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ABSTRACT
The recently introduced discrete persistent structure extractor (DisPerSE, Sousbie, Paper I)
is implemented on realistic 3D cosmological simulations and observed redshift catalogues;
it is found that DisPerSE traces very well the observed filaments, walls and voids seen both
in simulations and in observations. In either setting, filaments are shown to connect on to
haloes, outskirt walls, which circumvent voids, as is topologically required by the Morse
theory. Indeed this algorithm returns the optimal critical set while operating directly on the
particles. DisPerSE, as illustrated here, assumes nothing about the geometry of the survey or
its homogeneity, and yields a natural (topologically motivated) self-consistent criterion for
selecting the significance level of the identified structures. It is shown that this extraction is
possible even for very sparsely sampled point processes, as a function of the persistence ratio
(a measure of the significance of topological connections between critical points). Hence,
astrophysicists should be in a position to trace precisely the locus of filaments, walls and
voids from such samples and assess the confidence of the post-processed sets as a function of
this threshold, which can be expressed relative to the expected amplitude of shot noise. In a
cosmic framework, this criterion is shown to level with the friends-of-friends structure finder
for the identification of peaks, while it also identifies the connected filaments and walls, and
quantitatively recovers the full set of topological invariants (number of holes, etc.) directly
from the particles, and at no extra cost as a function of the persistence threshold. This criterion
is found to be sufficient even if one particle out of two is noise, when the persistence ratio
is set to 3σ or more. The algorithm is also implemented on the SDSS catalogue and used to
locate interesting configurations of the filamentary structure. In this context, we carried the
identification of an ‘optically faint’ cluster at the intersection of filaments through the recent
observation of its X-ray counterpart by Suzaku.

Key words: methods: data analysis – galaxies: formation – galaxies: kinematics and dynamics
– cosmology: observations – dark matter – large-scale structure of Universe.

1 INTRODUCTION

Over the past decades, numerical simulations (e.g. Efstathiou et al.
1985) and large redshift surveys (e.g. de Lapparent, Geller & Huchra
1986) have highlighted the large-scale structure (hereinafter LSS)
of our Universe, a cosmic web formed by voids, sheets, elongated
filaments and clusters at their nodes (Pogosyan et al. 1996). Char-
acterizing quantitatively these striking features of the observed and
modelled universe has proven to be both useful (Sousbie et al.
2008a; Gay et al. 2010) and challenging. It is useful because these

�E-mail: tsousbie@gmail.com

features reflect the underlying dynamics of the structure formation
and are therefore sensitive to the content of the universe (Pogosyan
et al. 2009). It is challenging because observations and simulations
provide limited and noisy data sets. Recently, Sousbie (2011, here-
inafter Paper I) presented an algorithm able to identify the voids,
walls, filaments and peaks (or technically speaking, its critical sets)
from a given noisy discrete sample of an underlying field. Typically,
this situation arises in astrophysics when the aim is to recover the
topology or the geometry of the underlying density field, while only
a catalogue of galaxies are available. For instance, in the context of
understanding the history of our Milky Way, it is of interest to iden-
tify the filaments of the Local Group. Yet typically in this context,
only a limited number of galaxies at somewhat poorly estimated
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positions are observed. For redshift catalogues involving hundreds
of thousands of galaxies, one would also wish to reconstruct the
main features of the cosmic web as perfect as the non-uniform sam-
pling allows. From a theoretical point of view, it might, for instance,
be of interest to compute the cosmic evolution of the filamentary
network, as its history constrains the dark energy content of the
universe. From an observational point of view, it could also help
solving the missing baryon problem (Fukugita, Hogan & Peebles
1998) because most of such baryons have been considered to be
located along the filamentary structure in the form of the diffuse hot
gas called warm/hot intergalactic medium (WHIM, Cen & Ostriker
1999; Aracil et al. 2004). Identifying the filament from galaxy
distributions clearly provides good candidates for searching the
WHIM with ultraviolet absorptions (e.g. Tripp et al. 2000; Danforth
et al. 2010), X-ray absorptions (e.g. Fang, Bryan & Canizares 2002;
Kawahara et al. 2006; Buote et al. 2009; Fang et al. 2010) and X-ray
emission lines by future surveys (e.g. Yoshikawa et al. 2003; Ohashi
et al. 2006). It is therefore of prime importance to provide a tool
which deals consistently with such possibly sparse discrete sam-
ples. Quite a few such options have been presented recently (Stoica
et al. 2005; Novikov, Colombi & Doré 2006; Hahn et al. 2007;
Platen, van de Weygaert & Jones 2007; Stoica, Martı́nez & Saar
2007, 2010; Neyrinck 2008; Sousbie et al. 2008a,b; Forero-Romero
et al. 2009; Sousbie, Colombi & Pichon 2009; Aragón-Calvo et al.
2010a,b; Paper I), relying on different strategies on how to deal with
these constraints (see also the nice review of Noh & Cohn 2011).

The companion paper, Paper I, presented an algorithm, DisPerSE,
which recovers the important features of the underlying cosmic
field even when little information is available, so that the procedure
manages to identify the most-robust features of the field. Roughly
speaking, DisPerSE extracts filaments as a set of connected seg-
ments, walls as sets of connected triangles and voids as sets of
connected tetrahedrons. It also keeps track of their relative con-
nectivity (e.g. it follows which walls a given set of filaments are
bounding). The extraction can operate directly on the particles.1 It
requires only one tunable parameter which corresponds to the sig-
nificance of the retained features in units of σ . Topology (in fact
discrete topology) provided the context in which this algorithm was
implemented in order to carry out the extraction. Topology de facto
characterizes the ‘rubber’ geometry of the underlying field, that is,
its most-intrinsic and robust features. More specifically, DisPerSE
produces an ensemble of critical sets (lines, surfaces and volumes)
consistent with those defined within the context of the Morse the-
ory for sufficiently smooth fields (Milnor 1963; Jost 2008). Recall
that the Morse theory basically provides a rigorous framework in
which to formally define such sets for ‘regular’ density fields (here,
regular basically means non-degenerate so that these sets are al-
ways well defined). For instance, the critical lines defined by this
theory connect peaks and maxima via special (extremal) flow lines
of the gradient. The Morse theory formalizes the process of parti-
tioning space according to the gradient flow of the density into the
so-called ascending and descending manifolds. In other words, it
tags space according to where one would end up going ‘uphill’ or
‘downhill’. In doing so it identifies special lines or surfaces, where
something unusual happens. These lines trace quite well the fila-
ments of the LSS. Similarly, the walls of the LSS have a natural
equivalent feature as the ‘critical’ surfaces of the Morse theory (the
so-called 2-manifolds). Our implementation in DisPerSE proceeds
within the context of its discrete counterpart (Forman 2002). This

1 Or any regular mesh as it happens.

discrete construction is as consistent as possible with all the topolog-
ical features of the underlying smooth field (it globally preserves,
at the level of the noise, the salient features of the field, such as
the number of connected components, the number of tunnels or
holes defined by its isocontours, etc.; conversely,2 the significant
discrete critical sets have the correct ‘combinatorial’ properties e.g.
critical lines only connect at critical points and saddle points con-
nect exactly two peaks together, etc.). The level of complexity of
the corresponding network also reflects the inhomogeneities of the
underlying survey, that is, it adapts its level of description to the
sampling, hence yielding a parameter-free multiscale description
of the cosmic web. In fact, it also provides a simple diagnostic in
order to estimate the robustness of the various components of the
network (i.e. the degree of reproduced details should be tunable to
the purpose of the investigation). Finally, it clearly addresses the
shortcomings of watershed-based methods, namely the occurrence
of spurious boundary lines induced by resampling in 3D or more.

