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ABSTRACT

We describe a hybrid Fourier/direct space convolution algorithm for compact radial (azimuthally symmetric) kernels on the sphere. For
high resolution maps covering a large fraction of the sky, our implementation takes advantage of the inexpensive massive parallelism
afforded by consumer graphics processing units (GPUs). Its applications include modeling of instrumental beam shapes in terms
of compact kernels, computation of fine-scale wavelet transformations, and optimal filtering for the detection of point sources. Our
algorithm works for any pixelization where pixels are grouped into isolatitude rings. Even for kernels that are not bandwidth-limited,
ringing features are completely absent on an ECP grid. We demonstrate that they can be highly suppressed on the popular HEALPix
pixelization, for which we develop a freely available implementation of the algorithm. As an example application, we show that
running on a high-end consumer graphics card our method speeds up beam convolution for simulations of a characteristic Planck
high frequency instrument channel by two orders of magnitude compared to the commonly used HEALPix implementation on one
CPU core, while typically maintaining a fractional RMS accuracy of about 1 part in 105.

Key words. methods: data analysis – methods: numerical – techniques: image processing – cosmic background radiation

1. Motivation and goals

Convolving with radial (i.e. azimuthally symmetric) kernels is a
key step in some of the most frequently used algorithms during
the simulation and analysis of cosmological data sets represented
on the celestial sphere, such as maps of the cosmic microwave
background (CMB).

All current and future CMB experiments have many
(100–104) detectors (e.g., the Atacama Cosmology Telescope,
Kosowsky 2003, the South Pole Telescope, Ruhl et al. 2004, the
proposed CMBPol mission, Baumann et al. 2009, or the Planck
satellite, Planck Collaboration et al. 2011). Simulating the sig-
nal in these data sets requires very many beam smoothing op-
erations since each detector map will contain the same CMB
map smoothed with a separate beam shape. The same is true for
map-making methods that compute the optimal combination of
a large number of detectors in an iterative process and therefore
also require a huge number of beam smoothing operations (e.g.,
Tegmark 1997; Natoli et al. 2001; Stompor et al. 2002).

Several CMB analysis techniques, such as a wavelet anal-
ysis (e.g., Hobson et al. 1999; Martínez-González et al. 2002;
Vielva et al. 2004), and the filtering to detect point sources
(e.g., Tegmark & de Oliveira-Costa 1998; Cayón et al. 2000;
González-Nuevo et al. 2006) require smoothing of high res-
olution maps with symmetric kernels that have (or are well-
approximated as having) compact support on the sphere. In a
wavelet analysis, the computational time for the wavelet trans-
form is dominated by the computation of the fine-scale wavelet
coefficients. By construction, the fine-scale wavelets are com-
pact in pixel space.

Current practice in CMB data analysis is the near-exclusive
use of the fast spherical harmonic transform (FSHT) for

convolution with radial kernels (Muciaccia et al. 1997). Mature
and highly efficient implementations of this algorithm are pub-
licly available in several packages, such as, e.g., HEALPix1

(Górski et al. 2005), GLESP2 (Doroshkevich et al. 2005), cc-
SHT3, or libpsht4 (Reinecke 2011).

In the vast majority of cases that a spherical transform
is calculated during a CMB data analysis, it is to compute a
convolution with a radial kernel. Examples are: (1) simulating
CMB maps, in which case the radial kernel is the “square root”
of the CMB power spectrum; (2) simulating observed detector
maps with a symmetric beam profile; (3) filtering to extract point
sources, or hot and cold spots on certain scales; and (4) all forms
of symmetric wavelet analysis.

While generally correct, this approach is not optimal when
convolving high resolution maps with sufficiently compact ker-
nels. We show that significant speed-up is possible with an al-
gorithm that makes nearly optimal use of massively parallel
fast Fourier transforms (FFT) on consumer graphical processing
units using a hybrid direct-space and Fourier space approach.

The plan of this paper is as follows. We begin with a math-
ematical definition of the problem and the quantities involved
(Sect. 2). We then briefly review the convolution approaches us-
ing a direct sum and the FSHT in Sect. 3, while discussing a
GPU implementation of the FSHT (Hupca et al. 2010). We intro-
duce our algorithm and its implementation on a consumer GPU
in Sect. 4, which also contains benchmark results and tests of the

1 http://healpix.jpl.nasa.gov
2 http://www.glesp.nbi.dk
3 http://crd.lbl.gov/~cmc/ccSHTlib/doc
4 http://sourceforge.net/projects/libpsht
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numerical accuracy of the algorithm. Finally, we summarize our
findings in Sect. 5.

