual, the associated pro-

jected covariant derivative D� (for instance D� ¼ ��
�@�

when acting on scalars; see Appendix A for more notation).
The acceleration of the congruence orthogonal to the
constant-� hypersurfaces is given by a� ¼ n�r�n

� or,
equivalently, in terms of the projected spatial derivative
operator,

a� ¼ D� lnN: (2.2)

We will see in Sec. IV that, in the nonrelativistic limit and
in adapted coordinates, the spatial components of the
acceleration reduce to minus the ordinary gravitational
acceleration. Hence, observers which would follow the
congruence in their motion with 4-velocity n� are essen-
tially unaccelerated observers in coordinates adapted to the
constant-� hypersurfaces. Thereafter, we will call such
observers the fiducial observers.
In the present paper, motivated by the construction of a

relativistic MOND theory modifying gravity in a regime of
small accelerations, we investigate a specific extension of
the Einstein-Hilbert action for gravity by a function of the
norm of the (spacelike) acceleration (2.2), defined by

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
���a

�a�
q

: (2.3)

1While this work was in preparation, a paper based on similar
ideas appeared on the archives [39]. However, the field equations
in that paper are in disagreement with ours.

2We adopt the sign conventions of [40], and notably the
(�þþþ) signature for the metric. Greek indices are space-
time indices, while Latin are space indices. We pose G ¼ c ¼ 1
through most of the paper.
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In keeping with MOND we shall assume that such an
extension becomes effective only when gravity is weaker
than the MOND scale a0 (see Sec. IV). Well above a0, but
still remaining purely classical, we will assume that the
standard general relativity with a cosmological constant is
recovered.

We consider a Lagrangian density L½g��; �;��, de-

pending on three dynamical fields, the metric g��, the

Khronon field � associated with the time foliation, and
the matter fields collectively denoted by �. Specifically,
we choose

L ¼
ffiffiffiffiffiffiffi�g

p
16�

½R� 2fðaÞ� þLm½g��;��; (2.4)

where R is the curvature scalar,Lm denotes the Lagrangian
of the matter fields, and fðaÞ is our postulated modifica-
tion, in the form of an unspecified function of the norm of
the acceleration (2.3). Only the asymptotic behavior of
fðaÞ when a ! 1 and when a ! 0 will be specified in
Sec. IV. The factor in front of fðaÞ is chosen so that a
constant term in fðaÞ will correspond to the usual defini-
tion of the cosmological constant.

The specific choice for the Lagrangian (2.4) corresponds
to one particular term investigated in MOND-motivated
noncanonical versions of Einstein-æther theories: see, for
instance, the c4-term in the equation (30) of [20]. This
term, among the simplest kinetic terms considered in
Einstein-æther theories, is sufficient for our purpose of
reproducing the MOND dynamics. It is also the only
one to cancel out in an homogeneous and isotropic
Universe (see e.g. [26]). Note that the expression (2.2)
we employ here for the acceleration is valid only in the
hypersurface-orthogonal case, and implies for instance that
D�a� ¼ D�a�.

The function fðaÞ is the only term depending on the
Khronon field � in the action (2.4). In adapted coordinates,
this term will be interpreted as a Lorentz invariance break-
ing term associated with the preferred-frame effect. Here,
we assume that the matter Lagrangian Lm is standard, i.e.
given by the standard universal coupling to the metric g��,

without dependence on the �-field. Apart from that, we do
not make any restriction on the Lagrangian of the matter
fields.

Varying the action with respect to the metric yields a
modified Einstein field equation,

G�� þ fðaÞg�� þ 2n�n�r�½�ðaÞa�� � 2�ðaÞa�a�
¼ 8�T��; (2.5)

whose trace gives

R� 4fðaÞ þ 2r�½�ðaÞa�� þ 2�ðaÞa2 ¼ �8�T: (2.6)

Here, G�� ¼ R�� � 1
2g

��R is the Einstein tensor, T�� ¼
ð2= ffiffiffiffiffiffiffi�g

p Þ	Lm=	g�� is the stress-energy tensor of the

matter fields, and we have introduced the convenient
notation

�ðaÞ ¼ f0ðaÞ
2a

; (2.7)

with f0ðaÞ ¼ df=da. Such notation is motivated by the
nonrelativistic MOND limit, in which �ðaÞ will appear as
a gravitational analogue of the electric susceptibility of the
(phantom) dark matter medium in the sense of [41].
Varying next with respect to the scalar field � leads to an

independent equation, called the �-equation in the follow-
ing, and given by (see [38])3

r�½Nðn�r�ð�a�Þ � �a2n� � �ðK�� � ���KÞa�Þ� ¼ 0;