The two main novel features DisPerSE addressed were (i) defin-
ing the counterpart of the (topologically consistent) critical sets on
the mesh; and (ii) defining a procedure to simplify the corresponding
mesh at the level of the local shot noise. The first step was achieved
by considering simultaneously all the discrete components of the
triangulated mesh (its vertices, edges, faces and tetrahedra), and
reassigning a density to all these components in a manner which
is heuristically consistent with the sampled density at the vertices;
this relabelling procedure also ensures that the discrete flow (which
follows from the corresponding discrete gradient) is sufficiently
well-behaved to provide such topological consistency (specifically,
it ensures the existence of discrete counterparts of regular critical
points). Amongst the discrete analogues of gradient flows, Dis-
PerSE identifies the critical subsets as special sets which cannot be
paired to their neighbours through these discrete gradients. Note
that the required level of compliancy to achieve this construction
has the virtue of not only producing the discrete set of critical
segments, but also producing the triangulated walls and voids at
no extra computational cost. The second step followed from the
concept of the topological persistence (Edelsbrunner, Letscher &
Zomorodian 2000, 2002), which assigns a density ratio to pairs of
critical points which are found to be connected together by such
discrete integral paths; these pairs are identified by the destruc-
tion/creation of critical points as one describes the level sets. If
this ratio is below a given threshold, then the corresponding crit-
ical line/surface is found to be (topologically) insignificant, it is
removed from the set, and the remaining critical mesh is simplified
so as to recover some topological consistency. In other words, if the
shot noise induces the occurrence of the discrete counterparts of,
for example, spurious loops, disconnected blobs or tunnels which
are found to be insignificant according to the aforementioned cri-
terium, then they will be removed. This idea of the topological
persistence was central in DisPerSE to produce a natural (topolog-
ically motivated) self-consistent criterion to infer the significance
level of the identified structures. In particular, it warrants that the
removal of pairs of critical points consistently extracts the corre-
sponding topological feature (loop, tunnel, component, etc.). Note
that those implemented theories are intrinsically discrete and read-
ily apply to the measured raw data [modulo the consistent labelling
of the elements of the Delaunay tessellation relative to the Delaunay

2 This well-known duality between the topology of the level sets and the
characteristics of the critical points clearly has a discrete analogue through
the creation/destruction of discrete cycles.
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tessellation field estimator (DTFE) densities computed at the sam-
pling points]. This warrants that all the well-known and extensively
studied properties of the Morse theory are ensured by the con-
struction at the mesh level and that the corresponding cosmological
structures therefore correspond to well-defined geometrical objects
with known geometrical and topological properties.

In some sense, DisPerSE filters out less-robust topological fea-
tures, while keeping unchanged more robust ones, in analogy to
what happens for the spectral linear low pass filtering. Instead of
damping high frequencies, the persistence effectively ‘filters out’
from the critical sets (standing for the astrophysical filaments, walls,
etc.) the topological features (loops, holes, etc.) which are less rele-
vant, as they would most likely change or disappear when a different
sampling or noising procedure is imposed on the underlying field.
This ‘filtering’ process is non-linear and is formally equivalent to a
scale-adaptive filtering where the scale would be decided by the lo-
cal topology itself. As such, it is clearly more complicated to model
than spectral filtering, but warrants the exact preservation of more
robust topological features of the underlying field. This is clearly a
requirement of any method which intends to, say, preserve the rough
connectivity of the cosmic web. It is also a necessary requirement
to preserve the underlying geometry.

Paper I presented a couple of examples of such a construction
in 2D. Let us now illustrate the virtue of the method in the context
of the 3D cosmic web. We start3 by showing that the geometry
of the cosmic web is accurately reproduced, while illustrating the
quality of the cosmological structure identification, both in an N-
body simulation (Section 2) and directly in an unprocessed version
of the 7th Data Release (DR7) of the SDSS (SDSS DR7) galaxy
catalogue (Section 3). In particular, we show how DisPerSE allows
us to outline various configurations of the filamentary structure of
galaxies and identify a previously missed X-ray ‘optically faint’
halo at the intersection of a set of SDSS filaments using the Suzaku
satellite. We then discuss in Section 4 the problem of estimating
the right value for the persistence level in cosmological simulations
and illustrate how the measured topological properties of the LSS
distributions are affected by varying this threshold. In particular, we
show how this criterion compares with the simple friends-of-friends
(FOF) algorithm when attempting to identify haloes in simulations.
Section 5 wraps up and discusses prospects.

2 GEOMETRY OF THE LARGE-SCALE
STRUCTURE: SIMULATION

We illustrated in Paper I how DisPerSE was able to correctly recover
the geometry of the filamentary structure in the 2D case. We would
like to show here how it performs with actual 3D cosmological
data sets. However, demonstrating that a given algorithm is able to
correctly identify the location of filaments is a difficult task, as it
requires the previous knowledge of the location of those filaments.
One possible solution therefore is to build an artificial distribution
from a previously defined filamentary structure. This method was
adopted in Aragón-Calvo et al. (2010b), where the authors use a
Voronoi kinematic model (van de Weygaert 2002). We argue that
using such a model to quantify the quality of the Morse–Smale
complex identification is not as discriminatory as one would think
(see Appendix A) and, for the lack of a simple and better way, we

3 Note that our goal here is not to present an exhaustive review of the
geometrical properties of the cosmic web, which is clearly out of the scope
of this paper.

will therefore use here what is probably to date the most-efficient
way to detect structures: the human eye and brain. Let us first start
none the less with a little reminder on the notion of the persistence
and significance threshold.

2.1 Persistence and significance threshold

It was shown in Paper I how DisPerSE is able to measure topologi-
cal properties of the cosmic web efficiently even in the presence of
significant noise. This is achieved using a notion called the persis-
tence. The concept is relatively simple: one counts the appearance
of critical points in the excursion set of a function as the threshold
defining the set is lowered. Some critical points entering the excur-
sion set create topological components (for instance, a new isolated
component is created whenever a maximum enters), while others
destroy them (a saddle point may, for instance, link two previously
isolated components, therefore destroying one of them). By pairing
the two critical points that create and destroy a given feature into
a persistence pair, one is therefore able to assess the ‘lifetime’ of
the corresponding topological feature within the excursion. Often,
the robustness of a topological feature – called its persistence – is
measured as the difference in the density of the critical points in its
persistence pair. Intuitively, it measures how much a function can
be modified without possibly affecting a given topological feature.
In the case of an underlying function with added white noise, for in-
stance, the persistence would therefore allow one to easily measure
the probability that a given feature would be a genuine character-
istic of the underlying function or not at a given confidence level,
expressed in terms of the variance of the noise, nσ .

In this paper, we will be dealing with discrete cosmological data
sets: sets of particles sampling an underlying density function. Dis-
PerSE deals with this sort of data by means of the Delaunay tes-
sellation, which allows the reconstruction of the local topology of
space (i.e. the properties of the neighbourhood of the sampling
points) while giving a parameter-less and scale-free estimate of the
density through the DTFE (Schaap & van de Weygaert 2000; van
de Weygaert & Schaap 2009). The main source of the error on the
estimate of the underlying density function is the Poisson noise that
naturally results from the finite sampling. However, because of the
scale-adaptive nature of the Delaunay tessellation, the way the Pois-
son noise affects our reconstruction (and in particular its topology)
is not trivial. It was empirically measured in Paper I (see section
6.3) in terms of the probability that a persistence pair with the given
persistence could be generated or destroyed by the Poisson noise
only. This probability is better expressed in terms of the persistence
ratio4 (i.e. where the persistence of a pair is measured as the ratio
of the density of the two critical points in the pair) and we will
therefore refer in what follows to structures identified above a given
persistence ratio, expressed as a number of σ , nσ . By this, we mean
that we are considering the structures that are characteristic of the
underlying density field (i.e. not generated by noise) at a confidence
level of nσ (levels of 1, 2, 3 and 4σ corresponding to a probability
of ∼0.68, ∼0.95, ∼0.997 and ∼0.999 937, respectively).

2.2 Visual inspection

The evolution of the geometry of the measured filaments with a
significance threshold is illustrated in Fig. 1. The discrete Morse–

4 Equivalently, one could of course consider the regular persistence – that
is, density difference – of the logarithm of the density field.
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Figure 1. The identified filamentary distribution of a 5123-particle and 250 h−3 Mpc3 large cosmological simulation at different significance levels in a 250 ×
250 × 20 h−1 Mpc slice (above a persistence level of 3, 4 and 5σ , from the top to bottom). The top left-hand panel shows the matter distribution, while the
middle left-hand panel and bottom left-hand panel display the same distribution with filaments superimposed. The filamentary structure alone is displayed on
the right-hand column. The computation was achieved on a 1283-particle subsample and the filaments are coloured according to the logarithm of the density.
The density field was represented using the 5123 particles of the N-body simulation.
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Smale complex (DMC) represented in this figure was computed
at the significance levels of 3, 4 and 5σ (from the top to bottom)
within a 1283-particle subsample of a 5123-particle, 250 h−3 Mpc3

� cold dark matter (�CDM) only N-body simulation. Note that the
dark matter distribution within the 20 h−1 Mpc slice is represented
in the top left-hand corner to facilitate the visualization of its fila-
mentary structure. Despite the projection effects that create visual
artefacts (i.e. spurious filament-looking structures resulting from
the projection of dark matter clumps at different depths) and the
fact that filaments may enter or leave the slice, therefore seemingly
appearing and disappearing for no apparent reasons, it seems fair to
recognize that the agreement between the observed and measured
filaments is excellent. These good performances are mainly the re-
sult of our use of the scale-adaptive Delaunay tessellation and the
fact that our implementation does not require any pre-treatment of
the density field, unlike usual grid-based methods which enforce a
maximal resolution and resort to some kind of a density smoothing
technique that affects the geometrical properties of the distribution.
As a result, the resolution of the filaments is optimal with respect to
the initial sampling, whatever be the selected significance level: the
higher persistence and larger scale filamentary network is, by con-
struction, a subset of its less-persistent and lower scale counterpart.
Because a persistence-based topological simplification is used, in-
creasing the persistence threshold actually results in less-significant
filaments disappearing (when simplifying a 1-saddle point–2-saddle
point persistence pair) or merging into each other (when simplify-
ing a 1-saddle point–maximum persistence pair) to form larger scale
more persistent ones, but conserving exactly the same resolution in
any case. This can easily be observed by comparing the filamentary
networks on the right-hand column of Fig. 1.