The benchmarks of the algorithms reported in this paper
were performed on an Intel Core2 Quad CPU with 2.8 GHz and
8 GB of random access memory (RAM). The system cost (other
than the GPU) was about US$ 1000. As a reference, we use the
popular HEALPix Fortran package version 2.15 and the highly
optimized libpsht C++ FSHT library. We note that starting
with the latest release, version 2.20, the libpsht routines will
also be called by default in the HEALPix package. Our GPU
code was timed on a NVIDIA GeForce GTX 480 that we bought
for US$ 500.

2. Definitions and notation

It is useful to state the “platonic ideal” of what is to be accom-
plished. Given a rough map r, we would like to calculate the
smooth map s

s(n̂1) =
∫

S 2
K(n̂1, n̂2)r(n̂2)d2n̂2, (1)

where n̂ denotes a unit vector on the sphere. For a symmetric (or
radial) kernel, K(n̂1, n̂2) = K(n̂1.n̂2). We introduce the short-
hand notation p.q ≡ n̂p.n̂q = cos

(
�(n̂p, n̂q)

)
, so K(n̂1, n̂2) =

K(1.2).
A band-limited function on the sphere can be defined in

spherical harmonic space by specifying a set of spherical har-
monic coefficients a�m for all � from zero up to band-limit �max.
Unless otherwise stated sums are over all non-zero terms. With
the Legendre transform convention

K� = 2π
∫ 1

−1
K(z)P�(z)dz, (2)

the kernel can be expanded in terms of Legendre polynomials as

K(p.q) =
∑
�

2� + 1
4π

K�P�(p.q). (3)

We assume that the kernel has the same band-limit as the in-
put map. Recalling the addition theorem for spherical harmonics
Y�mp ≡ Y�m(n̂p)

∑
m

Y�mpY∗�mq =
2� + 1

4π
P�(p.q), (4)

we obtain

s�m = K� r�m. (5)

This equation is exact if the r�m are known. In many cases of
interest, however, the map will be available in a sampled or pix-
elized representation with a number of pixels npix. In this case,
estimating the r�m from the sampled representation may intro-
duce a quadrature error. We keep this in mind when discussing
the convolution accuracy in the following.

3. Methods

3.1. Direct sum

The direct sum follows from the straightforward discretization
of Eq. (1)

sp =
∑

q

K(p.q)rq. (6)

It is easy to check that this approach will yield the same out-
put map as Eq. (5) if the r�m are calculated by direct sum over
the same equal-area pixelization and both map and radial ker-
nel are band-limited functions. In general, this method scales as
O(n2

pix ∼ �4max), both in terms of memory accesses and in terms
of floating point operations (FLOP). The prefactor can be made
small by caching K(z), e.g. by interpolating it in O(1) operations
from O(�max) precomputed values. This also reduces the number
of accesses to non-cached memory to O(�2max).

If the kernel is compact such that K(p.q) = 0 ∀p.q < zK ,
i.e. for an angle between p and q larger than a threshold θK , the
operation count reduces by a factor zK/2. For sufficiently com-
pact kernels this method would therefore win over other methods
with smaller asymptotic time complexity but larger prefactors.

The direct sum has a great degree of parallelism, at least at
the level of O(npix ∼ �2max) threads, since each output pixel is the
result of a dot product of one row of K with r. Theoretically,
even more parallelization can be achieved by parallelizing the
dot product, though care must be taken to avoid race conditions
when accumulating the smoothed map in parallel. In practice,
care must be taken to keep the number of non-cached memory
accesses low since the computation would otherwise be limited
by memory bandwidth. Since the number of memory accesses is
of the same order as the number of calculations, the potential for
GPU implementation is limited. Direct pixel space convolution
will therefore be superior only for kernels that are too small (of
widths narrower than a very small number of pixels) to be of
broad practical interest.

3.2. Fast spherical harmonic transform

Pixelizations consisting of uniformly sampled isolatitude rings
allow for a FSHT, with overall scaling O(�3max) to take advantage
of Eq. (5).