(2.8)

where the extrinsic curvature tensor, which is symmetric,
is defined by K�� ¼ r�n� þ n�a� (with trace given by
K ¼ r�n

�). An alternative, simpler form of this equation,

reads as

r�½n�r�ð�a�Þ� ¼
_f

2
þ �a�a�K��; (2.9)

where we denote _f ¼ n�r�f. Note that this �-equation is
of fourth order in derivatives of the Khronon field �.
However, as will become clear in Sec. III, if we select a
coordinate system for which t ¼ �, the �-equation will be
equivalent to an equation of first order only in time deriva-
tives of geometrical quantities.
When we rephrase the model by interpreting � as a

matter field, i.e. rewriting the modified Einstein equation
in the form G�� ¼ 8�ðT�� þ T��

� Þ, where the stress-
energy tensor of this matter field (say a ‘‘dark energy’’
fluid) reads

T��
� ¼� 1

8�
½fg�� þ 2n�n�r�ð�a�Þ� 2�a�a��; (2.10)

the �-equation is equivalent to the conservation of this
associated energy-momentum tensor, r�T

��
� ¼ 0. Thus,

given the modified Einstein Eq. (2.5) and the contracted
Bianchi identity r�G

�� � 0, we see that the �-equation is
in fact equivalent to the conservation of the matter energy-
momentum tensor r�T

�� ¼ 0, which is itself the conse-
quence of the matter field equations and the scalarity of the

3In the case where the æther vector is not hypersurface-
orthogonal, the quantity defined by K�� ¼ r�n� þ n�a� is
not symmetric anymore (and does not warrant to be called an
extrinsic curvature). Varying in this case the action with respect
to n�, one obtains instead of the scalar Eq. (2.8) the vectorial
equation

n�r�ð�a�Þ � �a2n� � �ðK�� � ���KÞa� ¼ 0;

which has three independent components. Varying with respect
to the metric, one also gets a different modified Einstein
Eq. (2.5), with one additional term in the left-hand side given
by �4�a�n

ð�A�Þ� where we pose A�� ¼ K�� � K��.
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action (see [38] for discussion). In Appendix B, we will
give the canonical decomposition of the stress-energy
tensor (2.10).

III. COORDINATES ADAPTED TO
THE FOLIATION

In this section, we express the model in an equivalent
3þ 1 formalism, choosing a coordinate system adapted to
the foliation. Note that this rewriting is not possible in a
generic Einstein-æther theory like in [19,20]. The time
coordinate will coincide with the Khronon field: t ¼ �

and thus n� ¼ ð�N; 0Þ with N ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi�g00

p
. Introducing

the shift vector Ni ¼ g0i and the spatial metric �ij ¼ gij,

we have the usual 3þ 1 form for the metric, N playing the
role of the lapse:

ds2 ¼ �ðN2 � NiN
iÞdt2 þ 2Nidtdx

i þ �ijdx
idxj: (3.1)

In particular, n� ¼ 1
N ð1;�NiÞ. All spatial (Latin) indices

are raised and lowered using the spatial metric �ij and

its inverse �ij ¼ gij þ NiNj=N2 (such that �ij�jk ¼ 	i
k),

which coincides with the spatial components of the
4-dimensional projector ���.

The 4-dimensional Lagrangian (2.4) now becomes, after
discarding an irrelevant total divergence term (withffiffiffiffiffiffiffi�g
p ¼ N

ffiffiffiffi
�

p
),

L ¼
ffiffiffiffi
�

p
16�

N½Rþ KijK
ij � K2 � 2fðaÞ�

þLm½N;Ni; �ij;��: (3.2)

Here, R denotes the 3-dimensional scalar curvature asso-
ciated with the spatial metric �ij. The projected derivative

operator reduces to the spatial covariant derivative Di

associated with �ij, and the extrinsic curvature takes the

usual expression in adapted coordinates,

Kij ¼ 1

2N
ð@t�ij �DiNj �DjNiÞ: (3.3)

The acceleration gets now the 3-dimensional expression

ai ¼ Di lnN; a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ija

iaj
q

; (3.4)

where Di ¼ �ijDj (notice that a
0 ¼ 0).

The 3d theory (3.2) is equivalent to the previous 4d
theory (2.4), as is explicitly checked in Appendix A at
the level of the field equations. However, the spirit is
different, since the �-field disappears from (3.2) and is
now hidden in the time coordinate. For instance, the accel-
eration’s norm a was a �-dependent quantity in (2.4), but it
depends now only on the lapse N, which is a geometrical
degree of freedom.

