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ABSTRACT
The peculiar motions of galaxies can be used to infer the distribution of matter in the Universe.
It has recently been shown that measurements of the peculiar velocity field indicate an anoma-
lously high bulk flow of galaxies in our local volume. In this paper, we find the implications of
the high bulk flow for the power spectrum of density fluctuations. We find that analysing only
the dipole moment of the velocity field yields an average power spectrum amplitude which is
indeed much higher than the � cold dark matter (�CDM) value. However, by also including
shear and octupole moments of the velocity field, and marginalizing over possible values for
the growth rate, an average power spectrum amplitude which is consistent with the �CDM is
recovered. We attempt to infer the shape of the matter power spectrum from moments of the
velocity field, and find a slight excess of power on scales ∼1 h−1 Gpc.

Key words: galaxies: kinematics and dynamics – galaxies: statistics – cosmology: observa-
tions – cosmology: theory – large-scale structure of Universe.

1 IN T RO D U C T I O N

Peculiar velocities are useful cosmological probes. In principle,
the peculiar velocity field is an unbiased tracer of the underly-
ing matter distribution and should be sensitive to structures on
scales larger than the nominal size of the survey. The study of
large-scale flows has a long and hallowed tradition; throughout the
1980s and early 1990s, measurements of large-scale flows were de-
ployed to not only constrain the fractional energy density in matter,
�m, but also identify possible sources of the gravitational attrac-
tion which might lie outside current galaxy surveys (Strauss &
Willick 1995).

Velocity catalogues are hard to construct. While current redshift
surveys have of the order of 105 objects, velocity catalogues are typ-
ically restricted to of the order of 103 galaxies. Yet over the past three
decades, enough measurements of peculiar velocities have been ac-
crued to be able to construct a reasonably complete catalogue out
to a maximum distance of about 100 h−1 Mpc. In a recent series
of papers (Watkins, Feldman & Hudson 2009; Feldman, Watkins
& Hudson 2010), the authors showed that a collection of peculiar
velocity surveys could be combined to construct a reliable, well-
behaved ‘composite’ catalogue. This composite catalogue was then

�E-mail: edward.macaulay@astro.ox.ac.uk

used to extract the simplest statistic: the bulk flow. The results were
surprising: there is clear evidence for a large bulk flow, which is very
unlikely within the current preferred model of the structure forma-
tion, that is, a flat, Friedman–Robertson–Walker universe with an
appreciable cosmological constant permeated by Gaussian, scale-
invariant perturbations [known as the � cold dark matter (�CDM)
model]. The findings of Watkins et al. (2009) and Feldman et al.
(2010) lead to the question: is there excess power on large scales?
As yet we do not have a direct measurement of the power spectrum
of density fluctuations on these scales in the nearby Universe; the
cosmic microwave background does probe a wide range of scales
but at high redshift. Could the large bulk flow be a signature for
large-scale fluctuations at low redshift? It is this question we wish
to address by using the measurement of the bulk flow and a few of
the other lower moments to estimate the power spectrum of density
fluctuations.

Jaffe & Kaiser (1995) inferred constraints on the matter power
spectrum parametrized by σ 8 and the shape parameter � with data
from Lauer & Postman (1994), and separately with data from Riess,
Press & Kirshner (1995). They found that including only the bulk
flow of the Lauer & Postman catalogue favoured a model with high
large-scale power, which became more reasonable when the shear
of the velocity field was included, suggesting a very large scale
excess of power. However, the data from Riess et al. (1995) did not
suggest any large-scale excess.
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The shear and dipole moments used by Jaffe & Kaiser (1995)
are slightly different from the minimum variance shear and dipole
moments we use here, because the Jaffe & Kaiser (1995) method
assumes that the non-modelled velocity is noise. Thus, the dipole
moment from the Jaffe & Kaiser (1995) method will depend on
whether the shear is included, whereas the minimum variance for-
malism we employ here estimates each moment independently of
the total number of moments analysed. Further, Jaffe & Kaiser
(1995) compare very different catalogues with different geome-
tries, that is, densities, distribution, etc. The minimum variance
method combines individual measurements to estimate the velocity
moments for an idealized geometry and the results are thus inde-
pendent of the geometry of any particular survey.