In detail, FFTs on the O(nθ ∼ �max) isolatitude rings (each
containing O(nφ ∼ �max) pixels) are done in O(�2max log �max) op-
erations. The resulting Fourier components bm(θ) can be trans-
formed into spherical harmonic coefficients r�m by applying an
associated Legendre transform taking O(�2max) operations per
ring, for a total of O(nθ�2max ∼ �3max) operations. One obtains the
smoothed map by multiplying the r�m with the kernel coefficients
Kl and applying the inverse spherical harmonic transform that
inverts the above steps in reverse order again taking O(�3max) op-
erations.

The Legendre transforms therefore dominate the scaling
since applying Eq. (5) takes only O(�2max) time. Furthermore,
at high �, the recursions necessary to compute the associated
Legendre functions become increasingly less accurate and need
to be done in double precision with frequent rescaling to avoid
floating point underflows (Górski et al. 2005). Implementing the
FSHT algorithm on consumer GPUs with reduced double preci-
sion performance is therefore non-trivial. The inverse spherical
harmonic transform was implemented and benchmarked citing
O(10) speed gains with respect to the S2HAT5 CPU implemen-
tation (Hupca et al. 2010).

The FSHT algorithm is popular since it reduces the com-
putational scaling by a factor �max compared to the direct sum
and yet yields the same result (for infinite precision arithmetic).
Approximating the continuous spherical harmonic transform by
a finite, discrete sum over pixels introduces the same error as
approximating the kernel integral by such a discrete sum. If a
quadrature rule is applied to improve the accuracy of the r�m,

5 http://www.apc.univ-paris7.fr/~radek/s2hat.html
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the same quadrature weights can be used in Eq. (6) to reach the
identically improved results.

Utilizing the popular HEALPix library on a modern CPU,
the serial time for a pair of forward and inverse transforms at
Planck resolution (nside = 2048, �max = 4096) is t ≈ 460 s. Since
using FSHTs is by far the most common algorithm of choice
for symmetric kernel convolutions, this is the reference time for
comparisons with other algorithmic approaches.

Methods implementing divide-and-conquer schemes for fast
transforms on non-Abelian groups have a smaller asymptotic
scaling of CPU time with problem size than the FSHT (Driscoll
& Healy 1994; Wiaux et al. 2007). However, these more so-
phisticated methods require large amounts of RAM to store pre-
computed information that renders them impractical for problem
sizes of interest for CMB maps, with tens of millions of pixels
e.g. from Planck. For smaller problem sizes, the comparatively
large complexity of the algorithm causes actual implementations
to be slower than algorithmically simpler approaches.

4. Hybrid method

We now outline a straightforward hybrid method that combines
aspects of the direct summation and spherical harmonic trans-
formation approach. It is based on the simple idea of convolving
along isolatitude rings via computationally inexpensive FFTs by
means of the convolution theorem, and integrating in the longi-
tudinal direction in pixel space.

This hybrid method is redundant in a way that the prod-
uct of the kernel image and the input map must be evalu-
ated once on every ring prior to the summation. The compu-
tational costs amount to O(�max log �max) operations for each
FFT on a ring, which must be repeated O(nθ ∼ �max) times for
each of the O(nθ ∼ �max) rings. In total, the algorithm requires
O(�3max log �max) operations, formally inferior to the conventional
FSHT approach. Unlike that method, however, if the convolution
kernel has finite support on only nsupport < nθ rings, the compu-
tational complexity decreases linearly,O(nsupport �

2
max log �max). It

is dominated by FFTs for which highly optimized implementa-
tions with a small prefactor exist. Furthermore, the algorithm
intrinsically offers an extreme amount of data parallelism, mak-
ing it in particular suitable for an implementation on GPUs with
hundreds of cores.

In practice, the algorithm field-of-application is limited to
compact kernels. If a kernel is formally non-zero across the en-
tire sphere, but vanishes sufficiently fast beyond a given angular
distance αcut, it can be truncated at that radius without introduc-
ing significant errors. For the convolution of an isotropic map
with power spectrum C�, the mean quadratic error introduced by
this approximation can be estimated to be

σ2 =

�max∑
�=0

2� + 1
4π
ΔK2
�C�, (7)

where ΔK� is the Legendre expansion of the difference of the
exact and the truncated kernel.