Hence, one may interpret the new a-dependent term in
the 3þ 1 Lagrangian (3.2) as a Lorentz invariance violat-
ing term. While the 4d theory (2.4) is generally covariant,
i.e. invariant under the full group of 4d diffeomorphisms

~x � ¼ ~x�ðx�Þ; (3.5)

[with � being a scalar field, i.e. ~�ð~xÞ ¼ �ðxÞ], the 3d for-
mulation (3.2) is only invariant under the subgroup of
diffeomorphisms leaving invariant the preferred time
foliation, namely

~t ¼ ~tðtÞ; (3.6a)

~xi ¼ ~xiðxj; tÞ: (3.6b)

Under this subgroup of diffeomorphisms, the lapse and
shift transform as

~N ¼ dt

d~t
N; (3.7a)

~Ni ¼ dt

d~t

@xj

@~xi
Nj þ @xj

@~t

@xk

@~xi
�jk; (3.7b)

while the spatial metric transforms like a spatial tensor.
Note that (3.7a) corresponds in the 4d formalism (such that
t ¼ �) to a reparametrization of the time foliation by
~�ð�Þ ¼ ~tðtÞ.
The broken diffeomorphism invariance (3.6) has re-

cently been used in the context of quantum gravity to build
a power-counting renormalizable quantum gravity at high
energy [35–37]. As is known, the full diffeomorphism
invariance can be restored in the 4d formulation at the
price of an additional structure. This is the role of the
Khronon field �, which appears to be the Stückelberg
field[42] associated with the broken diffeomorphism
symmetry.4

To write the field equations in the most convenient way
we use the following notations as a shortcut for describing
the matter part of the field equations:

" ¼ � 1ffiffiffiffi
�

p 	Lm

	N
; (3.8a)

Ji ¼ 1ffiffiffiffi
�

p 	Lm

	Ni

; (3.8b)

T ij ¼ 2

N
ffiffiffiffi
�

p 	Lm

	�ij

: (3.8c)

These quantities reduce to the usual notions of the energy
density, current density and spatial stresses in the case of a
perfect fluid. However, they apply to any kind of matter
fluid or field. The variation of the Lagrangian (3.2) with
respect to the lapse N yields a modified Hamiltonian con-
straint equation, namely

R þ K2 � KijK
ij � 2fþ 4�a2 þ 4Dið�aiÞ ¼ 16�";

(3.9)

4Awell-known example of Khronon field is the one introduced
in the Cartan theory of gravity which is the covariantization of
Newton’s theory [43–45].
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where we recall that both fðaÞ and �ðaÞ ¼ f0ðaÞ=ð2aÞ are
functions of the norm of the acceleration given in (3.4). The
variation with respect to the shift Ni yields the momentum
constraint equation, i.e.

DjðKij � �ijKÞ ¼ �8�Ji: (3.10)

This equation is unchanged with respect to general relativ-
ity, since the term we have added in the Lagrangian does
not depend on the shift. Finally, varying with respect to the
spatial metric �ij gives the evolution equation

Gij þ 1

N
DtðKij ��ijKÞþ 2

N
Dk½NðiðKjÞk��jÞkKÞ�

þ 2KikKj
k �KKij � 1

2
�ijðKklKkl þK2Þ

� 1

N
ðDiDjN��ijDkD

kNÞ� 2�aiaj þ f�ij ¼ 8�T ij;

(3.11)

where Gij ¼ Rij � 1
2�

ijR is the 3-dimensional Einstein

tensor, and the convenient notation Dt ¼ @t � NkDk is
used. We gave here the full equation for completeness,
but the only difference with general relativity lies in the
two last acceleration-dependent terms with fðaÞ and �ðaÞ.
The trace of (3.11) gives

Rþ 4

N
DtK þ 3KijK

ij þ K2 � 4

N
DiD

iN � 6fþ 4�a2

¼ �16�

�
T þ 2

N
NiJ

i

�
; (3.12)

where T ¼ �ijT ij, and we also used the momentum

constraint Eq. (3.10). By eliminating R using the
Hamiltonian constraint (3.9), one obtains an important
equation, which plays the role of a modified Poisson-type
equation for the gravitational field,

Di½ð1þ �Þai� þ fþ a2 � 1

N
DtK � KijKij

¼ 4�

�
"þ 2

N
NiJ

i þT
�
: (3.13)

We check in Appendix A the compatibility of the field
equations in the 3d and 4d representations, that are ob-
tained by varying with respect to different degrees of free-
dom, i.e. g��, � and� in the 4d formulation, andN,Ni, �ij

and � in the 3d formulation. Starting with the 4d Einstein
Eq. (2.5) and applying the projection procedure which
allows to get the 3þ 1 equations with the help of the
Gauss-Codazzi relations, we get the same 3þ 1 equations
as obtained by varying directly the action expressed in
adapted cordinates, namely (3.9), (3.10), and (3.11). In
other words, starting with the action in 3þ 1 coordinates
and varying the noncovariant degrees of freedom, or vary-
ing the 4d covariant action and then projecting the equa-
tions obtained in adapted 3þ 1 coordinates, yield the same
field equations.

