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ABSTRACT

We study the process of spinning up black holes by accretion from slim disks for a wide range of accretion rates. We show that for
super-Eddington accretion rates and low values of the viscosity parameter α (�0.01) the limiting value of the dimensionless spin
parameter a∗ can reach values higher than a∗ = 0.9978 inferred by Thorne in his seminal study. For Ṁ = 10 ṀEdd and α = 0.01, spin
equilibrium is reached at a∗ = 0.9994. We show that the equilibrium spin value depends strongly on the assumed value of α. We also
prove that for high accretion rates the impact of captured radiation on spin evolution is negligible.

Key words. black hole physics – accretion, accretion disks

1. Introduction

Astrophysical black holes (BHs) are very simple objects – they
can be described by just two parameters: mass M and angular
momentum J (usually described by the dimensionless spin pa-
rameter a∗ ≡ a/M = J/M2). In isolation, BHs conserve the
birth values of these parameters but are often surrounded by
accretion disks and experience both mass and angular momen-
tum change, e.g., in close binaries or in active galactic nuclei.
Accretion of matter always increases the BH’s irreducible mass
and may change its angular momentum. The sign of this change
and its value depend on the (relative) sign of accreted angular
momentum and the balance between the accretion of matter and
various processes extracting the BH’s rotational energy and an-
gular momentum.

The question about the maximal possible spin of an object
represented by the Kerr solution of the Einstein equation is of
fundamental and practical (observational) interest. First, a spin
a∗ > 1 corresponds to a naked singularity and not to a black hole.
According to the Penrose cosmic censorship conjecture, naked
singularities cannot form through actual physical processes, i.e.
singularities in the Universe (except for the initial one in the Big
Bang) are always surrounded by event horizons (Wald 1984).
This hypothesis has yet to be proven.

In any case, the “third law” of BH thermodynamics (Bardeen
et al. 1973) asserts that a BH cannot be spun-up in a finite time to
the extreme spin value a∗ = 1. Determining the maximum value
of BH spin is also of practical interest because the radiative ef-
ficiency of disk accretion depends on the BH’s spin value. For
example, for the “canonical” value a∗ = 0.9978 (see below) it is

about η ≈ 32%, while for a∗ → 1 one has η → 42%. Bañados
et al. (2009) showed that the energy of the center-of-mass colli-
sion of two particles colliding arbitrary close to the BH horizon,
grows to infinity1 when a∗ → 1.

A definitive study of the BH spin evolution will only be pos-
sible when reliable, non-stationary models of accretion disks and
jet emission mechanisms are established. For now, one has to use
simplified analytical or numerical models.

Thorne (1974) used the model of a radiatively efficient, geo-
metrically thin accretion disk (Novikov & Thorne 1973) to eval-
uate BH spin evolution taking into account the decelerating im-
pact of disk-emitted photons. The maximum value obtained to
date a∗ = 0.9978, has been regarded as the canonical value for
the maximal BH spin. In this work, we generalize Thorne’s ap-
proach, using hydrodynamical models of advective, α-viscosity,
optically thick accretion disks (“slim disks”) to calculate max-
imum BH spin values for a large range of accretion rates.
Following Thorne (1974), we assume that accretion of matter
and radiation captured by the BH are the only mechanisms af-
fecting its rotation. Thus, we neglect any impact of large-scale
magnetic fields (a discussion of the applicability of slim disks is
presented in Sect. 6). We show that for sufficiently high accretion
rates the limiting BH spin differs from the canonical value.

We begin with a short discussion of previous work devoted
to the evolution of BH spin. In Sect. 2, we present formulae

1 Of more fundamental interest is that the proper geodesic distances D
between the marginally stable orbit (the innermost stable orbit, ISCO)
and several other special Keplerian orbits relevant to accretion disk
structure tend to infinity D→ ∞ when a∗ → 1 (Bardeen et al. 1972).
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for a general tetrad (an orthonormal set of four vector fields,
one timelike and three spacelike) of an observer comoving with
the accreting gas along the arbitrary photosphere surface. In
Sect. 3, we give basic equations describing the BH spin evo-
lution. Section 4 describes the model of slim accretion disks. In
Sect. 5, we present and discuss the terminal spin values for all the
models considered. Finally, in Sect. 6 we summarize our results.

1.1. Previous studies

A number of authors have studied the BH spin evolution result-
ing from disk accretion. Bardeen (1970) initiated this field of re-
search by solving equations describing the BH spin evolution for
accretion from the marginally stable orbit. Neglecting the effects
of radiation, he proved that this accretion could spin-up the BH
arbitrarily close to a∗ = 1. Once the classical models of accre-
tion disks were formulated (Shakura & Sunyaev 1973; Novikov
& Thorne 1973), it was possible to account properly for the de-
celerating impact of radiation (frame dragging makes counter-
rotating photons more likely to be captured by the BH). As men-
tioned above, Thorne (1974) performed this study and obtained
for an isotropically emitting thin disk the terminal BH spin
a∗ = 0.9978, independently of the accretion rate. The original
study by Thorne was followed by many papers, some of which
are briefly mentioned below.

The first to challenge the universality of Thorne’s limit were
Abramowicz & Lasota (1980), who showed that geometrically
thick accretion disks may spin up BHs to terminal spin values
much closer to unity than the canonical a∗ = 0.9978. Their sim-
ple argument was based on models by Kozlowski et al. (1978),
who showed that for high accretion rates the inner edge of a disk
may be located inside the marginally stable orbit, and in fact,
with increasing accretion rate, arbitrarily close to the marginally
bound orbit. However, this conclusion assumed implicitly a low
viscosity parameter α, whereas for high viscosities the situation
is more complicated (see Abramowicz et al. 2010, and references
therein).

Moderski et al. (1998) assessed the impact of possible inter-
action between the disk magnetic field and the BH through the
Blandford-Znajek process. They showed that the terminal spin
value may be decreased to any, arbitrarily small value, if the disk
magnetic field is strong enough. Given the current lack of self-
consistent and reliable models of accretion disks with large-scale
magnetic fields, a more detailed study cannot be performed. The
situation may be further complicated by energy extraction from
the inner parts of accretion disks and the magnetic transport of
angular momentum (see Livio et al. 1999; Ghosh & Abramowicz
1997; and compare with McKinney & Narayan 2007).