Kolatt & Dekel (1995) inferred constraints on the large-scale
structure from the POTENT velocity field. Uncertainty in the growth
of the structure rate, f , was included by reporting the degenerate
combination of P(k) f 2. With current improved constraints on the
growth rate, and more peculiar velocity data available, we attempt
to constrain the unbiased matter power spectrum from moments of
the peculiar velocity field.

Recently, Song et al. (2010) applied a method to estimate bulk
flows from two-point correlations in galaxy distributions and found
no evidence for a large bulk flow in data from the SDSS. However,
their analysis only probes scales up to 0.03 h Mpc−1, whereas we
see later that the anomalously high bulk flow is most sensitive to
scales >0.01 h Mpc−1.

This paper is structured as follows. In Section 2, we review the
methodology to incorporate an individual peculiar velocity mea-
surement into an estimate of our local peculiar velocity field. We
review the method of Kaiser (1988) to weigh peculiar velocity mea-
surements to estimate the bulk flow. We also review the method of
Watkins et al. (2009) to use peculiar velocity measurements to esti-
mate the bulk flow of our local volume, so that results from different
surveys can be directly compared. We describe the peculiar velocity
catalogues compiled by Watkins et al. (2009). We then review the
work of Feldman et al. (2010) to include higher moments of the ve-
locity field. In Section 3, we describe how we relate these moments
of the velocity field to constraints on the large-scale structure. We
present our results in Section 4.

2 C O M BIN ING PECULIAR V ELOCITY
ME ASU R EMEN TS

To estimate the peculiar velocity of galaxies at cosmological dis-
tances, we need both the measured redshift of the galaxy and an in-
dependent distance measure, such as the luminosity distance. From
the distance measure, we can estimate what we would expect the
redshift to be solely due to the Hubble flow. We can then attribute
the difference between this expected redshift and the measured red-
shift to the peculiar velocity of the galaxy (Peebles 1993). There
are two key difficulties with the method. The first is that the uncer-
tainty on the luminosity distance is typically rather large: ∼10 to
20 per cent for Tully–Fisher, Faber–Jackson or Fundamental Plane
measurements, and ∼5 per cent for supernovae. The second diffi-
culty is more inherent: this method only provides the line-of-sight
component of the peculiar velocity. The importance of this effect
can be illustrated if we consider a hypothetical bulk flow from an
arbitrary north to the south. A survey of galaxies to our north or
south would be sensitive to this flow, whereas a survey to our east
or west would not. The approach we describe here is to combine
individual peculiar velocity measurements to estimate the velocity
field of our local volume by weighing each measurement according

to how sensitive it is to each component of the underlying velocity
field. We can describe the velocity field v(r), where v is the three
components of the peculiar velocity field at position r . For each
galaxy (labelled n), we measure the line-of-sight component of this
field, S, that is, Sn(r) = v(rn) · r̂n, where r̂n is the unit vector
pointing in the rn direction. We assume that this measurement is
drawn from a Gaussian distribution with variance σ 2

n. An additional
term, σ 2

∗, is included in the variance to account for non-linear flows.
The method is fairly insensitive to the particular choice of σ 2

∗, as
the combined uncertainty of σ 2

n + σ 2
∗ tends to be dominated by the

measurement uncertainty, σ 2
n.