A related question is the fate of the Khronon field
Eq. (2.9) when switching to adapted 3þ 1 coordinates.
Since � becomes the time coordinate, we no longer vary the
action with respect to it, and the three Eqs. (3.9), (3.10), and
(3.11) do not manifestly contain the �-field. In adapted
3þ 1 coordinates the Eq. (2.9) becomes5

Dt

�
Dið�aiÞ þ �a2 � f

2

�
þ NKðDið�aiÞ þ �a2Þ

� N�aiajKij ¼ 0; (3.14)

whereDt ¼ @t � NkDk. We substitute the termDið�aiÞ by
using the Hamiltonian constraint (3.9) and perform a series
of transformations with the help of the other Eqs. (3.10)
and (3.11). A long calculation, in which one uses the useful
relation

DiDj½NðKij � �ijKÞ� ¼ 1

2
DtRþ NKijRij; (3.15)

then shows that (3.14) is equivalent to the continuity equa-
tion for the matter field, i.e. the evolution equation of the
matter energy density " defined in (3.8a), which is given by

Dt"þ NK"þDiðNJiÞ þ JiDiN þ 2KijN
iJj þ NT ijKij

¼ 0: (3.16)

This equation is the 0-th component of the conservation
law for the matter field, i.e. r�T

0� ¼ 0. Furthermore,
another long computation shows that, given the 3d con-
tracted Bianchi identity DjGij � 0, and the Eqs. (3.9),

(3.10), and (3.11), the Euler equation of the matter field
is satisfied, i.e. the evolution equation of the current Ji

given by

DtJ
i þ NKJi þDj½NT ij þ NiJj þ NjJi� þ "DiN

þ JjDjN
i þ 2NJjKi

j ¼ 0: (3.17)

This corresponds to the spatial component of the matter
conservation r�T

i� ¼ 0, once a term is substituted using
the continuity Eq. (3.16). These checks are the transposi-
tion in the 3þ 1 formalism of the fact that the �-Eq. (2.9) is
implied by the Einstein field Eq. (2.5) (see [38] and Sec. II).

IV. NON-RELATIVISTIC LIMIT

We now investigate the nonrelativistic limit of the
model, which will determine the required behavior of the
function fðaÞ in order to recover a MOND-like modifica-
tion of the Poisson equation in the relevant weak-field
regime. In this section we restore the G and c factors; in
the field Eqs. (3.11) for instance, the right-hand side must
be multiplied by G=c4 so that the stress-energy tensor has
the dimension of an energy density.

5Note that in 3þ 1 adapted coordinates, we have r�ð�a�Þ ¼
Dið�aiÞ þ �a2.
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We consider a matter system isolated from the rest of
the Universe and at rest with respect to the preferred-frame,
in the sense that the fiducial observers have a coordinate
velocity wi ¼ ni=n0 ¼ �Ni which is of small post-
Newtonian order. We make the usual post-Newtonian an-
satz on the metric components generated by the system:

N ¼ 1þ �

c2
þOð4Þ; (4.1a)

Ni ¼ Oð3Þ; (4.1b)

�ij ¼ 	ij

�
1� 2c

c2

�
þOð4Þ; (4.1c)

where OðnÞ denotes a small remainder term of order
Oðc�nÞ. We introduce in (4.1) two a priori different �
and c for the lapse and the spatial metric, but we shall
check that they are actually identical like in general
relativity.

The acceleration (3.4) of the fiducial observers reduces
to the Newtonian acceleration of the �-potential,

a ¼ 1

c2
r�þOð4Þ: (4.2)

We use bold-face notation to represent ordinary three-
dimensional Euclidean vectors, e.g. a ¼ ðaiÞ. With our
convention, a has the dimension of the inverse of a length.
From (3.3) we see that the extrinsic curvative is a small
post-Newtonian quantity, of order Kij ¼ Oð3Þ. Finally we

assume that the matter source is nonrelativistic, so that its
energy-momentum tensor is dominated by the Newtonian
rest mass density denoted �:

" ¼ �c2 þOð0Þ; (4.3)

with comparatively negligible current and stress densities,

Ji ¼ �vi þOð2Þ; (4.4a)

T ij ¼ �vivj þOð2Þ: (4.4b)

Then the Eqs. (3.16) and (3.17) reduce to the standard
Newtonian continuity and Euler equations (with
�-potential).