4.1. Overview of the algorithm

We now describe the GPU implementation of the convolution
algorithm for an input map in HEALPix format in greater detail.
We visualize the individual steps of the algorithm in Fig. 1.

HEALPix maps with resolution parameter nside are divided
into three regions, the north polar cap, the equatorial region,

and the south polar cap. Each of the two caps consist of ncaps =
nside − 1 rings, where the nth ring (counted from the pole) con-
tains 4 n pixels. The equatorial region comprises nequ = 2 nside+1
rings with a fixed number of 4 nside pixels per ring.

We perform a real-to-complex Fourier transform of length
nFFT on each ring, where nFFT = 4 nside in the equatorial re-
gion but only nFFT = 4 n in the polar caps. We then zero-pad
the Fourier coefficients around the poles to generate a rectan-
gular array of 4 nside − 1 sets of 2 nside + 1 Fourier coefficients
each. The rectangular shape of this array allows us to use the
batch FFT mode of our FFT library for the Fourier convolutions
that gives us a significant time saving since FFTs dominate our
computational time budget. As every ring in the polar and every
other ring in the equatorial region of a HEALPix map is shifted
by φ0 = π/(4 n) and φ0 = π/(4 nside), respectively (Górski et al.
2005), we compensate for this distortion by phase-shifting the
mth Fourier coefficient

b′m(θ) = bm(θ)ei mφ0 . (8)

After preparing the input map in this way, we can start the
convolution process, which loops over all rings in the output
map. For each ring at latitude θ0, we generate a kernel grid of
size nsupport × 4 nside pixels and place the kernel at its center at
(θ, φ) = (θ0, 0). To finally interpolate the kernel on this grid, we
first calculate the angular distance α between a pixel located at
(θ, φ) and the kernel. A Taylor expansion to second order in α
allows us to rewrite the equation in a simplified way

α2 ≈ 2
[
sin2(1/2(θ + θ0)) + sin2(1/2(θ − θ0))

]
− 2
[
sin2(1/2(θ + θ0)) − sin2(1/2(θ − θ0))

]
cos(φ). (9)

Using this parametrization of the angular distance has the advan-
tage of making a numerically expensive arccosine operation re-
dundant. Though Eq. (9) is formally only applicable in the small
angle regime, we can exactly compensate for the error by sys-
tematically biasing the kernel evaluation. To this end, we first
define ε(α) ≡ cos(α) − (1 − 1/2α2) as the error introduced by
the approximation. Instead of precomputing a table of the form[
α2,K(α)

]
, we then store a datastructure containing the values[

α2,K(α + ε(α))
]
. To evaluate the kernel, we interpolate linearly

from the table.
After interpolating the kernel on the grid, we perform an effi-

cient radix-2 batch FFT. The kernel Fourier coefficients are then
multiplied by those of the input map. As a next step, for each
ring pixel, we calculate the summation over nsupport elements in
the θ-direction. Finally, we store the output-ring Fourier coeffi-
cients and continue to the next ring.

To transform back to a HEALPix map, we reverse phase-
shift the rings and perform a complex-to-real backward FFT on
all output rings. In polar rings, we truncate the Fourier expansion
to the Nyquist frequency of each individual ring. An alternative
procedure would have been to explicitly alias the super-Nyquist
modes to sub-Nyquist modes for each ring. Our tests show that
this produces negligible differences for maps with a band-limit
�max ≤ 2 nside.

Our approach avoids the recursions for the associated
Legendre functions. Therefore, the entire algorithm could in
principle be computed in single precision, which renders it par-
ticularly suitable for inexpensive consumer GPUs that have lim-
ited double precision capability. However, for very narrow or
highly varying kernel in particular, calculating the angular dis-
tance between a given pixel and the kernel center, Eq. (9),

A35, page 3 of 8
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Fig. 1. Illustration of the convolution algorithm.
To smooth a specific ring of the input map
(upper left), we first interpolate the kernel on
the grid, centered on this particular ring (upper
right). After a ringwise Fourier transformation
of both map and kernel, we multiply the two
components (lower left, transformed to pixel
space for illustrative purposes). Finally, we per-
form the summation alongside the longitudinal
direction and write the inverse Fourier trans-
formed result to the output (lower right image).

becomes imprecise. We therefore compute this quantity using
double precision arithmetic for the entire calculation. Further
performance improvements at the 10% level can be realized by
partially relaxing this requirement for sufficiently smooth ker-
nels or less stringent accuracy goals.