The simplest result we can quote for a survey of peculiar velocities
is the ‘bulk flow’ vector, u, the average velocity magnitude and the
direction of the galaxies in a survey. We must be careful when
combining peculiar velocity measurements to include the effect of
only measuring the line-of-sight component. This is achieved by
multiplying each component of Sn (in the coordinate system of
the bulk flow) by a weight wa, which essentially depends on the
orthogonality of S to the coordinate system of the bulk flow, so that
ua = ∑

n wa,nSn. Kaiser (1988) showed that the weights for the
bulk flow are

wi,n = A−1
ij

∑
m

x̂j · r̂n

σ 2
n + σ 2∗

, (1)

where

Aij =
∑

m

(x̂i · r̂m)(x̂j · r̂m)

σ 2
m + σ 2∗

. (2)

Because of sparse sampling, bulk flow results between different
surveys are not necessarily immediately comparable. Watkins et al.
(2009) devised a method to weigh the bulk flow of a particular sur-
vey to estimate the bulk flow of a hypothetical spherically symmetric
survey, where the density of galaxies n falls off as n(r) ∝ exp (− r2/

2R2
I ), where R2

I is the characteristic depth of the survey. This al-
lows bulk flows from different surveys to be directly compared and
combined to give us a better estimate of the bulk flow of our local
volume of space. We start with the formalism from Kaiser (1988)
and then introduce the method from Watkins et al. (2009).

The idea is that the bulk flow we measure, u, is essentially a
convolution of the peculiar velocity field v with the window function
of the survey W:

ui(r0) =
∫

d3rWij (r)vj (r + r0). (3)

This allows us to calculate the variance of u directly from the
convolution theorem:〈
uiuj

〉 =
∫

d3kPv(k)W 2
ij (k), (4)

where the window function is given (in real space) by

Wij (r) = A−1
ij

∑
n

δ(r − rn)
r̂ i r̂j

σ 2
n + σ 2∗

. (5)

It is extremely useful to split
〈
uiuj

〉
into two terms: one term,

R
(v)
ij , due to the measurement variance, and a noise term, R(ε)

ij due

to the variance from non-linear flows, so that
〈
uiuj

〉 = R
(v)
ij + R

(ε)
ij .

We then have

R
(ε)
ij = A−1

ij (6)

and

R
(v)
ij =

∫
d3kW2

ij (k)Pv(k), (7)
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where

W2
ij = Wil(k)W ∗

jm(k)k̂l k̂m. (8)

We will return to equations (6) and (7) when we come to estimate
the large-scale structure in Section 3.

The approach of Watkins et al. (2009) is to find weights that
minimize the average variance between a particular bulk flow
vector u and the average bulk flow of our hypothetical survey,
U,

〈
(ui − Ui)2

〉
. If we assume that the measurement error is un-

correlated with the bulk flow, we can expand
〈
(ui − Ui)2

〉
as〈

(ui − Ui)
2
〉 =

∑
n,m

wi,nwi,m 〈SnSm〉 + 〈
U 2

i

〉 − 2
∑

n

wi,n 〈Uivn〉 .

(9)

Before minimizing this expression with respect to wi,n, we enforce
the constraint that W2

ij (k) → 1/3 as k → 0, so that the weighing
is equal for each dimension of the peculiar velocity field. We thus
have to minimize∑
n,m

wi,nwi,m 〈SnSm〉 + 〈
U 2

i

〉

−2
∑

n

wi,n 〈uiUi〉 λ

(
Pnmwi,nwi,m − 1

3

)
, (10)

where λ is a Lagrange multiplier and

Pnm =
∫

d2 k̂
4π

(
r̂n · k̂ r̂m · k̂

)
. (11)

Differentiating equation (10) and setting the result equal to zero
gives∑

m

(〈SnSm〉 + λPnm)wi,m = 〈SnUi〉 . (12)

It is easier to solve for the weights, wi,m, if we rewrite equation (12)
in the matrix form. Substituting G for 〈SnSm〉 , P for Pnm, wi for
wi,m and Qi for 〈SnUi〉 gives

(G + λP)wi = Qi , (13)

which is now easy to solve for the weights wi.

wi = (G + λP)−1Qi . (14)

As well as the bulk flow of the survey, we can also consider higher
moments of the peculiar velocity field if we consider the field as a
Taylor expansion, as in

vi(r) = Ui + Uij rj + Uijkrj rk + · · · , (15)

where Ui is the bulk flow vector – also known as the ‘dipole mo-
ment’ and Uij is the ‘shear tensor’ or the ‘quadrupole moment’ and
provides information about the distance at which the bulk flow at-
tractor is located. The ‘octupole tensor’ Uijk provides information
about the velocity field on scales smaller than the survey. Feldman
et al. (2010) have extended the work of Watkins et al. (2009) to
include these higher order moments. If we assume that the peculiar
velocity field is entirely due to the gravitational infall, we expect the
field to be curl-free and consequently Uij and Uijk to be symmetric.
Thus, the peculiar velocity field can be described to third order by
the 19 independent velocity moments, Ui.