Popham & Gammie (1998) studied the spinning-up of BHs
by optically thin advection dominated accretion flows (ADAFs).
They neglected the contribution of radiation to BH spin because
such accretion disks are radiatively inefficient. They found that
the terminal value of BH spin is very sensitive to the assumed
value of the viscosity parameter α and may vary between 0.8 and
1.0. Gammie et al. (2004), in addition to comprehensively sum-
marizing the different ways of spinning up supermassive BHs,
presented results based on a set of relativistic magnetohydro-
dynamical (GRMHD) simulations (with no radiation included)
obtaining a terminal spin of a∗ = 0.93.

The cosmological evolution of the spins of supermassive
BHs caused by hierarchical mergers and thin-disk accretion
episodes has been intensively studied. Although Volonteri et al.
(2005) arrived at the conclusion that accretion tends to spin-up
BHs close to a∗ = 1, as opposed to mergers, which, on the

average, do not influence the spin, subsequent studies by, e.g.,
Volonteri et al. (2007), King et al. (2008) and Berti & Volonteri
(2008) showed that the situation is more complex, the final spin
values depending on the details of the history of the accretion
events (see also Fanidakis et al. 2011).

Belczynski et al. (2008) applied population synthesis meth-
ods to estimate BH spins in coalescing compact star binaries.
Basing their calculations on results of radiation-hydrodynamic
simulations of thick accretion disks by Ohsuga (2007), they ne-
glected the impact of radiation on BH spin and assumed that
gas is transferred from the innermost stable orbit conserving
Keplerian angular momentum. They showed that the spin param-
eter a∗ resulting from the coalescence is not expected to exceed
0.5 for those BHs that are not spun-up during the star collapse.

Li et al. (2005) included the radiation returning to the disk
in the thin-disk model of Novikov & Thorne and calculated the
spin-up limit for the BH assuming radiation crossing the equa-
torial plane inside the marginally stable orbit is advected onto
the BH. Their result (a∗ = 0.9983) differs slightly from Thorne’s
result, thus showing that returning radiation has only a slight im-
pact on the process of spinning-up BHs. In our study, we use ad-
vective, optically thick solutions of accretion disks and account
for photons captured by the BH in detail. However, we neglect
the impact on the disk structure of the returning radiation.

2. The tetrad

We base this work on slim accretion disks, which are not razor-
thin and have an angular momentum profile that is not Keplerian
(for details about the assumptions made and the disk appear-
ance see Sect. 4). Therefore, photons are not emitted from matter
in Keplerian orbits in the equatorial plane and the classical ex-
pressions for photon momenta (e.g., Misner et al. 1973) cannot
be applied. To properly describe the momentum components of
emitted photons, we need a tetrad for the comoving observer in-
stantaneously located at the disk photosphere. Below we give the
explicit expression for the components of such a tetrad assum-
ing time and axis symmetries. A detailed derivation is given in
Appendix A.

We choose the following comoving tetrad

ei
(α) =

[
ui,Ni, κi, S i

]
, (1)

where ui is the four-velocity of matter, Ni is a unit vector in
the [r, θ] plane that is orthogonal to the photosphere, κi is a unit
vector in the [t, φ] plane that is orthogonal to ui, and S i is a unit
vector orthogonal to ui, Ni, and κi.

The tetrad components are given by

Nr =
dθ∗
dr

(−gθθ)−1/2

⎡⎢⎢⎢⎢⎢⎣1 + grr

gθθ

(
dθ∗
dr

)2⎤⎥⎥⎥⎥⎥⎦
−1/2

, (2)

Nθ = (−gθθ)−1/2

⎡⎢⎢⎢⎢⎢⎣1 + grr

gθθ

(
dθ∗
dr

)2⎤⎥⎥⎥⎥⎥⎦
−1/2

, (3)

ui =
ηi + Ωξi + vS i∗√

gtt + Ωgφφ(Ω − 2ω) − v2 , (4)

κi =

(
lηi + ξi

)
[
−gφφ(1 −Ωl)(1 − ωl)

]1/2
, (5)

S i =
(
1 + Ã2v2

)−1/2 (
Ãvui + S i

∗
)
, (6)
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where θ = θ∗(r) defines the location of the photosphere, ηi and ξi
are the Killing vectors, l = uφ/ut, Ω = uφ/ut, ω is the frequency
of frame-dragging, and the expressions for v and S i∗ are given in
Eqs. (A.10) and (A.4), respectively.

3. Spin evolution

3.1. Basic equations

The equations describing the evolution of dimensionless
BH spin a∗ with respect to the BH energy M and the accreted
rest-mass M0 are (Thorne 1974)

da∗
dlnM

=
dJ/M2

dlnM
=

1
M

Ṁ0uφ +
(

dJ
dt

)
rad

Ṁ0ut +
(

dM
dt

)
rad

− 2a∗, (7)

dM
dM0

= ut +

(
dM
dt

)
rad

/Ṁ0. (8)

The energy and angular momentum of BH increase due to the
capture of photons according to the formulae

(dM)rad =

∫
disk

T ikηkNidS , (9)

(dJ)rad =

∫
disk

T ikξkNidS , (10)

where ηk and ξk are the Killing vectors connected with time and
axial symmetries, respectively, T ik is the stress-energy tensor of
photons, which is taken to be non-zero only for photons crossing
the BH horizon, and dS is the “volume element” in the hyper-
surface orthogonal to Ni, which is given by Eq. (B.8).