4.2. Implementation and benchmarks

The algorithm was implemented in C++ using the NVIDIA
CUDA 3.2 programming toolkit6 to generate GPU-related code
sequences. We also implemented the hybrid algorithm for the
CPU mostly for validation purposes. To obtain a program that
runs efficiently on GPUs, a basic understanding of the hardware
properties is necessary. We therefore discuss some of the rele-
vant aspects in the following.

GPUs are streaming devices designed for highly parallel
high throughput data processing. The hardware used here, a
NVIDIA GeForce GTX 480, is a consumer GPU featuring
15 multiprocessors with a total of 480 shader processors. It is
equipped with 1.5 GB of memory and has a nominal peak perfor-
mance of 1.3 TFLOP/s in single precision. The value for double
precision arithmetic would be half as large but has been inten-
tionally degraded by an additional factor of four by the vendor.
For comparison, we note that the performance of the quad-core
CPU used for our benchmark tests is about 45 GFLOP/s.

The latency of main memory accesses with a theoretical
bandwidth of 177 GB/s is large: we typically expect a delay
of several hundred clock cycles from the fetch command to the

6 http://developer.nvidia.com/object/
cuda_3_2_downloads.html

point where the requested datum is actually available. In the lat-
est generation of NVIDIA GPUs, a L1 cache of up to 48 KB,
dedicated to a specific multiprocessor, and a global L2 cache of
768 KB may reduce the memory latency. Besides main memory,
the GPU offers up to 48 KB of low latency shared and 64 KB of
cached constant memory. In addition, at most 63 registers with
virtually instantaneous access and the highest data throughput
rate are available per thread.

In general, there are two means of hiding memory laten-
cies: thread-level parallelism and instruction-level parallelism.
On GPUs, threads are very lightweight and the switching be-
tween them is fast. Common practice is therefore to divide the
work load over considerably more threads than physically avail-
able computing cores. The second strategy is less obvious. It
attempts to calculate several unconditional outputs within the
same thread. If a thread encounters a cache miss while com-
puting result A, it can partially hide the latency by continuing
to work on the independent result B. Our tests show that reduc-
ing the total number of active threads by exploiting instruction-
level parallelism enhances code performance by several tens of
percent.

Computations on the GPU are triggered by launching kernels
(not to be confused with “convolution kernels”). As a parameter
to such a function call, we have to specify how the work load
should be processed. More precisely, we define a grid consisting
of 1D or 2D blocks that are consecutively assigned to a GPU
multiprocessor. Each block contains information about the num-
ber of threads to be executed on the device.

Our hybrid algorithm can be implemented in a form that is
particularly well suited to calculations on GPUs. After trans-
ferring the regridded input map to device memory, we use the
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CUFFT library of toolkit version 3.1 to compute a ringwise out-
of-place real-to-complex FFT on the input map. In contrast to
claims in the vendor’s release notes accompanying the latest ver-
sion 3.2, we found the predecessor of the algorithm to be more
efficient in terms of both computational performance and mem-
ory consumption, though it proves less accurate for certain trans-
formation lengths.

To interpolate the convolution kernel on the grid, we launch
a GPU kernel comprising a two-dimensional grid of nside/512 ×
nsupport blocks with 128 threads. Each thread computes the out-
put for 8 different pixels within a ring, with a stride given by
the block width. For an efficient interpolation, we stored the lon-
gitudes of all rings and the interpolated convolution kernel in
constant memory. This code section is compute bound and can
be accelerated by taking advantage of the grid symmetries. We
calculate the kernel only on the first 2 nside + 1 pixels of a ring
and only for the northern hemisphere.

After the function call has been completed, we execute a
real-to-complex batch FFT on the kernel map.

The reduction along the θ-direction is computed partially us-
ing thread-save atomic add operations, available on GPUs of
compute capability 2.0 and higher. We launch a GPU kernel
with a two-dimensional grid of 
(2 nside + 1)/64� × 
nsupport/32�
blocks with 64 × 2 threads. Each thread accumulates the prod-
uct of input map and kernel on up to 32 rings in a local vari-
able and adds the result via an atomic operation to the global
output map. A block performs this calculation on the northern
and southern hemisphere simultaneously. Although a sophisti-
cated design pattern for the common reduction problem exists,
we found this approach to be more efficient because we have
to deal with non-contiguous memory accesses. This function is
memory bound, but we reach up to 145 GB/s sustained mem-
ory throughput, above 80% of the theoretically achievable peak
performance.