Before we proceed, we have to be careful with the definition of
the octupole tensor, because some components of the tensor overlap
with the dipole moment. As such, we modify the expansion of the
velocity field to be

vi(r) = Ui + Uij rj + Uijk

(
rj rk − �jk

) + · · · , (16)

where �jk is given by

�jk =
∫

V

rj rkd3r (17)

in order to remove overlapping components. The line-of-sight com-
ponent is then

s(r) = Uir̂i + Uij rr̂i r̂j + Uijk

(
r2r̂i r̂j r̂k − �jkr̂i

) + · · · . (18)

Feldman et al. (2010) have calculated the minimum variance
weights for the 19 components of the third-order expansion, over k
ranges from 0.002 to 0.196 h Mpc−1. We can think of the resulting
set of 19 components of the dipole, quadropole and octupole as a
form of data compression containing the highest signal-to-noise ra-
tio information in a given peculiar velocity survey. Indeed, that will
be our philosophy – to use this form of the data to infer information
about the underlying density field.

We study the ‘COMPOSITE’ peculiar velocity catalogue com-
piled by Watkins et al. (2009) and also used in Feldman et al.
(2010). The catalogue consists of 4536 peculiar velocity measure-
ments, with a characteristic depth of 34 h−1 Mpc. The characteristic
depth is given by the average distance to each galaxy, weighed by
the inverse square of the peculiar velocity uncertainty.

3 R ELATI NG V ELOCI TY TO MATTER

We have presented a method to combine line-of-sight estimates of
the peculiar velocity of individual galaxies into an estimate of the
moments describing the velocity field of our local volume. We now
want to be able to compare this measurement to expectations from
our cosmology. The basic idea is that, in the linear regime, galaxies
flow towards local overdensities of matter, so the velocity field v(r)
is given by

v(r) = f H0

4π

∫
d3r ′δ(r ′)

(r ′ − r)

|r ′ − r|3 , (19)

where f is the perturbation growth rate, ∂ ln δ/∂ ln a, and δ is the
matter density contrast. The matter density contrast is modelled as a
Gaussian random field with a power spectrum defined as 〈|δ̃(k)|2〉 =
(2π)3P (k), where δ̃ is the Fourier transform of the density contrast
in real space.

A useful way of parametrizing P(k) is in terms of band powers:

P (k) =
{

Pα kα < k < kα+1

0 otherwise.
(20)

To estimate the most likely matter power spectrum, based on
the peculiar velocity data, our approach is to construct, and then
minimize, the likelihood function L as a function of Pα:

−2 lnL(Pα) ∝ ln |C| + uTC−1u, (21)

where u are the velocity moment components. The covariance ma-
trix, C, is derived from equation (4):

Cpq = R(v)
pq + R(ε)

pq, (22)

where the ‘error matrix’ R(ε)
pq is given by equation (6) and the ‘ve-

locity matrix’ R(v)
pq is given by equation (7). We relate the velocity

covariance matrix to the power spectrum by equation (7), so that

R(v)
pq = f 2

2π2

∫
dkP (k)W2

pq (k). (23)

We can choose the width of each band power by integrating the
window function (which is independent of Pα) over the bin range
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Figure 1. Likelihood distributions for the average P(k) value in the k range
of our window function, inferred from a simulated peculiar velocity cata-
logue. Whether we include only the bulk flow of the velocity field (labelled
‘Dipole’) or also include the shear and octupole moments (labelled ‘Oc-
tupole’), we recover a value which is compatible with the fiducial �CDM
value. For clarity, the likelihood functions have been scaled arbitrarily to
the maximum value of the dipole function. The �CDM value has been il-
lustrated here and in further such plots as a Gaussian distribution with an
arbitrary standard deviation of 10 per cent of the fiducial value.