We first show that the two Newtonian potentials � and
c are equal. This follows from the trace of the evolution
equation given by (3.12). The function fðaÞ scales with a2

where the dimensionful acceleration is of order a ¼ Oð2Þ
from (4.2). This means that the post-Newtonian order of
this function is fðaÞ ¼ Oð4Þ. Note that since fðaÞ will
contain a cosmological constant � (see e.g. (4.8) below),
to be consistent the post-Newtonian order of the cosmo-
logical constant must also be � ¼ Oð4Þ. Inserting into
(3.12) the previous estimate fðaÞ ¼ Oð4Þ together
with Kij ¼ Oð3Þ, and using the fact that at the dominant

order we have R ¼ 4
c2
�c þOð4Þ, we readily obtain

�ðc ��Þ¼Oð2Þ. For a regular isolated matter source
the only solution is

c ¼ �þOð2Þ: (4.5)

The equality of the two potentials is very important for the
viability of the theory as an alternative to dark matter (see
[46] for a review). It implies that the light deflection and
the gravitational lensing will be given by the same formula
as in general relativity, but with a single potential � ¼ c
obeying the modified Poisson equation (given by (4.6)
below). Unlike in TeVeS [15,16], there is no need in the
present theory to invoke a disformal coupling of the photon
field to gravity in order to get the light deflection viable.
The property (4.5) has been proved in [19] and is a generic
feature of noncanonical Einstein-æther theories.
We now turn to the equation satisfied by the Newtonian

potential �. Clearly, from the form of the metric (4.1), the
ordinary baryonic matter feels the Newtonian gravitational
field g ¼ �r�. From (4.2) we have a ¼ �g=c2 at the
leading order. In the nonrelativistic limit, and for the non-
relativistic matter source satisfying (4.3) and (4.4), the
Eq. (3.13) becomes

r � ½ð1þ �Þr�� ¼ 4�G�þOð2Þ; (4.6)

which exactly reproduces the MOND Eq. (1.1) for the
gravitational field g ¼ �r�. The MOND function is sim-
ply given by � ¼ 1þ �, and � can be interpreted as a
‘‘susceptibility’’ coefficient for the modified Poisson equa-
tion. Using the fact that a ¼ g=c2 at the leading order, the
latter correspondence between �ðg=a0Þ and the function
�ðaÞ ¼ f0ðaÞ=ð2aÞ will tell us what are the constraints to
be imposed on the function fðaÞ in the initial Lagrangian.
To recover the Newtonian regime when a � a0 (i.e.

formally when a ! 1), this function should tend toward
a constant. More precisely, we shall recover general rela-
tivity with a cosmological constant, which is the limiting
value of fðaÞ, say

fðaÞ ¼ �1 when a ! 1: (4.7)

On the other hand, to recover MOND asymptotically, we
require that when a ! 0 (a has the dimension of
½length��1),

fðaÞ ¼ �0 � a2 þ 2c2

3a0
a3 þO

�
c4a4

a20

�
; (4.8)

where�0 is constant, and we recall that the MOND scale is
measured to the value a0 ’ 1:2� 10�10 m=s2 [4]. We see
that the term / a2 in the expansion (4.8) is similar to one of
the terms proposed in the ‘‘healthy’’ extension of Hořava
gravity [36,37]. Using the notation of [36,37] the coeffi-
cient in front of this term in the action is 
 ¼ 2. Beware,
however, that this term here is only the first term in a weak-
field expansion.
A priori, the cosmological constant �1 appearing in the

general relativistic limit (4.7) could be different from the
cosmological constant �0 in the MOND regime (4.8).
Notice that in an homogeneous and isotropic Universe,
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making the �-field to coincide with cosmic time, a van-
ishes identically and the equivalent energy-momentum
tensor (2.10) reduces to a cosmological constant
fð0Þ ¼ �0. However, the precise cosmological implica-
tions of the model would need a study at the level of
perturbations, which is left for future work (see [23–26]
for cosmological studies in modified gravity theories). For
simplicity, we provisionally assume here that �1 and �0

are equal and we denote their common value by �.
Note that in the MOND regime at least, the post-

Newtonian order of magnitude � ¼ Oð4Þ we have as-
sumed for the cosmological constant is natural. Indeed,
because of the numerical coincidence between a0 and the

acceleration scale a� � ffiffiffiffi
�

p
associated with the cosmo-

logical constant [47],� scales like a20=c
4 so that we indeed

have � ¼ Oð4Þ. In this picture, we are considering that
a0 represents a new fundamental constant independent
from c and G, presumably coming from some new
(unknown) fundamental physics. Therefore, factorizing
out � in (4.8) would yield a Taylor expansion in terms of
the small dimensionless parameter c2a=a0, with coeffi-
cients expected to be of the order of 1.