We finally compute an inverse complex-to-real FFT before
we transfer the data back to host memory.

In contrast to the exact solution, we find the error in the first
and last ring to be unexpectedly enhanced. This is probably the
result of amplified numerical errors. Although more of a cos-
metic correction than one motivated by accuracy considerations,
we recalculate the values of these eight pixels via a direct sum.

With an implementation as described above, a significant
speedup compared to a FSHT-based convolution can be realized
for compact kernels. We show the results of our benchmark tests
in Fig. 2, where we compare the runtime of our algorithm for
different map resolution parameters and kernel sizes to that of
the HEALPix FSHT, and to the optimized libpsht library on
a single CPU core. We note that the GPU timings include the
time for transferring the input map from host memory to GPU
memory and the output map from the GPU back to the host.

We observe a dependence of the performance gain on the res-
olution parameter nside. For comparatively low-resolution maps
and small-to-moderate kernel sizes, we find the poorer numer-
ical efficiency to be the result of too small a workload to en-
able the efficient use of the available GPU hardware resources.
In addition, we explicitly optimized our code for fast convo-
lutions at nside = 2048. For a kernel support of 1◦, the run-
time is completely dominated by the computational costs of the
FFTs. However, with an increasing kernel size, the scaling be-
havior changes as both the kernel evaluation and the multiplica-
tion of the Fourier coefficients of kernel and map become more
and more expensive. Accordingly, the higher efficiency that we
achieve flattens out towards higher kernel diameters. We specify
the fractional computational costs of the different code sections
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Fig. 2. Performance gain of the GPU-based convolution code when
compared to the HEALPix FSHT-based implementation (left axis) and
the libpsht library (right axis) running on a single CPU core for dif-
ferent map resolution parameters and kernel support.

Table 1. Breakdown of the total runtime into the contributions of the
three most important code sections for the convolution of a map at
nside = 2048 with kernels of various sizes.

Kernel support 1◦ 4◦ 16◦

FFTs 57% 47% 39%
Kernel evaluation 19% 31% 39%

Ring reduction 10% 16% 21%
Others 14% 6% 1%

for the convolution at nside = 2048 in Table 1. Since the three ma-
jor parts of the algorithm take up comparable amounts of GPU
time, further implementation optimizations for the GPU are un-
likely to result in performance gains significantly larger than the
10% level.

In the case of the narrow convolution kernels often encoun-
tered during CMB map beam-convolution processes, perfor-
mance improvements of up to two orders of magnitudes can be
achieved. For example, smoothing a HEALPix map with resolu-
tion nside = 2048, �max = 4096 using a Gaussian kernel of 4.7′
full width at half maximum (FWHM), a realistic value for the
Planck 217 GHz channel (Planck HFI Core Team et al. 2011)
takes about tARKCoS = 2.2 s on the GPU, whereas the FSHT-
based approach requires tHEALPix = 460 s and tlibpsht = 160 s on
one CPU core. Although the intrinsically parallel structure of the
algorithm can be most beneficially exploited when run on GPUs,
a CPU-based implementation may also be appropriate for very
compact kernels. For the setup discussed above, the convolution
takes about tCPU

ARKCoS = 20 s on one single CPU core, which is still
considerably faster than the FSHT-based code.

The cost of realizing these performance gains is to add a
GPU at about half of the cost of the quad-core host system.
To compare performance per hardware dollar, the GPU timings
should be compared to half the CPU timings.
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The vertical lines indicate the angle beyond
which the kernel is truncated. Right panel:
legendre expansion of the kernels (solid line:
6′ FWHM, dashed line: 1◦ FWHM). Kernels
that are compact in pixel space cover a wide
range of modes in spherical harmonic space
and vice versa.

Fig. 4. Result of the accuracy test. The differ-
ence between a map smoothed in spherical har-
monic space and a map smoothed with our hy-
brid method is at most 1.5 × 10−4 in a small
number of outliers around the north pole (left
panel). These are generated by numerical er-
rors in the CUFFT library v. 3.1 for specific
HEALPix ring lengths and are absent when
using the slightly slower CUFFT v. 3.2. The
larger scale O(10−5) error both at the pole and
in the equatorial region (right panel) is caused
by small inaccuracies in the kernel evaluation.
In this test, a Gaussian kernel with 1◦ FWHM
was used. Each patch is 10◦ on the side.