Another remarkable advantage of constructing a cosmological
structure identification on the Morse theory is the extraordinary
built-in coherence of the results, whatever be the type of the struc-
ture, as shown in Figs 2 and 3, for instance, the intricate pattern of
a randomly selected void (i.e. an ascending 3-manifold) embedded
within the filamentary network (i.e. ascending 1-manifolds) of the
cosmic web in the same simulation as previously shown in Fig. 2.
The location of the void within the slice is displayed in panel (b),
each coloured square standing for a critical point (see legend). In
the zoomed-in panels [panels (c) and (d)], the surface of the void
has been shaded according to the logarithm of the density, show-
ing how the DMC correctly traces the filamentary structure at the
interface of the ascending 3-manifolds, as expected in the Morse
theory.5 Similarly, the neat relationship between a detected void and
a wall structure on its surface (i.e. an ascending 2-manifold) in a
100 h−1 Mpc large N-body simulation is displayed in Fig. 3.

Let us finally address a straightforward question: to what extent
does DisPerSE manage to grasp the main features of the cosmic web
with relatively sparse samples? Fig. 4 illustrates this query while
comparing the filaments computed from two subsamples of varying
resolution with a 250 h−3 Mpc3 large cosmological simulation with
5123 particles (namely 643-particle and 1283-particle subsamples,
respectively). From this figure, it seems that indeed the features
which are identified in the sparser sample are real, since they are
also found in the more densely sampled catalogue. There seems to
be some encouraging level of convergence between the two sets of
critical lines.

5 The slight shift in the position between the surface of the void and the
filament is due to the fact that we smoothed the filaments four times (see
Paper I).

2.3 Persistent peak identification

From visual inspection, it therefore seems relatively clear that the
technique developed in this paper is able to correctly decompose the
cosmic web into simpler objects of astrophysical interest. However,
the approach is based on one fundamental assumption, which is
that the ascending and descending manifolds of the Morse theory,
each associated to a specific type of critical point, are representative
of the voids, filaments, walls and haloes. While the astrophysical
nature of a filament or a wall is not defined very precisely, but is
rather understood intuitively, this is not the case of a dark matter
halo, for instance, which is supposed to be a gravitationally bound
structure and the fact that the persistent maxima of the density
field correctly identify the gravitationally bound structures is not
established. We check this assumption by comparing the distribu-
tion of dark matter haloes identified by a simple FOF technique
(see, for instance, Summers et al. 1995) in a 100 h−3 Mpc3, 5123-
particle �CDM simulation to the persistence diagram in the same
simulation, as illustrated in Fig. 5.

In this figure, the probability distribution function (PDF) of the
persistence pairs6 of type 2 (i.e. the maxima–1-saddle points pairs)
measured in a 1283-particle subsample is displayed in the density–
density plane, the horizontal axis corresponding to the density of
the 1-saddle point and the vertical one to that of the maximum.
The green line therefore represents the 0-persistence limit, while
the oblique white dashed and dotted lines delimit the 4 and 5σ

thresholds, respectively. In order to compare this distribution to that
of the astrophysical dark matter haloes, each of them is also repre-
sented as a disc with the coordinates that of the persistence pair of
its most-dense particle (the densest particle within a halo is neces-
sarily a local maximum). Each halo was identified using a standard
linking-length parameter of one-fifth of the average interparticu-
lar distance and the red discs represent the haloes with mass M >

73.8 × 1010 M� (i.e. with more than 1280 particles in the initial
simulation or 20 particles in a 1283-particle subsample), while the
green ones represent the haloes with mass M > 590.4 × 1010 M�
(i.e. with more than 10 240 particles in the initial simulation
or 1280 particles in a 1283-particle subsample). It is a very
striking result how well the population of dark matter haloes is
localized in the persistence diagram. While lighter ones (red discs)
mostly correspond to maxima with the persistence ratio higher than
4σ and overdensity ρ/ρ0 > 4 × 103; the heavier ones lie in the
zone with the persistence ratio higher than 5σ and overdensity
ρ/ρ0 > 3.2 × 104.

These results mean that the persistence selection associated to a
global overdensity threshold is naturally (i.e. without any specific
qualibration) a very good halo finder, which is quite encouraging,
and validates our initial assumption on the relationship between the
persistent topological features and the astrophysical components
of the cosmic web. This is illustrated in Fig. 6 where each dark
matter halo with mass M > 73.8 × 1010 M� (i.e. the red discs
of Fig. 5) is coloured in blue. Once again, it is clear in the middle
panel that all haloes along large filaments are correctly linked by the
DMC. We also remark that the DMC and persistence pairs contain
unexploited information of the topology as our algorithm explicitly
identifies the k-cycles as sequences of critical points associated to
persistence pairs (see Paper I). For instance, each persistence pair

6 As in Section 4, each pair is represented by a point with coordinates
the density of each critical point within the pair, see that section for more
explanations.
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Figure 2. The arcs of the DMC (i.e. the filaments) and an ascending 3-manifold (i.e. a void) at a significance level of 5σ in the same distribution as that of
Fig. 1 (a 250 × 250 × 20 h−1 Mpc slice of a 5123-particle and 250 h−3 Mpc3 large cosmological simulation). The density distribution is represented using all
available particles within the simulation [panel (a)], while the DMC was computed using a 1283-particle subsample. The two lower panels [panels (c) and (d)]
show a zoom-in on the upper panels at the location of the randomly selected void [see panel (b)]. On these figures, the maxima, 1-saddle points, 2-saddle points
and minima are represented as the red, yellow, green and blue square, respectively, and the arcs as well as the manifold are shaded according to the log of the
density. Note in panel (d) how the maxima, saddle points and path of the filaments correspond to the crests of the 2D density field measured on the surface of
the void. This particularly emphasizes the coherence of the detection of objects of different nature.
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390 T. Sousbie, C. Pichon and H. Kawahara

Figure 3. An ascending 2-manifold (i.e. blue 2D wall) and an ascending 3-manifold (i.e. green 3D void) identified in a 5123-particle, 100 h−1 Mpc �CDM
simulation. The manifolds were computed from a 643-particle subsample.

associated to a halo corresponds to a 0-cycle that defines a principal
filament, as shown on the bottom panel, where only the filaments
corresponding to persistence pairs whose maximum is a dark matter
halo are represented. Moreover, using the information contained in
the persistence pairs, one basically obtains a hierarchical structure
finder that is able to identify substructures not only within clusters,
but also within filaments, walls and voids.

3 OUR UNIVERSE: THE SDSS CATALOGUE

Let us now illustrate a few prospective measurements of the fila-
mentary structure of the actual galaxy distribution in the Universe.

The ultimate goal of such measurements is to allow a complete and
precise characterization of the properties of the filamentary structure
of the galaxy distribution by measuring their topological properties,
such as the Betti number and Euler characteristics, and modelling
the geometrical characteristics of the voids, walls and filaments
(i.e. their total length, number, the number of filaments per galaxy
cluster, etc.). Such a task is rather challenging, as it requires the
construction of realistic mock observations from N-body simula-
tions to assess the influence of observational biases and distortions;
it also requires a lot of care in the handling of the observational
data themselves (for instance, by taking into account the complex
survey geometry, among other difficulties). In this paper, we focus
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Figure 4. The filamentary distribution above a persistence level of 4σ in
a 250 × 250 × 20 h−1 Mpc slice of a 5123-particle, 250 h−3 Mpc3 large
cosmological simulation. The red segments in the top and middle panels
correspond to the segments of the Delaunay tessellation of a 1283- and
643-particle subsample, on which the corresponding filaments have been
computed. In the bottom panel, the thick white filaments correspond to the
643-particle subsample, while the blue thin filaments were computed on the
1283-particle subsample. This figure clearly demonstrates that DisPerSE is
able to grasp the main features of the cosmic web with a relatively sparse
sample.