kα–kα+1. We can then factor in the average power amplitude in this
range, so that

R(v)
pq 
 f 2

2π2

∑
α

PαKα
pq, (24)

where the kernel K is given by

Kα
pq =

∫ kα+1

kα

dkW2
pq (k). (25)

We thus have a likelihood function for the velocity moments in
terms of the growth rate and power spectrum band-powers.

We have tested our methodology on simulated peculiar velocity
catalogues generated from a �CDM power spectrum. We generate
a series of mock catalogues from a set of N-body simulations,
estimate the corresponding dipole, quadropoles and octopoles, and
then minimize the corresponding likelihood to recover the input
power spectrum. We illustrate our results for one such realization
in Figs 1 and 2, and confirm that our method does not generate any
spurious large-scale power.

4 R E SULTS A N D DISCUSSION

We first consider the most likely total average power of our sam-
ple, over the entire k range of our window function, 0.002–0.196 h
Mpc−1. We see in Fig. 3(a) that when we include only the dipole
moment of the velocity field, the average power for each survey is
much higher than the �CDM value. This is entirely consistent with
the results found in Watkins et al. (2009). When we also include
the shear and octupole moments, we find much better agreement
with the �CDM value, as we can see in Fig. 3(b). This is similar
to the effect observed by Jaffe & Kaiser (1995) when including the
shear of the peculiar velocity field and also noted by Feldman et al.
(2010).

In Fig. 3, the growth rate was fixed at the fiducial �CDM value
to illustrate the importance of including higher moments of the ve-
locity field. However, presently, the best constraints on the growth

Figure 2. In the upper figure is plotted the power spectrum shape, inferred
only from peculiar velocity data generated from a simulated catalogue.
We have chosen three bands, evenly spaced in log k. The shaded region
represents the marginalized 1σ uncertainty on the power in each band. For
comparison, the theoretical �CDM power spectrum has been overplotted.
The results shown here include the dipole, shear and octupole moments of
the simulated velocity field. As discussed later, the uncertainties in each
band have also been marginalized over the growth rate. In the lower panel
are plotted the average values of the dipole, shear and octupole window
functions. The dipole is most sensitive on scales k � 0.01 h Mpc−1.

rate at low redshift are from Peacock et al.’s (2001) measurement
of the redshift-space distortion compression parameter. This con-
strains the growth rate to f = 0.49 ± 0.14. We now consider the
effect of marginalizing over the growth rate with this prior applied.
Likelihood contours for the growth rate and average power in the
COMPOSITE survey are shown in Fig. 4. When we marginalize
over the growth rate, we see in Fig. 5 that the average power does
not exclude the fiducial �CDM value. However, in the context of
�CDM models, the growth rate is not a free parameter, rather it is
determined primarily by �m (which also affects the shape of the
power spectrum and the average power). In order to obtain consis-
tency with the predicted average power, one requires f ∼ 0.7, which
is much larger than the fiducial �CDM value of 0.48.

In addition to the total average value, we can attempt to infer the
shape of the power spectrum. The window function was divided into
three ranges, evenly spaced in log k. The likelihood function was
then evaluated in terms of the power in each of the three bins, Pα , and
the growth rate. As before, a prior on the growth rate was applied and
this parameter was marginalized. When we consider only the bulk
flow, we find that the likelihood is sufficiently broad and correlated
that it is, in practice, impossible to pin down three independent
estimates of Pα . This is disappointing – the measurement of the
dipole alone does not allow us to identify if there is large-scale
power.

However, when we also include the shear and octupole moments
of the velocity field, we find that the band powers are virtually
uncorrelated and we can obtain three independent measurements.
In Fig. 6, we plot the marginalized 1σ uncertainty for each Pα for
the COMPOSITE catalogue. There is a slight detection of excess
power on the largest scales.