From Eqs. (9) and (10), it follows that(
dM
dt

)
rad

=

∫ 2π

0

∫ rout

rin

T ikηkNidS̃ , (11)

(
dJ
dt

)
rad

=

∫ 2π

0

∫ rout

rin

T ikξkNidS̃ , (12)

where

dS̃ = dφ dr
(
g2

tφ − gtt gφφ
)1/2

√
grr + gθθ

(
dθ∗
dr

)2

· (13)

3.2. Stress energy tensor in the comoving frame

We select the tetrad given in Eq. (1)

ei
(0) = ui ei

(1) = Ni

ei
(2) = κ

i ei
(3) = S i. (14)

The disk properties, e.g., the emitted flux, are usually given in
the comoving frame defined by Eq. (14). The stress tensor com-
ponents in the two frames (Boyer-Lindquist and comoving) are
related in the following way:

T ik = T (α)(β)ei
(α)e

k
(β). (15)

The stress tensor in the comoving frame is

T (α)(β) = 2
∫ π/2

0

∫ 2π

0
I0S Cπ(α)π(β) sin ã dã db̃, (16)

where I0S = I0(r)S (ã, b̃) is the intensity of the emitted radiation,
ã and b̃ are the angles between the emission vector and the Ni

and S i vectors, respectively, C is the capture function defined in
Sect. 3.4, the factor 2 occurs because the disk emission comes
from both sides of the disk, and π(α) = p(α)/p(0) are the normal-
ized components of the photon four-momentum in the comov-
ing frame. The last set of parameters are given by the relations
(Thorne 1974)

π(0) = 1,

π(1) = cos ã,

π(2) = sin ã cos b̃,

π(3) = sin ã sin b̃. (17)

Equations (11) and (12) take the form

(
dM
dt

)
rad

=

∫
disk

T (α)(β)ei
(α)e

k
(β)ηkNidS̃ , (18)

(
dJ
dt

)
rad

=

∫
disk

T (α)(β)ei
(α)e

k
(β)ξkNidS̃ , (19)

where ei
(α) is our local frame tetrad given by Eq. (14).

Taking into account the relations

π(α) = π je(α)
j ,

e(α)
j ei

(α) = δ
i
j, (20)

we have

π(α)ei
(α)Ni = π

(α)δ(1)
(α) = π

(1) = cos ã, (21)

π(β)ek
(β)ηk = π

je(β)
j ek

(β)ηk = π
jδk

jηk = π
kηk = πt, (22)

π(β)ek
(β)ξk = π

je(β)
j ek

(β)ξk = π
jδk

jξk = π
kξk = πφ, (23)

where,

πt = π
(i)et

(i)gtt + π
(i)eφ(i)gtφ, (24)

πφ = π
(i)et

(i)gtφ + π
(i)eφ(i)gφφ. (25)

Therefore, Eqs. (18) and (19) may be finally expressed as

(
dM
dt

)
rad

= 4π
∫ rout

rin

∫ 2π

0

∫ π/2

0
I0S Cπt

× cos ã sin ã dã db̃
√
g̃ dr, (26)(

dJ
dt

)
rad

= 4π
∫ rout

rin

∫ 2π

0

∫ π/2

0
I0S Cπφ

× cos ã sin ã dã db̃
√
g̃ dr, (27)

where

√
g̃ ≡

(
g2

tφ − gtt gφφ
)1/2

√
grr + gθθ

(
dθ∗
dr

)2

· (28)
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3.3. Emission

The intensity of local radiation may be identified with the flux
emerging from the disk surface

I0 = F(r). (29)

The angular emission factor S was taken by Thorne (1974) to be

S
(
ã, b̃

)
=

{
1/π isotropic

(3/7π) (1 + 2 cos ã) limb darkening
(30)

for isotropic and limb-darkened cases, respectively. In this work,
we assume that the radiation is emitted isotropically.

3.4. Capture function

The BH energy and angular momentum are affected only by pho-
tons crossing the BH horizon. Following Thorne (1974), we de-
fine the capture function C

C =

{
1 if the photon hits the BH,

0 in the opposite case.
(31)

Herein, we calculate C in two ways. First, we use the original
Thorne (1974) algorithm modified to account for emission out of
the equatorial plane. For this purpose, we calculate the constants
of motion, j and k, for a geodesic orbit of a photon using

j = a2
∗ + a∗

(
πφ/Mπt

)
, (32)

k =
1

(Mπt)2

[
π2
θ −

(
πφ + a∗Mπt sin θ∗

)2
/ sin2 θ∗

]
(33)

which replaces Thorne’s Eq. (A10). This approach does not take
into account the effects of returning radiation, i.e., a photon hit-
ting the disk surface is assumed to continue its motion. This
treatment is inappropriate for optically thick disks – returning
photons are most likely absorbed or advected towards the BH.

To assess the importance of this inconsistency, we adopt two
additional algorithms for calculating C. Using photon equations
of motion, we determine whether the photon hits the disk surface
(Bursa 2006). We then make one of two assumptions, either the
angular momentum and energy of all “returning” photons are
advected onto the BH (C1), or all are re-emitted carrying away
their original angular momentum and energy, and never hit the
BH (C2). In this way, we establish two limiting cases allowing
us to assess the impact of the returning radiation.

We note that for a fully consistent treatment of the returning
radiation (as in Li et al. 2005, for geometrically thin disks) it is
not enough to modify the capture function, but that finding a so-
lution for the whole structure of a self-irradiated accretion disk is
instead necessary. The latter has not yet been done for luminous
and geometrically thick disks. We are currently working on im-
plementing such a scheme and will study its impact on BH spin
evolution in an upcoming paper.

4. Slim accretion disks

4.1. Equations

We now introduce slim disk equations. They were derived origi-
nally by Lasota (1994) and improved e.g., by Abramowicz et al.
(1996) and Gammie & Popham (1998). Here, we follow Kato
et al. (2008) and assume the polytropic equation of state when

performing vertical integration. The formalism we use here was
adopted from Sądowski et al. (2011).

In the structure equations, we assume that G = c = 1, and
use expressions involving the BH spin given by

Δ = r2 − 2Mr + a2,

A = r4 + r2a2 + 2Mra2,

C = 1 − 3r−1
∗ + 2a∗r−3/2

∗ ,

D = 1 − 2r−1
∗ + 2a2

∗r
−2
∗ ,

H = 1 − 4a∗r−3/2
∗ + 3a2

∗r
−2
∗ , (34)

where a∗ = a/M and r∗ = r/M.
We also define

Ω2
⊥ ≡

M
r3

H
C (35)

and a dimensionless accretion rate ṁ = Ṁ/ṀEdd, where
ṀEdd = 16LEdd/c2 is the critical accretion rate correspond-
ing approximately to the Eddington luminosity (LEdd = 1.25 ×
1038 M/M	 erg/s) for a disk around a non-rotating black hole.