Figure 5. Distribution of the persistence pairs of the highest-density par-
ticles within each dark matter halo of mass M > 74 × 1010 M� (red) and
M > 590 × 1010 M� (green) in a 1283-particle subsample of a 100 h−1 Mpc
large �CDM dark matter simulation. The density of the lowest critical point
in a persistence pair is represented by its X-coordinate, while the density
of its highest critical point is shown by its Y-coordinate [i.e. a point with
coordinate (ρx, ρy) represents a persistence pair whose critical points have
the corresponding densities]. The persistence diagram of maxima–1-saddle
points pairs with the persistence larger than 3σ is shown in the background.
The horizontal dashed and dotted lines correspond to overdensity levels of
4 × 103 and 3.2 × 104, respectively, and the oblique lines correspond to the
persistence levels of ∼4 and ∼5σ , respectively.

on convincing the reader that the method we introduced in Paper
I is particularly suited to such a task by showing how easily and
efficiently it can be applied to a real galaxy catalogue. We postpone
the full investigation to a future paper.

3.1 The cosmic web in the SDSS

For that purpose, we use SDSS DR7 data (Abazajian et al. 2009)
and in particular the LSS subsample called the dr72bright0 sam-
ple of the New York University Value Added Catalogue (Blanton
et al. 2005), which is made of a spectroscopic sample of galaxies
with u-, g-, r-, i-, z-band (K-corrected) absolute magnitudes, an
r-band apparent magnitude mr, redshifts and information on the
mask of the survey. In that sample, the spectroscopic galaxies are
originally selected under the conditions that 10.0 ≤ mr ≤ 17.6 and
0.001 ≤ z ≤ 0.5, but we further cut the sample for the purpose of
our tests, restraining it to the galaxies with z ≤ 0.26 and 100◦ ≤
RA ≤ 280◦, which removes the three thin stripes in the Southern
Galactic hemisphere. The resulting angular distribution, containing
515 458 galaxies out of 567 759 in the original sample, is displayed
in Fig. 7.

In order to compute the DMC of the observed galaxy distribution,
we will use the mirror-type boundary conditions as introduced in
Paper I. This type of boundary conditions normally apply to dis-
tributions enclosed within parallelepiped boxes, which is not the
case here. In the simple case of a box-like geometry, the particles
within a given distance of the faces are mirrored and any particle
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392 T. Sousbie, C. Pichon and H. Kawahara

Figure 6. Distribution of the main filaments of FOF haloes with mass M >

73.8 1010 M� in a 20 h−1 Mpc thick slice of a 5123-particle, 100 h−3 Mpc3

�CDM dark matter simulation. The filaments were computed from a 1283-
particle subsample. Note that many filaments are linked to haloes outside
the slice, giving the false impression to end for no reason.

Figure 7. Angular distribution of the 515 458 galaxies corresponding to
a subsample of the SDSS DR7 galaxy catalogue that we use in our tests
(see the main text for the selection criterion). The 66 608 red galaxies are
those detected as being on the boundary of the distribution using the method
described in the main text. Note that some regions were not fully scanned
and exhibit a series of thin empty parallel stripes, but we simply ignore that
fact when computing the boundaries.

outside the initial box or whose DTFE density may be affected by
the content of the exterior of the box is tagged as a boundary parti-
cle. As the geometry of the SDSS catalogue is complex, we simply
enclose it within a slightly larger box, fill the empty regions with
a low-density random distribution of particles and then mirror the
boundaries. The mirrored particles and the random ones are tagged
and we then identify the boundaries of the galaxy distribution and
tag as well those galaxies whose DTFE density may depend on
the distribution outside the observational region. Although the cata-
logue does contain precise information about the mask of the survey,
we prefer to use a simple though automatic method to identify the
boundaries of the galaxy distribution. This method simply samples
the angular galaxy distribution in the RA–Dec. plane over a regular
grid of 1◦ × 1◦ pixels and identifies the galaxies on the boundary
of the catalogue as those that belong to a pixel with at least one
completely empty neighbour. Note that such a method presents the
advantage of being generic, as it does not presume any previous
knowledge of the mask, and could therefore be applied directly to
other galaxy catalogues. The resulting boundary galaxies are rep-
resented in red in Fig. 7. Finally, we also tag those galaxies with
redshifts z ≤ 0.02 and z ≥ 0.2 as the boundary and proceed with
the computation of the DMC, as in the regular mirror-type bound-
ary condition case. A slice of the Delaunay tessellation of the final
distribution is displayed in Fig. 8.

The resulting DMC covers the 440 950 galaxies in black in Fig. 7
by obeying the additional condition 0.02 ≤ z ≤ 0.2 (or equivalently
85 ≤ d ≤ 860 h−1 Mpc) and it is displayed in Figs 9–11. Fig. 9
illustrates the influence of the significance level on the measured
filamentary network. In this figure, the filaments (i.e. the ascending
1-manifolds or arcs) within a ∼40 h−1 Mpc slice of the Delaunay
tessellations are shown at the significance levels of 3, 4 and 5σ

C© 2011 The Authors, MNRAS 414, 384–403
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/414/1/384/1091264 by guest on 22 April 2022
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Figure 8. A slice within the Delaunay tessellation of the distribution used
to compute the DMC of the SDSS. The plain white contour delimits the
SDSS distribution (inside) and the randomly added low-density particles
that fill the void regions of the bounding box (outside). Any galaxy outside
the white dashed contours is considered as being on the boundary.

(from the top to bottom); it is quite striking how well more- or
less-significant filaments are accurately identified depending on the
value of the persistence ratio threshold. Note how already at a level
of 3σ the influence of the sampling noise has disappeared and in-
creasing this threshold results in the selection of apparently denser,
bigger and longer filaments. As the distant faint galaxies and the
nearby bright ones cannot be observed easily, the selection function
strongly depends on the distance and so does the sampling. It re-
flects in the shade of the Delaunay tessellation, which depends on
the logarithm of the density. From a theoretical point of view, the
fact that the absolute value of the density is multiplied by the selec-
tion function should not affect the detection of the filaments as long
as the value of the selection function does not vary much from the
typical scale of a filament (or in other words, as long as the topology
of the distribution remains unchanged). The measured persistence
ratio of persistence pairs may be slightly affected though, when the
two critical points in the pair are located at different distances, but
this does not seem to have much importance in the present case.
A more significant effect results from the scale-adaptive nature of
the DTFE. Because the quality of the sampling decreases with the
distance, comparatively larger scale filaments are identified as the
distance increases and to be able to identify comparable filaments
independently of the distance from the observer, one would there-
fore probably have to resort to volume-limited samples.

The filamentary structure at the 5σ significance level is also
shown over larger scales in Fig. 10 and within a 60 h−1 Mpc slice
where each galaxy is represented by a point in Fig. 11. Three voids
(i.e. ascending 3-manifolds) have been randomly selected within the
distribution of Fig. 10 and are displayed in the bottom panel [panel
(d)], showing the intricate relationship between the voids and the
filamentary structure that crawls at their surface. As previously ob-
served in simulations, it can be seen in the middle right-hand panel
of Fig. 11 that those 3D filaments also trace the 2D filamentary
structure at the surface of the voids as expected from the Morse the-
ory. Note that it is only because they have been smoothed over four

Figure 9. From the top to bottom, the filamentary structure in a
∼40 h−1 Mpc thick slice of the SDSS DR7 galaxy catalogue at a signifi-
cance level of 3, 4 and 5σ , respectively. The distribution is represented by
the non-bounding subset (see main text) of the Delaunay tessellation used
to compute the DMC, shaded according to the logarithm of the density. The
depth of a filament can be judged by how dimmed its shade is. Note that
filaments that seem to stop for no apparent reason actually enter or leave the
slice.
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394 T. Sousbie, C. Pichon and H. Kawahara

Figure 10. The detected filamentary structure at a significance level of 5σ and three voids within a portion of the SDSS DR7. Note that only the upper half of
the distribution shown in Fig. 7 is displayed here for clarity reasons. The colour of the filaments corresponds to the logarithm of the density field.

segments to look more appealing and to avoid rendering problems
that the filaments do not lie precisely on the surface of the voids. It
is in fact a built-in feature of the DMC and in particular of our im-
plementation that all the different types of identified cosmological
structures do form a coherent picture, whatever be the properties of

the initial discrete sample. This allows for interesting features, such
as making possible the count of the number of filaments that belong
to a common maximum by intersecting the ascending 1-manifolds
with the descending 3-manifolds. This is shown in Fig. 11 where the
colour of the filamentary structure corresponds to the index of the
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Persistent cosmic web – II: Illustrations 395

Figure 11. The filamentary structure (left-hand panel) and a void (right-hand panel) detected at a significance level of 5σ in the SDSS DR7. In order to
emphasize the filamentary structure, only a ∼60 h−1 Mpc thick flat slice of the distribution is displayed in each panel. The void surface is shaded according to
the log of the density field (middle right-hand panel), while the colour of each arc of the DMC tracing the filamentary structure depends on the index of the
maximum to which it is connected. Note that the foremost part of the voids in the middle and bottom right-hand panels protrudes from the slice, while
the filaments are trimmed to its surface. Given its shape, this void is in fact a good example of why we should identify filaments via a DMC rather than using
the Watershed technique, as it displays two strong ‘thin wings’ which would lead to the incorrect detection of spurious sets of boundaries.
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maximum it belongs to and individual filaments could be identified
the same way, as the two arcs of the DMC originating from a given
saddle point.