We find that our estimate of the excess power seems to reflect
the large-scale estimates of P(k) found in the estimate from both
the SDSS main galaxy power spectrum from Percival et al. (2007)
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Figure 3. In the upper panel is the likelihood distribution for the average
amplitude of the power spectrum, inferred only from the dipole moment. To
account for the anomalously high bulk flow, we have to conclude a power
spectrum amplitude which is incompatibly higher than the �CDM value.
In the lower panel, we show the effect of including the shear and octupole
moments of the velocity field. By now including the higher moments, the re-
sults are generally more compatible with the �CDM value. Here, the growth
rate, f , is kept fixed at the fiducial �CDM value. In both figures, the shaded
area is the 1σ confidence region. The shaded area of the upper figure appears
disproportionately wide, because the large tail of the distribution is distorted
by the logarithmic scale on the horizontal axis.

and the 2dFGRS power spectrum from Cole et al. (2005). One
should be careful about overinterpreting these similarities, as both
the SDSS and 2dFGRS estimates of the power on large scales are,
in principle, severely affected by edge effects. Indeed, the recent
analysis of the SDSS data in Sylos Labini et al. (2009) should make
one to be wary of overinterpreting estimates of the structure on
the largest scales of the survey. Yet the fact that the same level of
fluctuations is obtained from a peculiar velocity survey subjected
to a completely different analysis may be an indication that redshift
survey estimates of the structure on the largest scale must be taken
seriously. Furthermore, an excess of clustering on similar scales at
higher redshift was recently found by Thomas, Abdalla & Lahav
(2010) in the MegaZ DR7 photometric redshift survey.

Figure 4. Likelihood contours for the COMPOSITE survey, with dipole,
shear and octupole moments included, with contours spaced at 1, 2 and
3σ confidence levels. We are now considering the average power and the
perturbation growth rate as free parameters. A prior on the growth rate has
been applied. For comparison, the one-dimensional likelihood distribution
for the COMPOSITE survey in Fig. 3(b) is a slice through this likelihood
contour at the fiducial �CDM value of the growth rate at z = 0, that is, f =
0.48. As can be seen here, including observationally constrained values of
the growth rate allows for a wider range of allowed Pα .

Figure 5. Average power for the COMPOSITE survey, with dipole, shear
and octupole moments included, now marginalized over the growth rate.
The shaded region indicates the 1σ uncertainty boundaries on the likelihood
function. The expected �CDM value is now included in this range.

What should we make of this excess of power and how does
it relate to our initial question: the anomalously high bulk flow?
To start with, we have demonstrated that it is incomplete to infer
results from measurements of the bulk flow alone, as including
higher moments of the velocity field yields significantly different
results. As noted in Feldman et al. (2010), the low shear moments
of the velocity field suggest that the sources responsible for the bulk
flow are very far away. In the formalism we have adopted here, only
one of the bulk flow moments is anomalously high – the other bulk
flow moments, and the shear and octupole moments, are consistent
with the �CDM. From one perspective, one could argue that the
extra freedom from including 19 moments of the velocity field, and
the growth rate, as opposed to just three moments of the dipole
moment, provides a way to interpret the anomalously high bulk
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Figure 6. Power spectrum shape inferred from dipole, shear and octupole
moments for the COMPOSITE catalogue. The shaded regions are 1σ un-
certainties, marginalized over the growth rate, and the other Pα . We find
a slight excess of power on scales of ∼1 h−1 Gpc. These are the scales at
which we are most sensitive. This excess of power appears to agree with
the largest scales in the 2dFGRS and SDSS, which are plotted here as in
Percival et al. (2007) and have been deconvolved from their survey window
functions.

flow which is consistent with the �CDM. On the other hand, all
moments are not equivalent. The dipole moments are special in the
sense that they probe the largest scales (and are also the moments
that are most robustly measured). Consequently, the inferred shape
of the power spectrum is different from the �CDM.
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