The equations describing slim disks written in the cylindrical
coordinates are:

(i) for mass conservation

Ṁ = −2πΣΔ1/2 v√
1 − v2

, (36)

where Σ =
∫ +h

−h
ρ dz is the disk surface density, while v

denotes the gas velocity as measured by an observer co-
rotating with the fluid and is related to the four-velocity ur

by Rur = Δ1/2v/
√

1 − v2;
(ii) for radial momentum conservation

v

1 − v2
dv
dR
=
A
R
− 1
Σ

dP
dR
, (37)

where

A = − MA
R3ΔΩ+kΩ

−
k

(
Ω − Ω+k

) (
Ω −Ω−k

)
1 − Ω̃2R̃2

(38)

and Ω = uφ/ut is the angular velocity with respect to a
stationary observer, Ω̃ = Ω −ω is the angular velocity with
respect to an inertial observer,Ω±k = ±M1/2/(R3/2 ± aM1/2)
are the angular frequencies of the co-rotating and counter-
rotating Keplerian orbits, R̃ = A/(R2Δ1/2) is the radius of

gyration, and P =
∫ +h

−h
p dz is the vertically integrated total

pressure;
(iii) for angular momentum conservation

Ṁ
2π

(L − Lin) =
A1/2Δ1/2Γ

R
αP, (39)

where L = uφ, Lin is a constant, and Γ is the Lorentz factor
(Gammie & Popham 1998)

Γ2 =
1

1 − v2 +
L2r2

A
, (40)

(iv) for vertical equilibrium

H2Ω2
⊥ = (2N + 3)

P
Σ
, (41)
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Fig. 1. Flux profiles for M = 10 M	 and a∗ = 0.0.

(v) for energy conservation

Qadv = − Ṁ
2πR2

(
η3

P
Σ

dln P
dln R

− (1 + η3)
P
Σ

dlnΣ
dln R

+ η3
P
Σ

dln η3

dln R
+ Ω2

⊥η4
dln η4

dln R

)
, (42)

where the amount of heat advected Qadv is

Qadv = −αP
Aγ2

R3

dΩ
dr
− fF

64σT 4
C

3Σκ
· (43)

Assuming the polytropic index N = 3, we have

η1 =
1

T 4
0

∫ H

0
T 4 dz = 128/315 H,

η2 =
2
ΣT0

∫ H

0
ρT dz = 40/45,

η3 =
1
P

(
1

5/3 − 1
k
μ

40
45
ΣTC +

256
315

aT 4
CH

)
,

η4 =
1
Σ

∫ H

0
ρz2 dz = 1/18 H2. (44)

The equations given above form a two-dimensional system of
ordinary differential equations with a critical (i.e., sonic) point.
For each set of disk parameters, a regular solution exists for only
one specific value ofLin, which is an eigenvalue of the problem.
The appropriate value may be found using either the relaxation
or the shooting method. For details of the numerical procedures,
we refer to Sądowski (2009) and Sądowski et al. (2011).

4.2. Disk appearance

We now briefly describe the properties of slim disk solutions. For
a more detailed discussion, we refer to e.g., Sądowski (2009),
Abramowicz et al. (2010), and Bursa et al. (in prep.).

The radial profiles of the emitted flux for a non-rotating BH
are presented in Fig. 1. For low accretion rates (ṁ � 1), they
almost coincide with the Novikov & Thorne solutions (the small
departure is due to the angular momentum taken away by pho-
tons, an effect that is neglected in our slim disk scheme). When
the accretion rate becomes high, advective cooling starts to play
a significant role and the emission departs from that of the ra-
diatively efficient solution. This departure is visible as early as

Fig. 2. Photospheric profiles for M = 10 M	 and a∗ = 0.0.

for ṁ = 1 at which the emission extends significantly inside the
marginally stable orbit. For super-critical accretion rates, the flux
increases monotonically towards the BH horizon. Different col-
ors in Fig. 1 denote solutions for different values of the viscosity
parameter α. Although the solutions are very similar, one can
see that the higher the value of α, the lower the accretion rate at
which advection starts to modify the emission profile.

In Fig. 2, we plot disk thickness profiles (cosΘH = H/r) for
a range of accretion rates and two values of α. For ṁ > 0.1, the
inner region of the accretion disk is puffed up by the radiation
pressure and the disk surface corresponds to the location where
the radiation pressure force (which is proportional to the local
flux of emitted radiation) is balanced by the vertical component
of the gravity force. For the Eddington accretion rate (ṁ ≈ 1),
the highest H/R ratio equals ∼0.3 (cosΘH ≈ 0.3), while for
the highest accretion rate considered (ṁ = 100) it reaches ∼1.5
(cosΘH ≈ 0.83).

In the thin disk approximation, the accreting fluid has a
Keplerian angular momentum. This condition is not satisfied for
advective accretion disks with significant radial pressure gradi-
ents. In Fig. 3, we present angular momentum profiles for disks
with different accretion rates, α = 0.01 (left) and α = 0.1 (right
panel). It is clear that the higher the accretion rate, the larger
the departure from the Keplerian profile. However, the quantita-
tive behavior depends strongly on α. For α � 0.01, the flow is
super-Keplerian in the inner part (e.g., between r = 4.5 M and
r = 14 M for ṁ = 100). For larger viscosities (α � 0.1) and
high accretion rates, the flow is sub-Keplerian at all radii. As a
result, the value of the angular momentum at the BH horizon
(Lin) also depends strongly on α, decreasing with increasing α.
Dependence of the flow topology on the viscosity parameter was
studied in detail by Abramowicz et al. (2010).

5. Results for bh spin evolution

Using the slim disk solutions described in the previous section,
we solve Eqs. (7) and (8) using a regular Runge-Kutta method
of the 4th order. To calculate the integrals (Eqs. (11) and (12)),
we use the alternative extended Simpson’s rule (Press 2002) with
100 grid points in ã, b̃, and radius r. We carried out tests to verify
that this number is sufficient for convergence.

In Figs. 4 and 5, we present the BH spin evolution for α =
0.01 and 0.1, respectively. The red lines show the results for dif-
ferent accretion rates, while the black line indicates the classical
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Fig. 3. Profiles of the disk angular momentum for α = 0.01 (left) and α = 0.1 (right panel) at different accretion rates in the Schwarzschild metric.
The spin of the BH a∗ = 0.