3.2 An ‘optically faint’ cluster at a filamentary junction

Because some dark matter haloes are sparsely populated and also
as a result of selection effects, classical methods, such as FOF, are
unable to detect them in the observed galaxy distribution. Such
‘optically faint’ groups and clusters may nevertheless present a
strong astrophysical interest: as they are by nature different from
the ‘regular’ haloes, one could, for instance, expect that they have
different formation history that needs to be understood. As they are
faint though, their properties are poorly assessed, but massive dark
matter haloes such as galaxy clusters or galaxy groups are believed
to form at intersections of two or several filaments, which can be
identified in the SDSS using DisPerSE. We demonstrate that this
is possible by enlightening the relationship between an X-ray halo
and its surrounding filamentary network as identified in the SDSS
catalogue (see Fig. 10b).

Because of the particular configuration of the filaments in the
region, we submitted an observation proposal to the X-ray satellite
Suzaku (Mitsuda et al. 2007), which was accepted. We show here the
results of this observation, but the analysis is presented in Kawahara
et al. (2011). The observational target was selected for being located
at the confluence of galaxy filaments and because one of those
filaments is both straight and aligned with the line of sight as shown
in Fig. 12 (see the yellow filament in the right-hand panel). While no

X-ray signal could be found within the ROSAT All Sky Survey, X-
ray signals emitted by the diffuse thermal gas were clearly observed
by the high-sensitivity detectors of Suzaku, unveiling the presence
of a dark matter halo as shown by the X-ray image reproduced in the
middle part of the left-hand panel of Fig. 12. It is remarkable that
there are no corresponding candidates in the 78 800 group catalogue
identified by Tago et al. (2010) using a modified FOF algorithm.
In fact, because the optically observable member galaxies are not
strongly clustered and their number is limited (N ∼ 10), regular
methods have high chances to miss them. It is also very difficult
to locate and identify particular filamentary configurations by eye
directly from the galaxy distribution using projections or even a
real-time 3D visualization. Using DisPerSE, we showed that it is
possible to easily identify such targets, which demonstrates the
complementarity of our approach with respect to one based on a
traditional halo finder.

4 SIGNIFICANCE OF THE TOPOLOGY
OF THE LARGE-SCALE STRUCTURE

As noted in Paper I, it is not an option to use the raw DMC as a tool
to assess the properties of the cosmic web. Hence, we showed there
how to simulate a topological simplification of the DTFE density
field so that the critical simplexes that were most probably acciden-
tally generated by the Poisson noise could practically be removed
from the DMC. This simplification is based on the persistence ratio
of critical point pairs (i.e. persistence pairs) and one must there-
fore decide a significance level s = nσ such that all persistence

Figure 12. Left-hand panel: an X-ray halo observed around an elliptical galaxy in the centre of a group at redshift z = 0.083 and located at the confluence of
several filaments. The colour map indicates the X-ray-combined image of CCD chips (XIS 0, 1 and 3), while the white dots stand for the SDSS spectroscopic
identified galaxies within 0.080 < z < 0.086. The filamentary structure in the surrounding region is shown by the coloured solid curves, extracted from the
filament catalogue shown in Fig. 10. Note that the colours (cyan, red and yellow) correspond to that of the filaments represented on the 3D view on the
right-hand panel. Right-hand panel: a 3D view of the configuration of the filaments around the observed region. The vertical axis corresponds to the line of
sight (the observer being upwards) and the box roughly encompasses the galaxies in the SDSS catalogue with coordinates 233◦ < Dec. < 243◦, 22◦ < RA <

32◦ and 0.075 < z < 0.092. The Delaunay tessellation of the galaxies, shaded according to the local density, is displayed to help visualize the filamentary
structure. The observational target is identified by a red square and is located at the intersection of the red cyan and yellow filaments, the last two being aligned
with the line of sight to a very good approximation. A movie is available for download at http://www.iap.fr/users/sousbie/
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pairs with lower significance (or equivalently a higher probability
to be generated by the Poisson noise) can be removed. We showed
in Paper I that, at least in the 2D case, such a method allows for
what seems to be a very efficient and natural simplification of the
DMC. We did not discuss, however, how to decide the value of
this particular threshold. This is particularly important though, and
especially in the context of the cosmic web, as our ultimate goal
is to assess physical properties of astrophysical objects identified
as features of the DMC (i.e. the haloes, filaments, walls and voids
of the matter distribution on cosmological scales in the Universe).
Imagine, for instance, one is interested in statistically measuring
the average number of filaments that branch on dark matter haloes.
If the threshold is too low, the measure will be equivalent to that
in a Gaussian random field because of the Poisson noise (see the
lower left-hand panel of fig. 13 of Paper I) and if it is too high, then
the risk is to systematically ignore weaker filaments (see the middle
right-hand panel of fig. 13 of Paper I).

4.1 Persistence diagrams

Fig. 13 shows the PDF of persistence diagrams (see Edelsbrunner
et al. 2000; Cohen-Steiner, Edelsbrunner & Harer 2007) computed

Figure 13. Persistence diagrams (i.e. the PDF of persistence pairs) in a
cosmological simulation and for the Gaussian random noise. Each pair Pi =
[pi, qi+1] of critical points of order i and i + 1 is considered as a point
with the coordinates [ρ(pi), ρ(qi+1)]/ρ0. The density of the lowest point in
the pair (or equivalently of that with the lowest critical index) corresponds
to the X-coordinate and that of the highest (or equivalently of that with
the highest critical index) corresponds to the Y-coordinate. The PDF was
computed from a 250 h−1 Mpc large �CDM simulation downsampled to
1283 particles, S128 (left-hand column), the same distribution with 1283

additional randomly located particles, S2×128
N (middle column) and a random

distribution of particles within the same volume, S128
R (right-hand column).

From the top to bottom, each line corresponds to a different type of a pair:
P0 (minima–2-saddle points), P1 (2-saddle points–1-saddle points) and P2

(1-saddle points–maxima), respectively. The green, purple-dashed and pink-
dashed lines correspond to the 0, 3 and 4σ persistence levels, respectively.

from the Delaunay tessellation of a 250 h−1 Mpc large, 5123-particle
�CDM simulation subsampled to 1283 particles (left-hand column;
hereinafter S128), the same distribution with an identical number of
particles added at random locations (middle column; hereinafter
S2×128

N ) and a completely random distribution of particles within
the same volume (right-hand column, hereinafter S128

R ). Plotting a
persistence diagram of a density distribution ρ basically consists in
representing each persistence pair Pi = [pi, qi+1], where pi and qi+1

are the critical points of order i and i + 1, respectively, as a point with
coordinates [ρ↓, ρ↑] = [ρ(pi), ρ(qi+1)]/ρ0, where ρ0 designates the
average density in the distribution.7 In Fig. 13, the pairs of type
P0, P1 and P2 are represented in the top, middle and bottom rows,
respectively. In those diagrams, the pairs with the null persistence
lie on the green line of equation ρ↑ = ρ↓ and the farther away from
this line a point is, the higher the persistence of its corresponding
persistence pair. The purple and pink dashed lines stand for the 3 and
4σ persistence, respectively. Recall that persistence pairs are pairs
of critical simplexes that correspond to the act of the creation and
destruction of a topological feature (i.e. component, loop, shell, etc.)
in the filtration of the Delaunay tessellation. This basically means
that each point in the diagram for P0-, P1- and P2-type pairs (i.e.
top, middle and bottom rows) stands for a filament, wall or void
that could be considered a physical object below the persistence
threshold of its representing pair but would not exist or be a part
of a larger, more persistent object at higher persistence threshold.
Filaments are represented by P0- and P1-type pairs (one needs a
filament to close a loop in the filtration), walls by P1-type pairs
only and voids by P1- and P2-type pairs. A highly persistent P0

pair, for instance, therefore represents a very significant filament
composed of many less-significant filaments, each represented by a
lower persistence P0 or P1 pair.

As expected, most persistence pairs in the random distribution
S128

R have a persistence ratio below 3σ (right-hand column). For-
tunately, the PDF of the persistence pairs in S128 is sufficiently
different from that in S128

R so that a reasonable fraction of them lie
above the 3σ and even the 4σ threshold (left-hand column). By
canceling all those pairs that lie below the 3 or 4σ line, it should
therefore seem reasonable to assume that only those topological
properties that were imprinted by the physical processes at work in
the simulation would be conserved. A good measure of the actual
influence of the Poisson noise on the distribution of the persistence
pairs in the underlying distribution can be gained from the exami-
nation of the middle column. The distribution S2×128

N was created by
adding a large number of randomly located particles to S128, result-
ing also in the creation of a very large number of spurious critical
points. One can see in the middle column that as a result the persis-
tence diagram tends to concentrate at a lower persistence ratio (i.e.
closer to the green line). This means that as expected those spurious
critical points mainly create low-persistence-ratio pairs which can
therefore be easily removed.