4.3. Accuracy tests

Our accuracy goal was to achieve a fractional root mean square
(RMS) accuracy of O(10−4) or lower, which would be suffi-
cient for most CMB applications. We assessed the accuracy of
the newly developed algorithm on the basis of both the pixel
space representation of the convolved maps, and their power
spectra.

For the first test, we computed difference maps of the output
generated by ARKCoS and HEALPix. Using a Gaussian ker-
nel with 1◦ FWHM, as plotted in Fig. 3, we show the result of
the comparison in Fig. 4. We note that we normalized the dif-
ference using the RMS of the reference map to obtain a relative
percentage error. We find the small remaining residual around
the polar caps to be dominated by outliers produced by the FFT
library for specific transformation lengths7, whereas inaccura-
cies in the kernel evaluation prevail in the equatorial region.
Averaged over the entire map, ARKCoS reproduces the results
from the HEALPix package for different kernels with a frac-
tional RMS error of at most O(10−4), which decreases rapidly
for kernel sizes �0.5◦ FWHM.

As a second test, we compared the power spectrum of the
convolved map with the theoretical expectation. With a FWHM
of 6′, we chose a very narrow Gaussian kernel close to the
grid resolution at nside = 2048 that is no longer band-limited

7 Tests with the identical code linked to the more recent CUFFT library
version 3.2 made these outliers disappear, but performance suffered at
the 15% level.

at �max = 4096. The reference power spectrum used in this test
was calculated exactly from the spherical harmonic representa-
tions of input map and kernel. For one realization, the result is
shown in the left-hand panel of Fig. 5, and interpreted in terms
of the cross-power spectrum between the map and the induced
error.

In addition, we show the power spectrum of the difference
map, where we again compare the output of our algorithm to the
exact solution. Here, the reference map was derived via Eq. (5)
from the spherical harmonic coefficients of input map and ker-
nel. For one realization, we show the result in the right-hand
panel of Fig. 5, it represents the auto power spectrum of the er-
ror. In both cases, we find the error in the power spectra to be
subdominant over the full dynamical range of about 14 mag8,
showing that the algorithm does not introduce a significant level
of artificial mode coupling.

We conclude with the remark that highly compact kernels of
scale-lengths smaller than ≈10′ FWHM, a regime of particular
relevance to beam convolution at the resolution of the Planck
high frequency instrument, will suffer from truncation errors if
a band-limit of �max = 4096 is imposed. As a result, the back-
transformed pixel space representation starts to show ringing ar-
tifacts. In contrast to FSHT-based algorithms, it is possible to
suppress this effect in our convolution scheme. The first modifi-
cation of the algorithm concerns the treatment of super-Nyquist

8 Note that in Fig. 5, we show the power spectra multiplied by � (� +
1)/2π. This factor has to be taken into account when the dynamical
range of the simulation is to be assessed.
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Fig. 5. Power spectrum accuracy. Left panel: for
one particular realization, we plot the difference
between the power spectrum of a map convolved
with a narrow Gaussian, FWHM = 6′ and the
power spectrum of the exact convolution. Right
panel: we show the power spectrum of the dif-
ference map, computed from the convolution of a
map using ARKCoS and the exact solution. For
comparison, we also show the expected power
spectrum of the exact convolution in both panels
(dashed lines). Note that since we are comparing
to the exact convolved power spectrum this error
measure includes the HEALPix quadrature error.

Fig. 6. Reduced ringing-artifacts in our enhanced
hybrid algorithm. Left panel: the convolution of
point sources with a Gaussian kernel of 4.7′ FWHM
using a FSHT-based algorithm at nside = 2048
causes extended residuals. Right panel: the result
obtained with ARKCoS only shows a suppressed
ringing pattern in the longitudinal direction in the
polar caps (upper four point sources). In the equa-
torial region, the artifacts cancel out exactly (lower
four point sources). Each patch is 13◦ on the side,
the logarithmic color scale counts representing fac-
tors of 10 from the maximum. For ARKCoS, the
ringing patterns are too small to be visible on a lin-
ear scale.