Fig. 4. Spin evolution for α = 0.01.

Fig. 5. Spin evolution for α = 0.1.

Thorne (1974) solution based on the Novikov & Thorne (1973)
model of thin accretion disk. Our low accretion rate limit does
not perfectly agree with the black line as the slim disk model
does not account for the angular momentum carried away by

Fig. 6. The rate of spin-up or spin-down by “pure” accretion (radiation
neglected) for α = 0.01. Profiles for five accretion rates are presented.
Their intersections with the red line (marked with blue crosses) cor-
respond to equilibrium states. For the two lowest accretion rates, the
equilibrium state is never reached (a∗ → 1).

radiation. As a result, the low-luminosity slim disk solutions
slightly overestimate the emitted flux (by no more than a few
percent) leading to stronger deceleration of the BH by radia-
tion. The Thorne (1974) result is the proper limit for the low-
est accretion rates. When the accretion rate is high enough (e.g.,
ṁ > 0.1), the impact of the omitted angular momentum flux
is overwhelmed by the modification of the disk structure intro-
duced by advection.

To study the impact of radiation on BH spin evolution in de-
tail, we calculated the rate of BH spin-up for the “pure” accretion
of matter (without accounting for the impact of radiation). In that
case, the BH spin evolution is given by (compare Eq. (7))

da∗
dln M

=
1
M

uφ
ut
− 2a∗. (45)

In Figs. 6 and 7, we plot with black lines the first term on the
right hand side of the above equation for different accretion rates
and values of α. The red lines in these plots show the absolute
value of the second term. The intersections of the black and
red lines denote the equilibrium states, i.e., the limiting values
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Table 1. BH spin terminal values.

Capture function: C C C C1 C2 -
model: A T V A A NR
thin disk 0.9978 0.9978 0.9978 0.9981 0.9978 → 1

α = 0.01

ṁ = 0.01 0.9966 0.9966 0.9966 0.9975 0.9966 → 1
ṁ = 0.1 0.9967 0.9967 0.9967 → 1 0.9967 → 1
ṁ = 1 0.9988 0.9988 0.9988 → 1 0.9988 0.9998
ṁ = 10 0.9994 0.9994 0.9994 → 1 0.9994 0.9996
ṁ = 100 0.9995 0.9995 0.9995 → 1 0.9995 0.9995

α = 0.1

ṁ = 0.01 0.9966 0.9966 0.9966 0.9975 0.9966 → 1
ṁ = 0.1 0.9975 0.9975 0.9975 → 1 0.9975 → 1
ṁ = 1 0.9924 0.9924 0.9923 → 1 0.9927 0.9948
ṁ = 10 0.9846 0.9846 0.9845 0.9901 0.9847 0.9951
ṁ = 100 0.9800 0.9800 0.9800 0.9803 0.9800 0.9801

Notes. C – Thorne’s capture function, C1 – all returning photons advected onto the BH, C2 – all returning photons neglected; A – our fiducial
model, T – emission from the equatorial plane, V – zero radial velocity, NR – pure accretion, radiation neglected.

Fig. 7. Same as Fig. 6 but for α = 0.1.

of BH spin for pure accretion. These values differ significantly
from the previously discussed results only at low accretion rates.
In contrast, at high accretion rates radiation has little impact on
the spin evolution and the value of terminal spin is mostly deter-
mined by the properties of the flow. In Fig. 8, we plot the radi-
ation impact parameter ξ, defined as the ratio of the disk-driven
terms on the right hand sides of Eqs. (7) and (45)

ξ =
Ṁ0uφ +

(
dJ
dt

)
rad

Ṁ0ut +
(

dM
dt

)
rad

/
uφ
ut
· (46)

If the captured radiation significantly decelerates the BH spin-
up, this ratio drops below unity. On the other hand, it is close to
unity when the BH spin evolution is unaffected by the radiation.
According to Fig. 8, the latter is the case for the highest accretion
rates, independently of α.

In Table 1, we list the resulting values of the terminal
BH spin for all the models considered. The first column gives
the results for our fiducial model (A) including Thorne’s capture
function and emission from the photosphere at the appropriate
radial velocity.

The second column presents results obtained assuming the
same (Thorne’s) capture function and profiles of emission,
angular momentum, and radial velocity as in model A, but as-
suming the emission takes place from the equatorial plane in-
stead of the photosphere. The resulting terminal spin values are

Fig. 8. Radiation impact factor ξ (Eq. (46)) for different accretion rates
and values of α. The dotted line corresponds to the thin-disk induced
spin evolution. For ξ ≈ 1, spin evolution is unaffected by radiation.
Stars denote the equilibrium states (compare Table 1).

equal, up to 4 decimal digits, to the values obtained with the fidu-
cial model. This result is as expected for the lowest accretion
rates, where the photosphere is located very close to the equa-
torial plane. For the highest accretion rates, the location of the
emission has no impact on the BH spin-up, as the spin evolution
is driven by the flow itself and the effects of radiation are neg-
ligible. However, for moderate accretion rates one could have
expected significant change in the terminal spin. We find that
the location of the photosphere has little impact on the resulting
BH spin regardless of the accretion rate.

Our third model (V) neglects the flow radial velocity when
the radiative terms are evaluated. Similar arguments to those
given in the previous paragraph apply. For the lowest accretion
rates, the radial velocity is negligible and therefore should have
no impact on the resulting spin. For the highest accretion rates,
the spin-up process depends only on the properties of the flow.
Once again, however, the impact of this assumption on moderate
accretion rates is not obvious. The radial velocity turns out to be
of little importance for the calculation of the terminal spin (only
for α = 0.1 and moderate accretion rates the difference between
models A and V is higher than 0.01%).

In the fourth and fifth columns of Table 1, results for models
with the same assumptions as the fiducial model, but with differ-
ent capture functions are presented. The first alternative capture
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function (C1) assumes that the angular momentum and energy
of all photons returning to the disk are added to that of the BH.
This assumption has a strong impact on the spin evolution – the
terminal spin values are higher, sometimes approaching a∗ = 1.
This may seem surprising because in the classical approach the
captured photons are responsible for decelerating the spin-up.
This deceleration occurs because the cross-section (with respect
to the BH) of photons moving “against” the frame dragging is
larger than of photons following the BH sense of rotation. As
frame dragging is involved, this effect is significant only in the
vicinity of the BH horizon. For our model C1, however, the prob-
ability of photons returning to the disk does not differ apprecia-
bly for co- and counter-rotating photons, as they both hit the disk
surface mostly at large radii.