This observation is supported by Fig. 14, where the actual num-
ber of persistence pairs in the three distributions is displayed as
a function of the cutting threshold, whereas the number of critical
pairs of all sorts and with the significance higher than 0σ is higher in
S2×128

N (dot–dashed curves) than in S128 (plain curves); this number
decreases comparatively faster with the increase in the persistence
selection threshold. For low-persistence thresholds (i.e. up to ∼2σ ),
the number of persistence pairs in S2×128

N actually decreases as fast

7 In the following, the term density will generally refer to the normalized
density ρ/ρ0 so that different distributions can be fairly compared.
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Figure 14. Number of persistence pairs of type k as a function of the sig-
nificance threshold Sk(r) (in units of σ ) in a 250 h−1 Mpc large �CDM
simulation downsampled to 1283 particles, S128 (filled curves), the same
distribution with 1283 additional randomly located particles, S2×128

N (dot–
dashed curve) and a random distribution of particles within the same volume,
S128

R (dotted curves). The blue, green and red colours correspond to persis-
tence pairs of type 0, 1 and 2, respectively (see Fig. 13 for the corresponding
persistence diagrams).

as that in the random distribution S128
R (dotted curves). In the case of

pairs of type P1 and P2 (2-saddle point–1-saddle point pairs, green
curves, and 1-saddle point–maxima pairs, red curves, respectively),
this tendency actually changes between 2–3σ and the cancellation
rates in S2×128

N and S128 become relatively similar above 3σ . This
strongly suggests that most of the spurious persistence pairs in S2×128

N

do in fact have a persistence ratio lower than 3σ and that above that
threshold; the remaining persistence pairs have a distribution sim-
ilar to that in the original N-body simulation S128. The persistence
pairs of type 0 in S2×128

N (minima–2-saddle point pairs, blue filled
curves) exhibit a slightly different behaviour though, as their num-
ber seems to vary more or less in accordance with the persistence
threshold in S2×128

N and S128
R (blue dotted curve). This number never-

theless always remains higher in S2×128
N and there are proportionally

more high-persistence pairs in S2×128
N than in S128

R . This suggests that
the number of minima resulting from the physical processes at stake
in the void formation is relatively low compared to that due to the
Poisson noise, the reason for this being that the cosmological voids’
minima have an intrinsically lower density because of the nature of
voids. While the Poisson noise creates spurious minima over a wide
range of densities, the voids’ minima only span the lower densities
and therefore stretch over comparatively larger scales due to DTFE
properties (resolution being inversely proportional to the density).
The addition of random particles in S2×128

N particularly affects the
wider regions around minima, therefore increasing their density
and lowering the persistence ratio of the corresponding persistence
pairs, hence the lack of high-significance pairs of type 0 at S(r) >

5σ (see blue curves) in S2×128
N compared to S128. Note, however, that

this does not only mean that the physically created persistence pairs
are destroyed by the Poisson noise in S2×128

N , but also mean that they
are shifted to lower persistence and that the persistence threshold
should not be chosen too high if one wants to retrieve the full DMC

(which is not the case if one is only interested in the filaments).
Cosmologically speaking, it basically reflects the fact that clusters
and filaments are much stronger topological features in cosmolog-
ical density fields than in a random particle distribution, whereas
the voids, for instance, are not as significantly more pronounced in
cosmological density fields as in a random particle distribution.

Two complementary measures of the evolution of the topologi-
cal properties in S128 and S2×128

N with the persistence threshold are
presented in Fig. 15: the PDF of the critical points in Fig. 15(a) and
the Betti numbers and Euler characteristics in Fig. 15(b).

4.2 Critical points

Let us consider Fig. 15(a) first. In that figure, the PDF of the density
at vertices (i.e. the particles in the studied distribution) is shown
by the dark black bold curve and it is striking how the PDF of the
critical points tends to follow it, especially at low persistence (outer
curves): the more the k-simplexes at a given density level, the higher
the number of detected critical points of order k. This is an expected
result when the Poisson noise dominates as it affects indifferently
any scales, but it is not desirable though as the filamentary structure
of the cosmic web is an intrinsic property which should not depend
on the properties of a particular sampling technique. One would in
fact rather expect the PDF of the critical points to follow the PDF of
the volume-weighted density, or equivalently as we use the DTFE,
of the number of vertices at a given density in the tessellation.8 The
black bold dashed curve traces the volume-weighted PDF of the
density at vertices. It is clear from Fig. 15(a) that in the case of the
minima, 1-saddle-point and 2-saddle-point PDFs, the bias towards
higher better sampled densities due to the DTFE is progressively
wiped out with the increasing persistence ratio threshold and al-
most disappears above a significance level threshold of ∼3σ (see
blue, green and purple curves). The PDF of the maxima though (red
curves) exhibits an opposite tendency, as their PDF concentrates at
higher densities with increasing persistence ratio thresholds. This
actually reflects the nature of the distribution of the dark matter
over large scales in the universe. In fact, most maxima are expected
to be found within gravitationally bound structures undergoing the
non-linear regime (i.e. dark matter haloes), which therefore exhibits
densities several order of magnitude higher than the average density
and with very steep gradients. (Note that this fact also prevents them
from being affected by the Poisson noise too much.) Those regions,
although numerous, represent only a very small fraction of the total
volume, as reflected by the discrepancy between the PDF of the
maxima at high-persistence ratio and the volume-weighted PDF of
the density. To confirm these hypotheses, we traced in Figs 15(a)
and (b) the blue and red vertical dotted lines which mark the charac-
teristic average underdensity of a void in a Einstein–de Sitter model,
ρ/ρ0 ≤ 0.2 (see Blumenthal et al. 1992; Sheth & van de Weygaert
2004; Neyrinck 2008), and the typical critical overdensity above
which gravitationally bound structures are identified using a FOF
algorithm, ρ/ρ0 ≥ 125 (Summers et al. 1995), respectively. While
this is not clear at low-persistence thresholds because of the Pois-
son noise, all maxima (minima) belonging to persistence pairs with
the persistence ratio greater than ∼3σ have densities above (below)
those critical thresholds, while the two types of saddle points lie

8 In the case of the DTFE, the density of a sample particle is defined as the
inverse volume of its dual Voronoi cell and the volume it occupies is also
the volume of this cell, which implies that the PDF of the volume-weighted
density and that of the number of sample particles are identical.
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Figure 15. Evolution of the topological properties in a 5123-particle, 250 h−1 Mpc dark matter simulation downsampled to 1283 particles, S128, for increasing
persistence levels (left-hand columns in each figure) and in the same distribution with 1283 additional randomly located particles, S2×128

N (right-hand columns
in each figure). In each panel, the persistence selection level ranges from 0σ for the outer coloured curve to 6σ for the inner curve. Left-hand panel: the PDF of
critical points of type 0 (top panel) up to 3 (bottom panel) as a function of their overdensity ρ/ρ0. The black curve is the PDF of the vertices in the tessellation,
while the dashed curve stands for the (volume-weighted) PDF of the overdensity ρ/ρ0. The blue and red vertical dotted lines emphasize the critical level rv =
ρv/ρ0 = 0.2 (rp = ρp/ρ0 = 125) below (above) which a void (a peak) may be considered physically significant. Right-hand panel: from the top to bottom, the
Betti numbers, β2, β1 and β0, and the Euler characteristic χ of the excursion set with the overdensity greater than ρ/ρ0.

within those limits. This means that the detected persistent maxima
and minima correspond to physically meaningful objects, which
strongly supports the pertinence of using the persistence-based can-
cellation of a Morse–Smale complex to identify the characteristic
components of the cosmic web, such as cosmic voids and filaments.

4.3 Discrete topological invariants

The Betti numbers and Euler characteristics represented in
Fig. 15(b) are slightly more involved topological analysis tools than
the PDF of critical points (see Paper I for a more formal definition
of the Betti numbers and a simple example of their computation).