modes in the polar caps. These modes are available to us be-
cause we supersample the kernel in direct space on 4 nside points
on all rings. After performing the forward Fourier transform of
the input map, we now duplicate the coefficients to obtain a fully
populated rectangular grid with 2 nside + 1 elements on all rings.
Likewise, we add the super-Nyquist modes to the sub-Nyquist
modes prior to calculate the inverse Fourier transform of the
output map. This (optional) step in the algorithm adds a fac-
tor of less than two to the computational time. In the equato-
rial region, the error can be removed completely if we slightly
alter the algorithm on every unshifted ring. Here, we start the
convolution using the unmodified Fourier transform of the input
map, that is, we do not apply Eq. (8). We instead take into ac-
count the offset on every other ring during the kernel evaluation,
i.e., we substitute cos(φ) with cos(φ − φ0) in Eq. (9). In Fig. 6,
we compare the output of our modified algorithm to that of a
FSHT-based scheme for the convolution of several point sources
with a Gaussian beam of width 4.7′ FWHM at nside = 2048.
The conventional approach suffers from spurious ringing effects
that extend well beyond the formal support of the kernel. Using
ARKCoS, the artifacts are completely absent in the equatorial
region, and suppressed and confined to the latitudinal direction
in the polar caps. We note that on the more regular ECP-grid, the
ringing pattern would vanish exactly on the entire sphere without
the need to modify the algorithm.

5. Discussion and conclusion

We have presented an implementation of a GPU-accelerated
hybrid algorithm for radial kernel convolution on the sphere.

It performs the convolution along isolatitude rings in Fourier
space and integrates in longitudinal direction in pixel space. We
call this algorithm ARKCoS. As the computational costs scale
linearly with the kernel support, the method is most beneficial
for convolution with compact kernels. Typical applications in-
clude CMB beam smoothing, symmetric wavelet analyses, and
point-source filtering operations.

For a convolution with compact kernels, we find that our im-
plementation realizes real performance gains of up to 5000%,
depending on the problem size, for a 50% increase in system
cost relative to the most widely used FSHT implementation in
the HEALPix library running in parallel on a quad-core CPU.
When compared to the more finely tuned libpshtFSHT library,
again running on four cores, we still find significant performance
gains, up to 1800%.

We assessed the numerical accuracy of the algorithm by
comparing the convolved output map to the result gener-
ated using HEALPix. The outcome typically agrees with the
FSHT-based convolution to 1 part in 104. Comparing the power
spectrum of the output map to the exact solution for a nar-
row convolution kernel, we find a relative error of smaller than
10−3. For kernels that are not band-limited, the convolution with
a FSHT-based scheme induces ringing artifacts. Using instead
a slightly modified implementation of ARKCoS, however, we
have demonstrated that a huge reduction in the spurious contri-
bution is possible.

The massively parallel hybrid approach we have presented
here is particularly advantageous for convolutions with com-
pact kernels (with support less than ∼15◦) at high resolution
(nside = 512 or higher). The GPU we used for our tests has
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1.5 GB of RAM. This is too small to store simultaneously the
input and output HEALPix maps at resolution nside = 4096 or
higher. Possible solutions for future work involve calculating the
contribution to the output map from subsets of rings in the input
map, either sequentially or in parallel if more than one GPU is
available in the same system.

This work deals with radial kernel convolution. We note
in closing that there is considerable interest in the algorithmi-
cally more difficult problem of asymmetric kernel convolution
(Wandelt & Górski 2001; Wiaux et al. 2005; ASYMFAST,
Tristram et al. 2004; FICSBell, Hivon & Ponthieu, in prep.;
FEBECoP, Mitra et al. 2011) either to model the physical op-
tics of CMB experiments more faithfully (Mennella et al. 2011;
Planck HFI Core Team et al. 2011) or to detect signals that have
locally anisotropic signatures. Having found in this work that our
hybrid algorithm vastly accelerates radial kernel convolution, it
is easy to imagine generalizations that accelerate asymmetric
kernel convolution in a similar way. The ASYMFAST approach
(Tristram et al. 2004) reduces the problem of asymmetric beam
convolution to O(10) symmetric convolutions. Coupled to our
GPU accelerated approach, the convolution with even complex
asymmetric kernels and compact support takes less time than the
convolution with a single symmetric kernel on a CPU system us-
ing FSHTs.
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