The other capture function (C2) assumes, in contrast, that all
returning photons are re-emitted from the disk with their origi-
nal angular momentum and energy (and never fall onto the BH).
This assumption cuts off the photons that would hit the BH in
the fiducial model after crossing the disk surface, thus leading
to a smaller radiative deceleration and higher values of the ter-
minal spin parameter. However, these changes are insignificant,
because most of the original photons hit the BH directly, along
slightly curved trajectories. Only for α = 0.1 and moderate ac-
cretion rates do the terminal spin values differ in the 4th decimal
digit.

Neither of the models with a modified capture functions is
self-consistent. To account properly for the returning radiation,
one has to modify the disk equations by introducing appropri-
ate terms for the outgoing and incoming fluxes of angular mo-
mentum and additional radiative heating. No such model for ad-
vective, optically thick accretion disk has been constructed. The
emission profile should be significantly affected (especially in-
side the marginally stable orbit) by the returning radiation, lead-
ing to different rates of deceleration by photons. In view of our
results for models C1 and C2, as well as the results of Li et al.
(2005), one may expect the final spin values for super-critical
accretion flows to be slightly higher than the ones obtained in
this work.

The last column of Table 1 gives terminal spin values for
“pure” accretion (radiation neglected). Under these assumptions,
the BH spin could reach a∗ = 1 for sub-Eddington accretion rates
as there are no photons that could decelerate and stop the spin-up
process. As discussed above, for the highest accretion rates the
resulting BH spin values agree with the values obtained for the
fiducial model as radiation has little impact on spin evolution in
this regime.

6. Discussion

We have studied the spin evolution of black holes undergoing
disk accretion assuming that the angular momentum and energy
carried by both the flow and the emitted photons are the only
factors affecting the BH rotation. We have generalized the orig-
inal study of Thorne (1974) to high accretion rates by apply-
ing a relativistic, advective, optically thick slim accretion disk
model. Assuming isotropic photon emission from the disk (no
limb darkening), we have shown that:

(i) the terminal value of BH spin depends on the accretion rate
for ṁ � 1;

(ii) the terminal spin value is very sensitive to the assumed
value of the viscosity parameter α – for α � 0.01 the BH is
spun up to a∗ > 0.9978 for high accretion rates, while for
α � 0.1 to a∗ < 0.9978;

(iii) with a low value of α and high accretion rates, the BH may
be spun up to spins significantly higher than the canonical
value a∗ = 0.9978 (e.g., to a∗ = 0.9994 for α = 0.01 and
ṁ = 10) but, under reasonable assumptions, BH cannot be
spun up arbitrarily close to a∗ = 1;

(iv) BH spin evolution is hardly affected by the emitted radia-
tion for high (ṁ � 10) accretion rates (the terminal spin
value is determined by the flow properties only);

(v) for all accretion rates, neither the photosphere profile nor
the profile of radial velocity significantly affects the spin
evolution.

We point out that the inner edge of an accretion disk cannot be
uniquely defined for super-critical accretion (Abramowicz et al.
2010), as opposed to geometrically thin disks where the inner
edge is uniquely located at the marginally stable orbit (Rms). In
the thin-disk case, the BH spin evolution is determined by the
flow properties at this particular radius (as there is no torque be-
tween the marginally stable orbit and BH horizon) and the pro-
file of emission (terminating at Rms). For super-critical accretion
rates, however, one cannot distinguish a particular inner edge
that is relevant to studying BH spin evolution. On the one hand,
the values of the specific energy (ut) and the angular momen-
tum (uφ) remain constant within the stress inner edge. On the
other, the radiation is emitted outside the radiation inner edge.
These inner edges do not coincide as they are related to different
physical processes (Abramowicz et al. 2010).

Our study was based on a semi-analytical, hydrodynamical
model of an accretion disk that makes a number of simplify-
ing assumptions such as stationarity, no returning radiation, α-
viscosity prescription, no wind outflows, and neglects interac-
tions of large-scale magnetic fields interactions with BHs. One
has to be aware that the precise values of the terminal spin pa-
rameter are very sensitive to the flow and emission properties, as
well as to the impact of magnetic fields (e.g., by means of the
Blandford-Znajek process). The slim disk model only approx-
imates the real accretion flows driven by magnetically-induced
turbulence – in this respect it is no different from MHD simu-
lations. Its applicability is limited by the adopted assumptions.
The lack of magnetic fields may result in improper description of
the innermost part of the flow where the disk may be be magneti-
cally supported (Narayan et al. 2003; Igumenshchev et al. 2003;
Meier 2005; Fragile & Meier 2009). The model also does not
account for the returning radiation that may affect the accretion
flow. However, super-critical accretion is expected to be radia-
tively inefficient and therefore the impact of radiation should not
be large. Despite these limitations, our study shows that Thorne’s
canonical value for BH spin (a∗ = 0.9978) may be exceeded un-
der certain conditions.

Acknowledgements. This work was supported in part by Polish Ministry of
Science grants N203 0093/1466, N203 304035, N203 380336, and N N203
381436. J.P.L. acknowledges support from the French Space Agency CNES, MB
from GAČR 205/07/0052.

Appendix A: The tetrad for an observer
instantaneously located at the photosphere

Our aim is to derive the tetrad of an observer moving along the
photosphere that would depend only on the quantities that are
typically calculated in accretion disk models, i.e., on the radial
and azimuthal velocities of gas and the location of the disk pho-
tosphere.
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The metric considered here is the Kerr geometry gik in the
Boyer-Lindquist coordinates [t, φ, r, θ]. The signature adopted
is + − −−. As in Carter’s Les Houches lectures (Carter 1972),
we consider two fundamental planes; the symmetry plane S0 =
[t, φ] and the meridional planeM∗ = [r, θ]. (Four)-vectors that
belong to the plane S0, are denoted by the subscript 0, and vec-
tors that belong to the plane M∗, will be denoted by the sub-
script ∗. For example, the two Killings vectors are ηi

0, ξi0. We
note that for any pair Xi

0, Y
i∗ one has,

Xi
0 Yk
∗ gik ≡ (X0 Y∗) = 0.