The coincidence between a0 and a� can be made com-
pletely explicit in the following example. A function ful-
filling all the above requirements is the ‘‘Planckian’’
distribution

fðaÞ ¼ �� a3

a�½ea=a� � 1� ; (4.9)

where the ‘‘temperature’’ a� (in fact kT� ¼ ℏca�) is that
of the horizon of the de Sitter Universe associated with the
positive cosmological constant, namely [48]

a� ¼ 1

2�

ffiffiffiffi
�

3

s
: (4.10)

By comparing the expansion when a ! 0 of this function
with (4.8), we deduce that a0 would be related to the
cosmological constant � by

a0 ¼ 4a�c
2

3
: (4.11)

The numerical value of a0 would be extremely close to the
actual one: indeed, we have c2a� ’ 0:9� 10�10 m=s2 so
that a0 ’ 1:2� 10�10 m=s2, in very good agreement with
observations. However, the function (4.9) is only an ex-
ample without physical justification.

Note that we can also retrieve the deep-MOND regime
directly at the level of the Lagrangian (3.2). Indeed we
have, up to a total divergence,

ffiffiffiffi
�

p
NR ¼ � 2

c4
jrc j2 þ

Oð6Þ, in terms of the potential c parametrizing the spatial
metric (4.1c). But because the two potentials c and � are
equal, we see that this term will be cancelled by the term
2a2 ¼ 2

c4
jr�j2 þOð6Þ coming from the expansion of fðaÞ

as given by (4.8). Therefore, we find that the Newtonian

behavior is suppressed, and it remains the next term in the
expansion which is proportional to a3 and immediately
gives the MOND Lagrangian

LMOND ¼ � 1

12�Ga0
jr�j3 � ��; (4.12)

whose variation with respect to � reproduces the deep-
MOND equation

r �
�jr�j

a0
r�

�
¼ 4�G�: (4.13)

The cancellation of the Newtonian term in the Lagrangian
by a ‘‘counter-term’’ / a2 and its replacement by the next-
order cubic term / a3 is similar to what happens in other
approaches, see e.g. [19] and equations (67, 68, 69) in [32].
Thus, we have recovered the MOND equation in the

appropriate regime. Beware, however, that the analysis
presented in this section relies on the fact that we choose
coordinates adapted to the foliation. If we come back to a
4d formulation with the �-field being a dynamical field, we
still may make the hypothesis (4.1) for the metric generated
by a system at rest in a given frame, but the expression (4.2)
becomes

a ¼ 1

c2

�
dw

dt
þ r�

�
þOð4Þ; (4.14)

with w ¼ n=n0 being the coordinate velocity of fiducial
observers in that frame and dw=dt being their coordinate
acceleration. The fiducial observers will follow a nongeo-
desic motion governed by the �-equation, thus a � 0 in
general, but the first term in (4.14) will appear as a
preferred-frame effect. Note that this effect depends on
the acceleration and occurs already at Newtonian order.
In the strong field regime where jr�j � a0 (Solar system,
binary pulsars, etc.), the presence of this term should not
change the fact that a � a0=c

2, so the modification of the
dynamics with respect to general relativity should be sup-
pressed. In the weak-field regime however, for instance in
the outskirts of galaxies, this term could lead to a sizeable
effect. We would need to investigate the complicated dy-
namics driven by the �-equation to get a precise answer.
However, if we assume that the preferred-frame essentially
coincides with the frame of the large scale structure or the
cosmic microwave background, this coordinate accelera-
tion of fiducial observers in a galaxy-centered frame be-
comes (minus) the acceleration of the galaxy with respect
to the CMB frame, which is typically of the order of
magnitude of a0=100 (see e.g. [49]). In this case, the
term dw=dt in (4.14) is not expected to significantly impact
the fit to MOND phenomenology.

V. CONCLUSION

We have proposed a relativistic modified gravity model,
based on a preferred 3þ 1 space-time foliation, reproduc-
ing the phenomenology of MOND [4] in the weak-field

MODIFIED GRAVITY APPROACH BASED ON A . . . PHYSICAL REVIEW D 84, 044056 (2011)

044056-7



limit. The modification with respect to general relativity
consists in adding to its ordinary Lagrangian a function of
the norm of the acceleration of the congruence associated
with this foliation. We investigated two different points of
view on this theory: In the first, we introduced a scalar field
called the Khronon defining the foliation by its constant-
value hypersurfaces, keeping a full 4-dimensional cova-
riant formalism, while in the second, we wrote the theory
in a 3þ 1 fashion, in a frame where the time coordinate
coincides with the Khronon field and where the Lagrangian
is no longer manifestly Lorentz invariant. The spirit of our
approach is similar to that of recent attempts at building a
consistent quantum theory of gravity [35–37], but here the
Lorentz invariance violation occurs at low energy, and our
motivation is purely classical. We showed the equivalence
between the 3d and 4d formulations of the model, and gave
the requirements on the function initially introduced in
the Lagrangian to recover MOND in the nonrelativistic
approximation.