The kth Betti number βk counts the number of k-cycles in excursion
sets as a function of the density threshold of the excursion. Within
the context of the 3D cosmological matter distribution, there are
three Betti numbers that count the number of holes or 2-cycles
(β2), the number of tunnels or 1-cycles (β1) and the number of
distinct components or 0-cycles (β0) enclosed in the set of points
with the density threshold larger than the aforementioned density
threshold. As this threshold decreases, new k-cycles may be created
or destroyed, therefore increasing or decreasing the value of the
corresponding Betti numbers. The value of the Betti numbers as a
function of the density threshold reflects the global topology of the
field (i.e. the way it connects as a function of the density threshold)
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and it is therefore very instructive to compare the Betti numbers of
two distributions to appreciate how similar or distinct they may be
from a topological point of view (see also van de Weygaert et al.
2010 for a presentation of the Betti number interpretation in the con-
text of the cosmic web). For that reason, we plotted in Fig. 15(b),
from the top to bottom, the values of β2, β1, β0 and the Euler char-
acteristic χ (a topological invariant, computed as the alternate sum
of the Betti numbers) as measured in S128 and S2×128

N (left-hand and
right-hand columns, respectively). As noted in Paper I, the notions
of persistence pairs and Betti numbers are intimately related: the
Betti numbers were readily computed from the persistence pairs, the
positive critical point of order k + 1 increasing βk when it enters the
excursion and the negative critical point of order k decreasing βk.
The distribution S2×128

N was obtained by adding an equal number of
randomly distributed particles to the particles in the N-body simu-
lations S128, and the Betti numbers of the two distributions should
therefore give some insight into how the topology is affected by
the Poisson noise. Note that the presence of the Poisson noise in
S2×128

N affects the PDF of the sampled density by slightly downscal-
ing it (numerous random particles land in large-scale void regions,
increasing their densities, while few of them affect the high-density
regions, therefore lowering their density contrast, see the black plain
curves in Fig. 15). When comparing Betti numbers in the two distri-
butions, one would rather want to know whether the same structures
(i.e. void, tunnel, component, etc.) exist in both distributions, though
they exist at slightly different densities. It is therefore more impor-
tant to compare the general shape and amplitude of the Betti number
in both distributions than their value at a precise density threshold.
Inspecting Fig. 15(b), it is clear that random particles mainly affect
the topological properties of the field around the average density
ρ0, Betti numbers differing by about an order of magnitude in S128

(left-hand panel) and in S2×128
N (right-hand panel) at a level around

ρ/ρ0 = 1. The situation largely improves after the cancellation of
the lower persistence pairs though and it is striking how the shape
and amplitude of the Betti numbers at a level of the persistence ratio
of 3 ∼ 4σ become similar. Note also that β0 is the Betti number
that is the least affected by the Poisson noise and for the persistence
higher than 3σ , the values are almost identical in S128 and S2×128

N .
This means that individual components in the filtration are created
and merged in a very similar way independent of the presence of
the Poisson noise, which does not affect the filamentary structure
of S128. It is therefore reasonable to trust the filaments detected at
persistence levels higher than ∼3σ as being true topological proper-
ties of the underlying distribution. One should none the less remain
cautious with the identification of voids and walls. In fact, although
the topology of the 1-cycles and 2-cycles seems to be correctly re-
covered in S2×128

N at a significance level of 3 ∼ 4σ , this is not the
case anymore at higher levels and one should be careful not to set
the threshold too high. In fact, the cosmological voids and walls are
more affected by the Poisson noise as they usually live at densities
around ρ/ρ0 = 1 where the influence of the Poisson noise is the
maximum and the corresponding persistence pairs have statistically
lower persistence ratios than that associated to filaments.

5 CONCLUSION

In this paper, we applied DisPerSE (Paper I) to realistic 3D dark
matter cosmological simulations and observed redshift catalogues
from the SDSS DR7. We showed that DisPerSE traces very well the
observed filaments, walls and voids seen both in simulations and in
observations. In either setting, filaments are shown to connect on
to haloes, outskirt walls, which circumvent voids, as is topologi-

cally required by the Morse theory. Indeed, DisPerSE warrants that
all the well-known and extensively studied mathematical properties
of the Morse theory are ensured by the construction at the mesh
level. As illustrated in Section 3, DisPerSE assumes nothing about
the geometry of the survey or its homogeneity and yields a natu-
ral (topologically motivated) self-consistent criterion for selecting
the significance level of the identified structures. We demonstrated
that the extraction is possible even for very sparsely sampled point
processes, as a function of the persistence ratio (a measure of the sig-
nificance of topological connections between critical points), which
allows us to account consistently for the shot noise of real surveys.
The corresponding recovered cosmic web is also ‘persistent’ in
as much as it is robust because it relies on intrinsic topological
features of the underlying density field. Hence, we can now trace
precisely the locus of filaments, walls and voids from such samples
and assess the confidence of the post-processed sets as a function
of this threshold, which can be expressed relative to the expected
amplitude of the shot noise. DisPerSE has also been shown to be
robust as it is able to recover consistent structures even when the
sampling of initially well-resolved catalogues is drastically down-
graded. Within a cosmic framework, this criterion was shown to
level with a FOF structure finder for the identifications of peaks,
while DisPerSE also identifies the connected filaments and quanti-
tatively produces on-the-fly the full set of Betti numbers (number of
holes, tunnels, connected components, etc.) directly from the par-
ticles, as a function of the persistence threshold (as these directly
follow from the persistence pairs). We investigated the evolution
of the critical points, the Betti numbers and the Euler character-
istic as a function of the persistence ratio: it illustrates the biases
involved in filtering low-persistence ratios. For dark matter simula-
tions, this criterion was shown to be sufficient even if one particle
out of two is noise, when the persistence ratio is set to 3σ or more.
We also applied this procedure to the localization of a specific fila-
mentary configuration and observed an ‘optically faint’ cluster at a
galaxy filament junction, identified in the SDSS catalogue. An X-
ray counterpart could indeed be observed (Kawahara et al. 2011) by
the X-ray satellite Suzaku. All these results are very encouraging for
future investigations using DisPerSE, for searching galaxy clusters,
galaxy groups and missing baryons of the universe in particular, and
for the study of the LSS in general.
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APPENDIX A: VORONOI KINEMATIC
MODELS AS A TEST CASE FOR
MORSE–SMALE COMPLEX IDENTIFICATION

Assessing the quality of the identification of the filamentary struc-
tures requires the previous knowledge of their location. One is
therefore tempted to try building an artificial distribution from an
ad hoc Morse–Smale complex, preferentially with properties similar
to that of a cosmological density field. This method was adopted in
Aragón-Calvo et al. (2010b), where the authors use a Voronoi kine-
matic model (van de Weygaert 2002). The principle of the Voronoi
kinematic model is to identify the voids, walls, filaments and clus-
ters to the cells, faces, edges and vertices of the Voronoi tessellation.
In practice, randomly distributed particles are moved away from the
nuclei of the Voronoi cells following a universal expansion rate and
their displacement being constrained to the faces, edges and finally
vertices as they reach them. This results in a distribution of particles
where each is said to be a void, wall, filament or cluster particle
depending on weather they belong to a cell, face, edge or vertex of
a Voronoi cell when the simulation is stopped.

We argue that using such a model to quantify the quality of the
Morse–Smale complex identification is not as relevant as one would
think, mainly because it is too idealized, topologically speaking. In
fact, it is a built-in property of the Voronoi kinematic models that
all the cosmological structures overlap neatly: maxima (i.e. voronoi
vertices) are located at the intersection of filaments (i.e. Voronoi
segments) that always intersect with a suitable angle, those filaments
are themselves by definition located at the intersection of at least
three voids (i.e. voronoi cells), and each pair of a neighbouring
void has exactly one Voronoi face in common, neatly defining the
walls. As was shown in Paper I, density functions extracted from
actual data sets are in fact quite different, as they do not comply
so easily to Morse conditions, in particular when measured from
cosmological simulations or observational galaxy catalogues. In that
case, and as clearly shown in Paper I (see appendix 1), filaments
may (and actually often do) merge before reaching a maximum, two
apparently neighbouring voids (down to the resolution limits) do not
necessarily share a common face, and filaments are not necessarily
at the intersection of at least three voids (once again, down to
the resolution limit). The nature of the Voronoi kinematic model
is therefore such that it avoids all the difficulty in identifying the
Morse–Smale complex of realistic data sets. It might be possible to
build more sophisticated Voronoi Models that would, for instance,
mimic the structure mergers that occur along the course of the
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evolution of the large-scale matter distribution in the Universe, but
this is clearly out of the scope of this paper.