A.1. Stationary and axially symmetric photosphere

A.1.1. The photosphere

Numerical solutions of slim accretion disks provide the location
of the photosphere given by HPh(r) = r cos θ. This may be sub-
stituted into r cos θ − HPh(r) ≡ F(r, θ) = 0. The normal vector to
the photosphere surface has the [r, θ] components

Ni
∗ = Ñ∗

[
∂F
∂r
,
∂F
∂θ

]
= Ñ′∗

[
dθ∗
dr
, 1

]
, (A.1)

where

dθ∗(r)
dr

= −∂F
∂r

/
∂F
∂θ

(A.2)

is the derivative of the angle defining the location of the pho-
tosphere at a given radial coordinate [cos θ∗(r) = HPh(r)/r]. Its
non-zero components after normalization [(N∗N∗) = −1] are

Nr
∗ =

dθ∗
dr

(−gθθ)−1/2

⎡⎢⎢⎢⎢⎢⎣1 + grr

gθθ

(
dθ∗
dr

)2⎤⎥⎥⎥⎥⎥⎦
−1/2

,

Nθ∗ = (−gθθ)−1/2

⎡⎢⎢⎢⎢⎢⎣1 + grr

gθθ

(
dθ∗
dr

)2⎤⎥⎥⎥⎥⎥⎦
−1/2

· (A.3)

There are two unique vectors S ∗ confined to the [r, θ] plane that
are orthogonal to N∗ (and therefore are tangential to the surface).
From (S ∗N∗) = 0 and (S ∗S ∗) = −1, one obtains the non-zero
components of one of them.

S r
∗ = (grr)−1

⎡⎢⎢⎢⎢⎢⎣− 1
grr
− 1
gθθ

(
dθ∗
dr

)2⎤⎥⎥⎥⎥⎥⎦
−1/2

,

S θ∗ = − (gθθ)−1

(
dθ∗
dr

) ⎡⎢⎢⎢⎢⎢⎣− 1
grr
− 1
gθθ

(
dθ∗
dr

)2⎤⎥⎥⎥⎥⎥⎦
−1/2

. (A.4)

A.1.2. The four-velocity of matter and the tetrad

The four-velocity u of gas moving along the photosphere may be
decomposed into

ui = Ã
(
ui

0 + vS
i
∗
)
, (A.5)

where

ui
0 = Ã0

(
ηi + Ωξi

)
(A.6)

is the four-velocity of an observer with azimuthal motion only.
The normalization constant Ã0 comes from (u0u0) = 1 and
equals

Ã0 =
[
gtt + Ωgφφ(Ω − 2ω)

]−1/2
. (A.7)

It is useful to construct a spacelike vector (κ0) confined to
the [t, φ] plane, that is perpendicular to both u and u0. From
(κκ) = −1 and, e.g., (κu0) = 0, we have

κi0 =

(
lηi + ξi

)
[
−gφφ(1 −Ωl)(1 − ωl)

]1/2
, (A.8)

where l = uφ/ut is the specific angular momentum. We note that
the set of vectors [ui

0,N
i∗, κi0, S

i∗] already forms the desired tetrad
that is valid for the pure rotation (ur = 0) case.

The normalization condition (uu) = 1 gives

Ã =
[
gtt + Ωgφφ(Ω − 2ω) − v2

]−1/2
, (A.9)

where v is related to the radial component of the gas four-
velocity ur by

v2 =

(
ur/S r∗

)2
[
gtt + Ωgφφ(Ω − 2ω)

]
1 + (ur/S r∗)2

· (A.10)

The vectors we have just calculated (u, κ0) are both orthogonal
to N∗ since (N∗S ∗) = 0. To complete the tetrad, we need one
more spacelike vector (S ) that is orthogonal to these three. We
decompose this into

S i = αui + βκi0 + γN
i
∗ + δS

i
∗. (A.11)

The orthogonality conditions (κ0S ) = 0 and (N∗S ) = 0 immedi-
ately implies that γ = β = 0. The only non-trivial condition is
that (uS ) = 0. Together with (S S ) = −1, it implies that

S i =
(
1 + Ã2v2

)−1/2 (
Ãvui + S i

∗
)
. (A.12)

The vectors ui, Ni∗, κi0, and S i form an orthonormal tetrad in the
Kerr spacetime

ei
(A) =

[
ui,Ni

∗, κ
i
0, S

i
]
. (A.13)

This tetrad is known directly from the slim disk solutions, as
it depends on the calculated quantities (ur, Ω, l and θ∗(r)) only.
Any spacetime vector Xi could be uniquely decomposed into this
tetrad with X(A) = Xi ei

(A).

A.2. The general case

We here assume nothing about the four-velocity of matter ui

and the location of photosphere. Both may be non-stationary
and non-axially symmetric. Following the same framework as
in Sect. A.1, we describe how to obtain the tetrad of an observer
instantaneously located at the photosphere that depends only on
the quantities calculated by accretion disk models.

A.2.1. The four velocity

As in Sect. A.1.2, we may always uniquely decompose ui, a gen-
eral timelike unit vector, into

ui = Ã
(
ui

0 + vS
i
∗
)
, (A.14)

where ui
0 is a timelike unit vector, and S i∗ is a spacelike unit

vector. Equation (A.14) uniquely defines the two vectors ui
0, S i∗

and the two scalars Ã, v. The vectors and scalars{
Ã, v, ui

0, S
i
∗
}
, (A.15)
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can be calculated from known quantities given by slim disk
model solutions.

The four-velocity (A.14) also defines the instantaneous 3-
space of the comoving observer with the metric γik and the pro-
jection tensor hi

k

γik = gik − ui uk, (A.16)

hi
k = δ

i
k − ui uk. (A.17)

We define the two unit vectors κi0 and Ni∗ by the unique condition

(κ0u0) = 0, (S ∗N∗) = 0. (A.18)

As before, the four vectors

ei
(A) =

[
ui

0,N
i
∗, κ

i
0, S

i
∗
]
, (A.19)

form an orthonormal tetrad of an observer with the four-
velocity ui

0 can calculated from the solutions of the slim-disk
equations.