We leave to future work some important questions. First,
it is easy to see that in an homogeneous and isotropic
background, our model simply reduces to the addition of
a cosmological constant. However, the cosmological im-
plications of this model in a perturbative regime have not
been studied yet. We have in mind the viability of the
model when faced to cosmological observations, notably
the anisotropies of the cosmic microwave background
and the structure formation (see [23–26] for general inves-
tigations of the cosmology in TeVeS and Einstein-æther
theories).

A second question is that of the viability regarding Solar
system tests and binary pulsars data. Although it should
recover general relativity plus a cosmological constant in
the strong field regime appropriate to these systems, see
(4.7),6 our model includes a preferred-frame effect which
we would like to quantify precisely, using various hypothe-
sis for the motion of the Solar system with respect to the
preferred-frame. (See [27,28] for the computation of
the preferred-frame post-Newtonian parameters in TeVeS
and canonical Einstein-æther.) More importantly, the
preferred-frame effect should also be computed in the
MOND regime, using various forms for the MOND func-
tion, to see how it affects the usual MOND fit of the flat
rotation curves of galaxies; see (4.14) and the discussion
right after.

Another question is related to the dynamics of the
Khronon field itself [obeying the Eq. (2.9)]. Indeed in
this model the foliation is dynamical, and the evolution
of the Khronon field should be compatible with the pres-
ervation of its smoothness and regularity properties allow-
ing a space-time foliation to be built on it.
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APPENDIX A: 3þ 1 DECOMPOSITION OF THE
MODIFIED EINSTEIN EQUATIONS

In this Appendix, we check the equivalence of the 4d
and 3d formulations of the theory discussed in Secs. II and
III. The material used here is well-known, and the deriva-
tion will basically proceed along the same steps as in
standard general relativity (see e.g. [50]), but we choose
to present it for completeness.
The projected covariant derivative operator D� is de-

fined in the usual way by e.g. D�A
� ¼ ��

���
�r�A

� for

any vector belonging to the spatial hypersurface, i.e.
n�A

� ¼ 0. The spatial Riemann tensor associated with
the derivative D� is denoted R�

���. The extrinsic curva-

ture tensor K�� ¼ ��
�r�n

� is symmetric on account of

the Frobenius theorem n½�r�n�� ¼ 0 satisfied by the

hypersurface-orthogonal vector n�. The first Gauss-

Codazzi relation

R���� ¼ ��

��

���
���

	R
��	 þ K��K�� � K��K��;

(A1)

is contracted with ������ which yields

R ¼ Rþ 2n�n�R�� þ K��K
�� � K2: (A2)

Inserting into (A2) our modified version of the Einstein
Eqs. (2.5) and (2.6), we obtain the modified Hamiltonian
constraint as

R þ K2 � K��K
�� � 2fþ 4r�ð�a�Þ

¼ 16�n�n�T��: (A3)

Next, the second Gauss-Codazzi relation,

D�½K�� � ���K� ¼ ���n�R��; (A4)

when projecting the modified Einstein equation along
���n�, leads to

D�½K�� � ���K� ¼ 8����n�T��: (A5)

The fðaÞ-dependent terms disappear in this second con-
straint equation, as expected since it corresponds to the
variation of the action with respect to the shift, and our
modification does not concern the shift. Using the fact that

n�n�R���� ¼ K��K�
� þ 1

N
D�D�N � 1

N
L‘K��; (A6)

6For instance, the MOND transition radius for the Sun isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM	=a0

p ’ 7100AU.
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one contraction of the first Gauss-Codazzi relation yields

R �� ¼ ��
���

�R�� � 1

N
L‘K�� þ 1

N
D�D�N

þ 2K��K�
� � KK��: (A7)

Here, L‘ denotes the Lie derivative with respect to the
vector ‘� ¼ Nn�. Projecting the modified Einstein equa-
tion on ��

���
�, we find:

G��þ 1

N
ðL‘K�������

��L‘K��Þþ 1

N
���D

�D�N

� 1

N
D�D�NþKK���2K��K�

�

þ���

�
3

2
K��K���1

2
K2

�
þf����2�a�a�

¼8���
���

�T��: (A8)

Finally, making use of the correspondence [compare also
with (3.8)]

" ¼ N2T00; (A9a)

Ji ¼ NðT0i þ NiT00Þ; (A9b)

T ij ¼ Tij � NiNjT00; (A9c)

one can check that, when using the adapted 3þ 1 coor-
dinates, the Eqs. (A3), (A5), and (A8), are the same as the
3þ 1 Eqs. (3.9), (3.10), and (3.11) obtained by direct
variation of the 3þ 1 Lagrangian (3.2).