APPENDIX B: THE ALGORITHM
IN A NUTSHELL

Let us summarize the basis of the algorithm introduced in Paper I,
while connecting the corresponding jargon to the more intuitive lan-
guage of astrophysical data processing. For the purpose of the skele-
ton extraction, a simplicial complex (the tessellation) is computed
from a discrete distribution (galaxy catalogue, N-body simulation,
etc.) using a Delaunay tessellation. A density ρ is assigned to each
galaxy using the DTFE [roughly speaking, the density at a vertex
is proportional to the inverse volume of its dual Voronoi cell, see
Schaap & van de Weygaert (2000) and van de Weygaert & Schaap
(2009)]. A discrete Morse function (a relabelling of all elements
of the tessellation) is then defined by attributing a properly chosen
value to each simplex in the complex (i.e. the segments, facets and
tetrahedron of the tessellation). From this discrete function, we then
compute the discrete gradient and deduce the corresponding DMC
(Forman 2002). The DMC (the set of critical points connected by
arcs, quads, crystals, etc.) is used as the link between the topological
and geometrical properties of the density field. Its critical points to-
gether with their ascending and descending manifolds (the ‘critical’
sets) are identified to the peaks, filaments, walls and voids of the
density field. The DMC is then filtered using the persistence theory.
For that purpose, we consider the filtration (the discrete counter-
part of the density-sorted-level sets) of the tessellation according
to the values of the discrete Morse function and use it to compute
persistence pairs of critical points (pairs of critical points that cre-
ate and destroy a given topological feature as the filtration grows).
The DMC is simplified by cancelling the pairs that are likely to be
generated by noise. This is achieved by computing the PDF of the
persistence ratio (i.e. the ratio of the densities at the connected pair)
of all types of pairs in scale-invariant Gaussian random fields and
cancelling the pairs with a persistence ratio whose probability is
lower than a certain level.

APPENDIX C: TERMINOLOGY

Arc. An arc is a 1-cell: an integral line (or a V-path in the discrete
theory) whose origin and destinations are critical points. The arcs
of the Morse–Smale complex connect two critical points of order
difference 1 (i.e. in 2D, a minimum and a saddle point or a maximum
and a saddle point).

n-cell. A n-cell is a region of space of dimension n such that all
the integral lines in the n-cell have a common origin and destination.
The n-cells basically partition space into regions of uniform gradient
flow.

Coface. A coface of a k-simplex αk is any p-simplex βp, with p ≥
q, such that αk is a face of βp. In 3D, the cofaces of a segment (i.e.
a 1-simplex) are any triangle or tetrahedron (i.e. 2- or 3-simplex)
whose set of summits (i.e. vertices) contains the two vertices at the
extremities of the segment, as well as the segment itself.

Cofacet. A cofacet of a k-simplex αk is a coface βk+1 of αk with
dimension k + 1. Equivalently, αk is a facet of βk+1.

Critical point of order k. For a smooth function f , a critical point
of order k is a point such that the gradient of f is null and the Hessian
(matrix of second derivatives) has exactly k negative eigenvalues.
In 2D, a minimum, saddle point and maximum are critical points of
orders 0, 1 and 3, respectively.

Critical k-simplex. A critical k-simplex is the equivalent in the
discrete Morse theory of the critical point of order k in its smooth
counterpart. Note that in 2D, the equivalent of a minimum is a
critical vertex (0-simplex), a saddle point is a critical segment (1-
simplex) and a maximum is a critical triangle (2-simplex).

Crystal]. A crystal is a 3-cell: a 3D region typically delimited by
six quads and 12 arcs, within which all the integral lines (or V-paths
in the discrete case) have identical origin and destinations.

k-cycle. A k-cycle in a simplicial complex corresponds to a k-
dimensionnal topological feature. In 3D, 0-cycles correspond to
independent components, 1-cycles to loops and 2-cycles to shells.

Discrete gradient. A discrete gradient of a discrete Morse–Smale
function f defined over a simplicial complex K-pair simplexes
of K. Within a gradient pair, the simplex with a lower value is
called the tail and the other the head, and any unpaired simplex is
critical.

DMC. The DMC is the equivalent of the Morse–Smale complex
applied to simplicial complexes.

Discrete Morse-Smale function. A discrete Morse–Smale func-
tion f defined over a simplicial complex K associates a real value
f (σ k) to each simplex σ k ∈ K.

Excursion set. An excursion set of a function ρ(x) is the set of
points for which ρ(x) ≥ ρ0 (see also the sublevel set).

Face. A face of a k-simplex αk is any p-simplex βp with p ≤ q,
such that all vertices of βp are also vertices of αk. In 3D, the faces
of a 3-simplex (i.e. a tetrahedron) are the tetrahedron itself, the four
triangles that form its boundaries, the six segments that form its
edges and its four summits (i.e. vertices).

Facet. A facet of a k-simplex αk is a face βk−1 of αk with dimen-
sion k − 1. The facets of a 3-simplex (i.e. a tetrahedron) are the four
triangles (i.e. 2-simplexes) that form its boundaries.

Filtration. A filtration of a simplicial complex K is a growing
sequence of subcomplexes Ki of K, such that each Ki is also a
simplicial complex. If the different Ki are defined by a discrete
function Fρ as the set of simplexes of K with values Fρ(σ ) less
than or equal to a given threshold, then a filtration can be though as
the discrete equivalent of a sequence of growing sublevel sets of a
smooth function.

Gradient pair/arrow. A gradient pair or arrow is a set of two
simplexes, one being the facet of the other, and such that they are
paired within a discrete gradient. Within a gradient pair, the simplex
with the lower value is called the tail and the other the head.

Integral line. An integral line of a scalar function ρ(x) is a curve
whose tangent vector agrees with the gradient of ρ(x).

Level set/sublevel set. A level set, also called isocontour, of a
function ρ(x) at level ρ0 is the set of points such that ρ(x) = ρ0. The
corresponding sublevel set is the set of points such that ρ(x) ≤ ρ0.

Ascending/descending p-manifold. Within a space of dimension
d, an ascending p-manifold is the set of points from which, following
minus the gradient, one reaches a given critical point of order d − p.
A descending p-manifold is the set of points from which, following
the gradient, one reaches a given critical point of order p. For
instance, ascending 1-manifolds in 3D can be associated to the
filaments and ascending 3-manifolds describes the voids.

Morse function. A Morse function is a continuous, twice-
differentiable smooth function whose critical points are non-
degenerate. In particular, the eigenvalues of the Hessian matrix
(i.e. the matrix of the second derivatives) must be non-null.

Morse complex. The Morse complex of a Morse function is the
set of its ascending (or descending) manifolds.

Morse–Smale function]. A Morse–Smale function is a Morse
function whose ascending and descending manifolds intersect
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transversely. This means that there exists no point where an as-
cending and a descending manifold may be tangent.

Morse–Smale complex]. The Morse–Smale complex is the inter-
section of the ascending and descending manifolds of a Morse–
Smale function. One can think of the Morse–Smale complex as a
network of critical points connected by n-cells, defining a notion of
hierarchy and neighbourhood among them. In particular, the geom-
etry of the arcs (i.e. 1-cells) is determined by the critical integral
lines (i.e. integral lines that join critical points) and the order-2
critical points connected by an arc may only differ by 1.

Peak/void patch. In 3D, a peak patch is a descending 3-manifold
(i.e. the region of space from which, following the gradient, one
reaches a given maximum) and a void patch an ascending 3-
manifold (i.e. the region of space from which, following minus
the gradient, one reaches a given minimum).

Persistence. The persistence of a persistence pair (or equivalently
of the corresponding k-cycle it creates and destroys) is defined as the
difference between the values of the two critical points (or critical
simplexes in the discrete case) in the pair. It basically represents its
lifetime within the evolving sublevel sets (or filtration in the discrete
case).

Persistence pair. In the smooth context of a function ρ, the per-
sistence pair critical points Pa and Pb of ρ that, respectively, create
and destroy a topological feature (or k-cycle) in the sublevel sets
of ρ, at levels ρ(Pa) and ρ(Pb). In the discrete case of a simplicial
complex K, a persistence pair is a pair of critical simplexes σ a and
σ b of a given discrete function Fρ(σ ), such that σ a creates a k-cycle
(i.e. topological feature) when it enters the filtration of K according
to Fρ , and σ b destroys it when it enters.

Persistence ratio. The persistence ratio of a persistence pair (or
equivalently of the corresponding k-cycle it creates and destroys) is
the ratio of the value of the two critical points (or critical simplexes
in the discrete case) in the pair. The persistence ratio is preferred to
the regular persistence in the case of strictly positive functions such
as the density field of matter on large scales in the universe.

Quad. A quad is a 2-cell: a 2D region delimited by four arcs
within which all the integral lines (or V-paths in the discrete case)
have identical origin and destinations.

k-simplex. A k-simplex is the k-dimensional analogue of a tri-
angle: the simplest geometrical object with k + 1 summits, called
vertices. It is the building block of simplicial complexes.

Simplicial complex. A simplicial complex K is a set of simplexes
such that if a k-simplex αk belongs to K, then all its faces also
belong to K. Moreover, the intersection of two simplexes in K must
be a simplex that also belongs to K.

Vertex. A vertex is a 0-simplex or simply a point.
V-path. A V-path is the discrete equivalent of an integral line: it is

a set of simplexes linked by discrete gradient arrows and the face–
coface relation. Tracing a V-path consists in intuitively following
the direction of the gradient pairs of a discrete gradient from a
critical simplex to another.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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