A.2.2. The photosphere

In the most general case of a non-stationary and non-axially
symmetric photosphere, the location of the photosphere may be
described by the condition

F(t, φ, r, θ) = 0. (A.20)

The vector Ñ normal to the photosphere has the components

Ñi =

[
∂F
∂t
,
∂F
∂φ
,
∂F
∂r
,
∂F
∂θ

]
(A.21)

which may be calculated from slim disk solutions.
We project Ñ into the instantaneous 3-space of the comoving

observer (A.17) and normalize to a unit vector after the projec-
tion to obtain

Ni =
N̂i

|
(
N̂N̂

)
|1/2
, N̂i = Ñk hi

k. (A.22)

In terms of the tetrad in Eq. (A.19), a vector Ni constructed in
this way has the decomposition

Ni = Ñ
[
α

(
ui

0

)
+ 1

(
Ni
∗
)
+ γ

(
κi0

)
+ δ

(
S i
∗
)]
. (A.23)

The components Ñ, α, γ, δ are known.

A.2.3. The tetrad

We now decompose the four vectors, the first two of which we
have derived, the next two guessed (but the guess should be ob-
vious):

ui = Ã
[
1
(
ui

0

)
+ 0

(
Ni
∗
)
+ 0

(
κi0

)
+ V

(
S i
∗
)]
, (A.24)

Ni = Ñ
[
α
(
ui

0

)
+ 1

(
Ni
∗
)
+ γ

(
κi0

)
+ δ

(
S i
∗
)]
, (A.25)

κi = κ̃
[
0
(
ui

0

)
+ b

(
Ni
∗
)
+ 1

(
κi0

)
+ 0

(
S i
∗
)]
, (A.26)

S i = S̃
[
A

(
ui

0

)
+ B

(
Ni
∗
)
+C

(
κi0

)
+ 1

(
S i
∗
)]
. (A.27)

The four unknown components, b, A, B, C one calculates from
the following four non-trivial orthogonality conditions ((uκ) ≡ 0
by construction, cf. (A.24) and (A.26))

(uS ) = 0, (NS ) = 0, (S κ) = 0, (Nκ) = 0, (A.28)

and the two unknown factors κ̃ and S̃ from the following two
normalization conditions

(κκ) = −1, (S S ) = −1. (A.29)

The conditions (A.28) and (A.29) are given by linear equations.
Equations (A.24)–(A.29) define the tetrad ei

(A) of an observer
comoving with matter, and instantaneously located at the photo-
sphere:

ei
(A) =

[
ui,Ni, κi, S i

]
. (A.30)

Both the matter and the photosphere move in a general manner.
The zenithal direction in the local observer’s sky is given by Ni.

Appendix B: Integration over the world-tube
of the photosphere

For stationary and axially symmetric models, we define:

Ni = Ni∗ = unit vector orthogonal to the photosphere, which is
in the [r, θ] plane;

S i∗ = unit vector orthogonal to Ni, which is in the [r, θ] plane;
ui = four-velocity of matter, which is in the [t, φ, r, θ] space-

time;
κi = κi0 = unit vector orthogonal to Ui, which is in the [t, φ]

plane;
S i = unit vector orthogonal to Ui, Ni and κi, which is in the

[t, φ, r, θ] space-time;
ei

(A) = [ui,Ni, κi, S i] = the tetrad comoving with an observer
located in the photosphere.

The integration of a vector (...)i over the 3D hypersurfaceH or-
thogonal to Ni (i.e. the 3D world-tube of the photosphere) may
be symbolically written as∫
H

(...)iN
idS , (B.1)

where dS is the “volume element” inH .
Obviously, the hypersurface H is spanned by the three

vectors [ui, κi, S i]N . Each of them is a linear combination of
[ηi, ξi, S i∗]N , and each of the three vectors from [ηi, ξi, S i∗]N is
orthogonal to Ni.

Therefore, one may say that the hypersurfaceH is spanned
by [ηi, ξi, S i∗]N . It is convenient to write

dS = dAdR, dR = dr

√
grr + gθθ

(
dθ∗
dr

)2

, (B.2)

where dR is the line element along the vector S i∗, i.e. along the
photosphere in the [r, θ] plane, with θ = θ∗(r) defining the loca-
tion of the photosphere, and dA being the surface element on the
[t, φ] plane.

To calculate dA we imagine an infinitesimal parallelogram
with sides that are located along the t = const. and φ = const.
lines. The proper lengths of the sides are du = |gtt|1/2dt and dv =
|gφφ|1/2dφ, respectively, and therefore dA, which is just the area
of the parallelogram, is given by

dA = du dv sinα = dt dφ |gtt|1/2|gφφ|1/2 sinα, (B.3)

where α is the angle between the two sides. Obviously, the co-
sine of this angle is given by the scalar product of the two unit
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vectors ni and xi pointing in the [t, φ] plane into the t and φ di-
rections respectively. These vectors are given by (note that ni =
ZAMO)

ni =
(∇it)

|g jk
(
∇ jt

)
(∇kt) |1/2

, xi =
(∇iφ)∣∣∣∣g jk

(
∇ jφ

)
(∇kφ)

∣∣∣∣1/2 · (B.4)

Because (∇it) = δt
i and (∇iφ) = δ

φ
i , one may write

ni =
δt

i

|gtt|1/2 , xi =
δ
φ
i

|gφφ|1/2 · (B.5)

Therefore,

cosα = nixkg
ik =

gtφ

|gtt|1/2 |gφφ|1/2 = −
gtφ

|gtt|1/2
∣∣∣gφφ∣∣∣1/2 , (B.6)

and

sinα =

(
g2

tφ − gtt gφφ
)1/2

|gtt|1/2
∣∣∣gφφ∣∣∣1/2 · (B.7)

Inserting this into the formula for dA, we get dA = dt dφ (g2
tφ −

gtt gφφ)1/2. The final formula for dS is,

dS = dt dφ dr
(
g2

tφ − gtt gφφ
)1/2

√
grr + gθθ

(
dθ∗
dr

)2

· (B.8)
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Sądowski, A. 2009, ApJS, 183, 171
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