APPENDIX B: STRESS-ENERGY TENSOR OF THE
EQUIVALENT MATTER FIELD

As we discussed in Sec. II, we can consider the �-field,
in the 4d formulation, as an additional matter field. Its
stress-energy-momentum tensor is then

T��
� ¼� 1

8�
½fðaÞg�� þ 2n�n�r�ð�ðaÞa�Þ� 2�ðaÞa�a��:

(B1)

If we choose n� as the natural 4-velocity associated with
this matter fluid, we can perform the canonical decompo-
sition of the energy-momentum tensor according to

T��
� ¼ ð"� þ P�Þn�n� þ P�g

�� þ 2Qð�
� n�Þ þ���

� ;

(B2)

where "� and P� denote the energy density and pressure
of the fluid, where Q

�
� is the heat flow orthogonal to the

4-velocity, i.e. n�Q
�
� ¼ 0, and where�

��
� is the symmetric

anisotropic stress-tensor which is transverse to the velocity
and traceless, i.e. n��

��
� ¼ 0 and g���

��
� ¼ 0. We then

obtain

"� ¼ 1

8�
½f� 2r�ð�a�Þ�; (B3a)

P� ¼ 1

8�

�
�fþ 2

3
a2�

�
; (B3b)

Q�
� ¼ 0; (B3c)

���
� ¼ �ðaÞ

4�

�
a�a� � 1

3
���a2

�
: (B3d)

In terms of those definitions, the 3þ 1 version of the
conservation equation r�T

��
� ¼ 0 reduces to a scalar

equation, taking the form of the ‘‘continuity’’ equation

Dt"� þ Nð"� þ P�ÞK þ N�ij
� Kij ¼ 0: (B4)

As we mentioned in Sec. II and III, the conservation
equation r�T

��
� ¼ 0 has exactly the same content as

the Khronon field Eq. (2.9), and is equivalent, via the
modified Einstein Eqs. (2.5), to the conservation of matter
r�T

�� ¼ 0. Thus, this equivalent fluid has the property
that its Euler equations reduce to its continuity equation,
i.e. the four components of r�T

��
� ¼ 0 reduce to only one

equation (as expected for a scalar field).
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124012 (2007).

[13] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis,
arXiv:1106.2476.

[14] R. Sanders, Astrophys. J. 480, 492 (1997).
[15] J. Bekenstein, Phys. Rev. D 70, 083509 (2004).
[16] R. Sanders, Mon. Not. R. Astron. Soc. 363, 459

(2005).
[17] T. Jacobson and D. Mattingly, Phys. Rev. D 64, 024028

(2001).
[18] T. Jacobson and D. Mattingly, Phys. Rev. D 70, 024003

(2004).
[19] T.G. Zlosnik, P. G. Ferreira, and G.D. Starkman, Phys.

Rev. D 75, 044017 (2007).
[20] A. Halle, H. S. Zhao, and B. Li, Astrophys. J. Suppl. Ser.

177, 1 (2008).
[21] T.G. Zlosnik, P. G. Ferreira, and G.D. Starkman, Phys.

Rev. D 74, 044037 (2006).
[22] C. R. Contaldi, T. Wiseman, and B. Withers, Phys. Rev. D

78, 044034 (2008).
[23] C. Skordis, D. F. Mota, P. G. Ferreira, and C. Boehm, Phys.

Rev. Lett. 96, 011301 (2006).
[24] B. Li, D. F. Mota, and J. D. Barrow, Phys. Rev. D 77,

024032 (2008).
[25] C. Skordis, Phys. Rev. D 77, 123502 (2008).
[26] J. Zuntz, T. G. Zlosnik, F. Bourliot, P. G. Ferreira, and

G.D. Starkman, Phys. Rev. D 81, 104015 (2010).
[27] B. Foster and T. Jacobson, Phys. Rev. D 73, 064015

(2006).
[28] E. Sagi, Phys. Rev. D 80, 044032 (2009).
[29] M. Milgrom, Mon. Not. R. Astron. Soc. 403, 886 (2010).
[30] M. Milgrom, Phys. Rev. D 80, 123536 (2009).

[31] E. Babichev, C. Deffayet, and G. Esposito-Farèse,
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